
Video Cubism

Allison W. Klein, Peter-Pike J. Sloan, R. Alex Colburn, Adam Finkelstein, Michael F. Cohen
Microsoft Research and Princeton University

Microsoft Research #MSR-TR-2001-45 — Princeton University, Dept. of Computer Science #TR-637-01

Abstract

We present new non-photorealistic (NPR) rendering tools for video.
Inspired by the Cubist and Futurist art movements that questioned
previous notions of space and time within paintings, we view an
input video as a space-time cube of data, rather than a series of static
frames. Our tools process the video as a whole to produce a set of
stroke-solids, units for rendering that appear over multiple frames in
the resulting NPR video. Depending on stylistic considerations and
video content, each stroke solid is encoded with parameters such as
location, size, curvature, orientation, color values, or other relevant
information. A non-photorealistic video is constructed interactively
by compositing slices of the stroke solids. These slices, orstrokes,
are rendered as multi-textured sprites. The textures for each stroke
may be derived from a pre-defined texture atlas and/or drawn from
the underlying video itself. Many of the parameters that define
the appearance of a stroke are set at runtime. This provides the
artist with a wealth of interactive aesthetic controls for modifying
the final result. Benefits of our work include interactive stylistic
flexibility and aesthetic control, and methods for exploiting the full
temporal information present in a video sequence when designing
the stroke solids. Finally, this work extends painterly rendering of
video beyond the impressionist styles previously explored to Cubist,
Futurist, and Abstract styles.

Keywords: Animation, Paint Systems, Temporal Aliasing, Video,
Non-realistic Rendering

1 Introduction

Researchers have developed a variety of tools to modify two-
dimensional images, giving the results a “painterly” or hand-
created look in such diverse styles as impressionism [7, 8], pen
and ink [15], watercolor [2], and engraving [12]. Existing NPR
rendering methods are essentially filters that take in an image
(and possibly some additional processing parameters) and return
an altered, NPR version of the original. Because these methods
were developed specifically for static images, when they are applied
to video sequences on a frame-by-frame basis the results generally
contain undesirable temporal aliasing artifacts. To overcome these
artifacts, Litwinowicz [11] used optical flow information to push
paint strokes from one frame to the next in the direction of pixel
movement. Hertzmannet al. [9] created each successive frame of
the video by first warping the previous frame to account for optical
flow changes and then painting over areas of the new frame that differ
significantly from the frame before. Nevertheless, these approaches
are really local optimizations.

We present a new set of non-photorealistic (NPR) rendering tools

for processing video. We begin by treating the video as a space-
time volume, orcube of image data. Rather than defining two-
dimensional strokes successively on each video frame, we create
a set of parameterizedstroke-solids. Stroke-solids are units for
rendering that appear over multiple frames in the resulting NPR
video. Stroke-solids may be specified automatically from the
underlying video, interactively with authoring tools, or through a
combination of both interactive and automatic techniques. Frames
in the resulting NPR video are generated at run-time by successively
slicing the stroke-solids with a plane as it passes through the video
volume. Each stroke-solid “slice” provides a set of parameters
sufficient to define a textured sprite that is composited onto the output
frame. The texture itself may be derived either from a pre-defined
texture atlas or from a local region in the underlying input video.

Treating the video as a whole offers advantages over previous
techniques. With our approach, one can make local choices based
on global knowledge from the full video sequence. For example,
because stroke-solids exist over a stretch of time, they can be
constructed to maximize certain properties, such as smoothness in
color or orientation, over their lifetime. In addition, stroke-solids
enable anticipatory effects such as automatically fading strokes in
or out.

Interactivity is another benefit of our approach. Stroke-solids
separate a stroke’s relationship to the information contained in the
original video sequence from the stroke’s final rendered appearance.
This allows interactive modification of the mapping between stroke-
solid parameters and the individually rendered strokes. Thus, we are
able to provide the artist with a wide array of interactive controls
over the final look of the video.

We demonstrate the benefits of our approach to impressionist
styles to compare our methods with previous NPR tools. In
addition, the final contribution of our work is that it extends non-
photorealistic rendering of video beyond impressionist styles to
Cubist, Futurist, and Abstract imagery. In fact, the new NPR
techniques for video presented here are inspired by the Cubist
and Futurist art movements. Just as the early twentieth-century
Cubist painters sought to decompose a scene into an arrangement of
geometric figures, we seek to decompose a video stream into a set of
geometric entities. In addition, the Cubist fascination with capturing
a scene from different viewpoints or times motivates us to render one
or several moments from the video sequence simultaneously, which
is made possible by our volumetric approach.

The remainder of this paper is organized as follows. First, we
discuss some general principles of processing the video as a space-
time volume. We then demonstrate how our approach can be used
to implement Impressionist, Cubist, and Abstract painting styles,
as well as the photo mosaics of David Hockney. However, since
the work presented here is fundamentally about moving images, the
results are best seen on the accompanying video. After presenting
some key performance and implementation details, we conclude
with proposed areas of future work.



2 Considering Video as 3D Data

In this section, we present the idea of a video as a space-time volume
and then discuss, at a high level, the relationship between this volume
and stroke-solids.

2.1 Video Cube

A video is a sequence of images that has been discretized in two-
dimensional space (pixels) and in time (frames). Because there is
a large body of work in computer graphics devoted to discretized
2D image processing techniques, it seems only natural that most of
the non-photorealistic video processing work thus far has consisted
of running these techniques on each individual frame. The only
concession to the third dimension, time, has been the use of optical
flow [11, 9]. One of our main goals is to treat time more consistently
with the spatial dimensions.

We do this by considering the video as a three-dimensional cube
of data. One could, for example, view slices of the cube that
are not necessarily orthogonal to the time axis (Figure 1). For
instance, if we looked at slices that are parallel to the time axis,
we would see motion (either of scene elements or the camera) as
changes across each scanline. Each scanline represents a single
pixel’s trace over time within the original video. In computer vision,
such images are sometimes referred to asepipolar diagrams [3].
Visualizations of time-sequenced imagery from viewpoints other
than on the time axis are not unique to this project. Fels and
Mase [4] presented an interactive system for passing arbitrary cut
planes through the video data volume.Multiple-center-of-projection
images [13] andmultiperspective panoramas [18] may also be
considered two-dimensional (though non-planar) slices of a video in
which the camera is moving. One of our contributions is to apply the
underlying ideas of a video volume and non-standard cutting planes
towards non-photorealistic rendering of video, and more specifically
towards Cubist and Futurist styles. Just as the Cubist and Futurist art
movements of the early20th century mixed space and time within
single images, we leverage the ability to slice the input video in
non-standard ways to achieve similar effects.

2.2 Stroke-Solids

We define astroke-solid as a three-dimensional unit for rendering
that exists over a sequence of frames in the output NPR video.
Stroke-solids are generated through a combination of automatic
processing of the input video and input provided by the user. The
specifics of the automated process and the parameters available to
the user differ depending on the desired artistic style. In the next
section we describe four example styles that we have implemented.

The stroke-solid is designed to be the basis for an interactive
rendering system. As such, it has user-specified parameters that
are not known until render time. Thus, the stroke-solid is not fully
defined until render time. The stroke-solid’s volume is defined by
the pixels it generates over the course of the output NPR video
(Figure 2).

Because of computational costs, a stroke-solid may be partially
defined during a preprocessing stage. For example, a 3D curve
representing the central skeleton of the stroke-solid over time, may
be defined before run-time based on optical flow detected in the
input video. Similarly, other aspects of the video, such as color or
color gradient, may be recorded along the stroke-solid skeleton.

As previously stated, many decisions about a stroke-solid’s final
appearance are left until runtime to allow for experimentation by the
artist. In general, these runtime decisions determine the mapping
from the values determined during the preprocess to the different
appearance choices provided by each style. In our implementations,
described in more detail in the following sections and accompanying

video, each style renders the slices of the stroke-solids as solid,
textured, or multi-textured primitives. The final scale, orientation,
position, choice of textures, and texture coordinates can all be
interactively modified to produce a variety of visual effects.

Thus, at render-time, the stroke-solids provide flexibility in
three ways. First, the values recorded in the preprocess can
be modified with simple UI elements. Second, the stroke-solid
forms an abstraction separating the structure of the input video
from its final, non-photorealistic rendering. This means that the
set of rendered strokes to which we map the stroke-solid can be
changed dynamically. Third, since the stroke-solids are themselves
continuous, they can be sampled at any arbitrary point during
runtime. For example, the output frame rate can vary independent
of the input video’s frame rate.

Figure 1: Video Cube

3 Stylized Rendering

In this section, we discuss a number of styles we used to explore
the concept of stroke-solids. We chose these examples based
on the19th and 20th century paintings and styles that inspired
this work, paintings by Monet (Impressionism), Picasso (Cubism),
Duchamp (Futurism), Mondrian (Abstract), and Hockney (Photo
Mosaics). For each style we will describe the preprocess required,



Figure 2: A stroke-solid that tracks the red ball

the interactive parameters provided to the user, and show some
results.

It should be noted that the styles described below are only point
samples in a very wide space of possibilities that open up by
considering the video as a data volume. Therefore, these styles
and their particular implementation details are presented more as
examples of what one can do within this space rather than as a
comprehensive coverage of the possibilities.

3.1 Impressionism

With the advent of the camera in the mid-19th century, painters
were liberated from simply portraying the physical world. By the
1880’s, artists such as Monet and van Gogh began to use their brush
strokes as visual objects in and of themselves. Rather than creating
a realistic depiction of a scene, the resulting images provided the
artist’simpression of the scene, and thus the Impressionist movement
in art was born.

In our impressionist implementation, we first perform a prepro-
cess defining a set parameterized stroke-solids that are further ma-
nipulated at runtime. The preprocess begins by calculating addi-
tional information at each pixel of the input video: an optical flow
vector (by searching a small window around the pixel for a match-
ing region in the next frame), an orientation normal to the image
gradient (a combination of horizontal and vertical3 × 3 Sobel
filters), and curvature (the change in gradient across a small win-
dow around the pixel). Because optical flow algorithms are not very
robust, particularly when confronted with quickly-moving objects,
we also manually adjust the optical flow information to track large,
fast moving objects.

Given the color values, flow, orientation, and curvature at each
pixel, we generate each stroke-solid’s path. We randomly seed the
volume with a set of initial positions (in the case of a320×240×240
video we used40, 000 initial seeds). Next, for each seed, we use the
optical flow data to grow the path of the stroke-solid both forward
and backward in time from the seed position. At each growth step,
we record the position, orientation, and curvature, and color, using
bi-linear interpolation for sub-pixel accuracy. The size parameter
is set to one. Whenever the color difference between neighboring
samples exceeds a small threshold (a distance of 50 in the2553 RGB
cube), the stroke is broken into two distinct pieces at that point. In
some cases, after the stroke-solid has been generated, we may also
taper the size parameter from 1.0 down to 0.0 at both ends of the
stroke-solid to provide gradual stroke introduction and removal at

Figure 3: Two of the texture atlases used to render the impressionist
style.

run-time.
A final aspect of the preprocess involves creating a set of texture

atlases by hand. These atlases, used at runtime to render the stroke-
solids, contain both grayscale and alpha images of the strokes (figure
3); the colors associated with the individual stroke-solids will be
used to apply color to these textures. In our examples, we have
experimented with atlas images that look like jellybeans, leaves,
and butterflies. In the case of the butterflies, we can modulate the
width over time to create dynamic wing-flapping at runtime.

At runtime, a plane is passed through the video cube. Each frame
is constructed on the fly by compositing one sprite for each stroke-
solid intersecting the plane. An artist has a variety of interactive
controls over the final look of the impressionist video:

• Choosing the texture atlas

• Drawing fewer stroke-solids, either for performance reasons
or to make the result less busy looking

• Modifying a stroke-solid parameter’s curve by smoothing (e.g.,
smoothing the variation in orientation will make the strokes
rotate less during their lifetime) or adding noise (the opposite
effect of smoothing)

• Scaling a stroke-solid parameter’s curves, either by adding or
multiplying a constant factor

• Gamma correcting the red, green, or blue color channels

Figure 4 shows a variety of results from a single preprocess run on
a short video of a girl catching and throwing a ball. By varying both
the interactive settings and the texture atlas, an artist can quickly
modify the resulting video as it plays. Figure 5 depicts a similar
style based on underlying videos of a school a fish and of a woman
talking. Here, you can see additional effects of our pre-process, such
as how the stroke-orientations lie normal to image gradients.

3.2 Cubism

Cubism, pioneered by Pablo Picasso and Georges Braque in the
early twentieth century, created a new artistic vocabulary of multiple
perspectives, interlocking planes, and fractured, flattened masses
capable of “articulat[ing] the complex, fragmentary experiences of a
new era[14].” The cubist decomposition of the image into geometric
shapes was a precursor for much of what followed; painting became
more and more abstract as the century progressed. In addition, time
and space became twisted and stretched as images began to depict
multiple viewpoints in both time and space. Duchamp’s "Nude
Descending a Staircase" is probably the best known work of this
style, which is sometimes referred to as Futurism. We have created
two rendering styles to capture some of the essence of the Cubist
and Futurist movements. The first style automatically decomposes
the video volume into 3D Voronoi tiles. The second style allows the
artist to define swept sheets and generalized cylinders, which then
subdivide the video volume. We will describe each in turn.



Figure 4: Impressionist-style images from a single preprocess.

3.2.1 Diamonds as 3D Voronoi Cells

Many image manipulation programs provide the ability to generate
tiled images from input images. The underlying algorithm is based
on work by Haeberli [7] in which tiles are actually 2D Voronoi tiles,
and the tile colors are sampled from theVoronoi seed point locations.

We take the same idea and generalize it to 3D: a video volume
can be decomposed into a 3D Voronoi diagram. Then, each slice

Figure 5: Results from other impressionist-style preprocesses. Note
the stroke-orientation information present in this style.

of the volume produces a tiled image. A hardware-based solution
for rendering these successive slices consists of drawing, for each
point, a hyperboloid representing the distance function between the
point and the image plane. (This hyperboloid degenerates to cones
when the point lies on the plane) The z-buffer then leaves intact just
the region of the plane closest to the point. Hoffet al. [10] describe
the algorithm in detail.



In addition to providing a means for decomposing our volume into
geometric shapes, a significant benefit to this approach is that 3D
Voronoi cells implicitly provide a high degree of temporal coherence.
This coherence occurs because each cell will (in general) begin
with a small cross section, grow, and then shrink smoothly before
vanishing as the plane passes through it.

With Voronoi cells as our foundation, we must now address
several implementation issues:

• How many seed points to use

• Where to place these seeds to best create 3D tiles representing
the video source

• How to color the tiles

• What is the optimal hyperboloid tessellation for rendering

• How to manage video access

• How to achieve the above points in real time so that we can
give the artist interactive control.

We discuss video access in Section 4, and the number of points
(or 3D Voronoi tiles) is an aesthetic decision and is therefore left
to the artist at run-time. Placing the seeds within the volume is
more problematic. One might want to have them scattered evenly
throughout the volume, or more likely, one might want more points
located in regions of highimportance. One measure of importance
is the local variance of the color values in the video volume. We
allow the artist to choose the final importance of a region as a blend
between a desire for a uniform distribution and one determined by
local variation. To create an importance-based distribution of points
we perform an importance weighted stratified sampling strategy
[16]. This results in a well spread set of points with a higher density
in either spatial or temporal regions of change. Point selection is
run whenever the artist changes the number of desired points or
changes the importance function (i.e., whenever the artist changes
the blend between a desire for uniformity and a distribution based
on local variation). The color for each Voronoi cell is taken as the
local mean color in the video. The entire point selection process
takes 2 to 3 seconds for a 10 second video at320 × 240 resolution.

We now have all that is needed to render slices of the 3D
Voronoi diagram. However, since the Voronoi diagram is never
explicitly represented, given a slicing plane, there are a number of
unkowns we must solve at real-time. For example, which points
will contribute to coloring the slice? Also, how large a section of
the associated hyperboloid needs to be drawn to not leave holes yet
avoid redundancy? (If all the points are chosen and the associated
hyperboloid is drawn until it covers the frame, the system will grind
almost to a halt.) Unfortunately, the optimal answers are dependent
on the number of Voronoi cells and their distribution. We thus
provide sliders to be set at runtime determining (a) the thickness
of a slab of time surrounding the current slice for which to render
theVoronoi cells, and (b) the radius of the portion of the hyperboloid
to render. The user simply moves the sliders upwards until there are
no holes. With a small bit of practice this is very intuitive.

Figure 6 shows some results from rendering Voronoi cells. In
the first image of the woman’s face and the third image of the girl
swinging on a branch, the importance function was set to emphasize
local detail. Note the high density of points around the face edge
and near the girl’s back, and the lower density in the ground area.
The second image has a more even distribution of points. We have
also used a second bubble-like texture (shown in the corner of the
middle image) to modify each cell in the bottom two images.

Figure 6: Voronoi rendering results

3.2.2 Shards: swept surfaces and generalized cylinders

A second style, also inspired by early Cubist works, enables the artist
to subdivide the screen into discrete areas orshards at each frame.

We have implemented a small authoring tool in which the artist
can interactively define a series of swept surfaces, each dividing the
video volume into two half-spaces. The intersections of the many
half-spaces form a set of “shards” tiling the volume. The interface



involves specifying a few lines contained in the swept surface. For
example, the artist might start at the first frame in the video and
specify a line that divides the screen into two half-planes. The
intent might be to have this line follow the edge of a moving object
in the scene. Then moving forward to a new keyframe, say, half way
through the video, the artist is presented with the line specified for
the first frame. The artist can move this line to a new position to
follow the feature. Finally, moving to the last frame of the video, the
line is repositioned again. A swept surface is generated by linearly
interpolating these three lines through time. Thus the artist will see
the line move from frame to frame, passing through the positions
that were set at the keyframes. In a similar fashion, the artist can
specify any number of swept surfaces. At each frame of the video,
the interpolated lines subdivide the screen into a number of shards
that smoothly vary through time. We also provide an equivalent tool
for laying down ellipses to define a swept elliptical cylinder.

At runtime, as the cutting (image) plane passes through the swept
surfaces, the individual shards are discovered on the fly in the
following manner: For each frame, shard vertices are found at line
crossings, which break the cutting lines into line segments. The
segments are in turn linked together to form convex polygons, by
tracing around each polygon in counter-clockwise order (always
turning left at intersections). We also compute the centroid and area
of each shard to be used as rendering parameters. Finally, any swept
ellipses are superimposed as a new polygon on top of the shards.

At this point, there are many possibilities of how to process the
shards for the final output. For example, we could pick up a color at
the centroid of the shard and use that to color the whole shard as in
the Voronoi style. Instead, we will use the original video to texture
each shard. We provide the artist with a number of ways to modify
each shard, including:

• Zooming each shard

• Modifying its time association with the input video

• Using two video streams as input

• Modifying the video texture by multiplying it with a second
texture, as in the Hockney style.

One can also set the zoom factor and time variation to be a function of
the distance from one of the swept surfaces, allowing these quantities
to vary across each shard.

Figure 7 shows some results of using swept surfaces to decompose
the image. Each shard has been scaled and shifted in time as a
function of the shard size and proximity to main dividing line. Note
that in the traffic scene, a second pre-blurred video stream is used as
the texture for those shards to the left of one line. Each line moves
in time (e.g., one follows the wiper blade), thus the polygons change
at each frame time as does the zoom factor and/or time shift.

3.3 Abstraction

If the Cubist movement began the process of breaking down the
image, the Abstract movement completed the process. Representa-
tion was completely abandoned in favor pure compositional balance,
color, and design. One of the earliest pioneers and intellectuals in
this field was Piet Mondrian. Mondrian is best known for his se-
ries of abstract paintings beginning in the 1920’s depicting vividly
colored rectangles offset by thick black lines. The starkness and
simplicity of his work was a major influence within the art and de-
sign world, inspiring everyone from fashing designers(see Yves St.
Laurent’s Mondrian dress) to architects. The simple, almost algo-
rithmic nature of his paintings has also led to "Mondrian machines,"
available as Java applets on the internet. But Mondrian’s form of
abstraction did not ariseex nihilo. Mondrian spent many years paint-
ing solitary trees, gradually adopting a more Cubist approach, and

Figure 7: Shards rendering results

eventually discarding the representation itself in pursuit of a sense
of pure balance [5, 17].

Motivated by Mondrian’s work, we seek to turn video into a
mobile series of colorful, rectuangular compositions. In addition,
just as Mondrian was inspired by how trees decompose space,
Mondrian has inspired us to decompose video volume into a kd-
tree.

Kd-trees typically used to hierarchically decompose space into
a small enough number of cells such that no cell contains too
much complexity. This decomposition occurs by recursively
slicing through space with half-planes, and these half-planes
are usually axis-aligned. While kd-trees provide a fast way to
access input objects by location, we use them to subdivide the
video volume into rectangular sub-volumes where each sub-volume
contains approximately the same amount of importance while also
maintaining an even aspect ratio (if desired). As mentioned above
in relation to the Voronoi style, one measure of importance is the
local color variance in the video volume. We first construct a 3D
summed-area-table[1] of importance. This provides the input for
dynamically constructing the kd-tree at runtime.

As the video cube is traversed at runtime, each kd-tree cell is
colored with a constant color drawn from a low pass filtered version
of the video. This color is optionally remapped to increase the
saturation. As new cells are added to (or removed from) the output,
they are smoothly transitioned in (or out) to avoid popping.

We provide an artist with a number of interactive controls at



runtime:
• Number of cells: defines the desired number kd-tree leaf nodes

• Aspect ratio: how cubical each cell should try to be

• Saturation: a color remapping from video to output

• Jitter: randomly re-chooses higher level split points in the
kd-tree. (The leaf nodes are still created according to the
importance function.)

• Line thickness
Figure 8 shows some results of applying our Mondrian style to
the video of a talking woman. We feel the top image with
few cells is reminiscent of a Mondrian painting. The video
shows the smooth variation from the top image to the bottom
one by sequentially growing the number of leaf nodes in the kd-
tree. This depicts more detail from the underlying video stream.
Although our initial inspiration came from the complete abstraction
of Mondrian, we found the transformation from abstract images to
more representational ones visually intriguing.

Figure 8: Mondrian rendering results

3.4 Photo Mosaics

In the 1980’s, pop-artist David Hockney turned his camera towards
common scenes and objects, snapping multiple images of scene

Figure 9: Photo mosaic results

details. He then composited numerous fragments of these images,
creating an image mosaic. Inspired by these photo montages, we
provide a tool enabling the artist to subdivide the video into a series
of small, textured tiles where each tile draws its texture directly from
a local region of the video.

Because the stroke-solids are drawn from a regular grid in space,
and thus are implicitly defined, there is no preprocess required for
this style. The interactive controls we provide to the artist at runtime
include:

• Grid size (x and y): defines the number of output stroke-solids
or tiles. For example, a 5 by 5grid results in 25 tiles.

• Scale: defines the size of the output tile relative to the input
grid rectangle. Tiles scaled to size less than one will leave gaps
between it and its neighbors. These gaps are filled with black
or optionally with the original video sequence.

• Offset (x and y): defines how the tile will be shifted in space
relative to its grid position.

• Rotate: defines the tile’s rotation.

• Zoom: defines the size of the source texture, specifically, the
ratio of the size of the source texture from the video to the
output tile. A small source texture mapped to a larger output
tile will have an effect like a magnifying glass.



• Time offset: defines where in time the input texture is drawn
from. This allows different tiles to depict somewhat different
points in time in any single output frame.

For each of the above parameters(except for grid size), we actually
enable the artist to set both a mean value and a variance for a random
perturbation. Each tile can also be multi-textured (multiplied) with
a second texture to create a border and/or an overall painterly or
textured look.

Figure 9 shows some results from the photo-mosaic style. Each
tile is manipulated at runtime to shift, rotate, scale, zoom, and shift
its position in time. Note the multiple points in time depicted in the
image of the girl throwing the ball. In the case of the woman’s face,
we first processed the underlying video to show multiple points of
view at a single time. The original video stream was captured by a
camera moving relative to the woman’s head.

4 Notes on performance and implementa-
tion

Each of the images in this paper and all the examples in the
accompanying video were rendered in real time on a 733MHz PIII
PC with an Nvidia GeForce2 GTS graphics card. Depending on
the specific style and particular settings chosen, the frames of the
NPR video rendered at between 15 and 200 frames per second. That
said, the timings on many of the styles can be seriously degraded
by some of the choices possible at runtime. Clearly, by including
too many stroke solids in any of the styles, the system can become
polygon bound. More commonly, the system slows down due to
limitations in fill rate. For example, by setting the radius too large
for the hyperboloids associated with each seed point of the Voronoi
style creates a high depth complexity and thus a fill rate too high
for interactive speeds. Also, some operations, such as reseeding the
Voronoi patterns or computing a summed-area-table to guide the kd-
tree divisions in the Mondrian style, take a few seconds, but these
are run infrequently during a design session.

The preprocess for the impressionist style is expensive, on the
order of a few hours depending on video length. In particular,
this is due to the optical flow determination. However, once this
precomputation has been carried out, a wide array of looks can be
explored interactively.

Many of the implementations require careful engineering to
be able to achieve interactive speeds. Some of the important
implementation steps include:

• Evaluating the parameters for the impressionist style. Each
parameter’s function over time is fit to a quadratic B-spline
with identical knot spacings. Since all stroke solids will be
fit to this one B-spline basis set, the fit matrix can be inverted
once (using SVD) and used to fit all the stroke solids. At
runtime, given the single knot spacing, the system only has to
compute 3 B-spline coefficients per frame and reuse these for
every parameter and every stroke solid. If the user requests a
parameter’s function to be smoothed, it is fit to a B-spline basis
set with fewer knots and then reprojected back to the original
higher number of control points. Optional noise functions that
can be added to any parameter have the same structure.

• Efficiently performing time offsets for each stroke solid as in
the Hockney and shards styles. In order to draw texture from
more than one frame of video, we have implemented aring
buffer to handle the data access. Given a maximum of N frames
for the time perturbation, holding the current frame plus the N
frames before and after the current frame in texture memory
provides all the source textures for any out frame. As each
frame falls more than N frames in the past, its texture in the ring

buffer is replaced with a new frame drawn from N frames in the
future. In addition, to maintain better memory locality, each
frame in the ring buffer is looped through and used to texture
any stroke solids that touch it, rather than looping through the
stroke solids and finding the appropriate frame to draw the
texture from.

• Deciding when and where to subdivide the kd-tree for the
Mondrian style. We first compute a 3D summed-area-table
[1] of importance. This provides the values needed to quickly
evaluate the integral importance of any subregion of the video
very quickly. The same table also provides the average color
for any node in the kd-tree.

• Tessellating and rendering the hyperboloids in the Voronoi
style. We rely on the algorithm described by Hoffet al. [10]
with some added engineering. In particular we find optimal
radii for a series of rings with which to tessellate the
hyperboloid. We recursively determine the radius with highest
error between the current approximation (starting with a cone)
and the true hyperboloid and subdivide the hyperboloid at this
radius and repeat until an error threshold is met. This is done
in advance for twenty point-to-plane distances. At runtime we
use the one closest to each points distance to the plane.

• Finding the Voronoi seeds within a given time distance from
the current plane. We developed a 3D binned spatial data
structure to hold each Voronoi seed. This provides a very fast
way to find and access just those Voronoi cells that need to be
rendered at each frame.

• Determining the polygons by intersecting the swept sur-
faces in the shards style. At each frame we need to find all
intersections, and then connect these into individual polygons.
An efficient edge based structure can be computed very quickly
[6]. Robustness problems are endemic to these types of opera-
tions when more than two lines cross. We detect such problems
and offset the surfaces slightly to avoid zero sized polygons at
runtime.

5 Conclusion and Future Work

The central idea presented in this paper is to consider video as a
whole when designing non-photorealistic rendering methods for
video. From this basic idea, we develop the concept of a stroke-
solid, a 3D region of the output video used as a rendering unit. We
demonstrated a wide variety of styles that can be created within this
framework. We chose our inspiration for the artistic styles from a
series of artistic movements ranging from Impressionism to Cubism
to Abstract Art.

For each artistic style, we demonstrated a runtime environment
that provides the artist with a large degree of flexibility for
experimentation. To support this flexibility, we perform a preprocess
where necessary, while leaving as much computation to runtime as
possible to allow the widest latitude for interactive manipulation.
We have described a number of the underlying engineering details
to make this possible on current graphics hardware.

We are currently working on several enhancements to the current
system. These include:

• Adding new stroke atlases that mimic more traditional paint
strokes in the impressionist style.

• Adding new interactive tools for shard definition. In addition
to the cutting surfaces we want to add new generalized cylinder
shapes such as triangles and rectangles. These can also
be sequenced to give the artist more control over the final
compositing order of the stroke-solids.



• Adding the ability to control individual stroke-solids. Cur-
rently, given the large number of stroke-solids, we perform the
same or randomly determined operations to all strokes.

• Migrating Voronoi seed points along paths in time. Initially
we would like to augment the simple seed points with line
segments that express the seed’s path through time. Individual
Voronoi cells will survive longer and thus improve temporal
coherence. If not exactly parallel to the time axis they can
accentuate optical flow. Alternately, we could use the stroke-
solid paths described in Section 3.1, thereby unifying the
rendering logic for our Impressionist and Cubist styles.

Clearly, there are many more styles one could choose to address. Just
as clearly, we have only begun to define the set of tools one would
want to present to the artist for each of the styles demonstrated. It
will only be after an artist uses with the system for some time that
we will better understand the limitations of the technology. This
will also help us design an effective user interface for the tools. We
hope the reader shares our excitement about exploring the variety of
new possibilities in the context of NPR video.

References

[1] F. C. Crow. Summed-area tables for texture mapping.Com-
puter Graphics (Proceedings of SIGGRAPH 84), 18(3):207–
212, July 1984. Held in Minneapolis, Minnesota.

[2] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer,
and D. H. Salesin. Computer-generated watercolor.Computer
Graphics (Computer Graphics (Proceedings of SIGGRAPH
97)), pages 421–430.

[3] O. Faugeras.Three-Dimensional Computer Vision: A Geomet-
ric Viewpoint. MIT Press, Cambridge, Massachusetts, 1993.

[4] S. Fels and K. Mase. Interactive video cubism. InProceedings
of the Workshop on New Paradigms in Information Visualiza-
tion and Manipulation (NPIVM-99), pages 78–82, N.Y., Nov. 6
1999. ACM Press.

[5] V. A. Grauer. Mondrian and the dialec-
tic of essence. Critical Review, 11(1), 1996.
http://www.creview.com/artcrit/ac1gra.htm.

[6] L. Guibas and J. Stolfi. Primitives for the manipulation of
general subdivisions and computation of voronoi diagrams.
ACM Transactions on Graphics, 4(2):74–123, April 1985.

[7] P. E. Haeberli. Paint by numbers: Abstract image representa-
tions. Computer Graphics (Proceedings of SIGGRAPH 90),
24(4):207–214.

[8] A. Hertzmann. Painterly rendering with curved brush strokes
of multiple sizes. Computer Graphics (Proceedings of
SIGGRAPH 98), pages 453–460.

[9] A. Hertzmann and K. Perlin. Painterly rendering for video and
interaction.Computer Graphics (Proceedings of NPAR 2000),
pages 7–12.

[10] K. H. III, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast
computation of generalized voronoi diagrams using graphics
hardware. Proceedings of SIGGRAPH 99, pages 277–286,
August 1999. ISBN 0-20148-560-5. Held in Los Angeles,
California.

[11] P. Litwinowicz. Processing images and video for an im-
pressionist effect.Computer Graphics (Proceedings of SIG-
GRAPH 97), pages 407–414.

[12] V. Ostromoukhov. Digital facial engraving. Computer
Graphics (Proceedings of SIGGRAPH 99), pages 417–424.

[13] P. Rademacher and G. Bishop. Multiple-center-of-projection
images.Proceedings of SIGGRAPH 98, pages 199–206, July
1998.

[14] R. Rosenblum.Cubism and Twentieth Century Art. Harry N.
Abrams Publishers, New York, NY, 1966.

[15] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin.
Orientable textures for image-based pen-and-ink illustration.
Computer Graphics (Proceedings of SIGGRAPH 97), pages
401–406.

[16] P. Shirley, C. Wang, and K. Zimmerman. Monte carlo
techniques for direct lighting calculations.ACM Transactions
on Graphics, 15(1):1–36, January 1996. ISSN 0730-0301.

[17] D. Sylvester.About Modern Art : Critical Essays, 1948-1997.
Henry Holt & Company, Inc, New York, New York, 1997.

[18] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, and
D. H. Salesin. Multiperspective panoramas for cel animation.
Computer Graphics (Proceedings of SIGGRAPH 97), pages
243–250.


