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Abstract Though policies like these are easy to describe in words,
it is not always obvious how to implement them in the

When an untrusted machine-language programruns on a hofg mework Of PCC. How can we be sure that a TO”'?"?"'Z""“O”
with resources that must be protected, the security pO|iC}P sucha po!|cy makes sense and matches our intuition about
specifies how the program may interact with the host. Proof-What the policy means?

carrying code is a framework for automatically verifying We argue that the right way to do this is to construct
that a program complies with a security policy. We showa model for the state of the environment (hidden behind
how to specify a wide variety of security policies, how to an API). This allows us to think more clearly about the
ensure that these specifications are consistent, how to develapference rules of the safety policy, and indeed to prove them
compilers that produce compliant machine code and proofsas theorems.

of compliance, and how to reason about whether the host

environment correctly implements its side of the policy.

2 Examples

1 Introduction To motivate our discussion, we now present several policies
of the type we would like to be able to enforce.

The early proof-carrying code (PCC) system designed by

Necula and Lee [8] enforced a simple memory safety pol-Periodic Coroutine Yields. In this example, we require

icy which imposed limits on which memory addresses thethat the program never execute more than some constant
program could read, write, and execute. PCC uses a precisaimberK of instructions without making a call toyaeld

model of the machine’s instruction set to prove properties offunction. This provides a guarantee that other coroutines can
a program. make progress.

It was soon evident, however, that PCC could be applied
in principle to a wider range of policies, including such rules Memory Allocation and Deallocation. This example ex-

as “no more thai instructions executed between coroutine (ands the standard memory-safety policy by adding library (or

yields,” rules regarding memory safety in situations whereqnerating system) calls that allocate and deallocate memory.
the underlying platform made available calls to allocate

and deallocate memory, and rules describable in terms of

reference monitors or security automata [10]. All of theseSecurity Automaton for Correct Sequencing of API Calls.
policies describe interactions between the program and it&ollowing the work of Schneider [10], this example re-
environment (which includes the host on which the programquires that the sequence of API calls made by the program
runs). correspond to the transitions of a security automaton. A



security automaton is a state machine that makes a transition That is, if it's safe to execute in a register bank where
every time the program makes a call to a built-in library r(i) has been set to the contentsnafx), and if locationx is
API. If an illegal transition is attempted, the automaton will readable, then it's safe to execute the load instruat{on—
terminate the program instead of permitting the API call. Ourm(x) and continue wittp.

implementation will allow wide latitude to code producers

in choosing between static, dynamic, and hybrid methods of Another rule says that if we can execute thalocAPI call
enforcing the automaton’s required behavior. In particular,to get more memory. That s, if it is safe to execute a program
instead of requiring the trusted side of the API to implement ap provided that register{i]  points to a block of allocated
state machine, we can mechanically check that the client sidmemory, then even from a state in whicfij  doesn't
faithfully implements it; then, in fact, the client’s compiler point to allocated memory, it is safe to execute the program
can optimize away part or all of the security automaton whilemalloc(n);p  , which calls malloc and then execufes

still preserving verifiable compliance. We come to praise

security automata, and to bury them inside the client.

n>0
readablém,b...b+n— 1) — safeExecut@|i:=b],m p))
safeExecut@,m, (r(i) < mallodn)); p)

Limiting the Number of Locks Held. In this example, the
program may acquire and release locks by making library.
calls, and we require that the program never hold more than
some constant numb#r of locks (in fact, this policy can be
expressed by a security automaton).

These are seemingly reasonable rules. But the analysis of
All Output Must Be Logged. This example requires the such axioms that constitute a security policy is not easy: are
program to write a copy of all of its output to a special “log” the axioms consistent? What properties do they have?
output stream. This example (and the next one) cannot be
expressed using security automata. One of Necula’s breakthrough achievements in formulat-
ing the notion of proof-carrying code was to axiomatize the

Packet Forwarding. Our final example allows the program system very concretely and at a very low level — that of
9. P prog individual machine instructions and memory locations. But
to send and receive network packets, but every packet that

. : . . we will argue that his specification is actually too abstract!
is sent must be identical to some packet that was previousl| g P y

received. We could also specify that no packet is forwarde(}éy writing an even more concrete axiomatization we make it
more tha.n once P P easier to prove properties of the interface between the PCC

host and the untrusted program.

. For example, in Necula’s Touchstone compiler the

3 A CaUtlonary tale readablém, x) predicate takes two arguments, the memory
and the address in question. A year later, in Necula (and

Necula’s Touchstone compiler [9] uses a safety policy inothers’) “Special J” Java compiler [2] the readdketakes
which there is a predicate readafotex), saying that address only the address as an argument. Which version is best?
X is readable in memomn. Essentially, there is also a predi- Does the memory argument serve any purpose? What's the
cate safeExecute m, p) meaning that it is safe to execute the rationale for designing security policies?
program fragmenp in the program state with registaraind

memorym. A typical axiom of this system is The short answer is that if there isv@alloc API function
then the readable predicate should take the extra argument.
safeExecut@[i:=m(x)],m,p) readablém,x) We will first present our models of security policies, and then
safeExecute,m, (r(i) —m(x)); p) return to this example.



4 Axiomatization of instruction execu- A programis just a sequence of integeps, px, ..., Pn_1
(that code for instructions and data) to be loaded at a start

tion addressstart  The initial condition is that the program is

] ] loaded and the program counter points to the entry point:
We model a machine state as a register lraskd a memory

m, each of which is a function from integer to integer [1, 6]. initial (p,r, m) =

The register bank contains not only ordinary general-purpose r(pc) = startA Vi € dom(p). m(start+i) = pi.
registersr(0),r(1),...,r(15) (e.g., if there are 16 of them)

but also dedicated registers such as the program counter andThe simplest possible security policy — that the program
condition codes which we arbitrarily assign numbers (e.9.never executes an illegal instruction — is axiomatized by our

the program counter ig17); we define pc=17). definition ofsafe A programp conforms to the policy if
We specify machine instruction decoding and execution
via a single-step relatiorfr,m) — (r’;m), meaning that safeprogp) = Vr,m. initial (p,r,m) — safgr, m)

if r describes the contents of registers (including program

counter) arrlldn dhescrlbes the rqletr)no(;y, aqg c()yne lgri:[(ructlon The step relation® defined arithmetically as in Figure 2

executes, then the new state will be described landn. may be a subset of what the machine can legally execute;
To illustrate the specification of the step relation, we will we denote the latter relation by:. We may wish to avoid

use a Toy machine, a 16-bit word-addressed machine witlaxiomatizing the rare and complicated instructions that com-

simple instruction encodings [1]. pilers don't generate in practice. By making this choice, we
lose the ability to prove safe any program that executes those
OPCODE instructions, but any program we prove safe with respect to
add |0d s s |rgrs+rs, 4, is also safe with respect to.
addi |1d s c|rqg«rstc _ d
load |2d s ¢ rg < m(rsic) An axiom relates— to —:

store| 315 € | M(fs, £C) Ty

jump|4d s c|rg pc pce rsEc StepAxiom Yr,m,r’,m/, r” m’’.

bgt |5s1s ¢ |if rs, > rs, thenpc— pc+c (rm) & (7, m)
((rym) = (r',m)A
On a von Neumann machine, each instruction is rep- ((rym) = (r",m") — 1" =r"Am =m"))

resented in memory by an integer. Odecoderelation
(Figure 2) is a predicate on two argumefits) and says that This says that it% makes a step, ther: makes the same

vis the encodmg. of II’]StI"UCtIOﬂ .FmaIIy, the step'relauon step and no other. But if. makes no step, them is free to
— expresses the idea of instruction fetch, instruction decode

. . . hake an .
and instruction execution. ake any step

Our step relation is purposely partial; that is, not every state

r,mhas alegal next step. For examplenifr (pc)) = 70006, 5 Encoding Security policies
an illegal opcode, there is nd,m’ such thatr,m— r’,n.

Using this idea, we can express a safety predicate: Suppose we want to require that the program writes only
to memory locations in a specified range. We can define a
_ !/ * p/
safer,m) = vr',n. r,m»—>3r”, r:f, - R predicate writablex); the security policy is that the program
rm.r,me T, writes only to those addresses. We also require that the

That is, a machine state is safe if, in any state reachable bjrogram reads only from addresses permitted by reaggble

executing instructions from that state, there’s always a legalo axiomatize this policy, we modifyd—> by changing the
next step. definition of the load and store instruction:



upd(f,d,x, f') =Vz (d=zAf'(z) =x) vV (d £ zA f'(2) = f(2))

pc=17

ad({d S1, S )(r marlam) = updradar(sl) +16r( )7 )/\

addid,s,c)(r,m,r’.m’) = updr,d,r(s) +165€x{c),r') Am

loadd,s,c)(r,m,r',m’) = upd(r,d, m(r( )+165ex(c)),r’) rﬂ

storgs;, s, ¢)(r,m,r’,m') =updm,r(s;) +165ex{c),r(s1), nf)/\r =r

jump(d,s,c)(r,m,r’,m’) = 3r”. upd(r,pc,r(s) +1ssext(c),r”) Aupdr”,d,r(pc),r') Am=m

bgt(s1,s,¢)(r,m,r’ ;)
)

(r(s1 ir(sz)Aupc(r,pc,r(pc)+1esex(c),r’)/\m:n‘() vV (r(s1) <r(s)Ar=r'Am=m)

Figure 1: Semantic definition of machine instructions. The symbgldenotes addition moduld‘2and sex(c) is the sign-
extension ot from 4 to 16 bits.

formatw,a,b,c,d) =0<a< 16A0<b<16A0<c<16A0<d< 16AW=ax*16>+b*16°+c+16+d.

decodg(v,i) = (3d,s1,%. formatv,0,d,s1,5) Ai = addk(d, 51, %))
V (3d,s,c. formaty,1,d,s,¢) Al = addi(d,s1,c)) vV

Step relation
(r, m) (r',m’) = 3i,r".decodes(m(r(pc)),i) Aupdr,pc,r(pc) +161,r”) Ai(r”,mr’,m)

Figure 2: Instruction decoding and step relation.



load(d, s, c)(r,mr’, ) = PrintAxiom2 : V(r,m). r(pc) = lprint

readablér(s) +16s€Xtc))A A (VT r/Tf .agregreadablem, nv)

upd(r,d, m(r(s) +16sextc)),r') Am=nv AY'(pe) =r1(7) /
stores;, s, ¢)(r,m,r’,m') = /\agreé{lo, ...,pc—1},1,r)

writable(r(sz) +165€x{c))A — safdr’,m))

updm,r(sz) +1ssexi{c),r(s),m)Ar=r’ — safer,m)

The print call has an effect on the outside world, but it
The predicateseadableand writable — originally intro-  makes no change to the state of the program itself (other than
duced by Necula [8] — help modularize the security policy.changing the program counter). Of course, most API calls
The axioms about machine instructions (in our case;%he have some effect on the program state. We can specify this
relation and its subsidiary definitions lofad andstore) refer by a relation(r, m) A (r',m). For example, theead call
to the abstract predicates, and an application-specific policyhat read® = r(2) words into memory starting at the address
can then axiomatize these predicates separately. given byr (1) is specified by the relation:

In effect, the notion of “legal machine instruction” implicit ,
in the definition of safér,m) is an instruction that conforms ~ réadRelr.m.r’.n) = /
to the security policy. agree{0,...,pc—1},r,r’)A
Aagreé(readable- {r(1),...,r(1)+r(2)—1}),mn)

which says that every readable location except the target of
Axiomatizing API calls. Suppose the host environment the read is unchanged by the call.
provides a functiorprint at locationlyint. The program is Some API calls have preconditions; for example, suppose
permitted to jump tdyine With an integer in registar(1) and it is illegal to callread with a negativen. We can specify the
a return address in registe(7). The host will then printthe precondition as a predicate o
integer and jump back to the return address, and in the process
will not modify any readable location. The host may modify readCond, m) =
parts of memory not visible to the program, i.e., parts that the r(2)>0
security policy does not permit the program to load. We can A {r(1),...,r(1) +r(2) — 1} C readable
axiomatizeprint as follows:

Now, given a location, precondition, and relation, we can

agre€s,m,m) = ¥x & S m(x) = i (x) specify any API call:
PrintAxiom1 : V(r,m). r(pc) = lprint — —
Hr,,m. (r7 m) L (rI,M) A r’(pc) _ r(7)/\ APl(I ) Drecondrel) =

vr,m. r(pc) =1
A precondr, m)
A (W . (pe) = r(7) Arel(r,mr’ )

agre€{0,...,pc—1},r,r")A
agreéreadablem, )

— safdr’,m))
This assumes that any callpoint will return. But perhaps — safer,m)
the host has the option of terminating any program at an API
call. Then what we want to say is thatint may or may not Thus, the axiomatization oéadis
return, but if the return address is a “safe” program location,
then the call toorint is safe: ReadAxiom : AP(lreaq readCongreadRe)



Axiomatizing malloc. Suppose there is an APl callalloc ~ predicate made it difficult for the designers of Special J to
that the program may use to requestore words of readable analyze the consequences of the decision to drop the extra
and writable memory. We could attempt to speaifialloc  argument.

using a precondition and relation by saying that before the

call r(1) = n, and after the calt’(1) points to a block of

readable/writable memory. A slight inconsistency. The Special J security policy is

This attempt at axiomatizingpallocis inadequate: consistent as written. But the less-than-obvious model of
a malloc that does not actually cause more words to be

MallocCond1r,m) = r(1) >0 readable/writable can be a minefield for later maintainers of

MallocRel(r,m,r’,m) = the system who might need to extend the policy.

agreé{0,...,pc—1},r,r)A
agreéreadablem, m’)A
{r'(1),...,r'(1)+r(1) — 1} C (readable writable)

To illustrate this, we construct a contrived example. Some
time in the future, suppose a designer extends Special J's
security policy by adding the following two rules:

We would like to know that the blockr’(1),...,r'(1) + o

already have. This isn't specified in MallocRell, so it will readable.

be difficult to prove that programs are safe, since we won't

be able to prove that stores to locatid(il) don’t overwrite 2. The host guarantees that at least 100 words are allocable
other data whose invariance we might wish to preserve. (via calls tomallog).

In fact, since the readable predicate doesn’t have any
arguments except the address tested for readability, it is The intention is that the program will cathalloc at least
invariant over machine states: if an address is readable nownce. But with a state-invariant readable predicate, if 30
it has always been readable and will always be readablevords will be readable in the future, they are readable now!

Malloc seems an impossibility. Therefore the program that calexit immediately can be
Necula’s Touchstone compiler [9] has the readable prediProved safe.
cate take the memory portion of the machine statér,m) A more natural way to describmalloc, which does not

as an additional argument: SafefRtx). This allows the  permit such paradoxes, is to parametrize the predicates. That
readable predicate to evolve with machine states, althougly, |et readable,m) be the set of readable addresses in the

Necula does not explicitly discuss the rationale for thisstater, m, and writablér,m) be the writable addresses. We
choice. What's strange is that Necula and Lee’s latercan describenallocas,

work, the Special J system, uses a safety policy with an

unparametrize®afeR¢x), and also has malloccall. This L

change was made to make proofs simpler: whenever the diSIUnionA,B,C) = AUB=CAANB=0
program does a store to some writable location of memory, MallocCondZr,m) = r(1) >0

in effect changingnto m, one has the burden of proving that  MallocRel2r,m,r’,n') =

for all x, SafeR¢m,x) — SafeRdn,x). agreéreadablér,m), m ')

But Special J's model of allocation is not very flexible or 7 29re¢{0,...,pc—1}.r,r') ) ,
extensible. Any address returned illochas always been 7\ disjUnion(readablér, m), {r'(1),...,r'(1) +r(1) — 1},

readable, it's just that the program could never prove it “until _ readabler’,m)) / /
now.” Specifying afree function that returns memory to the A d|SjUn|or(vyr|tabIe,(r, m), {r'(1),....,r' (1) +r(1) -1},
host will be impossible in this model, as will any policy about writable(r’, )

how many words the program may or must allocate. We o
speculate that the lack of an explicit model for the SafeRd MallocAxiom : API(Imaiioc; MallocCond2MallocRel2



6 Proving consistency Then we could delete the protection hardware from the
machine, and instead run the program on stock hardware; the

A security policy is a collection of axioms. Generally in logic PYte-level protection would persist only as a figment of our

if a set of axioms is not consistent then it will be possible iMagination, a useful fiction that helps us specify the memory

to provefalse and fromfalseanything may be proved. For Policy.

proof-carrying code this means that an inconsistent policy We will model the readable/writable predicates by assum-

allows any program to run and provides no security. Thereing that the processor has a pair of registé?l) andr(72)

fore we are very interested in proving the consistency of outhat serve as the memory map. These registers are not

security policies. architecturally visible to the user-mode program; that is, none

A standard way of proving the consistency of a logic is by of the instructions in the’. relation read or write them. The
induction over proofs. That is, we show for eatkhat any  addresx is readable if the corresponding bitiii71) is 1:
proof of sizen does not prove a bad thing. This is the kind of

reasoning that type theorists use in proving the soundness of rd=71 wr=72
type systems, and that Necula uses in proving the soundness bit(x,i) = (x/2' mod 2= 1)
of proof-carrying code [9]. readablér, m,x) = bit(r (rd), x)
But there is another way. One can define each primitive of writable(r,m,x) = bit(r (wr), )
logic A in terms of some simpler logic, and show that each
inference rule of thé is a theorem of thd. If logic L is Even though no real machine has a “register 717, the very
known to be sound, theA must also be sound. In effect, we existence of these formulas can help us prove the consistency
use logicL to describe a model of each formula of logic of the security policy. If we can prove all the “axioms” about

This is the approach we have used to model type Systemgeadable/writable as derived lemmas from these definitions,
for proof-carrying code [1], and we will use it here to model then the policy must be consistent.
security policies. The logit. in our case will be Church’s  Qur readableand writable predicates are parameterized
higher-order logic, proved sound to everyone’s satisfaction ipy register-bankr, memorym, and addresx. In this
the 1950s. example we have not used in the right-hand side of the
What are the primitives of our logi&? The step rela- definitions. Its pro-forma presence in the formal parameters
gives the flexibility to use other models, such as one in which
a page table is kept in some portion of the memory itself
(presumably in an area not writable by the client).

tionsi—, »i, the predicates readaltem, x), writablgr,m,x),
safer,m), and so on. For each primitive we must provide a
definition in Church'’s logic, and each axiom we must prove
as a theorem. We now show how to use the hidden-variables model to
prove consistency of a policy. We start by defining an APIstep
predicate, which expresses what it means to make a system
call that either returns or freezes. We model freezing by an
infinite loop, though in real life it would be equivalent to
terminating the user process.

Fortunately, we have already define&, safdr,m),
agre€S,m,nm), and most of the other predicateslin We
must now define—, readablé, m x), and writablér, m, x).

7 The hidden-variables model of ma- 1. precondrel)(r.m ¢/, nf) —

chine state r(pc) =1 Ar'(pc) =r(7) Aprecondr,m)
A (rel(r,mr’,m)
Imagine a computer with memory-protection hardware that v (=3r, mrel(rm r”, M) Arf =r Am =m)
can protect ranges of memory with one-byte granularity.
Given a program, suppose we could prove that it will never Next we define a new MallocRelation that is much like

experience a protection violation running on that hardwareMallocRel2, but permits registers 71 and 72 to change:



MallocRel3r,m,r’,m’) =
agreéreadablér,m), m m')
A agre€{0,...,pc—1,pc+1,...,rd—1,
wr+1,...0}rr")

A disjUnion(readablér,m), {r'(1),...,r'(1)+r(1) — 1},
readablé’, nT))

A disjUnion(writable(r,m), {r’(1),...,r'(1)+r(1) — 1},
writable(r’,n))

We define a step relation» that is an extension of the

. . . . d
machine-instruction step relatieh.

(r,m) — (r',m) =
() & {lprint lread Imatioc} A (1, m) % (17, )
V' APIstef(l print, PrintCondPrintRe)) (r,m,r’, nv)
V APlsteflreag ReadCondReadRel(r,m,r’ )
V' APIstef{Imalioc, MallocCond2
MallocRel3 (r,m,r’, m')

We assume thdyint, lread Imalloc are all distinct addresses.

setting all bits{b,...,b+r(1) — 1} of r’(rd) andr’(wr) to

1. Letm’ = m. Then, by the definition MallocRel2, it is the
case that MallocRel2 m,r’,nT), and thus by our premise,
safdr’,nm). But now, by the definition of APIstep, we find
that APIstefl malioc, MallocCond, MallocReB)(r,m,r’, ),
and therefore,m— r’ m. This is the only clause of the step
relation that can match the stgtem). Thus in the state,m
any step leads to a safe state, so therafangs safe.

Now suppose instead that there is no free
block of size r(1). By the definition of
MallocRel2 we find that MallocRel2 m,r,m) and
APIstef{lmalioc, MallocCond, MallocReB)(r,m,r,m).

Again, no other clause of the step relation matches, and we
have(r,m) — (r,m). By the definition of safety, we find that
an infinite loop is safe, somis safe.

Although this argument is tedious, it is fairly straightfor-
ward, because we can prove the soundness of the MallocAx-
iom without considering all the other rules at the same time.

8 Encodings of each example

Now we can prove each of the axioms shown in section 5.

For example,

MallocAxiom : API(Imaiioc, mallocCond2mallocRel2

Proof: We must show

vr,m. r(pc) = Imalloc

A MallocCondZr, m)

A (W', m.r'(pe) =r(7) AMallocRelZr, m,r’, )
— safdr’,n))

— safgr,m)

Given r,m that satisfy the premises(pc) = Imaioc
MallocCond2r, m), and the premise

vr',m. r'(pc) =r(7) A MallocRel2r,m,r’, i)
— safdr’,nm)

it suffices to show safe,m).

Now, either there is a free block of memory of sizd)
or not. If there is, say it is at locatiob. then letr’ be
created fronr by settingr’(pc) tor(7), settingr’(1) to b, and

Using the hidden-variables approach, we can specify many
kinds of security policies.

Periodic Coroutine Yields. The program must not execute
more tharK of instructions without making an API call. We
model this by introducing a instruction-count registéic)

which is set equal t& by all API calls, and is decremented

by the: clause of the— relation, as indicated by the newly
addedupdclauses in the step relation:

(r,m) — (r',m) =
r(pc) & {lprint, lread Imalioc} A r(ic) >0
A 3" updr,ic,r(ic) —1,r") A (r",m) 9, (r',m’)
Vv 3r”. APIstelprint, PrintCondPrintRe) (r,m,r” )
A updr”ic,K,r')
v 3r”. APIsteflprint,, - - -,

Memory Allocation and Deallocation. We have shown
malloc. Specifying afree function is straightforward, using
the same two hidden variablesgrd) andr (wr).



Security Automaton for Correct Sequencing of APl All Output Must Be Logged. We can require the program
Calls. According to Schneider's description of security to write a copy of all of its output to a special “log” output
automata [10], whenever the program makes an API call, thestream. One way to do this is to have a hidden variafdat)

host simulates a transition in an automaton to check whethethat holds all the output sent to the output stream, and another
the call is in a legal sequence. In our version, we will r(log) that holds the history of output to the log. Since
statically prove that only legal sequences of calls can occur. our logic can reason about arbitrary-size (i.e., unbounded

As usual with proof-carrying code, the static proof may g;zc;ﬁ;on) integers, one “register” can hold the entire contents

rely on dynamic checks made by the program. But the
code producer is free to find clever ways to optimize the

dynamic bookkeeping and checking, as long as it can stillp, et Forwarding.  We can allow the program to send and
prove statically that the resulting program is safe. Thus W&eceive network packets, but every packet that is sent must
do not constrain the code producer's options regarding howyg jgentical to some packet that was previously received.
to enforce correct sequencing. This kind of policy prevents network routers from “spoofing”

Assume the security automaton is represented by a g@saph recipients by inventing packets. Again, the entire history of
with integer node labels, and edges labeled by the address@gckets sent can be kept in a single “register.”

(Iread lprint, €tc.) of API functions. A transition from; to In such an example, one need not worry about the ef-
nz labelled byl is represented byny,I,nz) € G. We add @  ficiency of simulating registers with unbounded integers —
hidden variable (s) to hold the state of the automaton. for no one is simulating the machine. We are only proving
Then the APIstep relation can be defined as: theorems about the execution of this notional machine, and
the size of the theorem is independent of the size of the
APIste(], precondrel) (r,m,r’,m) = “integer” that might accumulate in the register.

(r(s)1,r'(s) €G

A r(pc) =1 Ar'(pc) =r(7) A precondr, m) _ )

A(rel(r,m.r’, ) 9 Encodings as reference implementa-
V(=3I orel(nmr ) AT =r Am =m) tions

where the only addition to our original APIstep is the first
line. By demonstrating a step- relation as a formula in higher-

, order logic, we can prove each of the “axioms” of our security
For example, suppose that in statgn the automa- ey thereby ensuring the consistency of the policy. But
ton has reached a state(s) = m where there is \ nat'if the formula is unsatisfiable? That is, what if there
no transition (N, lprni.N2) € G for any ma. ~ Then 46 ng 4-tuplegr,m r’, ) such thair,m) — (r',n)? Then
APIstefllprint, PrintCondPrintRe) will be unsatisfiable, and o, policy is consistent, but trivially so: No program can be
there will be no transitiofir,m) — (r’,n7). proved safe.

Or the policy may be only partially incorrect. For ex-

d . . . .
Limiting the Number of Locks Held. Suppose there is an ample, suppose- is correctly specified, but a mistake in

instruction or an API call that acquires a lock, and anotheﬁhe definition of MallocRelation causes just that relation to

; ; ; ; isfiable. Then programs that don't osaloc can
instruction that releases a lock. We can specify the polic thaEe unsatis
pecify the policy e proved safe, but programs that do usalloc cannot be

the program may hold no more th&nlocks simultaneously

by introducing a hidden variabtélocks) that tells how many proved safe.
locks are held. Acquiring a lock increments the variable, One way to gain confidence in the specifications of the
releasing the lock decrementsit. The precondition for makingAPI functions is to implement them. We then show that
an acquire transition in the- relation is thar (locks) < K. this reference implementation is a valid model — that all the



axioms are provable as derived lemmas. We will show thisof a security policy, we can then delete the hidden-variable
method formalloc model, and treat the (proven) theorems as axioms.

We have been discussing host environments that use proof-
carrying code (instead of hardware memory protection) to\j;jidating the host software. Because it is the client, not
enforce the readable/writable rules. Such a host probably hage nost that comes from an untrusted source. we have been
a data structure describing what parts of memory are consiqL-ocusing on proving that the client program is safe with
ered readable by the client program. This data structure ”VGFespect to a security policy. But even though the host's
in memory, not in some “magic” registerd). In particular,  goevvare is implemented by a trusted party, it can’t hurt to
it must live in a part of memory not writable by the client o e its correctness. Our semantic model of the policy,

program. (Otherwise, the client program could modify this ggpecially with a reference implementation as part of the
data to give itself permission to read and write all of memory, ,odel. can be used to construct such proofs.

which is almost certainly a policy violation.)

So let us abandon the infinite-precision registérd) and
r(wr), and remodel the readable predicate using a simplel)  Compiling with proofs
in-memory data structure. L&, and v, be two memory
addresses that implement this data structure. Initially,

th . .
program is loaded at addresss, ..., pn — 1, With vip < SWe have described how to specify the safety theorem that an

Vhi < Imalioc < Pio, and in the initial memorym(vip) = untrusted program must sgt.isfy_. Bgt hoyv_is such a theorem
(V) — Pri ' ' to be proved? Program verlflcatlor_l isa dlﬁlcu]t business, a_nd
hi) = Phi- we must take care not to get stuck in a quagmire. The solution
We can now define is for the producer of the program to generate the code in a

readablér, m, x) = mvig) < X < M(vi) controlled way, by using special compilers.

writable(r,m,X) = m(vio) < X < M(Vhi) Memory safety. Necula [8] demonstrated a method to
generate programs with proofs of memory safety. First, the
program is written in a type-safe source language. Then,
it is compiled to machine code using typed intermediate
languages. [5] The lowest-level typed intermediate language
— calledtyped assembly languad@AL) [7] — has a type
system with a soundness proof (if a TAL program type-
At locationImaioc We put actual machine instructions that checks it can't “go wrong”). The type judgements in the
will implement the malloc function. That is, the function type-checking of the TAL program provide the information
receives a valua in registerr (1), addsn to m(vyi), and sets  necessary to construct the loop invariants of the machine-
r(1) to the old value om(vp;). language safety proof. To make our extremely general policy-
s Specification language practical, it is almost essential to use
the type-preserving compilers pioneered by Morrisett et al.

We modify the step relation— to remove the
APIsteflmalioc, - - -, - - -) Clause, and we remove the restriction
in the first clause that(pc) # lmaoe. That is, when

r(pc) = Imanoc the ordinary instruction-executior® is
permitted to apply.

Our obligation now is to prove the MallocAxiom with thi
new step relation. This will be trivial but tedious. However,
such a proof now gives us confidence thellocis correctly
specified, since an implementation we understand matches

the specification. K instructions between API calls. For proofs of memory

The malloc function we have described and the two-wordsafety we do not rely on the programmer to write memory-
data structure that goes with it are much simpler than thesafe code — instead, the programmer writes code that type-
malloc function that a real implementation would use. Butchecks, and the compiler transforms it to memory-safe code.
it is not meant to be a real implementation; it is meant only asSimilarly, we will not rely on the programmer to make API
a reference implementation. Having proven the consistencgalls at regular intervals — we will make sure the compiler
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generates good code. It will still be necessary, to prove thathe policy. This is a practically necessary criterion for policy;
the resulting program obeys the security policy, but the proofconstructing proofs by hand is not something we can expect
can be automatically generated because the automaticallyf software engineers.

inserted code has a regular structure.

Feeley [4] showed how compilers can automatically gener- .
ate efficient code that does polling: at regular intervals it will 11 Conclusion
perform some action such as testing the contents of a memory

location. We can adapt this method as follows. A registern Necula's thesis, theeadable predicate took the mem-
(or memory locationg is dedicated by the compiler to hold ory as an argument. In the Cedilla Systems alpha product,
an instruction count. Whenever the compiled code enters @adable did not take memory as an argument. Lacking the
basic block witminstructions, it decrementsby nand tests  hjgden variables model of state, it was difficult to reason
¢ <0. Whenc < 0 it calls the null API function (which we a0yt how to formulate the security policy. In hindsight,
might call yield) and resets to K. Dataflow analysis and it js obvious that the predicate must take the state as an

other optimization methods described by Feeley can hoist thg,qument if there is a malloc function. But without the
decrement-and-tests out of loops and out of small functions.«hjgden variables” model, it wasn't so easy to tell.

Another to compiling resource-bounded code (and gener- Tpe strength of the semantic approach is to make the
ating proofs) is to use the type system of Crary and Weirichsongness of the axioms obvious. Although the proofs (such
[3]. as the one in section 6) can be tedious, we have found the

relationship between the semantic definition of the predicate
Number of locks. This policy is easy for the program to (Such aseadablg and the axioms (such as MallocAxiom)
self-check. A memory location tells the number of locks '€ intuitively clear.
held by the program. The standard library wraps the APl call The “hidden variables” approach works so well because
(or instruction) that acquires a lock with code that incrementghe host really does have hidden state that is changed by the

¢, and ifc > N it halts the program instead of proceeding with API calls. Our hidden variables are just abstractions of that
the call. The release-lock instruction is similarly wrapped. hidden state.

Our specification language for security policies — higher-
Security automaton. There are several approaches to en-order logic — is more general than any of the several specific
forcing the policy that API calls must be sequenced accordingolicy languages we have cited: typed assembly language [7],
to a security automaton. In one simple approach, we requiréesource bound certification [3], security automata [10], and
the program itself to simulate the automaton. A memorythe security-automata dependent-type system [11]. But since
location ¢ holds the current state number; another area ofur logic is not decidable, automatically generating proofs of
memory holds the transition table. Each API function call arbitrary programs would be impossible. But each of these
is wrapped with code that causedo make the transition SPecific policy languages can be used as a compilation tech-
from one state to another. Walker [11] explains a generanology to generate nonarbitrary, policy-compliant machine
approach to encoding security automata in the type systerfiode along with a compliance proof.
of the client’s type-preserving compiler; this is the enabling
client-side technology that allows proofs to be constructed
for automaton-based policies, just as TAL enables proofs foReferences
memory-safety policies.
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