
Models for Security Policies in Proof-Carrying Code

Andrew W. Appel and Edward W. Felten
Dept. of Computer Science

Princeton University

March 29, 2001

Abstract

When an untrusted machine-language program runs on a host
with resources that must be protected, the security policy
specifies how the program may interact with the host. Proof-
carrying code is a framework for automatically verifying
that a program complies with a security policy. We show
how to specify a wide variety of security policies, how to
ensure that these specifications are consistent, how to develop
compilers that produce compliant machine code and proofs
of compliance, and how to reason about whether the host
environment correctly implements its side of the policy.

1 Introduction

The early proof-carrying code (PCC) system designed by
Necula and Lee [8] enforced a simple memory safety pol-
icy which imposed limits on which memory addresses the
program could read, write, and execute. PCC uses a precise
model of the machine’s instruction set to prove properties of
a program.

It was soon evident, however, that PCC could be applied
in principle to a wider range of policies, including such rules
as “no more thanK instructions executed between coroutine
yields,” rules regarding memory safety in situations where
the underlying platform made available calls to allocate
and deallocate memory, and rules describable in terms of
reference monitors or security automata [10]. All of these
policies describe interactions between the program and its
environment (which includes the host on which the program
runs).

Though policies like these are easy to describe in words,
it is not always obvious how to implement them in the
framework of PCC. How can we be sure that a formalization
of such a policy makes sense and matches our intuition about
what the policy means?

We argue that the right way to do this is to construct
a model for the state of the environment (hidden behind
an API). This allows us to think more clearly about the
inference rules of the safety policy, and indeed to prove them
as theorems.

2 Examples

To motivate our discussion, we now present several policies
of the type we would like to be able to enforce.

Periodic Coroutine Yields. In this example, we require
that the program never execute more than some constant
numberK of instructions without making a call to ayield
function. This provides a guarantee that other coroutines can
make progress.

Memory Allocation and Deallocation. This example ex-
tends the standard memory-safety policy by adding library (or
operating system) calls that allocate and deallocate memory.

Security Automaton for Correct Sequencing of API Calls.
Following the work of Schneider [10], this example re-
quires that the sequence of API calls made by the program
correspond to the transitions of a security automaton. A

1

security automaton is a state machine that makes a transition
every time the program makes a call to a built-in library
API. If an illegal transition is attempted, the automaton will
terminate the program instead of permitting the API call. Our
implementation will allow wide latitude to code producers
in choosing between static, dynamic, and hybrid methods of
enforcing the automaton’s required behavior. In particular,
instead of requiring the trusted side of the API to implement a
state machine, we can mechanically check that the client side
faithfully implements it; then, in fact, the client’s compiler
can optimize away part or all of the security automaton while
still preserving verifiable compliance. We come to praise
security automata, and to bury them inside the client.

Limiting the Number of Locks Held. In this example, the
program may acquire and release locks by making library
calls, and we require that the program never hold more than
some constant numberK of locks (in fact, this policy can be
expressed by a security automaton).

All Output Must Be Logged. This example requires the
program to write a copy of all of its output to a special “log”
output stream. This example (and the next one) cannot be
expressed using security automata.

Packet Forwarding. Our final example allows the program
to send and receive network packets, but every packet that
is sent must be identical to some packet that was previously
received. We could also specify that no packet is forwarded
more than once.

3 A cautionary tale

Necula’s Touchstone compiler [9] uses a safety policy in
which there is a predicate readable(m,x), saying that address
x is readable in memorym. Essentially, there is also a predi-
cate safeExecute(r,m, p) meaning that it is safe to execute the
program fragmentp in the program state with registersr and
memorym. A typical axiom of this system is

safeExecute(r[i:=m(x)],m, p) readable(m,x)
safeExecute(r,m, (r(i)←m(x)); p)

That is, if it’s safe to executep in a register bank where
r(i) has been set to the contents ofm(x), and if locationx is
readable, then it’s safe to execute the load instructionr(i)←
m(x) and continue withp.

Another rule says that if we can execute themallocAPI call
to get more memory. That is, if it is safe to execute a program
p provided that registerr[i] points to a block of allocated
memory, then even from a state in whichr[i] doesn’t
point to allocated memory, it is safe to execute the program
malloc(n);p , which calls malloc and then executesp.

n≥ 0
readable(m,b. . .b+ n−1)→ safeExecute(r[i:=b],m, p))

safeExecute(r,m, (r(i)←malloc(n)); p)

These are seemingly reasonable rules. But the analysis of
such axioms that constitute a security policy is not easy: are
the axioms consistent? What properties do they have?

One of Necula’s breakthrough achievements in formulat-
ing the notion of proof-carrying code was to axiomatize the
system very concretely and at a very low level – that of
individual machine instructions and memory locations. But
we will argue that his specification is actually too abstract!
By writing an even more concrete axiomatization we make it
easier to prove properties of the interface between the PCC
host and the untrusted program.

For example, in Necula’s Touchstone compiler the
readable(m,x) predicate takes two arguments, the memory
and the address in question. A year later, in Necula (and
others’) “Special J” Java compiler [2] the readable(x) takes
only the address as an argument. Which version is best?
Does the memory argument serve any purpose? What’s the
rationale for designing security policies?

The short answer is that if there is amallocAPI function
then the readable predicate should take the extra argument.
We will first present our models of security policies, and then
return to this example.

2

4 Axiomatization of instruction execu-
tion

We model a machine state as a register bankr and a memory
m, each of which is a function from integer to integer [1, 6].
The register bank contains not only ordinary general-purpose
registersr(0), r(1), . . . , r(15) (e.g., if there are 16 of them)
but also dedicated registers such as the program counter and
condition codes which we arbitrarily assign numbers (e.g.,
the program counter isr(17); we define pc= 17).

We specify machine instruction decoding and execution
via a single-step relation(r,m) 7→ (r ′,m′), meaning that
if r describes the contents of registers (including program
counter) andm describes the memory, and one instruction
executes, then the new state will be described byr ′ andm′.

To illustrate the specification of the step relation, we will
use a Toy machine, a 16-bit word-addressed machine with
simple instruction encodings [1].

OPCODE

add 0 d s1 s2 rd← rs1 + rs2

addi 1 d s c rd← rs±c
load 2 d s c rd←m(rs±c)
store 3 s1 s2 c m(rs2±c)← rs1

jump 4 d s c rd← pc; pc← rs±c
bgt 5 s1 s2 c if rs1 > rs2 thenpc← pc±c

On a von Neumann machine, each instruction is rep-
resented in memory by an integer. Ourdecoderelation
(Figure 2) is a predicate on two arguments(v, i) and says that
v is the encoding of instructioni. Finally, the step relation
7→ expresses the idea of instruction fetch, instruction decode,
and instruction execution.

Our step relation is purposely partial; that is, not every state
r,mhas a legal next step. For example, ifm(r(pc)) = 700016,
an illegal opcode, there is nor ′,m′ such thatr,m 7→ r ′,m′.
Using this idea, we can express a safety predicate:

safe(r,m) = ∀r ′,m′. r,m 7→∗ r ′,m′ →
∃r ′′,m′′. r ′,m′ 7→ r ′′,m′′

That is, a machine state is safe if, in any state reachable by
executing instructions from that state, there’s always a legal
next step.

A program is just a sequence of integersp0, p1, ..., pn−1

(that code for instructions and data) to be loaded at a start
addressstart. The initial condition is that the program is
loaded and the program counter points to the entry point:

initial(p, r,m) =
r(pc) = start∧∀i ∈ dom(p). m(start+ i) = pi.

The simplest possible security policy – that the program
never executes an illegal instruction – is axiomatized by our
definition ofsafe. A programp conforms to the policy if

safeprog(p) = ∀r,m. initial(p, r,m)→ safe(r,m)

The step relation
d7→ defined arithmetically as in Figure 2

may be a subset of what the machine can legally execute;
we denote the latter relation by7→. We may wish to avoid
axiomatizing the rare and complicated instructions that com-
pilers don’t generate in practice. By making this choice, we
lose the ability to prove safe any program that executes those
instructions, but any program we prove safe with respect to
d7→ is also safe with respect to7→.

An axiom relates
d7→ to 7→:

StepAxiom :∀r,m, r ′,m′, r ′′,m′′.
(r,m) d7→ (r ′,m′) →

((r,m) 7→ (r ′,m′)∧
((r,m) 7→ (r ′′,m′′) → r ′ = r ′′ ∧m′ = m′′))

This says that if
d7→ makes a step, then7→ makes the same

step and no other. But if
d7→ makes no step, then7→ is free to

make any step.

5 Encoding security policies

Suppose we want to require that the program writes only
to memory locations in a specified range. We can define a
predicate writable(x); the security policy is that the program
writes only to those addresses. We also require that the
program reads only from addresses permitted by readable(x).

To axiomatize this policy, we modify
d7→ by changing the

definition of the load and store instruction:

3

upd(f ,d,x, f ′) = ∀z.(d = z∧ f ′(z) = x)∨ (d 6= z∧ f ′(z) = f (z))
pc= 17

add(d,s1,s2)(r,m, r ′,m′) = upd(r,d, r(s1)+16r(s2), r ′)∧m= m′.
addi(d,s,c)(r,m, r ′,m′) = upd(r,d, r(s)+16sext(c), r ′)∧m= m′

load(d,s,c)(r,m, r ′,m′) = upd(r,d,m(r(s)+16sext(c)), r ′)∧m= m′

store(s1,s2,c)(r,m, r ′,m′) = upd(m, r(s2)+16sext(c), r(s1),m′)∧ r = r ′

jump(d,s,c)(r,m, r ′,m′) = ∃r ′′. upd(r,pc, r(s)+16sext(c), r ′′)∧upd(r ′′,d, r(pc), r ′)∧m= m′

bgt(s1,s2,c)(r,m, r ′,m′) =
(r(s1)> r(s2)∧upd(r,pc, r(pc)+16sext(c), r ′)∧m= m′) ∨ (r(s1)≤ r(s2)∧ r = r ′ ∧m= m′)

Figure 1: Semantic definition of machine instructions. The symbol+16 denotes addition modulo 2k, and sext(c) is the sign-
extension ofc from 4 to 16 bits.

format(w,a,b,c,d) = 0≤ a< 16∧0≤ b< 16∧0≤ c< 16∧0≤ d< 16∧w = a∗163+ b∗162+ c∗16+ d.

decodek(v, i) = (∃d,s1,s2. format(v,0,d,s1,s2)∧ i = addk(d,s1,s2))
∨ (∃d,s1,c. format(v,1,d,s1,c)∧ i = addik(d,s1,c))∨ ...

Step relation:

(r,m) d7→ (r ′,m′) = ∃i, r ′′.decode16(m(r(pc)), i)∧upd(r,pc, r(pc)+161, r ′′)∧ i(r ′′,m, r ′,m′)

Figure 2: Instruction decoding and step relation.

4

load(d,s,c)(r,m, r ′,m′) =
readable(r(s)+16sext(c))∧
upd(r,d,m(r(s)+16sext(c)), r ′)∧m= m′

store(s1,s2,c)(r,m, r ′,m′) =
writable(r(s2)+16sext(c))∧
upd(m, r(s2)+16sext(c), r(s1),m′)∧ r = r ′

The predicatesreadableand writable – originally intro-
duced by Necula [8] – help modularize the security policy.

The axioms about machine instructions (in our case, the
d7→

relation and its subsidiary definitions ofload andstore) refer
to the abstract predicates, and an application-specific policy
can then axiomatize these predicates separately.

In effect, the notion of “legal machine instruction” implicit
in the definition of safe(r,m) is an instruction that conforms
to the security policy.

Axiomatizing API calls. Suppose the host environment
provides a functionprint at locationlprint. The program is
permitted to jump tolprint with an integer in registerr(1) and
a return address in registerr(7). The host will then print the
integer and jump back to the return address, and in the process
will not modify any readable location. The host may modify
parts of memory not visible to the program, i.e., parts that the
security policy does not permit the program to load. We can
axiomatizeprint as follows:

agree(S,m,m′) = ∀x∈ S. m(x) = m′(x)

PrintAxiom1 : ∀(r,m). r(pc) = lprint →
∃r ′,m′. (r,m) 7→∗ (r ′,m′)∧ r ′(pc) = r(7)∧

agree({0, . . . ,pc−1}, r, r ′)∧
agree(readable,m,m′)

This assumes that any call toprint will return. But perhaps
the host has the option of terminating any program at an API
call. Then what we want to say is thatprint may or may not
return, but if the return address is a “safe” program location,
then the call toprint is safe:

PrintAxiom2 : ∀(r,m). r(pc) = lprint

∧ (∀r ′,m′.agree(readable,m,m′)
∧ r ′(pc) = r(7)
∧agree({0, . . . ,pc−1}, r, r ′)
→ safe(r ′,m′))

→ safe(r,m)

The print call has an effect on the outside world, but it
makes no change to the state of the program itself (other than
changing the program counter). Of course, most API calls
have some effect on the program state. We can specify this

by a relation(r,m) ?7→ (r ′,m′). For example, theread call
that readsn = r(2) words into memory starting at the address
given byr(1) is specified by the relation:

readRel(r,m, r ′,m′) =
agree({0, . . . ,pc−1}, r, r ′)∧
∧agree((readable−{r(1), . . . , r(1)+ r(2)−1}),m,m′)

which says that every readable location except the target of
the read is unchanged by the call.

Some API calls have preconditions; for example, suppose
it is illegal to callreadwith a negativen. We can specify the
precondition as a predicate ofr,m:

readCond(r,m) =
r(2)≥ 0
∧ {r(1), . . . , r(1)+ r(2)−1}⊂ readable

Now, given a location, precondition, and relation, we can
specify any API call:

API(l ,precond, rel) =
∀r,m. r(pc) = l
∧ precond(r,m)
∧ (∀r ′,m′. r ′(pc) = r(7)∧ rel(r,m, r ′,m′)

→ safe(r ′,m′))
→ safe(r,m)

Thus, the axiomatization ofread is

ReadAxiom : API(lread, readCond, readRel)

5

Axiomatizing malloc. Suppose there is an API callmalloc
that the program may use to requestn more words of readable
and writable memory. We could attempt to specifymalloc
using a precondition and relation by saying that before the
call r(1) = n, and after the callr ′(1) points to a block of
readable/writable memory.

This attempt at axiomatizingmalloc is inadequate:

MallocCond1(r,m) = r(1)≥ 0
MallocRel1(r,m, r ′,m′) =

agree({0, . . . ,pc−1}, r, r ′)∧
agree(readable,m,m′)∧
{r ′(1), . . . , r ′(1)+ r(1)−1}⊂ (readable∩writable)

We would like to know that the block{r ′(1), . . . , r ′(1) +
n−1} is new memory, that it doesn’t overlap with what we
already have. This isn’t specified in MallocRel1, so it will
be difficult to prove that programs are safe, since we won’t
be able to prove that stores to locationr ′(1) don’t overwrite
other data whose invariance we might wish to preserve.

In fact, since the readable predicate doesn’t have any
arguments except the address tested for readability, it is
invariant over machine states: if an address is readable now,
it has always been readable and will always be readable.
Malloc seems an impossibility.

Necula’s Touchstone compiler [9] has the readable predi-
cate take the memory portionm of the machine state(r,m)
as an additional argument: SafeRd(m,x). This allows the
readable predicate to evolve with machine states, although
Necula does not explicitly discuss the rationale for this
choice. What’s strange is that Necula and Lee’s later
work, the Special J system, uses a safety policy with an
unparametrizedSafeRd(x), and also has amalloccall. This
change was made to make proofs simpler: whenever the
program does a store to some writable location of memory,
in effect changingm to m′, one has the burden of proving that
for all x, SafeRd(m,x) → SafeRd(m′,x).

But Special J’s model of allocation is not very flexible or
extensible. Any address returned bymallochas always been
readable, it’s just that the program could never prove it “until
now.” Specifying afree function that returns memory to the
host will be impossible in this model, as will any policy about
how many words the program may or must allocate. We
speculate that the lack of an explicit model for the SafeRd

predicate made it difficult for the designers of Special J to
analyze the consequences of the decision to drop the extra
argument.

A slight inconsistency. The Special J security policy is
consistent as written. But the less-than-obvious model of
a malloc that does not actually cause more words to be
readable/writable can be a minefield for later maintainers of
the system who might need to extend the policy.

To illustrate this, we construct a contrived example. Some
time in the future, suppose a designer extends Special J’s
security policy by adding the following two rules:

1. The program may not callexituntil at least 30 words are
readable.

2. The host guarantees that at least 100 words are allocable
(via calls tomalloc).

The intention is that the program will callmalloc at least
once. But with a state-invariant readable predicate, if 30
words will be readable in the future, they are readable now!
Therefore the program that callsexit immediately can be
proved safe.

A more natural way to describemalloc, which does not
permit such paradoxes, is to parametrize the predicates. That
is, let readable(r,m) be the set of readable addresses in the
stater,m, and writable(r,m) be the writable addresses. We
can describemallocas,

disjUnion(A,B,C) = A∪B = C∧A∩B = /0

MallocCond2(r,m) = r(1)≥ 0
MallocRel2(r,m, r ′,m′) =

agree(readable(r,m),m,m′)
∧ agree({0, . . . ,pc−1}, r, r ′)
∧ disjUnion(readable(r,m), {r ′(1), . . . , r ′(1)+ r(1)−1},

readable(r ′,m′))
∧ disjUnion(writable(r,m), {r ′(1), . . . , r ′(1)+ r(1)−1},

writable(r ′,m′))

MallocAxiom : API(lmalloc,MallocCond2,MallocRel2)

6

6 Proving consistency

A security policy is a collection of axioms. Generally in logic
if a set of axioms is not consistent then it will be possible
to provefalse, and fromfalseanything may be proved. For
proof-carrying code this means that an inconsistent policy
allows any program to run and provides no security. There-
fore we are very interested in proving the consistency of our
security policies.

A standard way of proving the consistency of a logic is by
induction over proofs. That is, we show for eachn that any
proof of sizen does not prove a bad thing. This is the kind of
reasoning that type theorists use in proving the soundness of
type systems, and that Necula uses in proving the soundness
of proof-carrying code [9].

But there is another way. One can define each primitive of
logic A in terms of some simpler logicL, and show that each
inference rule of theA is a theorem of theL. If logic L is
known to be sound, thenA must also be sound. In effect, we
use logicL to describe a model of each formula of logicA.

This is the approach we have used to model type systems
for proof-carrying code [1], and we will use it here to model
security policies. The logicL in our case will be Church’s
higher-order logic, proved sound to everyone’s satisfaction in
the 1950’s.

What are the primitives of our logicA? The step rela-

tions 7→, d7→, the predicates readable(r,m,x), writable(r,m,x),
safe(r,m), and so on. For each primitive we must provide a
definition in Church’s logic, and each axiom we must prove
as a theorem.

Fortunately, we have already defined
d7→, safe(r,m),

agree(S,m,m′), and most of the other predicates inL. We
must now define7→, readable(r,m,x), and writable(r,m,x).

7 The hidden-variables model of ma-
chine state

Imagine a computer with memory-protection hardware that
can protect ranges of memory with one-byte granularity.
Given a program, suppose we could prove that it will never
experience a protection violation running on that hardware.

Then we could delete the protection hardware from the
machine, and instead run the program on stock hardware; the
byte-level protection would persist only as a figment of our
imagination, a useful fiction that helps us specify the memory
policy.

We will model the readable/writable predicates by assum-
ing that the processor has a pair of registersr(71) andr(72)
that serve as the memory map. These registers are not
architecturally visible to the user-mode program; that is, none

of the instructions in the
d7→ relation read or write them. The

addressx is readable if the corresponding bit inr(71) is 1:

rd = 71 wr= 72
bit(x, i) = (x/2i mod 2= 1)
readable(r,m,x) = bit(r(rd),x)
writable(r,m,x) = bit(r(wr),x)

Even though no real machine has a “register 71”, the very
existence of these formulas can help us prove the consistency
of the security policy. If we can prove all the “axioms” about
readable/writable as derived lemmas from these definitions,
then the policy must be consistent.

Our readableand writable predicates are parameterized
by register-bankr, memory m, and addressx. In this
example we have not usedm in the right-hand side of the
definitions. Its pro-forma presence in the formal parameters
gives the flexibility to use other models, such as one in which
a page table is kept in some portion of the memory itself
(presumably in an area not writable by the client).

We now show how to use the hidden-variables model to
prove consistency of a policy. We start by defining an APIstep
predicate, which expresses what it means to make a system
call that either returns or freezes. We model freezing by an
infinite loop, though in real life it would be equivalent to
terminating the user process.

APIstep(l ,precond, rel)(r,m, r ′,m′) =
r(pc) = l ∧ r ′(pc) = r(7)∧precond(r,m)
∧ (rel(r,m, r ′,m′)
∨ (¬∃r ′′,m′′. rel(r,m, r ′′,m′′))∧ r ′ = r ∧m′ = m)

Next we define a new MallocRelation that is much like
MallocRel2, but permits registers 71 and 72 to change:

7

MallocRel3(r,m, r ′,m′) =
agree(readable(r,m),m,m′)
∧ agree({0, . . . ,pc−1,pc+ 1, . . . , rd−1,

wr+ 1, . . .∞}, r, r ′)
∧ disjUnion(readable(r,m), {r ′(1), . . . , r ′(1)+ r(1)−1},

readable(r ′,m′))
∧ disjUnion(writable(r,m), {r ′(1), . . . , r ′(1)+ r(1)−1},

writable(r ′,m′))

We define a step relation7→ that is an extension of the

machine-instruction step relation
d7→.

(r,m) 7→ (r ′,m′) =

r(pc) 6∈ {lprint, lread, lmalloc}∧ (r,m) d7→ (r ′,m′)
∨ APIstep(lprint,PrintCond,PrintRel)(r,m, r ′,m′)
∨ APIstep(lread,ReadCond,ReadRel)(r,m, r ′,m′)
∨ APIstep(lmalloc,MallocCond2,

MallocRel3)(r,m, r ′,m′)

We assume thatlprint, lread, lmalloc are all distinct addresses.

Now we can prove each of the axioms shown in section 5.
For example,

MallocAxiom : API(lmalloc,mallocCond2,mallocRel2)

Proof: We must show

∀r,m. r(pc) = lmalloc

∧ MallocCond2(r,m)
∧ (∀r ′,m′. r ′(pc) = r(7)∧MallocRel2(r,m, r ′,m′)

→ safe(r ′,m′))
→ safe(r,m)

Given r,m that satisfy the premisesr(pc) = lmalloc,
MallocCond2(r,m), and the premise

∀r ′,m′. r ′(pc) = r(7) ∧ MallocRel2(r,m, r ′,m′)
→ safe(r ′,m′)

it suffices to show safe(r,m).

Now, either there is a free block of memory of sizer(1)
or not. If there is, say it is at locationb. then let r ′ be
created fromr by settingr ′(pc) to r(7), settingr ′(1) to b, and

setting all bits{b, . . . ,b+ r(1)− 1} of r ′(rd) and r ′(wr) to
1. Let m′ = m. Then, by the definition MallocRel2, it is the
case that MallocRel2(r,m, r ′,m′), and thus by our premise,
safe(r ′,m′). But now, by the definition of APIstep, we find
that APIstep(lmalloc,MallocCond2,MallocRel3)(r,m, r ′,m′),
and thereforer,m 7→ r ′,m′. This is the only clause of the step
relation that can match the state(r,m). Thus in the stater,m
any step leads to a safe state, so thereforer,m is safe.

Now suppose instead that there is no free
block of size r(1). By the definition of
MallocRel2 we find that MallocRel2(r,m, r,m) and
APIstep(lmalloc,MallocCond2,MallocRel3)(r,m, r,m).
Again, no other clause of the step relation matches, and we
have(r,m) 7→ (r,m). By the definition of safety, we find that
an infinite loop is safe, sor,m is safe.

Although this argument is tedious, it is fairly straightfor-
ward, because we can prove the soundness of the MallocAx-
iom without considering all the other rules at the same time.

8 Encodings of each example

Using the hidden-variables approach, we can specify many
kinds of security policies.

Periodic Coroutine Yields. The program must not execute
more thanK of instructions without making an API call. We
model this by introducing a instruction-count registerr(ic)
which is set equal toK by all API calls, and is decremented

by the
d7→ clause of the7→ relation, as indicated by the newly

addedupdclauses in the step relation:

(r,m) 7→ (r ′,m′) =
r(pc) 6∈ {lprint, lread, lmalloc} ∧ r(ic)> 0

∧ ∃r ′′. upd(r, ic, r(ic)−1, r ′′) ∧ (r ′′,m) d7→ (r ′,m′)
∨ ∃r ′′. APIstep(lprint,PrintCond,PrintRel)(r,m, r ′′,m′)

∧ upd(r ′′, ic,K, r ′)
∨ ∃r ′′. APIstep(lprint, , . . . ,

Memory Allocation and Deallocation. We have shown
malloc. Specifying afree function is straightforward, using
the same two hidden variables,r(rd) andr(wr).

8

Security Automaton for Correct Sequencing of API
Calls. According to Schneider’s description of security
automata [10], whenever the program makes an API call, the
host simulates a transition in an automaton to check whether
the call is in a legal sequence. In our version, we will
statically prove that only legal sequences of calls can occur.

As usual with proof-carrying code, the static proof may
rely on dynamic checks made by the program. But the
code producer is free to find clever ways to optimize the
dynamic bookkeeping and checking, as long as it can still
prove statically that the resulting program is safe. Thus we
do not constrain the code producer’s options regarding how
to enforce correct sequencing.

Assume the security automaton is represented by a graphG
with integer node labels, and edges labeled by the addresses
(lread, lprint, etc.) of API functions. A transition fromn1 to
n2 labelled byl is represented by(n1, l ,n2) ∈ G. We add a
hidden variabler(s) to hold the state of the automaton.

Then the APIstep relation can be defined as:

APIstep(l ,precond, rel)(r,m, r ′,m′) =
(r(s), l , r ′(s)) ∈G
∧ r(pc) = l ∧ r ′(pc) = r(7)∧precond(r,m)
∧ (rel(r,m, r ′,m′)
∨ (¬∃r ′′,m′′. rel(r,m, r ′′,m′′))∧ r ′ = r ∧m′ = m)

where the only addition to our original APIstep is the first
line.

For example, suppose that in stater,m the automa-
ton has reached a stater(s) = n1 where there is
no transition (n1, lprint,n2) ∈ G for any n2. Then
APIstep(lprint,PrintCond,PrintRel) will be unsatisfiable, and
there will be no transition(r,m) 7→ (r ′,m′).

Limiting the Number of Locks Held. Suppose there is an
instruction or an API call that acquires a lock, and another
instruction that releases a lock. We can specify the policy that
the program may hold no more thanK locks simultaneously
by introducing a hidden variabler(locks) that tells how many
locks are held. Acquiring a lock increments the variable,
releasing the lock decrements it. The precondition for making
an acquire transition in the7→ relation is thatr(locks)< K.

All Output Must Be Logged. We can require the program
to write a copy of all of its output to a special “log” output
stream. One way to do this is to have a hidden variabler(out)
that holds all the output sent to the output stream, and another
r(log) that holds the history of output to the log. Since
our logic can reason about arbitrary-size (i.e., unbounded
precision) integers, one “register” can hold the entire contents
of a file.

Packet Forwarding. We can allow the program to send and
receive network packets, but every packet that is sent must
be identical to some packet that was previously received.
This kind of policy prevents network routers from “spoofing”
recipients by inventing packets. Again, the entire history of
packets sent can be kept in a single “register.”

In such an example, one need not worry about the ef-
ficiency of simulating registers with unbounded integers –
for no one is simulating the machine. We are only proving
theorems about the execution of this notional machine, and
the size of the theorem is independent of the size of the
“integer” that might accumulate in the register.

9 Encodings as reference implementa-
tions

By demonstrating a step7→ relation as a formula in higher-
order logic, we can prove each of the “axioms” of our security
policy, thereby ensuring the consistency of the policy. But
what if the formula is unsatisfiable? That is, what if there
are no 4-tuples(r,m, r ′,m′) such that(r,m) 7→ (r ′,m′)? Then
our policy is consistent, but trivially so: No program can be
proved safe.

Or the policy may be only partially incorrect. For ex-

ample, suppose
d7→ is correctly specified, but a mistake in

the definition of MallocRelation causes just that relation to
be unsatisfiable. Then programs that don’t usemalloc can
be proved safe, but programs that do usemalloc cannot be
proved safe.

One way to gain confidence in the specifications of the
API functions is to implement them. We then show that
this reference implementation is a valid model – that all the

9

axioms are provable as derived lemmas. We will show this
method formalloc.

We have been discussing host environments that use proof-
carrying code (instead of hardware memory protection) to
enforce the readable/writable rules. Such a host probably has
a data structure describing what parts of memory are consid-
ered readable by the client program. This data structure lives
in memory, not in some “magic” registerr(rd). In particular,
it must live in a part of memory not writable by the client
program. (Otherwise, the client program could modify this
data to give itself permission to read and write all of memory,
which is almost certainly a policy violation.)

So let us abandon the infinite-precision registersr(rd) and
r(wr), and remodel the readable predicate using a simple
in-memory data structure. Letvlo and vhi be two memory
addresses that implement this data structure. Initially, the
program is loaded at addressesplo, . . . , phi − 1, with vlo <
vhi < lmalloc < plo, and in the initial memory,m(vlo) =
m(vhi) = phi.

We can now define

readable(r,m,x) = m(vlo)≤ x<m(vhi)

writable(r,m,x) = m(vlo)≤ x<m(vhi)

We modify the step relation 7→ to remove the
APIstep(lmalloc, . . . , . . .) clause, and we remove the restriction
in the first clause thatr(pc) 6= lmalloc. That is, when

r(pc) = lmalloc the ordinary instruction-execution
d7→ is

permitted to apply.

At location lmalloc we put actual machine instructions that
will implement the malloc function. That is, the function
receives a valuen in registerr(1), addsn to m(vhi), and sets
r(1) to the old value ofm(vhi).

Our obligation now is to prove the MallocAxiom with this
new step relation. This will be trivial but tedious. However,
such a proof now gives us confidence thatmallocis correctly
specified, since an implementation we understand matches
the specification.

The malloc function we have described and the two-word
data structure that goes with it are much simpler than the
malloc function that a real implementation would use. But
it is not meant to be a real implementation; it is meant only as
a reference implementation. Having proven the consistency

of a security policy, we can then delete the hidden-variable
model, and treat the (proven) theorems as axioms.

Validating the host software. Because it is the client, not
the host, that comes from an untrusted source, we have been
focusing on proving that the client program is safe with
respect to a security policy. But even though the host’s
software is implemented by a trusted party, it can’t hurt to
prove its correctness. Our semantic model of the policy,
especially with a reference implementation as part of the
model, can be used to construct such proofs.

10 Compiling with proofs

We have described how to specify the safety theorem that an
untrusted program must satisfy. But how is such a theorem
to be proved? Program verification is a difficult business, and
we must take care not to get stuck in a quagmire. The solution
is for the producer of the program to generate the code in a
controlled way, by using special compilers.

Memory safety. Necula [8] demonstrated a method to
generate programs with proofs of memory safety. First, the
program is written in a type-safe source language. Then,
it is compiled to machine code using typed intermediate
languages. [5] The lowest-level typed intermediate language
– called typed assembly language(TAL) [7] – has a type
system with a soundness proof (if a TAL program type-
checks it can’t “go wrong”). The type judgements in the
type-checking of the TAL program provide the information
necessary to construct the loop invariants of the machine-
language safety proof. To make our extremely general policy-
specification language practical, it is almost essential to use
the type-preserving compilers pioneered by Morrisett et al.
[7].

K instructions between API calls. For proofs of memory
safety we do not rely on the programmer to write memory-
safe code — instead, the programmer writes code that type-
checks, and the compiler transforms it to memory-safe code.
Similarly, we will not rely on the programmer to make API
calls at regular intervals — we will make sure the compiler

10

generates good code. It will still be necessary, to prove that
the resulting program obeys the security policy, but the proof
can be automatically generated because the automatically
inserted code has a regular structure.

Feeley [4] showed how compilers can automatically gener-
ate efficient code that does polling: at regular intervals it will
perform some action such as testing the contents of a memory
location. We can adapt this method as follows. A register
(or memory location)c is dedicated by the compiler to hold
an instruction count. Whenever the compiled code enters a
basic block withn instructions, it decrementsc by n and tests
c< 0. Whenc< 0 it calls the null API function (which we
might call yield) and resetsc to K. Dataflow analysis and
other optimization methods described by Feeley can hoist the
decrement-and-tests out of loops and out of small functions.

Another to compiling resource-bounded code (and gener-
ating proofs) is to use the type system of Crary and Weirich
[3].

Number of locks. This policy is easy for the program to
self-check. A memory locationc tells the number of locks
held by the program. The standard library wraps the API call
(or instruction) that acquires a lock with code that increments
c, and ifc>N it halts the program instead of proceeding with
the call. The release-lock instruction is similarly wrapped.

Security automaton. There are several approaches to en-
forcing the policy that API calls must be sequenced according
to a security automaton. In one simple approach, we require
the program itself to simulate the automaton. A memory
location c holds the current state number; another area of
memory holds the transition table. Each API function call
is wrapped with code that causesc to make the transition
from one state to another. Walker [11] explains a general
approach to encoding security automata in the type system
of the client’s type-preserving compiler; this is the enabling
client-side technology that allows proofs to be constructed
for automaton-based policies, just as TAL enables proofs for
memory-safety policies.

Other policies. All the security policies we have discussed
are constructively satisfiable: that is, there is an automated
method for generating code that is provably safe according to

the policy. This is a practically necessary criterion for policy;
constructing proofs by hand is not something we can expect
of software engineers.

11 Conclusion

In Necula’s thesis, thereadable predicate took the mem-
ory as an argument. In the Cedilla Systems alpha product,
readable did not take memory as an argument. Lacking the
hidden variables model of state, it was difficult to reason
about how to formulate the security policy. In hindsight,
it is obvious that the predicate must take the state as an
argument if there is a malloc function. But without the
“hidden variables” model, it wasn’t so easy to tell.

The strength of the semantic approach is to make the
soundness of the axioms obvious. Although the proofs (such
as the one in section 6) can be tedious, we have found the
relationship between the semantic definition of the predicate
(such asreadable) and the axioms (such as MallocAxiom)
are intuitively clear.

The “hidden variables” approach works so well because
the host really does have hidden state that is changed by the
API calls. Our hidden variables are just abstractions of that
hidden state.

Our specification language for security policies – higher-
order logic – is more general than any of the several specific
policy languages we have cited: typed assembly language [7],
resource bound certification [3], security automata [10], and
the security-automata dependent-type system [11]. But since
our logic is not decidable, automatically generating proofs of
arbitrary programs would be impossible. But each of these
specific policy languages can be used as a compilation tech-
nology to generate nonarbitrary, policy-compliant machine
code along with a compliance proof.

References

[1] Andrew W. Appel and Amy P. Felty. A semantic model of
types and machine instructions for proof-carrying code. In
POPL ’00: The 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 243–253. ACM
Press, January 2000.

11

[2] Christopher Colby, Peter Lee, George C. Necula, Fred Blau,
Ken Cline, and Mark Plesko. A certifying compiler for Java.
In Proceedings of the 2000 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
’00). ACM Press, June 2000.

[3] Karl Crary and Stephanie Weirich. Resource bound certi-
fication. In POPL ’00: The 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
184–198. ACM Press, January 2000.

[4] Marc Feeley. Polling efficiently on stock hardware. InFPCA
’93: Conference on Functional Programming Languages and
Computer Architecture, pages 179–187. ACM Press, 1993.

[5] Robert Harper and Greg Morrisett. Compiling polymorphism
using intensional type analysis. Technical Report CMU-
CS-94-185, School of Computer Science, Carnegie Mellon
University, September 1994.

[6] Neophytos G. Michael and Andrew W. Appel. Machine
instruction syntax and semantics in higher-order logic. In17th
International Conference on Automated Deduction, June 2000.

[7] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to typed assembly language.ACM Trans. on
Programming Languages and Systems, 21(3):527–568, May
1999.

[8] George Necula. Proof-carrying code. In24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 106–119, New York, January 1997. ACM Press.

[9] George Ciprian Necula.Compiling with Proofs. PhD thesis,
School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, September 1998.

[10] Fred B. Schneider. Enforceable security policies.ACM Trans-
actions on Information and System Security, 3(1), February
2000.

[11] David Walker. A type system for expressive security policies.
In POPL ’00: The 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 254–267.
ACM Press, January 2000.

12

