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Abstract

Polytypic functions are defined by induction on the
structure of types. These functions are not parametri-
cally polymorphic in the conventional sense, but they
are not entirely ad hoc either. An example is the “poly-
morphic” equality function of Standard ML. Current im-
plementations of polytypic polymorphism either inhibit
efficient data representations, need the programmer to
supply specialized functions for concrete types, or don’t
generalize to the ML module system or quantified type
systems. We implement polytypic polymorphism by
dictionary passing. In our approach the compiler gener-
ates and passes dictionaries automatically; the kind of a
type decides the shape of its dictionary. The type theory
and dictionary transformations are not new, but we show
that among the current tag-free approaches that imple-
ment polytypic polymorphism dictionary passing has
the best integration with an existing production com-
piler. We show the type theory, describe an implementa-
tion, and explain how the transformation interacts with
the compiler.

1 Introduction

Standard ML provides the programmer with a useful fa-
cility, polymorphic equality. The programmer can use
the polymorphic equality operator = to test any two val-
ues for equality (two integers, two booleans, etc.) as
long as those two values are of the same equality type.
This operator has type∀α.α→α→ bool, whereα must
be instantiated to an equality type. When applied to two
integers, the operator = tests if the two integers are the
same; when applied to two records, it tests if the records

are componentwise the same. The behavior of this op-
erator depends on the type of its arguments, in an induc-
tive fashion.

Many other primitives – such as pretty printing, copy
in garbage collection, pickling – are also parameterized
by types. But they are not parametrically polymorphic
– their behavior is not completely oblivious of the ar-
guments’ types, but is defined inductively based on the
structure of these types. We call these operators poly-
typic primitives [8]. This paper focuses on implementa-
tions of these primitives.

There are several ways to compile polytypic polymor-
phism:

Specialization: Specialize a polymorphic primitive to
its corresponding monomorphic function at each
applied occurrence of the primitive. This is sim-
ple, but may cause exponential code duplication as
programs must be completely monomorphized. It
may not terminate in a system with polymorphic
recursion. Also, specialization is not compatible
with separate compilation, where a function is de-
fined in one module and used in another.

Boxing and tagging: Make each object have a uniform
representation (usually a word). Any object that
does not fit in the uniform representation is boxed
(a block is allocated in the heap for it and it is re-
ferred to by a pointer pointing to the block). Tag
bits are used to indicate types. Standard ML of
New Jersey (SML/NJ) boxes values, and uses a tag
bit to distinguish pointers from non-pointers. It has
a “magic” polymorphic equality function which
can be applied to any two values of an equality
type. If the two values are nonpointers, the magic
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function compares them bitwise, otherwise it fol-
lows pointers. The disadvantages of this approach
are: first, tag bits and pointers cause both space and
time inefficiency; second, it inhibits efficient (tag-
less) data representations and interoperability with
other languages that use natural representations; fi-
nally, the magic function is unsafe in that it cannot
be type-checked.

Type-analyzing system:Pass types at run time, and
dispatch to different code according to runtime
types. This needs a runtime dispatch facility both
at the term level and the type level. Type analyz-
ingcan be divided into two categories: type passing
(pass and analyze types, as inλML

i calculus [6]),
and type erasure (pass and analyze term-level type
representations, as inλR calculus [1]). We can
write a polymorphic functionpeq using the run-
time code dispatch constructtypecasein λML

i . Peq
takes a type argument and selects a branch to exe-
cute according to the type at run time.

fun peq = Λα.typecaseα of
int ⇒ IntEq

bool ⇒ BoolEq
t1 ∗ t2 ⇒ λx:t1∗ t2.λy:t1∗ t2.

peq[t1] (π1x)(π1y) and
peq[t2] (π2x)(π2y)

. . .

Dictionary passing[18]: Represent types by dictionar-
ies. A dictionary for a type is a set of functions,
much like the method suite of an object. For ex-
ample, the dictionary for the integer type contains
primitive functions on integers:

dint = {eq= IntEq,pp= IntTostring, . . .}

For each type argument of a polymorphic function,
a dictionary value is passed at run time. Poly-
typic primitives such as polymorphic equality are
replaced by specialized functions in dictionaries.
A polymorphic functionf (x,y) = (x = y) now has
one more argument,d, which is the dictionary cor-
responding tof ’s type argument. The eq function
in d is substituted for the operator = in the body of
f . When f is applied to two integers, the dictionary

for the integer type is passed:

funf (d,x,y) = d.eq(x,y)

f (dint ,1,2)

The disadvantages of specialization and tagging force
us to resort to type analyzingor dictionary passing.λML

i ,
λR, and dictionary passing are all variants ofintensional
type analysis, support efficient data representations, and
can implement runtime services with provable safety.
But they have several differences:

• Naive type analyzinginλML
i interacts in a compli-

cated way with closure conversion [6], butλR [1]
uses a dependent-type calculus to solve this prob-
lem. Our dictionary passing interacts gracefully
with closure conversion.

• It is difficult in λML
i andλR to support quantified

types (it requires a really complex type system [16,
11]); our dictionary-passing system needs no extra
type theory to support quantified types.

• To restrict computations to certain types (for in-
stance, equality can only be applied to values of
equality types), type analyzinguses the type-level
dispatch constructTyperec [6], whereas dictionary
passing uses kinds instead.

• λML
i breaks parametricity by analyzing types.λR

restores abstraction by not providing type repre-
sentations to analyze. But in order to implement
polytypic primitives for abstract types (e.g., pretty-
printing an abstract value without the representa-
tion of the hidden type),λR has to use dictionaries.
Dictionary passing preserves abstraction naturally.

• Type analyzingand dictionary passing are modular
in orthogonal directions; adding a new polytypic
primitive (such astoString) is easy in type analyz-
ing, but requires a new method in every dictionary;
adding a new type constructor is easy in dictionary
passing, but requires a new case-branch in every
typecaseof a type-analyzing system.

• It is easier in type analyzingto make the behav-
ior of a polytypic function depend on the types of
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two or more type arguments simultaneously; dic-
tionaries might require “multimethods” to do this.
Most common polytypic primitives have only one
type argument (even if they have several term ar-
guments), so dictionary passing can still be used in
many areas.

We were first motivated to study polytypic poly-
morphism in order to implement tag-free polymor-
phic equality in SML/NJ. This production SML com-
piler uses a typed intermediate language (a variant of
Fω) [12], a powerful module system, but no type pass-
ing at run time or dependent types. All these features
are common in compilers of functional programming
languages with polymorphism. Dictionary passing is a
simpler and cleaner way than other approaches in such
circumstances. We will show in detail that in a pro-
duction compiler that does not pass types at run time,
dictionary passing combined with automatic dictionary
generation and kind refinement [3] provides a full im-
plementation of polytypic primitives, and imposes the
least restrictions on the compiler. In our experience, dic-
tionary passing can be implemented easily with almost
no extra type theory and only minor changes to existing
phases in the compiler.

2 Related Work

Crary et al’s calculusλR [1] is the one most closely re-
lated to ours, where runtime type information is rep-
resented by specialR-terms. This approach duplicates
types at the term level, so that after erasing types, it still
can analyze term-level type representations. The special
terms are primitive, and have singleton types. Dictio-
naries in our system are concrete term representations
of types. We adopted the rules ofR-term generation and
transformation inλR to construct and pass dictionaries.
Details of how the implementation ofλR differs from
dictionary passing will be presented in section 3.4.

Dictionary passing is used in Haskell to implement
type classes [18]. Hinze[7] proposed generic (that
is, polytypic) programming which extends type class
mechanism . The Haskell user defines a generic func-
tion by specifying cases for primitive types such as Int,
and for primitive constructors such as ’×’ and ’+’. A

source-to-source translator generates instances at each
desired type by mimicking the structure of the type at
the term level. Since generic programming aims at user-
level facility, it doesn’t consider universal or existential
types. Our work is at the intermediate language level;
it can be applied to universal and existential types, and
runtime services such as copy in garbage collection.

Elsman[4] also passed dictionaries to get tag-free
polymorphic equality, but his paper described only a
small calculus (based on system F) with primitive types,
product types, and sum types, and it imposed constraints
on structures to support separate compilation. We pro-
vide a much richer calculus (based onFω), and our work
can be easily extended to the module system. Elsman’s
work deals with polymorphic equality only, so it uses
equality type variables to decide when to pass equality
functions; our implementation supports general poly-
typic primitives, not just polymorphic equality, so sepa-
rating equality type variables is not enough. In our sys-
tem we use kinds to specify type properties.

Duggan[3] and Ohori[10] used kinds to constrain
computations statically. Duggan allowed user-defined
marshalling by dynamic type dispatch, as in type-
analyzing. But he used kind refinement (kinds classify
certain types) instead of type-level dispatch. We don’t
have dynamic type dispatch, and use only very simple
refinement on kinds (just a new kind, no kind opera-
tions such as union and recursion in Duggan’s calculus).
Ohori translated polymorphic record operations to index
operations, whereas these record operations can be im-
plemented by dictionaries without restrictions on record
representations.

3 Implementation

We implement dictionary passing in the production
compiler SML/NJ. The SML/NJ front end translates
ML source code to the typed intermediate language
FLINT [12]. The “middle end” does optimizations
on this intermediate format. The back end translates
FLINT to continuation passing style (CPS), does closure
conversion, and translates CPS to machine code. FLINT
is a predicative variant ofFω, can be type-checked. Al-
though the CPS is untyped, an experimental version of
the compiler at YALE University uses a typed low-level
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Figure 1: Pipelines of SML/NJ 110.29 without/with dic-
tionary passing

FLINT instead, and our dictionary-passing transforma-
tion makes no new demands on this low-level system.

Our implementation of dictionary passing has added
only a new kind in the type system, and a new compila-
tion phase (dictionary transformation) in the middle end
of SML/NJ. This new phase consists of about 155 lines
of SML code for program transformation, 500 lines for
dictionary generation, 40 lines for constructing types of
dictionaries, and 25 lines for type translation. Figure 1
shows the pipelines of SML/NJ before and after adding
dictionary transformation phase.

3.1 Type System

Our type system is standard. The only difference be-
tween FLINT and this calculus is that this calculus has
simple kind refinement.

The intermediate language is a predicative variant of
Fω, with four syntactic classes: kindsκ, typesτ, type
schemesσ, and termse, as in figure 2. Kinds classify
types, and type schemes classify terms. Figure 3 shows
type formation rules; figure 4 shows selected term for-
mation rules.

The only thing new is the kindΩs, wheres is a set of
methods. Any type of this kind supports all the methods

κ ::= Ωs | κ→ κ′
τ ::= int | bool | α | τ→ τ′ | λα:κ.τ | ττ′

| τ1× . . .× τn | τ1 + . . .+ τn | µτ
σ ::= τ | σ→ σ′ | σ1× . . .×σn

| ∀α1 : κ1, . . . ,αn : κn.σ
| {l1 : σ1, . . . , ln : σn}

e ::= n | true| false| x | =
| λx:σ.e | e1e2 | fix x : σ.e
| Λα1 : κ1, . . . ,αn : κn.e | e[τ1, . . . ,τn]
| (e1, . . . ,en) | πi e
| fold[σ]e | unfold[σ]e
| {l1 = e1 , . . . , ln = en} | e.li
| injσi e | switcheof(e1, . . . ,en)

Figure 2: Syntax of IL

in s. To simplify the calculus, we discuss only pretty-
printing and equality methods, and useΩ as an abbrevi-
ation forΩ{pp}, andΩeqfor Ω{pp,eq}.

We have kindΩ for monotypes such as integer and
function types, and function kindκ→ κ′ for type con-
structors such aslist. Standard ML divides types into
two categories, those which admit equality (equality
types) and those which might not. We useΩeq for
equality types andΩ for general types; thus the sub-
script (method suite) corresponds to the equality prop-
erty of the type. In our type system, a typet admits
equality if it is of kind Ωeq, or of kind κ→ κ′ if t t ′

admits equality for any typet ′ of kind κ.
The term-reduction rules of our calculus are entirely

standard: beta-reduction, type-beta-reduction, tuple or
record projection, and case analysis of sum types (fig-
ure 5).

Lemma 1 (Value Substitution) Typing judgements
are preserved under substitution:

∆; Γ,x : σ′ ` e : σ ∆; Γ ` e′ : σ′

∆; Γ ` e[e′/x] : σ

Proof: by induction over the structure of expressions.

Lemma 2 (Type Substitution) Kinding judgements
are preserved under type substitution:

∆,α : κ′ ` τ : κ ∆ ` τ′ : κ′

∆ ` τ[τ′/α] : κ
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` int : Ωeq ` bool : Ωeq ∆ ` α : ∆(α)
∆ ` τ : Ωeq

∆ ` τ : Ω

∆,α:κ ` τ : κ′

∆ ` λα:κ.τ : κ→ κ′
∆ ` τ : κ→ κ′ ∆ ` τ′ : κ

∆ ` ττ′ : κ′

∆ ` τ1 : Ωs, . . . ,∆ ` τn : Ωs

∆ ` τ1× . . .× τn : Ωs

∆ ` τ1 : Ωs, . . . ,∆ ` τn : Ωs

∆ ` τ1 + . . .+ τn : Ωs

∆ ` τ : Ω ∆ ` τ′ : Ω
∆ ` τ→ τ′ : Ω

∆ ` τ : Ωs→Ωs

∆ ` µτ : Ωs

Figure 3: Type Formation:∆ ` τ : κ

` n : int ∆; Γ ` x : Γ(x) ` true : bool ` false : bool

`= : ∀α : Ωeq.α→ α→ bool
∆; Γ,x:σ ` e : σ

∆; Γ ` fix x : σ.e : σ

∆,α1 : κ1, . . . ,αn : κn; Γ ` e : σ
∆; Γ ` Λα1 : κ1, . . . ,αn : κn.e : ∀α1 : κ1, . . . ,αn : κn.σ

∆; Γ ` e : ∀α1 : κ1, . . . ,αn : κn.σ ∆ ` τ1 : κ1, . . . ,∆ ` τn : κn

∆; Γ ` e[τ1, . . . ,τn] : σ[α1 7→ τ1, . . . ,αn 7→ τn]

Figure 4: Selected Rules of Expression Formation:∆; Γ ` e : σ

(λx:σ.e)e′ 7→ e[e′/x]
(fix x : σ.e)e′ 7→ e[(fix x : σ.e)/x]e′

(Λα1 : κ1, . . . ,αn : κn.e)[τ1, . . . ,τn] 7→ e[τ1/α1, . . . ,τn/αn]
πi (e1, . . . ,en) 7→ ei

switch(injσi e)of(e1, . . . ,en) 7→ ei e
{l1 = e1 , . . . , ln = en}.li 7→ ei

Figure 5: Term Reduction Rules
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T(α : Ω{pp}) = {pp :α→ string}
T(α : Ω{pp,eq}) = {pp :α→ string,

eq :α→ α→ bool}
T(α : κ→ κ′) = ∀β : κ.T(β : κ)→ T(αβ : κ′)

Figure 6: Type of Dictionaries

Proof: by induction over the structure of types.

Theorem 3 (Preservation)

∆; Γ ` e : σ e 7→ e′

∆; Γ ` e′ : σ

Proof: by induction over term reduction rules.

3.2 Automatic Dictionary Generation

Each type has a dictionary of its own, which is a collec-
tion of functions for this type. The compiler constructs
dictionaries for all types automatically.

The shape of a dictionary depends only on the cor-
responding type. For example, functions types do not
admit equality, so their dictionaries should not contain
equality functions.

3.2.1 Shape of Dictionaries

The criterion that decides the shape of a dictionary is
the kind of its corresponding type. For types of kind
Ω{pp}, dictionaries contain pretty-printing functions but
no equality functions. For types of kindΩ{pp,eq}, dic-
tionaries include both. For a type functionF of kind
κ→ κ′, its dictionary is a polymorphic function, which
takes any typet of kind κ andt ’s dictionaryd, returns
the dictionary for typeF t.

Figure 6 shows how to decide the shape of a dictio-
nary based on the kind. The dictionary for typeα at
kind κ has typeT(α : κ). In our system, a type can have
several kinds – for example, int has kindsΩ{pp} and
Ω{pp,eq} – and the choice of kind (thus the choice of
dictionary) depends on the context.

3.2.2 Dictionary Generation

The compiler generates dictionaries automatically. Fig-
ure 7 shows some rules of dictionary generation.
∆; Θ `d τ : κ 7→ d means that under kind environment
∆ and dictionary environmentΘ, type τ of kind κ has
dictionary d. ∆ maps type variables to kinds, andΘ
maps type variables to dictionary variables (term vari-
ables representing dictionaries). For each kindΩs, the
primitive dictionaries for int and bool type are DInts and
DBools, of type T(int : Ωs) and T(bool : Ωs) respec-
tively. Prodns and Sumn

s are dictionary generators for
product types and sum types ofn elements. Applying
generator Prodns to n typesτ1, . . . ,τn of kind Ωs and the
corresponding dictionariesd1, . . . ,dn, we get the dictio-
nary forτ1× . . .× τn.

d(τ1×...×τn:Ωs) = Prodns[τ1, . . . ,τn]d1 . . .dn

These generators construct dictionaries from element
dictionaries in the most natural way. To get the equal-
ity function for τ1× . . .× τn, Prodn{pp,eq} uses the first
dictionaryd1 to compare the first element, the second
dictionaryd2 for the second element, and so on.

Prodn{pp,eq} =
Λα1 : Ω{pp,eq}, . . . ,αn : Ω{pp,eq}.
λd1:T(α1 : Ω{pp,eq}). · · ·λdn:T(αn : Ω{pp,eq}).
{eq= λx:σ1× . . .×σn.λy:σ1× . . .×σn.
d1.eq(π1x)(π1y) and . . . anddn.eq(πnx)(πny),
pp= . . .}

Define|Θ| as|Θ|(d) = T(α : κ) if Θ(α : κ) = d, i.e.,
|Θ|maps dictionary variables to their types. It is easy to
prove by induction that:

Lemma 4 (Type of Dictionaries) The generated dic-
tionaries are correctly typed.

∆; Θ `d τ : κ 7→ d
∆; |Θ| ` d : T(τ : κ)

3.2.3 Pretty Printing

Our dictionary-passing system is a general framework
within the compiler in which many polytypic primitives
can be implemented automatically. Here we use the ex-
amples of polymorphic equality (limited to types of kind
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`d int : Ωs 7→DInts ∆; Θ `d α : κ 7→ Θ(α)

∆; Θ `d τ : Ωs→Ωs 7→ dτ
∆; Θ `d µτ : Ωs 7→ fix x : T(µτ : Ωs).dτ[µτ]x

∆,α : κ; Θ,α : dα `d τ : κ′ 7→ dτ

∆; Θ `d λα:κ.τ : κ→ κ′ 7→ Λα:κ.λdα:T(α : κ).dτ

∆; Θ `d τ : κ→ κ′ 7→ dτ ∆; Θ `d τ′ : κ 7→ d′τ
∆; Θ `d ττ′ : κ′ 7→ dτ[τ′]d′τ

∆; Θ `d τ1 : Ωs 7→ d1, . . . , ∆; Θ `d τn : Ωs 7→ dn

∆; Θ `d τ1× . . .× τn : Ωs 7→ Prodns[τ1, . . . ,τn]d1 . . .dn

Figure 7: Selected Rules of Dictionary Generation:∆; Θ `d τ : κ 7→ d

Ω{pp,eq}) and pretty printing (available at all types, i.e.,
Ω{pp}). The pretty-printing primitivetoStringhas type
∀α : Ω{pp}.α→ string. Pretty-printing functions are
generated just like equality functions:

Prodn{pp} =
Λα1 : Ω{pp}, . . . ,αn : Ω{pp}.
λd1:T(α1 : Ω{pp}). · · ·λdn:T(αn : Ω{pp}).
{pp= λx:σ1× . . .×σn.

”〈” ∧(d1.pp(π1x)) ∧ ” , ” ∧ . . . ∧ ” , ”
∧ (dn.pp(πnx)) ∧ ”〉”}

3.3 Dictionary Transformation

Dictionary passing adds a new compilation phase, dic-
tionary transformation, in the middle end of SML/NJ.
The new phase is almost independent of other phases in
the compiler.

We implement dictionary transformation as a type-
directed and type-preserving program transformation at
the intermediate language level. The main idea is to pass
one additional value argument (the dictionary) per type
argument to polymorphic function definitions and appli-
cations, and replace the polytypic primitives with corre-
sponding dictionary functions (see figure 8;~α :~κ is a
shortcut forα1 : κ1, . . . ,αn : κn). The type scheme of a
polymorphic function is changed because of these extra

arguments, so we translate the type scheme as well (see
figure 9;|σ| = σ′ means type schemeσ is translated to
σ′).

In figure 8, ∆;Γ;Θ ` e : σ ⇒ e′ means that un-
der kind environment∆ (which maps type variables to
kinds), type environmentΓ (which maps term variables
to types), and dictionary environmentΘ (which maps
type variables to term variables representing their dic-
tionaries), expressioneof type schemeσ is translated to
expressione′.

Define|Γ| as|Γ|(x) = |Γ(x)|. The type environment
|Γ| maps term variables to their translated types; as de-
fined in section 3.2.2,|Θ|maps term variables represent-
ing dictionaries to their types.

We define environment unionΓ1 + Γ2 as:

(Γ1 + Γ2)(x) =
{

Γ1(x) if x in domain(Γ1)
Γ2(x) otherwise

It is easy to show that

Lemma 5 |Γ,x : σ|+ |Θ|= |Γ|+ |Θ|,x : |σ|.

Proof: by the definitions of|Γ|, |Θ|, andΓ1 + Γ2.

Lemma 6 |Γ|+ |Θ,α : d|= (|Γ|+ |Θ|),d : T(α : κ) if d
does not occur inΓ, andα is of kindκ.

Proof: by the definitions of|Γ|, |Θ|, andΓ1 + Γ2.
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` n : int⇒ n
(Int) `=: ∀α : Ωeq.α→ α→ bool⇒ Λα:Ωeq.λd:T(α : Ωeq).d.eq

(Peq)

∆;Γ;Θ ` x : σ⇒ x
(Var)

∆;Γ,x : σ;Θ ` e : σ′ ⇒ e′

∆;Γ;Θ ` λx:σ.e : σ→ σ′ ⇒ λx: |σ|.e′ (Abs)

∆;Γ;Θ ` e1 : σ→ σ′ ⇒ e′1 ∆;Γ;Θ ` e2 : σ⇒ e′2
∆;Γ;Θ ` e1e2 : σ′ ⇒ e′1e′2

(App)

∆,~α :~κ;Γ;Θ,α1 : d1, . . . ,αn : dn ` e : σ⇒ e′ d1, . . . ,dn are new variables

∆;Γ;Θ ` Λ~α :~κ.e : ∀~α :~κ.σ⇒ Λ~α :~κ.λd1:T(α1 : κ1). . . .λdn:T(αn : κn).e′
(Tabs)

∆;Γ;Θ ` e : ∀~α :~κ.σ⇒ e′ ∆; Θ `d τ1 : κ1 7→ d1 . . .∆; Θ `d τn : κn 7→ dn

∆;Γ;Θ ` e[τ1, . . . ,τn] : σ⇒ e′[τ1, . . . ,τn]d1 . . .dn
(Tapp)

Figure 8: Selected Rules of Expression Translation:∆;Γ;Θ ` e : σ⇒ e′

|τ| = τ
|σ→ σ′| = |σ| → |σ′|
|σ1× . . .×σn| = |σ1|× . . . ×|σn|
|∀α1 : κ1, . . . ,αn : κn.σ| = ∀α1 : κ1, . . . ,αn : κn.T(α1 : κ1)→ . . . → T(αn : κn)→ |σ|
|{l1 : σ1, . . . , ln : σn}| = {l1 : |σ1|, . . . , ln : |σn|}

Figure 9: Type Translation

Theorem 7 (Translation Preservation) Dictionary
passing preserves types.

∆;Γ;Θ ` e : σ⇒ e′

∆; |Γ|+ |Θ| ` e′ : |σ|

Proof: by induction over expressions.

3.4 Integration

We have seen that dictionary passing requires only a
new kind in the type system and an independent phase in
SML/NJ. In this section we show that dictionary passing
has better integration with SML/NJ thanλML

i and λR.
Actually, Dictionary passing can be easily implemented
in any compiler that usesFωlike typed intermediate lan-
guage and has standard optimizations, but no runtime
type passing nor dependent types.

Quantified types. Dictionary passing has better sup-
port for quantified types thanλML

i andλR.

In dictionary passing, recursive types have recursive
functions in their dictionaries. No extra type construct is
needed. But the type-level analyzing constructTyperec
in λML

i or λR may fail to terminate; this makes type-
checking undecidable. To force the iteration to termi-
nate, fully reflexive intensional type analysis [16] adds
new facilities to the type system.

In an impredicative calculus, dictionary passing can
also be applied to universal/existential types. Hiding the
identity of types can be done either by parametric poly-
morphism or by abstract types. To preserve abstraction,
we cannot analyze the hidden types or their representa-
tions because the analysis exposes their identity. There-
fore the hidden types must export additional informa-
tion (for example, their pretty-printing functions), that
is, they must pass dictionaries. Using dictionaries is the
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only way to preserve abstraction. Fully intensional type
analysis [16, 11] analyzes hidden types, thus breaks the
abstraction.

Comparing dictionaries with other type descriptors.
Representing types by dictionaries has very little effect
on the existing compiler. Phases after dictionary trans-
formation are unchanged.

Passing types at run time as inλML
i requires a type

system much different from the one used by the com-
piler, which will dramatically change the compiler back
end, and make closure conversion and code generation
more complex.

Using special terms as type representations as inλR

will not have so much effect on the compiler asλML
i , but

it still needs some support:
First, many new constructs and corresponding rules

are needed in the type system (FLINT and the lower-
level language): newR terms (representations of run-
time types), new typesR(α) (types ofR terms), and
the type-level dispatch constructTyperec which re-
quires big changes in type checking and has the non-
termination problem.

Second, a polymorphic function for each polytypic
primitive needs to be defined. For example, polymor-
phic equality needs a definition:

fixpeq :∀α : Ω.R(α)→ Eq[α]→ Eq[α]→ bool.
Λα:Ωeq.λxα:R(α). typecasexα of

Rint⇒ IntEq
R→(rβ, rγ) asβ→ γ⇒ λx:void.λy:void. false
R×(rβ, rγ) asβ× γ⇒

λx:Eq[β]×Eq[γ].λy:Eq[β]×Eq[γ].
peq[β] rβ(π1x)(π1 y)
and peq[γ] rγ(π2x)(π2 y)

Rvoid⇒ λx:void.λy:void. false

and Eq[α] is defined by type-level dispatch construct
Typerec (it is shown in patter-matching style):

Eq[int] = int
Eq[τ1→ τ2] = void
Eq[τ1× τ2] = Eq[τ]1×Eq[τ]2
Eq[void] = void

Third, when the compiler has several levels of typed
intermediate language, types that are passed and an-
alyzed will be transformed in the same way as other

types. It is hard to preserve algorithm structure of type
analysis. The LX system [2] uses a very rich kind and
type language to solve this problem.

Finally, the dependency betweenR-terms and the
types they represent requires more powerful lower-level
languages and complicates the back end.

Interaction with optimizations. How does dictio-
nary passing interact with the optimizations in the ex-
isting compiler? We tried several implementations:

• Dictionary passing before optimization. In this
implementation, the benchmark “life” ran three
times slower than when compiled without dictio-
nary passing (figure 10). Other benchmarks such
as boyer and mlyacc ran 6 - 7% slower. Part of
the inefficiency came from constructing and pass-
ing unnecessary dictionary arguments.

• Type specialization [13] is a standard optimization
that reduces polymorphic code to monomorphic,
where possible. When we moved the dictionary-
passing translation to after type specialization, we
avoided constructing dictionaries for functions that
will be made monomorphic. This significantly im-
proved “life”, but it still ran slower than when com-
piled by the original compiler, because additional
polymorphic code (such as Prodn

{pp,eq}) is intro-
duced by constructing dictionaries.

• Dictionary passing between two phases of type
specialization. We added one more type special-
ization phase after dictionary passing, to remove (if
possible) the polymorphic code introduced by dic-
tionaries. This gained some speedup (7%) without
sacrificing compilation time.

We show the performance of these three implementa-
tions in figure 10. This figure indicates that dictionary
passing can improve performance if properly organized.

Module system and separate compilation. Dictio-
nary passing fits in without difficulty in the SML module
system.

Standard ML uses structure, signature, and functor
constructs to organize programs. The SML/NJ front end

9
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Figure 10: Execution Time of “life” Benchmark Rela-
tive to SML/NJ 110.29

translates structures to records, and functors to (poly-
morphic) functions, so dictionary transformation is not
affected by these constructs.

SML/NJ supports separate compilation. A global en-
vironment keeps the type information for values ex-
ported by any module. In our implementation of dic-
tionary passing, type checking at the ML source level is
entirely unchanged. In the type-directed translation af-
ter dictionary transformation at the FLINT intermediate
language, however, whenever an extern (defined in an-
other module) polymorphic function is used, we trans-
late its type according to the rules of figure 9, so that
each intermediate program can be type-checked.

3.5 Performance Measurement

Since constructing and passing dictionaries at run time
can be costly, we measure the performance of several
benchmarks to determine the overhead of dictionary
passing. Based on these benchmarks, the overhead of
dictionary passing is low: it does not slow down the
compilation and execution phases much (at most 8%
slower in compilation and 3% slower in execution); we
never measured more than 2% increase of program size
in practice. Figure 11 shows the comparison of compi-
lation time of several benchmarks in two compilers (the
new compiler with dictionary passing and the original
one with no dictionary passing but the “magic” equality
function). Figure 12 shows execution time comparison.
The bar heights represent the ratios (in percentage) of
compilation (or execution) time in the new compiler to
compilation (or execution) time in the original compiler.

We use optimizations and dictionary sharing to
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Figure 11: Compilation Time Relative to SML/NJ
110.29
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Figure 12: Execution Time Relative to SML/NJ 110.29

achieve the results in figures 11 and 12.
It is expensive to construct dictionaries, especially for

large types, so it is worth sharing dictionaries. Several
ways are possible:

• Dictionaries for primitive types. Dictionaries such
as DInt{pp,eq} are generated no more than once per
compilation unit.

• Dictionary generators. The dictionary constructor
for a product type does not depend on the element
types of the product type. The dictionary generator
Prodns is implemented as a polymorphic function
which takesn dictionaries forn element types and
returns the dictionary for the product type consist-
ing of thesen element types. For eachn ands, this
function is generated no more than once per com-
pilation unit.

• Sharing across different modules. If a typet is
defined in module A and used in both module A
and B, a compiler could constructt ’s dictionaryd
only once. Then the interface between two mod-
ules would be not only typet, but dictionaryd.
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Since we did not want to modify module interfaces,
we did not implement cross-module sharing. Even
so, we never observed more than 2% code blowup
in any benchmark.

4 Applications

Our first application of polytypy – the only polytypic
function built into the Standard ML – was equality. In
this paper we have also used pretty printing as an ex-
ample application. In each case, automated translation
of polytypic functions to ordinary functional code en-
ables us to eliminate an ad-hoc, “magical” function from
the runtime system: respectively, the tag-based poly-
morphic equality function and the unsafe-cast-based
type-directed pretty-printer. In the modern context of
typed-intermediate-languagecompilers (which need not
be trusted because their low-level output can be type-
checked), moving functionality from the runtime system
(which must be trusted) to the compiler is very desir-
able.

There are many other polytypic functions to which
our methods can be applied. Recent work in garbage
collection [15, 19, 9] has shown how intensional type
analysis can be used to construct provably safe, tag-
free garbage-collection copy functions. One challenge
is how to copy closures. From the discussion in sec-
tion 3.4, dictionary passing can solve this problem by
including copy functions in dictionaries for closures. It
is worth studying the details of implementing garbage
collection by dictionaries.

Marshalling and unmarshalling of data in a dis-
tributed system have also been done with compiler or
language support [17].

Implementing debuggers has been difficult in the
world of type-directed compilation, because the same
data type can be represented in different ways in dif-
ferent contexts. Thus, a machine-language-level im-
plementation of debug breakpoints can be very com-
plex. We plan to explore the implementation of de-
bug breakpoints as polytypic functions using dictionary
passing. In the style of Tolmach [14], insertion of debug
breakpoints will be a type-safe source-to-source (actu-
ally FLINT-to-FLINT) transformation.

5 Conclusion and Future Work

We have implemented dictionary passing in SML/NJ
to support polytypic polymorphism. Dictionaries are
generated and passed to polymorphic functions auto-
matically by the compiler, and substituted for polytypic
primitives. We introduce new kinds in the intermedi-
ate language to describe type properties and decide the
shape of dictionaries.

We show that dictionary passing provides a simple
and general framework for polytypic primitives, and can
be better integrated into in an existing compiler with
Fωlike intermediate language than type-analyzing. It
needs only simple kind refinement in the type system,
and an independent program transformation in the com-
piler. Existing phases in the compiler are almost un-
touched. Yet the approach is powerful enough to ex-
press many polytypic primitives, and support quantified
types without breaking parametricity. It can be used to
implement tag-free, safe runtime services such as poly-
morphic equality and garbage collection, and to display
values in a debugger without runtime type reconstruc-
tion.

In the future we will explore different applications of
this approach, and study maximum dictionary sharing
and its effects on performance.
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A Complete Rules

We show all the rules of typing, dictionary generation
and expression translation here.
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` n : int ∆; Γ ` x : Γ(x) ` true : bool ` false : bool

`= : ∀α : Ωeq.α→ α→ bool
∆; Γ,x:σ ` e : σ

∆; Γ ` fix x : σ.e : σ

∆; Γ,x:σ ` e : σ′

∆; Γ ` λx:σ.e : σ→ σ′
∆; Γ ` e : σ→ σ′ ∆; Γ ` e′ : σ

∆; Γ ` ee′ : σ′

∆; Γ ` e1 : σ1 . . .∆; Γ ` en : σn

∆; Γ ` (e1, . . . ,en) : σ1× . . .×σn

∆; Γ ` e : σ1× . . .×σn 0< i ≤ n
∆; Γ ` πi e : σi

∆; Γ ` e : σµσ
∆; Γ ` fold[σ]e : µσ

∆; Γ ` e : µσ
∆; Γ ` unfold[σ]e : σµσ

∆; Γ ` e1 : σ1, . . .∆; Γ ` en : σn

∆; Γ ` {l1 = e1 , . . . , ln = en} : {l1 : σ1, . . . , ln : σn}

∆; Γ ` e : {l1 : σ1, . . . , ln : σn} 0< i ≤ n

∆; Γ ` e.li : σi

σ = σ1 + . . .+ σn ∆; Γ ` e : σi 0< i ≤ n
∆; Γ ` injσi e : σ

∆; Γ ` e : σ1 + . . .+ σn

∆; Γ ` e1 : σ1→ σ′....
∆; Γ ` en : σn→ σ′

∆; Γ ` switcheof(e1, . . . ,en) : σ′

∆,α1 : κ1, . . . ,αn : κn; Γ ` e : σ
∆; Γ ` Λα1 : κ1, . . . ,αn : κn.e : ∀α1 : κ1, . . . ,αn : κn.σ

∆; Γ ` e : ∀α1 : κ1, . . . ,αn : κn.σ ∆ ` τ1 : κ1, . . . ,∆ ` τn : κn

∆; Γ ` e[τ1, . . . ,τn] : σ[α1 7→ τ1, . . . ,αn 7→ τn]

Figure 13: Complete Rules of Expression Formation
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`d int : Ωs 7→DInts `d bool :Ωs 7→ DBools

∆; Θ `d α : κ 7→ Θ(α) ∆; Θ `d τ→ τ′ : Ω 7→DFun

∆; Θ `d τ : Ωs→Ωs 7→ dτ

∆; Θ `d µτ : Ωs 7→ fix x : T(µτ : Ωs).dτ[µτ]x

∆,α : κ;Θ,α : dα `d τ : κ′ 7→ dτ

∆; Θ `d λα:κ.τ : κ→ κ′ 7→ Λα:κ.λdα:T(α : κ).dτ

∆; Θ `d τ : κ→ κ′ 7→ dτ ∆; Θ `d τ′ : κ 7→ d′τ
∆; Θ `d ττ′ : κ′ 7→ dτ[τ′]d′τ

∆; Θ `d τ1 : Ωs 7→ d1, . . . , ∆; Θ `d τn : Ωs 7→ dn

∆; Θ `d τ1× . . .× τn : Ωs 7→ Prodns[τ1, . . . ,τn]d1 . . .dn

∆; Θ `d τ1 : Ωs 7→ d1, . . . , ∆; Θ `d τn : Ωs 7→ dn

∆; Θ `d τ1 + . . .+ τn : Ωs 7→ Sumn
s[τ1, . . . ,τn]d1 . . .dn

Figure 14: Complete Rules of Dictionary Generation
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` n : int⇒ n
(Int) ∆;Γ;Θ ` x : σ⇒ x

(Var) ` true:bool⇒ true
(True) ` false:bool⇒ false

(False)

∆;Γ;Θ ` e : σµσ⇒ e′

∆;Γ;Θ ` fold[σ]e : µσ⇒ fold[σ]e′
(Fold)

∆;Γ;Θ ` e : µσ⇒ e′

∆;Γ;Θ ` unfold[σ]e : σµσ⇒ unfold[σ]e′
(Un f old)

∆;Γ;Θ ` e : σi ⇒ e′ σ = σ1 + . . .+ σn

∆;Γ;Θ ` injσi e : σ⇒ inj|σ|i e′
(In j) ∆;Γ,x : σ;Θ ` e : σ⇒ e′

∆;Γ;Θ ` fix x : σ.e : σ⇒ fix x : |σ|.e′ (Fix)

∆;Γ;Θ ` e : σ1× . . .×σn⇒ e′

∆;Γ;Θ ` πi e : σi ⇒ πi e′
(SelP)

∆;Γ;Θ ` e : {l1 : σ1, . . . , ln : σn}⇒ e′

∆;Γ;Θ ` e.li : σi ⇒ e′.li
(SelR)

∆;Γ,x : σ;Θ ` e : σ′ ⇒ e′

∆;Γ;Θ ` λx:σ.e : σ→ σ′ ⇒ λx: |σ|.e′ (Abs)
∆;Γ;Θ ` e1 : σ→ σ′ ⇒ e′1 ∆;Γ;Θ ` e2 : σ⇒ e′2

∆;Γ;Θ ` e1e2 : σ′ ⇒ e′1e′2
(App)

∆;Γ;Θ ` e1 : σ1⇒ e′1 . . .∆;Γ;Θ ` en : σn⇒ e′n
∆;Γ;Θ ` (e1, . . . ,en) : σ1× . . .×σn⇒ (e′1, . . . ,e

′
n)

(Prod)

∆;Γ;Θ ` e1 : σ1⇒ e′1 . . .∆;Γ;Θ ` en : σn⇒ e′n
∆;Γ;Θ ` {l1 = e1 , . . . , ln = en} : {l1 : σ1, . . . , ln : σn}⇒ {l1 = e′1 , . . . , ln = e′n}

(Rec)

∆;Γ;Θ ` e : σ1 + . . .+ σn⇒ e′

∆;Γ;Θ ` e1 : σ1→ σ′ ⇒ e′1....
∆;Γ;Θ ` en : σn→ σ′ ⇒ e′n

∆;Γ;Θ ` switcheof(e1, . . . ,en) : σ′ ⇒ switche′of(e′1, . . . ,e
′
n)

(Switch)

∆,α1 : κ1, . . . ,αn : κn;Γ;Θ,α1 : d1, . . . ,αn : dn ` e : σ⇒ e′ d1, . . . ,dn are new variables

∆;Γ;Θ ` Λ~α :~κ.e : ∀~α :~κ.σ⇒ Λ~α :~κ.λd1:T(α1 : κ1). . . .λdn:T(αn : κn).e′
(Tabs)

∆;Γ;Θ ` e : ∀~α :~κ.σ⇒ e′ ∆; Θ `d τ1 : κ1 7→ d1 . . .∆; Θ `d τn : κn 7→ dn

∆;Γ;Θ ` e[τ1, . . . ,τn] : σ⇒ e′[τ1, . . . ,τn]d1 . . .dn
(Tapp)

`=: ∀α : Ωeq.α→ α→ bool⇒ Λα:Ωeq.λd:T(α : Ωeq).d.eq
(Peq)

Figure 15: Complete Rules of Expression Translation
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