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 I

Abstract 

Clusters of commodity computers are a cost-effective hardware platform for large-scale 

Internet services. Availability and scalability are major concerns in the design of 

infrastructures for such services. My dissertation examines the opportunities in the data 

storage systems for improving the availability and scalability of cluster-based Internet 

infrastructures at a low cost. The goal of availability is to maximize the percentage of 

client requests that succeed despite the failure of one or more servers in the cluster. The 

goal of scalability is to efficiently scale the server throughput with the cluster size. My 

basic approach is to investigate the data and request distribution strategies across nodes in 

the cluster, i.e. how to partition and replicate data on disk or in memory and how to direct 

requests to the right partitions in order to achieve high availability and scalability. 

Maintaining availability in the face of failures is a critical requirement for Internet 

services. Existing approaches in cluster-based data storage rely on redundancy to survive 

a small number of failures, but the system becomes largely unavailable if more failures 

occur. I study a failure isolation approach in which each server in the cluster can deliver 

data to clients independently of the failures of other servers. This approach is 

complementary to existing redundancy-based methods: redundancy can mask the first 

few failures, and failure isolation can take over and maintain availability for the majority 

of clients if more failures occur. 

The ability to achieve high quality of service with minimal committed resources allows 

savings in many aspects including equipment cost, power consumption, and 

administration effort for Internet services. I study how to improve the price-performance 

ratio of Internet application servers by efficiently managing a cluster of in-memory 

databases as the cache for dynamic content. I observe that a good management strategy 

could be found at least for certain applications despite the challenges of dynamic content. 

It strives to maximize effective cache capacity and minimize synchronization cost. It is 

light-weighted and adapts dynamically to the changes in loads and access patterns. 



 II

Acknowledgements 

I would like to thank my dissertation committee for making it at all possible for me to 

complete this dissertation. I have been receiving continuous support from my advisor, Ed 

Felten, since I started research at Princeton. I enjoyed the extensive freedom in research 

directions and academic agenda under his supervision, and always think it is the most 

important thing to me as a graduate student. I was very much impressed by his sharpness 

in understanding and commenting on my ideas and results, and learned a lot from him 

both technically and strategically. I am indebted to Randy Wang, a reader of my 

dissertation, for his encouragement to me even during my hardest times in graduate 

school. His amazing photographs and experiences broadened my vision of the great 

nature. Two other committee members, Doug Clark and Larry Peterson, are unanimously 

respected in our department as excellent and caring professors. I owe a large debt to 

Doug for his generous offer of help whenever I needed it. 

I was fortunate to have the opportunity to learn from many other professors and 

researchers in the past few years. JP Singh’s interest and support in my work was 

sometimes the only reason I could move forward. Kai Li has been an unlimited source of 

advice and help, from career philosophy to paper writing to pet-friendly apartments. 

Sanjeev Arora shared with me his knowledge and wisdom on hash functions, which later 

became a fundamental element in my dissertation work. Andrea LaPaugh was always 

ready to be a referee for my work and shared with me her enthusiasm for new 

technologies. Bernard Chazelle, my academic advisor during my first year at Princeton, 

impressed me with his great kindness as well as his incredible sense of humor. John 

Wilkes, my manager in Hewlett-Packard Labs when I was a summer intern there, will 

always be a role model in my career. 

The work in this dissertation was funded by National Science Foundation (NSF) under 

grants MIP-9420653 and ANI-9906704. 

As a system researcher, I often had to deal with things like equipment hardware and 

system configuration. I could not have completed my experiments without the help from 



 III 

Jim Roberts, Chris Tengi, Joe Crouthamel, Steve Elgersma, Tom Knowles, Chris Miller 

and other technical staff members. Becci Davies, Melissa Lawson, Ginny Hogan, Trish 

Killian, Michele Brown and others have helped make the computer science building a 

cozy and refreshing place to stay.  

Many fellow graduate students, including Yuanyuan Zhou, Dongming Jiang, Mao Chen, 

Rob Shillner, Cheng Liao, Sanjeev Kumar, Yaoyun Shi and Amit Chakrabarti, helped me 

make progress in my study. My friends, colleagues and officemates, such as Zhen Li, 

Daniel Wang, Aki Nakao, Xiaodong Wen, Hongzhang Shan, John Hainsworth, Jie Chen, 

Han Chen, Yuqun Chen, George Tzanetakis, Limin Wang, Xiang Yu, Bin Wei, Jessica 

Fong, Erich Schmidt, David Penry, Kedar Swadi, Yefim Shuf and Jean Gilsing, offered 

valuable friendship and help that made my life in graduate school a pleasure. 

Finally, I owe everything to my family. My parents’ pride and hope in me are the 

persistent driving force for my struggles in career and in life. While they gave me 

unlimited trust and freedom as I grew up, I gave them gray hairs and sleepless nights. 

Living thousands of miles away in a completely different world, they might not be able to 

imagine what I have gone through here. However, I know that their love has always been 

with me no matter where I am. For the past nine months, I dearly enjoyed the company of 

a giant but babish, strong but innocent, independent but affectionate boy called Pan Pan. 

My husband and best friend, Xuefu Wang, helped me survive all those struggles with his 

care, support, sacrifice, patience and confidence in me. The completion of this 

dissertation is meant to be a contribution to the new family Xuefu and I are starting to 

build together. 



 IV

Table of Contents 

Abstract ................................................................................................................................ I 

Acknowledgements.............................................................................................................II 

Table of Contents .............................................................................................................. IV 

1 Introduction................................................................................................................. 1 

1.1 Background and motivation............................................................................. 1 
1.1.1 Cluster-based Internet infrastructures ......................................................... 1 
1.1.2 Redundancy................................................................................................. 2 
1.1.3 Isolation....................................................................................................... 3 
1.1.4 Content caching........................................................................................... 4 
1.1.5 Front-end distributors.................................................................................. 5 
1.1.6 Back-end distributors .................................................................................. 6 

1.2 Contributions..................................................................................................... 8 

2 Design of the island-based file system........................................................................ 9 

2.1 Analytical model for data loss........................................................................ 10 
2.1.1 Non-redundant model ............................................................................... 12 
2.1.2 Redundancy schemes with grouping......................................................... 15 
2.1.3 Redundancy schemes without grouping ................................................... 15 
2.1.4 Data loss versus storage overhead ............................................................ 16 
2.1.5 Partial availability for applications ........................................................... 19 

2.2 Island-based design......................................................................................... 19 
2.2.1 Hash-based data distribution..................................................................... 20 
2.2.2 Usage-based metadata replication............................................................. 22 
2.2.3 Reconfiguration and rebalance.................................................................. 24 
2.2.4 Other design issues.................................................................................... 26 

3 Consistency of replicated metadata........................................................................... 29 

3.1 Related work.................................................................................................... 30 

3.2 Replication model............................................................................................ 32 

3.3 Consistency protocol design ........................................................................... 33 
3.3.1 Atomicity .................................................................................................. 33 
3.3.2 Serialization .............................................................................................. 36 
3.3.3 Recovery ................................................................................................... 38 

3.4 Correctness testing.......................................................................................... 40 

3.5 Summary.......................................................................................................... 43 

4 Evaluation of the island-based file system................................................................ 44 



 V

4.1 Statistical analysis ........................................................................................... 44 
4.1.1 Partial availability for applications ........................................................... 44 
4.1.2 Replication cost and load distribution....................................................... 46 
4.1.3 Operation breakdown................................................................................ 51 

4.2 Implementation ............................................................................................... 54 

4.3 Performance .................................................................................................... 55 
4.3.1 Micro benchmarks..................................................................................... 56 
4.3.2 Trace-based benchmarks........................................................................... 64 

4.4 Related work.................................................................................................... 67 

4.5 Summary.......................................................................................................... 68 

5 Affinity-based management of clustered in-memory databases ............................... 70 

5.1 Assumptions..................................................................................................... 72 

5.2 Challenges of dynamic content illustrated.................................................... 73 

5.3 Observation on query affinity........................................................................ 74 

5.4 Exploiting query affinity ................................................................................ 75 

5.5 Affinity-based management ........................................................................... 77 
5.5.1 Components .............................................................................................. 78 
5.5.2 Data distribution and consistency ............................................................. 80 
5.5.3 Replication of search keys ........................................................................ 80 
5.5.4 Limitations ................................................................................................ 83 
5.5.5 Implications to other systems.................................................................... 84 
5.5.6 Implementation ......................................................................................... 85 

5.6 Simulations of five distribution strategies .................................................... 85 
5.6.1 Experimental setups .................................................................................. 86 
5.6.2 Case study 1: White pages ........................................................................ 88 
5.6.3 Case study 2: Auctions.............................................................................. 90 
5.6.4 Dimensions of query affinity .................................................................... 94 
5.6.5 Cooperative caching...................................................................................... 95 

5.7 Performance measurement on two prototype clusters ................................ 97 
5.7.1 Experimental setups .................................................................................. 97 
5.7.2 Single server latencies............................................................................... 98 
5.7.3 Measurement on cluster servers .............................................................. 100 

5.8 Related work.................................................................................................. 102 

5.9 Summary........................................................................................................ 104 

6 Conclusion .............................................................................................................. 106 

6.1 Results ............................................................................................................ 106 

6.2 Future work ................................................................................................... 108 



 VI

Reference ........................................................................................................................ 109 



 1

1 Introduction 

1.1 Background and motivation 

1.1.1 Cluster-based Internet infrastructures 

Clusters of commodity computers are a cost-effective hardware platform for running 

large-scale applications such as file servers, web servers, and other Internet services [47]. 

The large-scale Internet services studied in my dissertation are those having large data 

sets and read/write access patterns to the underlying file or database system. Examples of 

such services include web hosting, web caching, newsgroup, e-mail, e-commerce and 

search engines. The availability requirement of those services is different from the 

traditional applications, such as scientific computing. In the traditional environments, we 

are familiar with the failure mode of all or nothing. But for an Internet server, if there is a 

partial failure in its infrastructure, the server probably wants to keep running and serve as 

many clients as possible, rather than go completely offline. The scalability requirement of 

those Internet infrastructures is also critical because good scalability can translate to low 

cost for high quality of service. For example, in today’s Internet data centers, the ability 

to guarantee the same Service Level Agreements with less committed resource allows 

savings in equipment cost, power consumption, environmental control, rack space, and 

administration effort.  

A large-scale infrastructure typically consists of nodes of several distinct roles, such as 

management nodes, processing nodes and data storage nodes. See Figure 1.1. The 

processing nodes usually host web servers and application servers and generate results for 

clients’ requests. The storage nodes host file systems or database systems and are 

responsible for maintaining persistent and consistent data storage and providing highly 

available data access. In order to process clients’ requests, the processing nodes need to 

access the data stored in the storage nodes, and will probably cache it in their main 

memories for future requests. The management nodes are responsible for coordinating the 

tasks of other nodes. For example, an important task of the management is to distribute 

requests across the processing nodes or to distribute data across the storage nodes.  
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The goal of running such a cluster is to achieve high availability and scalability of the 

Internet service. A number of content-based request distribution strategies [3] [64] have 

attempted to scale cluster-based web servers by exploiting locality as well as load balance 

in the distribution strategy. A new programming model and support has been proposed 

for highly available and scalable processing nodes [47] [48]. My approach to high 

availability, scalability and cost-effectiveness is to study the data and request distribution 

strategies across the storage nodes.  

1.1.2 Redundancy 

I propose failure isolation as a complementary approach to exiting approaches to 

improving the availability and scalability of the data storage in cluster-based Internet 

infrastructures. 

A wide variety of research projects on file or storage systems have explored approaches 

to high reliability and scalability. Redundancy is a standard approach for high reliability 

and scalability. In file and storage systems, redundancy can be classified in three 

categories: disk redundancy, server redundancy and client redundancy. 

Redundant Arrays of Inexpensive Disks (RAID) [45] were designed for high aggregate 

disk bandwidth and recovery in case of individual disk failures. The basic approach is to 

break the disk arrays into redundancy groups, with each group having extra "check" disks 

 
Internet 
Clients 

Requests 

Results 

Management 
Nodes 

Processing 
Nodes 

Storage 
Nodes 

Figure 1.1 A cluster-based Internet infrastructure. 
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containing the redundant information. When a disk fails, the failed disk will be replaced 

and the information will be reconstructed on to the new disk using the redundant 

information. Typical organizations of data and check information in a redundancy group 

include mirroring (first level RAID) and striping (fifth level RAID). 

The servers that are responsible for managing and delivering data are also extensively 

replicated, in the forms of wide-area distributed file systems, locally replicated file 

systems, virtual storage servers, and cluster file systems [5] [1]. Wide-area file systems 

[51] [53] [54] typically employ one-copy availability, in which any data may be updated 

as long as some copy is available, and trade consistency of the replicated data for 

availability and performance. Global content distributors [59] [2] [60] offer 

geographically distributed replication services to read-mostly web content so that the 

latency in delivering contents to clients can be reduced. They can be viewed as new 

applications of the traditional wide-area file systems on read-mostly web content. Locally 

replicated file systems [42][52] typically allow accesses to the primary copy only and 

have the secondary server take over when the primary crashes. Virtual storage servers [7] 

can be viewed as software RAIDs: a cluster of computers, equipped with disks and 

interconnected with fast networks, are presented as a single large storage server, while 

data is mirrored and striped internally. Cluster file systems [5] [1] are typically built on 

top of a shared virtual storage server: while the storage server takes care of data 

placement and replication, the objective of the cluster file system is to provide aggregate 

processing power, memory capacity and network bandwidth for managing and delivering 

the data. 

Client caching is extensively used in distributed file systems [54] [8] [40] to support 

disconnected operations and to reduce traffics to servers. Similar to server replication, 

client caching improves availability by data redundancy, i.e. by replicating data in clients. 

It also improves scalability by reducing server load so that the same number of servers 

can serve a larger number of clients gracefully.  

1.1.3 Isolation 

However, reliability comes at a cost. One needs to pay extra storage for redundant data 
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copies. More importantly, one needs to pay synchronization overhead for keeping the 

replicas consistent with each other. The more reliability is required, the more cost needs 

to be paid. In commercial distributed file systems, such as NFS [9] and CIFS [15], 

individual servers are highly independent of each other and do not share data. Therefore, 

the failure of an individual server does not affect the functionality of other servers. 

However, those systems require manual partitioning of data across servers and suffer 

from system administration overhead at large scales. 

Fox et al. [47] [48] suggest that modern Internet applications might prefer to serve as 

many clients as possible rather than to go completely offline when partial failures are 

present. In other words, partial availability might be more valuable to those applications 

than the traditional all-or-nothing failure mode. They also propose a new programming 

model for Internet applications where application decomposition and orthogonal 

mechanism are exploited for graceful degradation during partial failures. 

Graceful handling of partial failures has been studied in other areas. For example, Chapin 

et al. Propose isolation of kernels [38] for the operating systems running on large-scale 

shared-memory multiprocessors. Isolation improves availability because a hardware or 

software fault damages only an independent component of the system rather than the 

entire system. Isolation also improves scalability because few resources are shared by 

processes running on different kernels. 

1.1.4 Content caching 

Many application servers, especially web portals [81], e-commerce servers [83] and 

search engines [82], contain a mixture of static and dynamic content. By static content, I 

mean files that HTTP servers directly access from file systems and return to clients, such 

as HTML pages and images. By dynamic content, I mean content that is generated on 

demand by applications such as CGI or ASP programs. Such content is typically database 

information about catalogs, inventory, customers, preferences, indexes on web 

documents, etc.�It is often the dynamic content that differentiates a particular service site 

and the functionality it provides from other sites. However, dynamic content is delivered 

at a rate often one or two order of magnitudes slower than that of static content [88].�
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Caching, especially caching with aggregate main memory in a cluster [3] [61], has been 

established as an effective way to improve the performance and scalability of web servers 

with static content. Similarly, caching results from queries on dynamic content has been 

shown to help reduce computation involved in generating results that do not change 

frequently and do not cause updates to the underlying database [66] [67].  

A more general approach to caching dynamic content has been proposed: using an in-

memory database to cache the frequently accessed data and to provide the same 

interfaces and functions as an on-disk database, such as indexed search and concurrency 

control [85]. In-memory databases are optimized in many aspects, such as retrieval and 

indexing, specifically for memory-resident data, and are usually backed by Uninterrupted 

Power Supply (UPS) for the durability of transactions [86]. In fact, it has been suggested 

that it will simplify the construction of scalable applications on a cluster if the application 

data is stored in a shared, consistent in-memory data store rather than an application-

specific data structure [87]. For example, it is non-trivial to port an application server 

with session affinity from a single machine to a cluster of machines if the data is kept 

inside the application, because the requests in the same session need to access the same 

data but might be processed by different servers as a result of request distribution for load 

balance [75]. Therefore, in-memory databases can potentially be useful for Internet 

servers either as content caches, or as in-memory data stores, or both. 

The challenge for using in-memory databases arises in situations where the entire data set 

cannot fit in a single in-memory database and hence needs to be split into a cluster of in-

memory databases. It involves automatically and dynamically partitioning and replicating 

data across nodes and directing requests to the right partitions. Previous work in the area 

of data/request distribution falls into two categories: request routers for clustered web 

servers and data allocators for distributed databases. Based on their positions in the 

cluster, I call them front-end distributor and back-end distributor, respectively. 

1.1.5 Front-end distributors 

State-of-the-art front-end distributors are content-based request distributors. Basically, 

requests for the same content, usually identified by the Universal Resource Locator 
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(URL), are directed to the same node as long as load is balanced across nodes. Because 

recently accessed files are cached in the main memory of the nodes, the content-based 

distribution can increase the cache hit ratio by using the aggregate main memories in the 

cluster as a large global cache. The key idea in content-based distribution is to distribute 

requests and to have data follow requests. In a content-oblivious request distribution, 

such as the connection-based distribution by a layer-4 network switch [75], each node 

will end up caching the same set of most frequently accessed files; therefore, the effective 

cache size of the cluster remains the same as the cache size of a single node. Content-

based distribution has been successful in improving the scalability of web servers with 

static content [3] [64]. For static content, each file can be uniquely identified by the URL 

in the HTTP request; therefore, it is straightforward to partition the files and direct the 

requests to the right partitions based on URL. 

However, more and more Internet sites today serve dynamic content. Typical examples 

are e-commerce servers and search engines, including the most visited sites Yahoo!, 

Amazon, Ebay, Google, Cnet, etc.. An essential difference in the requests to dynamic 

content is that the URLs in the requests specify the application and query, but not the data 

to access. Therefore, data could be accessed through multiple applications or by multiple 

attributes, and a single query could access multiple data items. Dynamic content can be 

written as well as read, for example, when the client places an order in an online shop. In 

front-end distribution, two requests on the same or overlapped data will likely be directed 

to two different servers if they carry two different queries. Therefore, front-end 

distribution could not eliminate data sharing across cache servers for dynamic content. If 

the data is read only, then we waste cache space for redundant copies of the same data. If 

the data is write-shared, then we pay synchronization cost for the consistency of the data. 

1.1.6 Back-end distributors 

An orthogonal approach to front-end distributors is to run a distributed database in the 

back end and have the database decide how to allocate data to individual nodes, i.e. to use 

a back-end distributor. The allocation is transparent to the web servers; the web servers 

access the distributed database as if it is a single shared database. A front-end distributor 
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may or may not be used in conjunction with the back-end distributor.  

A lot of work has been done on the data fragmentation and allocation problems for 

distributed databases. The general problems [61] are stated as follows: Given the queries 

and updates, the frequencies of their usage, and the sites where the results have to be sent, 

determine 1) the fragments to be allocated, and 2) allocate these fragments, possibly 

redundant, and the operations on them to the sites of the computer network such that a 

certain cost function is minimized. Total data transmission cost is often used as the cost 

function. The optimal allocation of fragments was shown to be NP-complete [61]. The 

solutions to this problem are typically off-line, expensive optimization or periodical, 

heuristic process.  

The optimal methods basically search the large solution space for determining data 

allocations to minimize total transmission cost. The heuristic methods typically start with 

an initial data allocation and iteratively reallocate fragments to decrease the total 

transmission cost in a greedy fashion until the cost can no longer be decreased. Due to 

their complexity, those techniques have to be applied off line or statically. Therefore, 

they are not readily applicable to those Internet services with dynamic changes in access 

patterns and loads. 

Dynamic data reallocation for databases with changing access patterns and loads is 

studied by Brunstrom et al. [63]. Rather than complicated and expensive optimization 

algorithms, a simple heuristic is used that keeps track of accesses to each data block on 

each site and periodically moves data to the site where it is accessed most without 

causing load imbalance across sites. The choice of the data movement interval is critical 

to the performance of this method: excessively large values will prevent the system from 

responding to workload changes in time while excessively small values will result in 

oscillation of data between sites and increase the total transmission cost. The right 

interval value is often application specific and varies for different access patterns. 

In general, existing data allocation algorithms were designed for traditional distributed 

databases; the case for a back-end distributor in a cluster-based Internet infrastructure 
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differs from the traditional cases in the following ways. The goal of such a distributor is 

to maximize the cache hit ratio in the main memories of cluster nodes or to minimize disk 

accesses; therefore, the data to be distributed is in-memory data rather than the entire 

database. Unlike in a geographically distributed database, queries are not naturally bound 

to particular nodes because each node is capable of processing any query and a front-end 

distributor may direct queries to nodes in various ways. Many existing data allocation 

algorithms take statistical query distribution as input, rather than treat query distribution 

as a variable in finding the final solution. 

1.2 Contributions 

The main contributions of my dissertation on high availability and scalability for cluster-

based Internet infrastructures are: 

1. It addresses the availability issues in the data storage by failure isolation, which is 

achieved by a combination of novel designs in data distribution and metadata 

replication. 

2. It presents evaluation of the failure isolation approach by statistical analysis on 

existing systems and performance measurement on a prototype implementation. 

The main contributions of my dissertation on high scalability and cost-effectiveness for 
cluster-based Internet infrastructures are:  

1. It helps understand the challenges and possibility of a good management strategy for 

content cache of Internet application servers, which strives to maximize effective 

cache capacity and minimize synchronization cost.  

2. It presents the design and evaluation of an affinity-based management (ABM) system 

for clustered in-memory databases as the content cache for Internet application 

servers; the goal of the management is achieved by a novel combination of two-stage 

execution, vertical replication and horizontal fragmentation. 
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2 Design of the island-based file system1 

Maintaining availability in the face of failures is a critical requirement for Internet 

services. For example, the downtime at sites like Ebay and Etrade could directly translate 

to decrease in sales.  I study a new approach to maximizing availability of the back-end 

storage systems for those services.   

There are two complementary approaches to maximizing availability.  First, I can use 

redundancy to maintain complete availability in the face of a small number of failures; 

second, I can try to isolate failures in order to serve as many requests as possible even 

though some cannot be served.  These approaches are complementary, since I can use 

redundancy to mask the first few failures, and then use isolation to cope with any 

additional failures. 

I describe in this chapter an approach to cluster file system design that provides failure 

isolation. I use the percentage of requests that succeed despite the failure of one or more 

servers as the availability metric; my goal is to maximize this percentage. I divide the 

nodes in the system into groups called islands. An island might be a single node, or it 

might be a group of nodes that use redundancy within the island to mask failures.  In 

either case, island-based design strives to serve as many client requests as possible when 

one or more islands have crashed or are unavailable. 

The main idea underlying island-based design is the one-island principle: as many file 

system operations as possible should require the participation of exactly one island. The 

one-island principle provides good failure isolation because each island can function 

independently of other islands’ failures. In other words, the failure of 1 out of n islands in 

the island-based file system causes only 1/n of accesses to fail. In addition to its 

availability advantage, the one-island principle allows island-based systems to scale 

efficiently with the system and workload sizes because communication and 

                                                 
1A subset of the content in this chapter has been included in a paper [93] published in the Proceedings of 
4th USENIX Windows Systems Symposium, August 2000. 
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synchronization across islands are reduced. 

My motivation of failure isolation is analogous to the motivation of fault containment in 

Hive [38]. Hive, an operating system for large-scale shared-memory multiprocessors, 

attempts to "contain" a failed part so that it does not bring down other parts.  

The target application of the island-based file system is the data storage for those Internet 

services that prefer to serve as many clients as possible rather than to go entirely offline 

when partial failures are present, that are medium to large scale, e.g. tens to hundreds of 

PC’s connected by commodity local area networks such as Ethernet, and that expect 

occasional node failures and network partitions. Examples of such services include email, 

Usenet newsgroup, e-commerce, web caching, and so on. 

I evaluated the island-based design by statistical analysis of the access patterns of 

existing systems. The results show that the partial availability provided by the island-

based file system is useful to Internet services because a temporary partial failure can be 

made unnoticeable to the majority of clients. In one example, if 1 out of 32 islands is 

down for an hour, I expect that 93.8% clients during that hour will not notice the 

temporary partial failure. On average 99.8% of operations involve a single island and 

hence do not require communication or synchronization across islands. 

I implemented a prototype of the island-based file system called Archipelago on a cluster 

of PCs running Windows NT 4.0 connected by Ethernet. The measurement of micro 

benchmarks shows that Archipelago adds little overhead to NTFS and Win32 RPC 

performance; the measurement of operation mixes based on NTFS traces shows a 

speedup of 15.7 on 16 islands. 

2.1 Analytical model for data loss 

In this section, I shall compare the permanent or temporary data loss in the island-based 

file system in case of partial failures to that of strawman’s cluster file systems (CFS). I 

model the data loss due to independent storage server failures in comparable 

configurations of the island-based file system and CFS, see Figure 2.1 for an example. At 
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this point I am assuming that the one-island property is achievable. The design of a file 

system with such a property will be discussed later in this chapter.  

I make the following assumptions in the analytic models. Data is randomly distributed 

across storage servers at block, file or other granularity in CFS, and across islands at 

directory granularity in the island-based file system. The CFS model does not replicate 

ancestor directories; therefore, the inaccessibility of a directory implies the inaccessibility 

of all its descendents. I also assume whole file accesses, i.e. the inaccessibility of a part of 

a file causes the whole file to be counted as lost. In a model with s storage servers, there 

are a root directory and s sub directories in the root directory. Each sub directory is a 

complete tree of height h. This is a conservative assumption because as the hierarchy gets 

more irregular, more files will have longer pathnames and hence have more chances to be 

inaccessible in CFS. Each directory has d sub directories and f files, and the directory 

itself has a fixed size equal to the block size bs, hence fits in a single server. Each file 

also has a fixed size fs. I ignore the impact of lost inodes in CFS, i.e. I assume that they 

are replicated everywhere.  

Figure 2.1 Mirrored configurations in data loss models. Storages with the same 
labels contain the replicas of the same data. 
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I compare the data loss ratios in the island-based file system and CFS under various 

redundancy schemes, which are based on the non-redundant model below. 

2.1.1 Non-redundant model 

In this model, each island in the island-based file system runs on a single storage server. 

With the failure of 1 out of s servers, the non-redundant island-based file system 

permanently or temporarily loses 
s

1  data, according to the self-contained property of 

islands. I compute the data loss ratio with the failure of 1 out of s storage servers in non-

redundant CFS as follows.  

The amount of data in a tree of height i (a tree with a single node is of the height 0) is 
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For a file to be accessible during the partial failure, none of its 
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fs  blocks can be on the 

failed server. If data is randomly distributed across servers at block granularity, the 

probability for a block to be on the failed server is 
s

1 . Therefore, the expected probability 

of a file being inaccessible is 
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The expected amount of data loss in the tree of height i with the failure of 1 out of s 

storage servers is 
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That is, if the root of a tree happens to be stored in the failed server (with the probability 

s

1 ), the whole tree will be inaccessible; otherwise, (with the probability )
1

1(
s

− ) the 
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amount of data loss will be the sum of the expected amount L(s, i-1) of data loss in each 

of the d sub trees plus the expected number Ff ⋅ of lost files times the file size fs. By 

expanding T(i) and F in the equation of L(s, i) above, we get the following iterative 

equations of L(s, i): 
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By solving the iterative equations of L(s, i) above, we get the data loss in a directory tree 

of height h with the loss of 1 out of s servers as follows: 
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With the loss of 1 out of s servers, the amount of data loss in a system with u sub trees of 

height h in the root directory is 
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The data loss ratio is 
uhT

usTL
usR

⋅
=

)(

),(
),( . I choose a set of typical parameters based on 

previous studies of file system contents [46] [43]: h=8, d=2.5, bs=4096, f=10, fs=98304, 

u=s. That is, on average, each server stores 2542 directories and 10166 files, or about 1 

GB data. 

Figure 2.2 shows the data loss ratios in non-redundant the island-based file system (
s

1 ) 

and CFS ( ),( ssRblock  and ),( ssR file ) as a function of s. CFSs with data distribution 

granularity larger than file will have the same data loss ratio as ),( ssR file  since only 

accesses to whole files are considered in this model. The figure shows that data loss in 

CFS can be reduced by using larger granularity. Unfortunately, most existing CFSs are 

built on top of shared virtual disks [21] [1] [5]; physical block placement in the virtual 

disks are often made transparent to the file system layer; therefore, CFSs do not have 

control on the granularity for data distribution. The island-based file system reduces data 

loss by replicating ancestor directories across servers as well as by using directory 
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Figure 2.2 Data loss ratios in the non-redundant island-based file system (1/s) and 
CFS with block or file granularity ( ),( ssRblock  or ),( ssR file ) with the loss of 1 out of s 

storage servers.
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granularity.  

I also analyzed the sensitivity of R(s,u) to other parameters within practical ranges; the 

results show that  R(s,u) increases as h (height of the tree), d (number of sub directories 

per directory), f (number of files per directory) or fs (file size) increases, and decreases as 

bs (block size) increases. With the failures of x servers, the island-based file system loses 

s

x  data and CFS loses ),( usRx ⋅  data.  

2.1.2 Redundancy schemes with grouping 

Many existing redundant storage systems are divided into groups and data redundancy is 

applied within groups, but not across groups. It results either from the nature of the 

redundancy scheme, such as mirroring pairs, or from performance optimization, such as 

RAID-5 striping groups [5] [44]. A CFS running on a shared storage system with s 

redundancy groups can be compared to the island-based file system with s islands, each 

of which runs on a single redundancy group of the same scheme. See Figure 2.1 for a 

mirrored example. If I treat each group as a single server, I can use the non-redundant 

model to compute the data loss with the failure of a group in both systems. Since the 

mean time to failure of a group is reduced by the same factor in both systems, the ratio of 

data loss in CFS to data loss in the island-based file system is still susR ⋅),( . 

2.1.3 Redundancy schemes without grouping 

In general, the island-based file system can achieve as high reliability as CFS with an 

arbitrary redundancy scheme by being configured as a single island with a storage system 

of the same redundancy scheme. The actual gain in reliability needs to be analyzed on a 

case-by-case basis. Below I compare the data loss in the island-based file system running 

on mirrored storage with that of CFS running on shared chained-declustering storage [7]. 

In this model, each system has s⋅2  storage servers. In the island-based file system, each 

of s islands runs on top of 2 mirrored servers; in CFS, the replica of the data in each 

server is evenly distributed to the other servers. With the failures of 2 out of s⋅2  servers, 
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the island-based file system loses 
s

1  data with the probability 
1

1

−s
 (if the 2 failed servers 

happen to be in the same island); CFS loses 
2

1

s
 data storage with the probability 1. 

Interpreting R(s,u) as the data loss ratio with the loss of 
s

1  storage, the expected data loss 

ratios of the island-based file system and CFS are 
ss

1

1

1 ⋅
−

 and ),( 2 ssR , respectively. It can 

be proven that the data loss ratio of CFS running on mirrored storage is ),(
1

1
ssR

s
⋅

−
 and 

),( 2 ssR > ),(
1

1
ssR

s
⋅

−
. That is, chained declustering has a higher expected data loss ratio 

than mirroring. 

The models above show that, in comparable redundancy schemes of the island-based file 

system and CFS, with the failures of the same number of servers, the island-based file 

system has a significantly lower data loss ratio than CFS, at the cost of replicating 

ancestor directories. In particular, the models show that mirroring with one-island 

property achieves higher availability than mirroring alone, which achieves higher 

availability than chained declustering. If the data is permanently lost, the island-based file 

system will cause a lower cost for reconstructing the data at application level or 

manually; if the data loss is only temporary, the island-based file system maintains a 

higher availability. 

2.1.4 Data loss versus storage overhead 

In this section, I study the expected data loss ratio in various redundancy schemes as a 

function of the overhead cost in storage capacity. Let D be the total number of storage 

servers with data (not including extra check storage), G be the number of data storage 

servers in a group (not including extra check storage), C be the number of check storage 

servers in a group, MTTF be the mean time to failure of a single storage server, and 

MTTR be the mean time to repair of a single storage server. I consider non-redundant 

storage and single-error repairing RAIDs below.  
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As derived in [45], the mean time to failure of the entire system, or RAID, is 

MTTRCG
G

CD
D

MTTF
MTTFRAID
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The probability of a failure of a non-redundant system is 
MTTF

DMTTR
F

⋅=0 . 

In case of failure, the ratio of lost data storage to total data storage is 
D

G
A = .  

The expected data loss ratio of IFS running on top of a RAID is  
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The expected data loss ratio of IFS running on top of a non-redundant storage is 
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The expected data loss ratio of CFS running on top of a RAID is 
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The expected data loss ratio of CFS running on top of a non-redundant storage is 
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MTTF

DMTTR
DDRFD

A
RRCFS

⋅⋅=⋅=− ),(),
1

( 00 . 

 Non-
redundant 

RAID-5 
(1) 

RAID-5 
(2) 

RAID-5 
(3) 

RAID-1 or 
Mirror 

Tripple 

D 100 100 100 100 100 100 
G 1 25 10 5 1 1 
C 0 1 1 1 1 2 

Total 
Storage 

100 104 110 120 200 300 

MTTF 30,000 hours 
MTTR 1 hour 

Table 2.1 Parameters for expected data loss ratios. 

Table 2.1 shows the parameters for expected data loss ratios. The parameters used in 

R(s,u) are the same as in previous sections. Figure 2.3 shows the expected data loss ratios 

of IFS and CFS running on various redundancy schemes defined in Table 2.1. The results 

show that increasing the amount of redundancy reduces data loss ratio for both CFS and 

IFS and that IFS has lower data loss ratios than CFS in all redundancy schemes. The 

reduction in data loss ratio attributed to IFS is shown to be more cost-effective than the 

reduction attributed to increased redundancy. For example, the data loss ratio of IFS on 
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Figure 2.3 Expected data loss ratios in IFS and CFS running on non-redundant 
storage, RAID-5 storage (with group sizes 25, 10 and 5 respectively), mirrored 
storage and triple storage. 
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RAID-5 with group size 5 is 16 times lower than that of CFS on the same redundancy 

scheme, while the data loss ratio of CFS on mirrored storage, which requires 1.7 times 

more total capacity than RAID-5 with group size 5, is only 1.8 times lower than that of 

CFS on RAID-5 with group size 5. 

2.1.5 Partial availability for applications 

If a client application needs to access multiple directories or files and any of the 

directories or files is lost, the application will fail as a whole. The availability of the 

island-based file system with partial failures depends on the number n of distinct 

directories applications access. For example, with the failure of 1 out of s islands in non-

redundant the island-based file system, the expected probability that an application will 

not be affected is n

s
)

1
1( − . The availability of CFS depends on the accessibility of the 

directories and files applications access and all their ancestor directories; therefore, the 

partial availability of CFS is always no higher than that of the island-based file system. 

The challenge is how to evenly, automatically and dynamically partition a single large 

file system into a cluster of independent components without causing inconsistency 

across components in the face of partial failures. 

2.2 Island-based design 
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Figure 2.4 Overview of the island-based file system (IFS). Shaded boxes are islands 
or servers and non-shaded boxes are clients. 
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Figure 2.4 gives an overview of the island-based file system in a typical configuration. 

An island consists of a server process running on top of a local file system. Client 

applications view the island-based file system as a single system and access it through 

local file system switches and stubs. Islands and clients are connected by commodity 

local area networks such as Ethernet. 

Let me examine two important issues in island-based design, data distribution and 

metadata replication. 

2.2.1 Hash-based data distribution 

I designed a new data distribution strategy for the island-based file systems: data is 

distributed to islands at directory granularity by hashing the pathnames of the directories 

to island indices. 

I choose directory granularity rather than block, file or sub tree granularity because most 

file system operations involve a single directory and hence satisfy the one-island 

principle, and directories are finer grained than sub trees so as to allow load balance.  

I choose hashing instead of recursive name lookup because hash functions can be 

computed on the client machines without contacting any servers. I choose to hash 

Directory name:  
\prog\office 

Universal Hash Function 

Bin: 
9056 

Client request: 
\prog\office\word 

Extendable Hash Table 

Island: 
7 

Bin  
Packing 

Load statistics 

Reassignment 

Client Server 

Configuration 

Figure 2.5 Hash-based data distribution in the island-based file system. 
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pathnames instead of low-level integer identifiers such as inode numbers because 

pathnames are the only information that a client can possibly have without contacting any 

servers, and they are independent of internal representations of file systems. 

Clients determine which island to contact for a directory or a file in that directory by 

hashing the full pathname of the directory to an island index in two steps: first, hashing 

the pathname to a bucket (an integer) with a universal hash function called 3H  [10]; 

second, hashing the bucket to an island index with an extendible hash table [11]. The 

universal hash function used in the island-based file system is a consistent mapping from 

a variable-length character string to a 32-bit integer and has good distribution in the 

output space independently of the input space. A universal hash function can evenly 

distribute an arbitrary set of directories to buckets; however, it does not have control on 

the workload distribution across directories; therefore, an additional level of indirection is 

necessary to handle the hot spots and dynamic load changes. A subset of the 32 bits is 

used as the index to the extendible hash table and the table entries are island indices. As 

load imbalance across islands increases or islands are permanently added or removed 

during system reconfiguration, the table entries are reassigned to islands to rebalance the 

load using a bin-packing algorithm. The reassignment is made monotonic, i.e. each island 

either loses data or gains data, but not both. Therefore, only a minimal amount of data 

needs to be migrated between islands. Section 2.2.3 will give more details about the 

rebalance procedure, such as the update of hash tables in islands and clients. Figure 2.5 

gives an example about the hash-based data distribution in the island-based file system. 

Inside each island, I store directories in a skeleton hierarchy. I call the file system 

running inside each island the internal file system. An internal file system can be an 

instance of any existing file system such as a local file system, a replicated file system or 

a cluster file system. The skeleton hierarchy in an island contains the directories hashed 

to this island index and their ancestor directories up to the root, and is stored in the 

unmodified internal file system as a normal tree. This way, islands can function 

independently of others’ failures and I can leverage the functions of the internal file 

systems. Figure 2.6 gives an example about the skeleton hierarchy. The consequence of 
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storing data in skeleton hierarchies is the replication of certain metadata or directory 

attributes. 

2.2.2 Usage-based metadata replication 

Although it might not take much space to replicate metadata across islands, updates to 

replicated metadata will have to be done in all replicas and hence violate one-island 

principle. Therefore, I use a usage-based replication scheme in the island-based design, 

i.e. I replicate metadata that is more frequently used to a higher degree. 

To help me explain the usage-based metadata replication, I introduce two terms, directory 

owner and parent owner. The directory owner of a directory is the island to which the 

directory is hashed. The parent owner of a file or directory is the directory owner of its 

parent directory. A file resides in exactly one island, its parent owner. A directory will be 

replicated in its parent owner, in its directory owner and in all the parent owners of its 

descendent directories. Therefore, the replication scheme can automatically adapt to the 

usage of the metadata. In particular, files are not replicated across islands; leaf directories 

are replicated in exactly two islands (the parent owner and the directory owner); 

intermediate directories are replicated in various numbers of islands; and the root 

directory is replicated in all islands. Figure 2.7 gives examples about the replication. 

Figure 2.6 Skeleton hierarchy. This is an image of the internal file system in an
island that the highlighted directories are hashed to. Other directories are the
ancestor or child directories of the hashed directories. 
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However, only some directory attributes, not the directory contents, need to be replicated. 

Directory contents are the lists of names and addresses of sub directories and files. Only 

the directory owner keeps a complete copy of the directory contents; other replicas have 

partial contents or no contents. The partial contents stored in other replicas are 

determined by the hash functions for data distribution. Changes to directory contents, e.g. 

adding or removing files, need to be done in the directory owner only. Directory 

attributes include name, size, security, time stamps, read-only tag, compressed tag, etc.. 

Changes to directory attributes will, however, affect multiple replicas.  

I want to replicate only those attributes that are needed when a descendent of the 

directory is looked up. I divide directory attributes into two categories, static attributes 

Figure 2.7 Usage-based metadata replication. Figure (a) without the directories and 
files inside the dashed rectangle is the image of the directory owner of root directory 
/. (b) (c) and (d) are the images of the internal file systems in three other islands. / is 
replicated in all islands. /b is replicated in its parent owner (a), directory owner (c) 
and the directory owner of its sub directory /b/f. /a and /b/f are replicated only in 
their parent owners and directory owners because they are leaf directories. Shaded 
directories in the figure represent replicas that contain only attributes and partial 
contents or no contents. 
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and dynamic attributes, based on their access patterns. A static attribute is more 

frequently read than written, and a dynamic attribute is more frequently written than read. 

Attributes such as name, security labels, read-only tag and compressed tag are static. 

Attributes such as size and time stamps are dynamic. I replicate the static attributes and 

do not replicate the dynamic attributes. Static attributes can be read in any one of the 

replicas; updates to static attributes are broadcast to all replicas; the overhead of updates 

is acceptable since static attributes rarely change. Chapter 3 discusses the consistency 

protocol in more detail. Dynamic attributes are read and written in a single island, the 

directory owner. 

2.2.3 Reconfiguration and rebalance 

When load imbalance across islands exceeds a threshold as the system ages or when 

islands are permanently added to or removed from the system, hash table entries need to 

be reassigned to islands and data needs to be migrated between islands to rebalance the 

load. (Note that rebalance will not be invoked when islands leave or join the system due 

to failures and recoveries.) I describe the protocol in details below. 

One island is designated as the coordinator in each rebalance. Each island has a unique 

identifier ranging from 0 to n-1, where n is the number of islands in the current 

configuration. In order to reduce administrative complexity in identifying the islands to 

be added or removed, the coordinator is chosen with the following rules. If no islands are 

added or removed during a rebalance, island 0 is the coordinator. Only the highest 

numbered islands can be removed from or added to the system during a reconfiguration. 

(If a system administrator wants to remove an island other than the highest numbered 

island, the islands need to be re-numbered by changing the hash tables.) If k islands 

(numbered n-k through n-1) are to be removed, island n-k will be the coordinator; if k 

islands (numbered n through n+k-1) are to be added, island n+k-1 will be the 

coordinator. Therefore, given the current configuration and its own identifier, a 

coordinator automatically knows which other islands are to be added or removed without 

input from system administrators. 

The rebalance is committed in two phases. Each configuration is associated with a 
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version number, and each committed rebalance increases the version number by 1. First, 

the coordinator attempts to collect workload statistics from all islands, each island logs a 

“preparing rebalance” message in permanent storage. If any island is inaccessible, the 

coordinator aborts and notifies the system administrator; otherwise, the coordinator 

constructs a new hash table that rebalances the workload across the islands in the new 

configuration, and publishes the new configuration file, including the new hash table and 

increased version number, at a well-known location. Second, the coordinator sends a 

“committing rebalance” message to all islands including the added or removed ones, and 

then all islands load the new configuration file from the well-known location.  

Once the rebalance is committed, each island checks whether it is the source or 

destination of the monotonic data migration by comparing the old and new hash tables. 

The destination islands simply log a “rebalance completed” message and return to normal 

state. Each source island forks a thread, called the migrator, to migrate the directories 

that are no longer hashed to its own index to their new owners. Migration can be done in 

parallel in all islands since I need not worry about an island becoming full during the 

migration. The migration will be resumed as necessary with the information recorded in 

the log, should an island crash during the rebalance. When it finishes, the migrator logs 

the “rebalance completed” message and exits. 

There are two forms of migration during the rebalance: background migration and on-

demand migration. The migrators move data in the background. If a new owner receives 

a request for a file that has not been migrated yet, it issues a request to the old owner to 

move the file immediately. I call this on-demand migration. This is a better approach than 

waiting for the migrator in the old owner to initiate the movement because waiting could 

lead to deadlock. However, on-demand migration can cause three types of race 

conditions: (1) the migrator could not find a file because that file had already been 

migrated on demand; (2) the migrator tries to move a file but the file has already been 

created in the destination island by on-demand migration; (3) a file could not be moved 

because it was in use by another thread. To cope with the on-demand migration, the 

migrator repeatedly scans the internal file system, detects the race conditions and 
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temporarily skips the suspect directories and files. The same error detection scheme 

applies to situations where destination islands crash during the rebalance. Client accesses 

during migration will not directly cause race conditions because clients are never allowed 

to access files or directories in their old owners once the rebalance is committed. They 

can only access files or directories in their new owners after the files or directories have 

been migrated either in background or on demand. 

The hash table is replicated on all clients’ machines as well as in all islands, along with 

the version number. The table size is proportional to the number of islands. Clients’ 

copies of the hash table are updated lazily: each request from a client carries the client’s 

current version number, and a client will be asked to load the new configuration file from 

the well-know location when its version number is found to be out of date. To avoid 

single point of failure, the well-know location can be mirrored inside or outside the 

island-based file system, or both. Islands act as clients when they communicate with each 

other; therefore, the same scheme applies to islands that crash or disconnect from the 

coordinator before they receive the “committing rebalance” messages: upon first contact 

to any updated island, the out-of-date islands are forced to load the new configuration 

file. 

The rebalance procedure will be invoked when the load imbalance exceeds a threshold so 

that no island could become full during normal operations. In fact, the rebalance 

procedure does what the system administrators manually do today, e.g. adding or 

removing file servers appliances and remounting partitions. Most administrators can 

manage to do it with tolerable or unnoticeable impact on the clients. Therefore, I expect 

that a reasonable threshold can be set in the island-based file system so that the rebalance 

occurs at a non-disruptive frequency, e.g. once every month.  

2.2.4 Other design issues 

The island-based file system inherits most functions from its internal file systems, such as 

metadata structures, disk allocation, I/O scheduling, caching, locking, security, recovery, 

etc.; therefore, I are not concerned about all the low-level details in file system design 

and implementation. However, certain functions in internal file systems need to be 
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extended to adapt to a distributed environment. The consistency protocol used in the 

island-based file system is discussed Chapter 3. 

2.2.4.1 Symbolic links and renaming directories 

Symbolic links in the island-based file system are implemented as files containing a 

pathname to a file or directory. Symbolic links to files are easy to manage because they 

cause at most a redirection from the owner of the symbolic link to the owner of the target 

file. However, a pathname with symbolic links to directories will not be hashed to the 

proper island. To solve this problem, I replicate all symbolic links to directories in all 

islands. Upon receiving a request for a file or directory that is not found locally, an island 

checks whether any components of the pathname are symbolic links to directories, 

without contacting other islands. If none of them is, it returns an error; otherwise, it 

redirects the request to the real owner after resolving the symbolic links. This is done by 

communications between islands and is transparent to the clients. Similar to the 

replication of static directory attributes, the replication of symbolic links to directories 

does not require much space, and the creation, modification and deletion of symbolic 

links, which will involve all islands, are rare operations (Section 4). 

Renaming a directory in the island-based file system is an expensive operation because 

all the subdirectories below the renamed directory are likely to be hashed to different 

islands. I try to hide the latency of such an operation by using a symbolic link and a 

thread similar to the migrator described in Section 2.2.3. A special symbolic link is 

created with the new directory name, pointing to the old directory, a migrator thread is 

forked, and then the rename operation returns as if it is completed. The migrator 

recursively moves subdirectories and files from their old owners to their new owners in 

the background. If a request arrives for a file that has not been moved yet, the special 

symbolic link in the pathname will be resolved and the file will be migrated on demand. 

If a directory is renamed again before the migration completes, accesses to this directory 

will require multiple special symbolic link resolutions. The special symbolic links will be 

removed after the migration completes. 

2.2.4.2 Security and caching  
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I designed and implemented a security model in the island-based file system, using the 

security facilities available in existing file systems and communication protocols, namely 

access control lists, permission bits, authentication and impersonation. A client is 

authenticated with its credentials when a connection to an island is established. A thread 

is forked in an island upon each request from the client.  The thread extracts the client’s 

credentials from the authenticated connection and impersonates the client when it 

processes the request. In this way, file accesses in the request are checked with the 

client’s credentials against the access control in the internal file systems. 

Server-side caching is done in the internal file systems automatically. The island-based 

file system inherently provides locality by hashing, i.e. client requests will always be sent 

to the server that might have cached the requested data in memory, as long as rebalancing 

is not in progress. Most of the client-side caching protocols in previous work [8] [25] can 

be adopted in the island-based file system. I have not implemented a client-side caching 

protocol, but I do not expect the island-based design to add any difficulty to the 

implementation. 
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3 Consistency of replicated metadata2 

As discussed in the previous chapter, in the island-based file system, a small portion of 

read-mostly metadata, e.g. directory attributes, is replicated across nodes to allow 

independent accesses to data in each node. As in any other systems where data replication 

and updates to replicated data are present, these systems face the challenge of keeping its 

replicated metadata consistent across nodes. Hazards could occur if the replication is not 

handled with care, because the structural integrity of metadata is critical for the system to 

function correctly and to recover successfully from possible failures, and because 

metadata tends to be shared by multiple clients more frequently than user data.  

The following are two examples of possible hazards in a general distributed file system 

where directories are replicated across servers and clients are allowed to access any 

replicas: 

1. An empty directory a is replicated in cluster servers 1 and 2; client B deletes directory 

a in server 1 and server 1 propagates the deletion request to server 2; simultaneously, 

client C creates a sub directory d in a in server 2 and server 2 propagates the creation 

request to server 1; the deletion is aborted in server 2 because a is not empty and the 

creation is aborted in server 1 because a no longer exists; in a consistent system, only 

one, not both, of the operations would abort. 

2. A directory a with a file b is replicated in servers 1 and 2; client C, the owner of a, 

changes a’s permission from 700 to 755 (world-readable) in server 1 and server 1 

propagates the change to server 2; client D successfully reads file b in server 1 but, 

shortly after, it gets a "permission denied" error when it tries to list the content of 

directory a in server 2. In a single system, client D is expected to have access to 

directory a as well after it successfully reads file b. 

The hazards occur because the file system operations are not serialized, or clients observe 

                                                 
2 An abbreviated version of the content in this chapter has been published as an extended abstract [94] in 
the Proceedings of 1st IEEE International Conference on Cluster Computing, November 2000. 
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the results of the operations in conflicting orders; the consequence is that the system no 

longer behaves in the same way as its single-system counterparts and start generating 

confusing or incorrect answers to clients’ requests. Furthermore, the chance for such 

hazards is highly magnified when failures, such as server crashes and network partitions, 

are present. 

My goal in maintaining the consistency of the replicated metadata is to minimize the 

efforts for porting applications from single, tightly-coupled and/or small-scale systems to 

large cluster-based environments. In particular, I want to eliminate as many hazards as 

possible that a cluster environment might introduce. Meanwhile, I do not want the 

consistency protocol to have an intolerable impact on the performance and scalability 

otherwise achievable in these two systems. 

Both the island-based design and affinity-driven distribution offer an opportunity for 

strong consistency without sacrificing performance in common cases. Since they strive to 

reduce data sharing across nodes, the cost for maintaining consistency of shared data can 

potentially be reduced as well. Therefore, it is possible to achieve strong consistency for 

the small set of shared data while maintaining the overall performance and scalability of 

the system. 

I discuss in this section how to design a robust and efficient protocol for the 

synchronization of operations on replicated data in the face of node failures and network 

partitions. Before discussing my contributions in detail, I present a brief overview of 

prior work on replication and consistency issues in file systems, databases and Internet 

applications. 

3.1 Related work 

File system replication and consistency issues have been studied in a wide variety of 

contexts. Consistency guarantees vary largely from system to system due to the 

differences in their system structures and replication models. 

Wide-area distributed file systems such as Ficus [51], Coda [54] and Locus [53] employ 
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optimistic one-copy availability, in which any data may be updated as long as some copy, 

including the client cache, is available. Strong semantics such as serialization of 

operations on replicated data are traded for availability and performance in those systems. 

The systems choose to guarantee “eventually” consistent data instead, i.e. they allow 

temporary inconsistency and try to detect it, which must then be resolved by applications 

or users. (The exception is that Ficus can automatically reconcile conflicting updates to 

its directories.)  

Harp [50] and Echo [52] use primary-copy scheme with logging for replication, where 

clients can access only the primary copy. Harp is able to guarantee the atomicity and 

serialization of updates with write-behind logging. Since it handles updates to data and 

metadata in the same way, it relies on in-memory logging and uninterruptible power 

supply (UPS) to reduce the overhead of the consistency protocol. In a recent distributed 

file system [55], the overhead is reduced by distributing load across servers and 

amortizing the costs of individual operations with file sessions. 

In recent cluster file systems like Frangipani [1] and xFS [5], data redundancy is provided 

in the virtual block device layer, not in the file system layer. Locking scheme is used in 

the block device layer for consistency of data replicas. Since updates to data and 

metadata are handled in the same way in the block device layer, those systems typically 

use fast system area network such as ATM for aggressive communications across data 

replicas [7]. 

The replication model generalized from my systems is similar to the models in typical 

replicated databases [49] [50]. However, my consistency requirement differs, primarily 

because I do not require transactional semantics for file accesses or persistence for in-

memory data. Therefore, I believe that a light-weight protocol can be designed for the 

model in my systems. 

The Cluster-Based Scalable Network Services (SNS) [47] provide an architecture and 

programming model for building Internet services that are willing to trade consistency for 

availability. My approach is complementary   to theirs in that, while their system can be 
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used for creating new, scalable Internet services on loosely-coupled clusters, I strive to 

make it easy to run existing applications, such as the well-adopted web servers [57], 

database servers [58] and database applications in a cluster as well as on a single 

machine. 

The context of system structure and replication model in which my consistency protocol 

is considered differs from the contexts in previous studies. In the island-based file 

system, only certain directory attributes, but not the directory contents (the lists of names 

and addresses of sub directories and files) or files, are replicated across islands. The 

degree of replication varies by directories based on their usage, and changes dynamically 

as the usage changes. The contributions of this part of my work are the following: 

1. I design a consistency protocol that offers stronger semantics than "eventual" 

consistency, and hence increases the likelihood that applications can be ported from 

single systems to cluster-based systems with few modifications. 

2. The overhead of the consistency protocol is reduced by taking advantage of the data 

distribution strategies in the target systems and using a light-weight non-locking 

algorithm, rather than using additional hardware or fast network. 

3. I take arbitrary sequences of failures into consideration and use a recovery procedure 

based on a finite state machine model to handle the failures. I check the correctness of 

the protocol by randomized failure injection into the implemented prototype. 

3.2 Replication model 

I define a few terms below to assist in generalizing the replication model in the island-

based file system. For each replicated object (a set of attributes of a directory or the entire 

set of search keys), a particular node (the directory owner) is chosen as the coordinator of 

the global operations or updates on this object, or simply called the coordinator of the 

object. The copy of an object in its coordinator is called the primary copy and the other 

copies are called secondary copies. Any node (an island or a pre-executor) that has a 

copy of the object is called a replica of the object. Each operation originates from a 
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single replica. Each update must originate from the coordinator and be propagated to 

other replicas. All objects in a node are readable by operations originated from or 

propagated to this node. 

3.3 Consistency protocol design 

A strawman’s approach to the consistency of replicated directories across replicas is to 

lock a directory before operating on it. Locking schemes, especially ones with multi-

reader-single-writer locks, are a typical approach to the consistency on replicated data in 

general. To avoid deadlocks and to handle partial failures and network partitions, a 

locking scheme often needs to be used in combination with other mechanisms such as 

timeout [29], majority consensus [1] and/or versioning [15].   

Unfortunately, such a scheme can seriously weaken the availability and scalability. In the 

island-based file system, since each operation implicitly involves recursive lookup and 

permission checking with the ancestor directories, the ancestor directories need to be 

locked for the operation as well. A lock on each directory requires at least two round-trip 

messages, acquiring the lock and releasing/revoking the lock, to and from the coordinator 

of the directory. Consequently, there will no longer be "one-island" operations in the 

island-based file system since almost every operation needs to contact multiple islands 

for locking involved directories. If I use a global lock for the entire system rather than a 

lock per replicated object, I can reduce the communication cost for locking, but I also 

reduce the parallelism offered by the cluster structure. 

I use a novel combination of logical clock synchronization [23], two-phase commit [24], 

logging [14] and finite-state-machine-based recovery to serialize the updates while 

keeping the synchronization for one-island operations or read-only queries local. My 

methodology takes three steps. First, I guarantee that each update is atomic; second, I 

serialize updates and other operations in common cases; third, I ensure the serialization of 

updates during a recovery from failures. 

3.3.1 Atomicity 

The basic consistency guarantee my protocol offers is the atomicity of the updates, i.e. 
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clients would never observe the intermediate state of any update. In other words, once a 

client observes the result of an update in a node, it would always observe the result of that 

operation in other replicas afterwards. 

I use a vector of logical clocks for the atomicity of updates. Each coordinator has its local 

logical clock and each update coordinated by this node increases the clock by 1, or 

generates a new clock value. Each replica or client maintains a vector of all coordinators’ 

clocks. Each request to a replica carries the sender’s current clock vector for 

synchronization with the receiver’s vector before the request is processed, and returns the 

receiver’s vector to the sender after the request is completed. I say vector V2 is equally or 

more up-to-date than vector V1, or V2≥ V1, if and only if V2[i] ≥ V1[i], for all 0≤ i<n, 

where n is the number of coordinators. 

I maintain the following invariants: 

1. The local commit of an update and the increase of the local clock are atomic in each 

coordinator, which is guaranteed with a local lock in that coordinator. 

Figure 3.1 Synchronization of a client c’s clock Vc[i] with a coordinator d’s clock
Vd[i], where i is a replica in the system. Op Vc[i] is the update that was originated
from i and caused the clock in i to increase to Vc[i]. 
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2. A coordinator does not release the new clock value to a client until it has notified all 

replicas of the operation, i.e. until the operation is either outstanding or committed in 

all replicas. This is guaranteed with a two-phase commit [24]: the coordinator notifies 

all replicas of the operation in phase 1, then locally commits the operation and 

updates the clock, and asks replicas to commit the operation in phase 2. 

3. A request cannot be processed in a replica if the request carries a clock that is 

generated by an outstanding operation in that replica. Based on invariants 1 and 2, 

this invariant means that once a client observes the result of an operation in at least 

one replica, it will always observe the result of that operation in other replicas 

afterwards. This is guaranteed by the clock synchronization algorithm in Figure 3.1, 

which is an extension to Lamport’s algorithm [23].  

The three invariants above guarantee that a replica will never expose the intermediate 

state of any operation to clients. Invariant 2 ensures that synchronization in a replica for 

reads does not need communication with the coordinator, if no network partition is 

present. 

I make an exception to invariant 2 to handle network partitions. If any replica is 

inaccessible due to either a node crash or network partition during phase 1 of the commit, 

the coordinator updates its clock with an alerted bit (part of the coordinator's clock) set. 

The alerted bit will be propagated together with the clock till it is reset. During the clock 

synchronization with a client, a replica must ask for a confirmation from the coordinator 

about its involvement in an alerted operation that it has not seen but the client has. If the 

coordinator crashed or disconnected from a replica after phase 1, the operation will be 

outstanding in the replica till the coordinator reconnects. This type of failure will be 

detected by a timeout in the clock synchronization (Figure 3.1). The alerted bit will be 

cleared once the nodes reconnect and all outstanding operations are either committed or 

aborted. 

The pseudo C code for a global update is following: 

//A global update op in coordinator d requested by client c 
GlobalUpdate(c, d, op){ 
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 //Synchronize c’s clock vector Vc with d’s clock vector Vd 
 for each replica i do 
  //Figure 3.1 
  SynchronizeClock(Vc, Vd, i); 
 //One global update at a time per coordinator 
 EnterCriticalSection(GlobalUpdateSection);  
 //Take a snapshot of the current clock vector in d 
 EnterCriticalSection(ClockSection); 
 Vd := CurrentClockVector; 
 LeaveCriticalSection(ClockSection); 
 //Clear the alert bit for this op 
 Vd &= ~ALERT;  

//Increase d’s clock by 1 for this op 
Vd[d] := Vd[d] + 1; 

 //Have all involved replicas log the op in memory or  
//mark the op as outstanding in all involved replicas 
for each involved replica j do 
 SecondaryLog(j, d, Vd[d], op); 

 if logging successful in all involved replicas then 
  state := COMMIT; 
 else 
  //Set the alerted bit in d’s clock 
  Vd[d] |= ALERT; 
  state = PARTIAL_COMMIT; 
 //Log the op on disk in coordinator d 

PrimaryLog(Vd[d], state, op); 
 //Make the local commit and update of clock atomic 

EnterCriticalSection(ClockSection); 
 //Locally execute the op 
 PrimaryExecute(op); 
 if local execution successful then 
  state := COMMIT; 
 else 
  state = ABORT; 
 //Update d’s clock while keeping the alerted bit if it is set 
 CurrentClockVector[d] := Vd[d] | (CurrentClockVector[d] & ALERT); 
 LeaveCriticalSection(ClockSection); 
 //Globally commit or abort the op, depending on the state 
 for each involved replica j do 
  SecondaryExecute(j, d, Vd[d], op, state); 
 //Leave the critical section 
 LeaveCriticalSection(GlobalUpdateSection); 
} 

3.3.2 Serialization 

The higher-level consistency guarantee my protocol offers is the serialization of the 

updates, i.e. clients observe the results of all operations in the same order in all replicas. 

All the updates on the same object are coordinated by the same node, hence can be 

serialized by a local mutex in that node, unless a replica failed. 

The serialization in case of failures is guaranteed by write-ahead logging [14]. The 
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coordinator always writes a record with its clock vector to stable storage before it locally 

commits an update. Only after the operation is committed in all replicas, the record can 

be removed from the log.  

When a replica b is reconnected, the coordinator a sends to b a list of operations that 

involved b but have not been committed on b. The operations will be committed in b in 

ascending order of their clocks (V[a]’s), i.e. in the same order as if b had not been 

disconnected from a. Note that b needs not know about the local operations on the same 

objects that were done while it was disconnected from a because it would not have 

known those operations even if it had not been disconnected. 

If a client thread issues at most one request at a time, all the operations by the same 

thread are serializable even if a replica failed. Consecutive operations by the same thread 

are guaranteed to have ascending clock vectors because, with the logical clock 

synchronization (Figure 3.1), the clock vectors in all replicas and clients never decrease 

and always increase upon updates, even with network partitions. Therefore, recovering 

replicas are able to commit the operations by the same client thread in the same order as 

if it had not failed, by sorting the operations from all coordinators in the ascending order 

of their clock vectors.  

If two clients interact with each other by accessing the same objects, then the operations 

by the two clients are serializable in the face of failures. For example, if two clients, c1 

and c2, access the same object at time t1 and t2 (t1<t2) and receive the clock vectors V1 

and V2 respectively, then V1≤ V2 because the vectors are issued by the same replica; 

therefore, c1’s operations before t1 (with vectors <V1) and c2’s operations after t2 (with 

vectors>V2) are serializable. 

Clients that do not interact through accesses to the same objects might have concurrent 

clock vectors. I say two vectors V1 and V2 are concurrent if and only if there exist i and j, 

i ≠ j and 0≤ i,j<n, such that V1[i]<V2[i] and V1[j]>V2[j], where n is the number of 

coordinators. During a failure recovery, concurrent vectors will be sorted with a simple 

tie resolution rule consistent across all replicas, which does not necessarily reflect the 
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real-time ordering. The reordering of concurrent operations would not be observable and 

could not cause problems as long as the replicated objects were concerned [23]. 

3.3.3 Recovery 

I have designed a recovery procedure for replicas to recover from arbitrary sequences of 

failures back to consistent states. Table 3.1 shows the possible failures and remedies for 

an individual replica. The recovery procedure will be invoked after those (physical) 

remedies are applied. 

Failures Definitions Examples Remedies 
Self 

Failures 
Any failures that stop 
the replica  itself from 

functioning 

Software failures, 
machine crashes, disk 
failures, power failures 

Rerun software, reboot 
machines, repair disks, 

restore power 
Peer 

Failures 
Any failures that make 

other replicas 
inaccessible from this 

replica 

Self failures of other 
replicas, network 

partitions 

Recover other replicas, 
repair networks 

Table 3.1 Possible failures and remedies for an individual replica. 

Figure 3.2 State transitions of an island in response to various failures and 
recoveries. The types of requests accepted in each state are listed in parenthesis. 
Each transition is labeled with the event that triggers the transition. “Reconnected” 
is the event that the recovering island has reconnected to and resynchronized with 
all other islands. 
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Given the finite set of possible failures and the infinite set of possible sequences of the 

failures, I find it a good practice to model the recovering replica as a finite state machine, 

in which each state corresponds to a set of behaviors that are allowed in the recovering 

replica, and each state transition is triggered by a failure or recovery event. Figure 3.2 

shows the state transitions of a replica in response to the possible failures and recoveries. 

A replica can be in one of the 5 states, normal, failed, restarted, hidden and isolated. 

Each state is distinguished from others by the types of requests the replica is allowed to 

process in that state. The types of requests a replica receives include client requests (from 

the clients), coordinator requests (from the coordinators of updates), recovery requests 

(from the recovering or reconnecting replicas), etc. 

In the normal state, a replica processes all requests. A self failure in any state causes the 

replica to transit to the failed state, in which no requests, of course, are processed. When 

it is recovered, a replica transits from the failed state to the transient restarted state, in 

which it initializes necessary data structures while rejecting all requests. It automatically 

transits to the hidden state after all data structures are initialized. In the hidden state, it 

attempts to reconnect to other nodes and to synchronize replicated state with other nodes 

by log exchanges. In the hidden state, the replica rejects all client requests so that 

inconsistency, if it is present in the replica, is not visible to clients. The replica accepts 

requests from other recovering or reconnecting nodes so that both can make progress. It 

also accepts requests from the coordinators of new updates and stores them in a message 

queue for sorting with other operations when all have arrived. If the queue becomes full, 

the replica transits from the hidden state to the isolated state, in which it accepts no more 

coordinator requests. (Note that the buffer for keeping outstanding operations in the 

normal state will never be filled because there is at most one outstanding operation per 

coordinator in the buffer.) 

When all nodes have reconnected and exchanged logs with it, the replica commits all the 

operations stored in the message queue in the ascending order of their clock vectors.  If it 

is in the isolated state, it asks for new operations from coordinators that it has rejected. 

After it commits all pending operations, it transits to the normal state. 
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3.4 Correctness testing 

As discussed in the previous sections, the combination of logical clock synchronization, 

two-phase commit and write-ahead logging maintains the following invariants in the face 

of failures: 

1. All updates on the replicated metadata are atomic. 

2. All updates on the replicated metadata are serialized. 

3. In most cases, read-only operations can be processed locally, i.e. without contacting 

other replicas for synchronization purpose. 

However, the correctness of the systems that use this consistency protocol largely relies 

on the details in implementation, which are hard to model or check using existing tools 

[31] [37]. Therefore, I use a randomized test engine to test the correctness of the protocol 

in the face of failures. The test engine is extended from a model checker originally 

developed in Hewlett-Packard Labs [36]; the model checker is based on the input/output 

automata (IOA) [30]. I extended the tool so that it checks the implementation of a system, 

rather than a simulation written in IOA style. Unlike the tools that exhaustively search the 

state space [31] [37], the randomized testing tools cannot prove that a system is correct. 

Instead, it helps identifying incorrect parts of a system by injecting various sequences of 

events to the system and analyzing the results. Such events typically could not possibly 

be experienced in real workloads or manual tests during a short period of time. 

Archipelago, the prototype of the island-based file system, is tested with the randomized 

test engine.  

The test engine consists of three components, terminators, network partitioner and 

clients. The terminators are independent threads or processes, one for each replica. Each 

terminator injects crash or reboot events to its associated replica at intervals randomly 

chosen within given ranges. It simulates a crash of the replica by killing the server 

process of that replica, and the reboot of the replica by forking a new server process for 

that replica. The network partitioner is an independent thread that simulates network 
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partitions between replicas. At random intervals, it randomly chooses a pair of replicas 

and sends a message to both replicas to tear down or to reestablish the connections 

between them. Since multiple pairs can be disconnected this way, a sequence of such 

events can generate complicated partitions. The clients are multiple threads that share the 

same set of objects (files, directories and symbolic links) in Archipelago. Each client 

generates workloads on the file system by repeatedly issuing a randomly chosen request 

with given frequencies on a randomly chosen object. 

The IOA formal language has an interface for defining models for safety and liveness 

checking [30]. A safety model specifies a property that must hold at any time, while a 

liveness model specifies an event that must eventually occur. A prototype of the interface 

was implemented in the original tool, but I have not ported it to the test engine yet. 

Instead, I check the safety of the protocol by manually inserting assertions to key parts of 

the code. A few examples of the assertions are: there is at most one outstanding operation 

coordinated by each node at any given time; there is no gap and no overlap in the clocks 

of the operations coordinated by the same node; the coordinator i always has a more or 

equally up-to-date clock V[i] than any other replicas or clients; etc..  These assertions 

have been surprisingly helpful in my preliminary experiments. Liveness assertions such 

as that a replica will eventually transit from the failed state to the normal state in the 

recovery procedure will be added once the system has passed the simpler tests. 

Events Parameters  
(% or seconds) 

Numbers of Events 

CreateDir 3.2279 % 1565 
CreateFile 2.8244 % 1369 
DeleteFile 1.9206 % 974 

DeleteLinkDir 0.8070 % 221 
ReadDir 11.2169 % 5273 
ReadFile 13.1536 % 8162 

RemoveDir 2.4209 % 1469 
ResolveLinkDir 7.3434 % 530 

SetDirAttr 5.6488 % 2609 
SetFileAttr 21.9819 % 14970 
SymLinkDir 0.8070 % 227 

WriteFile 28.6475 % 16394 
Crash 60 to 120 sec 28 
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Reboot 8 to 16 sec 24 
Partition 15 to 30 sec 7 

Reconnection 2 to 4 sec 4 

Table 3.2 Parameters and results in testing Archipelago in the randomized test 
engine. The parameters are the given frequencies for normal operations and the 
given interval ranges for failure/recovery events. For example, each time a client 
randomly chooses an operation, the probability that CreateDir is chosen is 
3.2279%; the terminator waits for an interval randomly chosen from 60 to 120 
seconds each time before it kills the server process. The results are the actual 
numbers of successful operations or events in the test. The actual numbers are 
different from the specified values due to randomization, race conditions and 
simulated failures. The operations SymLinkDir, ResolveLinkDir and DeleteLinkDir 
are creating a symbolic link to a directory, reading the directory entries in a 
symbolic link to a directory and deleting a symbolic link to a directory, respectively. 

The test engine takes parameters such as the interval ranges of failure/recovery events, 

and the relative frequencies of operations. I selected the intervals in such a way that they 

both allow a sufficient workload in each state of the system, and allow the overlap of 

failure/recovery events to exercise the recovery procedure. I exaggerated the frequencies 

of updates from real workloads by two orders of magnitude to stress the consistency 

protocol. I tested Archipelago with 4 islands in the randomized test engine. Table 3.2 

shows the parameters and results in my latest test. After surviving through 28 node 

crashes and 7 network partitions, Archipelago failed one of the assertions and caused the 

test engine to halt. 

I found 14 non-obvious bugs in the protocol during two days of testing Archipelago. The 

bugs are all at implementation detail level and do not invalidate the overall protocol 

design. An example of the bugs I found is following. The coordinator of an update 

crashed after it notified the replicas of the operation, but before it logged the operation on 

disk. Therefore, the operation was aborted in the coordinator, but outstanding in the 

replicas. When the replicas received the next operation from the same coordinator later, 

the assertion of at most one outstanding operation per coordinator failed. The fix to this 

bug is to clear the relevant buffers of outstanding operations upon reconnection of two 

nodes. 

The preliminary results in the correctness testing are encouraging, and I believe that 
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randomized failure injection is a promising approach to checking the implementation 

correctness of a complicated system. 

3.5 Summary 

I design and implement a protocol for the atomicity, serialization and recovery of updates 

on replicated metadata in the island-based file system. I build a randomized test engine to 

check the correctness of the protocol in the face of arbitrary sequences of failures.  

In summary, the consistency protocol guarantees the following serializations for updates 

in the face of arbitrary sequences of node failures and network partitions: 

1. All operations on the same object are serializable. 

2. All operations by the same client thread are serializable. 

3. Operations by different clients are serializable if the clients interact with each other 

by accessing the same object(s). 

In addition, the ordering relations of operations are transitive, i.e. if operation 1 is 

observed to happen before 2 and 2 before 3 then 1 is observed to happen before 3, 

because the ordering relations of clock vectors are transitive, i.e. if V1<V2 and V2<V3 

then V1<V3. 

Under this protocol, the replicas never expose the intermediate state of updates to clients 

and clients never observe the results of updates in conflicting orders; therefore, the 

chance for hazards introduced by the cluster environment is largely reduced, and it is 

possible to port applications from single systems to the cluster-based systems with few 

modifications.  



 44

4 Evaluation of the island-based file system3 

4.1 Statistical analysis 

In this section, I study the partial availability, load balance and consistency cost in the 

island-based file system by collecting statistics from existing file systems in use. 

Although the island-based file system design was motivated by the access patterns of 

Internet services, I evaluated it in a more generic context. 

4.1.1 Partial availability for applications 

The effective availability of an island-based file system with partial failures depends on 

the number of distinct directories that clients access because a partial failure in the system 

causes a random set of directories to be inaccessible. 

With the access logs from the web site of computer science department in Princeton 

University [92], I divided requests and clients into "bins", where requests and clients in 

the same bin accessed the same number of distinct directories, and computed the 

histograms of clients and requests across different bins. I assume that the island-based file 

system acts only as a content provider to the web server, i.e. accesses to control 

information or executables of the web server itself do not count in my statistics. I grouped 

the HTTP requests into clients by the hostnames or IP addresses in the requests, and 

within each client, I grouped requests into directories by the URLs in the requests and 

maintained a counter for the total number of requests. I computed the histograms from 

two months’ traces, July 1998 (137248 clients and 1304975 requests in total) and January 

1999 (166804 clients and 1297428 requests in total). I kept the distinct directories and 

total number of requests for each client up to an hour, updated the histograms and cleared 

all clients’ records in the end of each hour, and restarted recording for the next hour. The 

histograms were cumulated for the two months. See Figure 4.1. The results show that the 

largest portion (48.3%) of clients accessed only 1 distinct directory in an hour and the 

largest portion (17.9%) of requests were issued by clients who accessed 2 distinct 

                                                 
3 A subset of the content in this chapter has been included in a paper [93] published in the Proceedings of 
4th USENIX Windows Systems Symposium, August 2000. 
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directories in an hour. Requests are more scattered across categories because larger 

categories tend to have more accesses and hence weigh more. I computed the histograms 

for other time windows ranging from 30 minutes to 8 hours, but there was no significant 

difference across time windows, which implies that client sessions are short, i.e. less than 

30 minutes. 

Given the statistics of distinct directories, I computed the expected availability of the 

island-based file system for data, clients and requests, respectively, shown in Figure 4.2. 

Since the majority of web clients access a small number of distinct directories, the 

expected availability for this class of clients is high in spite of the fact that a partial 

failure in the system causes a random set of directories to be inaccessible. For example, if 

1 out of 32 islands is down for an hour, I expect that 93.8% clients of the web server 

during that hour will not notice the temporary partial failure. 

Traditional file access  

I also computed the histograms of application groups and file system calls across the bins 

of distinct directories they accessed, using the file system traces taken on a file server in 

Hewlett-Packard Labs for the week starting September 24, 1999, which consisted of 

5,995,712 pathname-based low-level file system calls such as open(). The users of that 

Figure 4.1 Histograms of clients and requests across bins of distinct directories 
accessed during every hour in the web traces. The numbers read as "48.3% of 
clients accessed 1 distinct directory during every hour" or "17.9% of requests were 
issued by clients who accessed 2 distinct directories during every hour". Accesses to 
more than 24 directories account for 0.4% of clients and 19.3% of requests in total, 
and are omitted in the graph for readability. 
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file server are 5 to 10 researchers who access files through applications like emacs, g++, 

netscape and shells on UNIX workstations. I grouped file system calls by process ids and 

divided process ids into “application groups” by using the logged fork() system calls. 

Each application group is associated with a window or session manager, but some are 

finer-grained because I do not know about the fork() events that happened before the 

tracing program started. In the traces I used, 183,915 fork() events were recorded and 

5,170 groups were identified. I computed the histograms for the time windows ranging 

from 1 minute to 1 hour. I use the overall histogram of application groups below since 

there was no significant difference across time windows. Similar to the web traces, the 

largest portions, 26.2% and 14.8%, of application groups accessed 1 and 2 distinct 

directories, respectively; different from the web traces, more groups accessed a larger 

number of distinct directories, e.g. 17.3% groups accessed more than 24 directories. As 

time window increases, more file system calls were counted in larger categories of 

distinct directories. For example, in 5 to 10 minute windows, the largest portion (17.6%) 

of calls were in the category of 1 distinct directory; in the 1-hour windows, the largest 

portion (44.4%) of calls were in the category of 7801 distinct directories. The users of 

those application groups will be affected by a lasting partial failure in the island-based 

file system, for the island-based file system was not designed for that class of users. 

4.1.2 Replication cost and load distribution 

In this section, I analyze storage cost for the usage-based metadata replication and load 

balance in the hash-based data distribution in the island-based file system, using the 

contents of five existing systems in use. 

I took snapshots of five UNIX and Linux file systems, using the shell command "ls -l -A 

-R /". The first two rows of Table 4.1 show the names and clients of the five systems. 

Most of the systems consist of multiple partitions that are mounted together via NFS. For 

my statistical studies, I pretended that each system is a single file tree stored in the island-

based file system. 

4.1.2.1 Replication cost 
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I computed the upper bound of the replication storage, i.e. storage for replicating all non-

leaf directory attributes and all symbolic links to directories in all islands. Let D be the 

number of directories, F be the number of files, I be the inode size in bytes, and T be the 

total number of bytes for directory and file contents. Then the storage required for the 

entire system without replication, the net storage, is TFDI ++⋅ )(  bytes. Let S be the 

number of islands, N be the number of non-leaf directories, Q be the number of symbolic 

links to directories, and L be the size of a symbolic link. Then the upper bound of the 

replication storage is )1()()1( −⋅⋅++−⋅⋅ SQLISNI . 

File 
Systems 

Web Project Cdroms Department University 

Clients of 
file systems 

Web server 
of CS 

department  

"SHRIMP" 
project 

CD server 
of CS 

department 

People in 
CS 

department  

People in 
Princeton 
University  

Directories 
(D)  

5938 16233 25195 178662 178974 

Files  
(F) 

104186 222958 228326 3377478 1653946 

Contents 
(T) (GB) 

4.74 11.01 14.55 105.9 51.27 

DirLinks 
(Q) 

183 450 1010 3339 35698 

Figure 4.2 Expected availability for data, clients and requests in the web traces with 
the failure of 1 out of n islands. The x axis is the number n of islands. The y axis is 
the expected percentages of successful accesses, i.e. (1-1/n) for data and 

∑ −⋅ inip )/11()(  for clients and requests, where p(i) is the percentage of clients or 

requests that accessed i distinct directories. 
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Non-leaves 
(N) 

1863 4189 10102 46639 45427 

Islands (S) 1 3 4 31 15 
Rep. (GB) 0.000 0.036 0.130 5.815 4.809 

Rep. 
(percent) 

0.0% 0.3% 0.8% 4.7% 7.7% 

Table 4.1 Replication cost. Each column is an existing file system in use. Row "Rep. 
(GB)" shows the upper bound of the replication storage, computed as 

)1()()1( −⋅⋅++−⋅⋅ SQLISNI . Row "Rep. (percent)" shows the percentage of the upper 
bound of replication storage to the total storage. The net storage is computed as 

TFDI ++⋅ )( . The replication storage in the web system is zero because there is only 
one island for the web file system. 

Based on existing system configurations, I assumed that the capacity of each island was 

roughly 4 GB, hence the number of islands for each file system is the total number of 

bytes in the system divided by 4 GB. I computed for each system the upper bound of 

replication storage with I=4KB and L=1KB. See Table 4.1. The percentage of replication 

storage to total storage ranges from 0.3% to 7.7%. Given the decreasing costs for storage 

devices nowadays, the replication cost is insignificant. 

4.1.2.2 Expected load imbalances 

Assuming that objects O are to be distributed to units U, we define the imbalance OUI  as 

the standard deviation of objects O in units U divided by the average objects in each unit. 

OUI  is zero if the distribution is perfectly even. Let B be the number of buckets, D be the 

number of directories, W be the workload, and S be the number of islands. I define the 

variables ijx  as 
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The second step of derivation above is based on the property of universal hash functions 

that ijx ’s are pairwise independent. The others are by definitions. The imbalance in 

directory distribution across buckets is 
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I define iw  as the workload in directory i and ∑
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. The workload in a directory 

does not include the loads in its sub directories, hence I can assume that iw ’s are pairwise 
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and the load imbalance across buckets is 
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4.1.2.3 Measured load imbalances 

With the same snapshots of the five file systems, I compute the load imbalances 

described in the previous section, and compare them with their theoretical expectations 

computed in the previous section. Since the access logs of the five systems are not all 

available to me, the number of bytes, instead of accessed bytes, was used as the measure 

of workload in my study. See Table 4.2. 

To compare DBI  with its theoretical expectation 
D

B 1−
 and across different systems, I 

fixed the number B of buckets or extendible hash table entries to be 256. The directory 

distribution across buckets is very close to its theoretical expectation. The byte 

distribution across buckets is less close to its expectation due to the assumption of 

pairwise independency between directory workloads. The byte distribution across 

directories is determined by the usage of the systems and is considerably uneven. The 

second step of hashing, i.e. the extendible hash table, was designed to balance the 

workload, i.e. the number of bytes in my study, across islands. The number of islands for 

each system is the same as in Table 4.1. Table 4.2 shows that bytes are evenly distributed 

across islands. The extendible hashing algorithm is independent of the inputs; therefore, it 

can also evenly distribute actual workload across islands if the input is the actual 

workload recorded in real systems. 

 

 Web Project Cdroms Department University 

DBI  (predicted) 0.21 0.13 0.10 0.04 0.04 

DBI  (measured) 0.19 0.13 0.10 0.04 0.04 

WDI  5.93 15.56 17.58 11.95 17.70 

WBI  (predicted) 1.14 2.03 1.76 0.48 0.71 
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WBI  (measured) 1.23 1.94 1.81 0.68 0.71 

WSI  0 0.0004 0.0001 0.0279 0.0087 
 

Table 4.2 Load imbalances in five file systems. DBI  (measured) is the measured 
imbalance in directory distribution across buckets. DBI  (predicted)  is the 

theoretical expectation 
D

B 1− . WDI  is the imbalance in byte distribution across 

directories. WBI  (measured) is the imbalance in byte distribution across buckets. WBI  

(predicted) is the theoretical expectation 12 +⋅ WDDB II . WSI  is the imbalance in byte 
distributions across islands. The imbalance value is 0 if the distribution is perfectly 
even. WSI  is 0 in the web system because there is only one island for the web system.  

4.1.2.4 Hot spots 

Table 4.3 shows the largest/average sizes in various distributions. I observed the 

following properties in all five systems: the largest directory, one that contains the most 

bytes, has 81.30% to 99.99% of its bytes stored in a single file, which in turn is the 

largest file in the entire system; the largest file is small compared to the entire system, 

hence it does not prevent a good overall load balance across islands. It is worth noting 

that the relatively high imbalance in the departmental file system is due to the fixed 

number 256 of hash table entries: the largest table entry accounts for more than 
256

1  of 

total bytes. In my implementation, the table size grows with the number of islands. 

 Web Project Cdroms Department University 
DBH  1.68 1.47 1.30 1.11 1.12 

WDH  243.1 1843.6 939.1 5703.3 3077.1 

WBH  10.76 29.56 13.47 9.54 6.50 

WSH  1 1.0003 1.0002 1.0385 1.007 

Table 4.3 Hot spots. DBH  is the largest/average bucket size in directories; WDH  is the 
largest/average directory size in bytes; WBH  is the largest/average bucket size in 
bytes; WSH  is the largest/average island size in bytes. The value is 1 if the 
distribution is perfectly even. WSH  is 1 in the web system because there is only one 
island for the web system. 

4.1.3 Operation breakdown 

In this section, I present statistical results to show how many operations in existing access 
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patterns require cross-island communication and synchronization. In the island-based file 

systems, the following operations are cross-island operations as a result of the metadata 

replication: CreateDir, RemoveDir, SetDirAttr, ResolveLinkFile (resolving a symbolic 

link to a file), SymLinkDir (creating a symbolic link to a directory), ResolveLinkDir 

(resolving a symbolic link to a directory), and DeleteLinkDir (deleting symbolic link to a 

directory). 

Previous studies of file system traces indicated that the cross-island operations are rare. 

Traces taken on the Sprite system [40] show that setattr, rmdir and mkdir account for 

only 0.7%, 0.03%, and 0.02% of total operations, respectively. The SPEC SFS or 

LADDIS benchmark [12] generates an operation mix based on NFS client workload 

studies, which consists of 1% setattr operations, 1% remove operations and 2% create 

operations. Recent traces taken on NFS clients [39] consist of 0.092% chmod, 0.015% 

chown, 0.003% symlink, 0.015% readlink, 0.013% rename, 0.013% mkdir, and 0.012% 

rmdir. The majority of the operations in all those studies are reading attributes, reading 

files, writing files and reading directories, which account for 84% to 96% of total 

operations. Some of the operations in those studies, e.g. setattr and chmod, were not 

recorded for files and directories separately; therefore, the percentages of those 

operations on directories will be even lower than reported. 

It is well known that file access patterns are always specific to the operating systems 

where the traces were taken. Since I implemented the island-based file system on 

Windows NT as opposed to UNIX, in which the Sprite and NFS traces were taken, I felt 

it important to study the file access patterns in NTFS. I chose 7 workstations in Princeton 

and Montreal running Windows NT 4.0 and collected statistics on operations by running 

a trace program on each workstation in March 1999. The users of the workstations 

include three graduate students, a software engineer, a home user and several lab users. 

The trace programs were run for 2 to 7 days and collected 30,391 to 480,385 total events.  

The trace program forks a thread to wait on each file system related event such as 

FileAdded through the NTFS event notification interface ReadDirectoryChangesW [41]. 

The events are not necessarily one-to-one mapped to file system operations, and there is 
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no detailed documentation on the mapping. Hence I present the raw events in Table 4.4 

and infer the operation breakdown with the empirical rules: reads to files and directories 

are not detected if the reads hit in cache; writes to files and directories are not detected 

until the cache is flushed; an attribute-change event comes with a name-change, size-

change, or security-change event; reading attributes as well as reading contents changes 

last access time if it does not hit in cache.  

Table 4.4 shows that, on average, one-island operations account for 99.8% of total 

operations. The slow operations in the island-based file system, e.g. setting directory 

attributes, renaming directories, creating symbolic links to directories, are rare. 

Therefore, the amortized cost for keeping replicated state consistent across islands can 

potentially be made low in the island-based file system. Section 4.3.1.3 shows the results 

in measuring the impact of the consistency protocol on the overall scalability. 

 

No. Events Average Standard 
Deviation 

1 Total Events 244408 140571 
2 FileAdded 3.34% 1.70% 
3 FileRemoved 2.38% 1.70% 
4 FileRenamed 0.41% 0.31% 
5 DirAdded 0.04% 0.07% 
6 DirRemoved 0.03% 0.07% 
7 DirRenamed 0.00% 0.00% 
8 FileAttrModified 26.8% 10.8% 
9 FileWritten 35.5% 11.3% 
10 FileAccessed 16.3% 8.60% 
11 FileSecurityModified 0.03% 0.04% 
12 DirAttrModified 0.07% 0.07% 
13 DirWritten 1.23% 1.59% 
14 DirAccessed 13.9% 17.8% 
15 DirSecurityModified 0.00% 0.00% 
16 FileLinkModified 0.16% 0.08% 
17 FileLinkRead 0.09% 0.10% 
18 DirLinkModified 0.00% 0.00% 
19 DirLinkRead 0.001% 0.002% 

 

Table 4.4 Percentages of file system events in NTFS traces. Row 1 (Total events) 
shows the total number of events in each trace. Rows 2 through 19 show the 
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percentage of each event. Shaded events correspond to cross-island operations in the 
island-based file system. The FileLinkModified (row 16) and DirLinkModified (row 
19) events include creating, removing, writing and setting attributes on symbolic 
links to files and directories, respectively. The FileLinkRead (row 17) and 
DirLinkRead (row 19) events are resolving symbolic links to files and directories, 
respectively. The column "Average" shows the percentage of each event averaged 
over all traces. The column "Standard Deviation" shows the standard deviation of 
the percentages of each event in each trace. Events not shown in the table have zero 
percentages. 

4.2 Implementation 

I have implemented a prototype of the island-based file system, called Archipelago, on a 

cluster of Pentium II PCs running Windows NT 4.0. NTFS [15] is used as the internal file 

system. NTFS uses extensive caching and name indexing for better performance and logs 

metadata changes for local recoverability. An access control list is associated with each 

file or directory to check access rights. NTFS can be configured to run on a group of 

disks with parity striping for high reliability. 

An Archipelago server runs on each machine and forms an island. Each client accesses 

files through a local stub, which forwards the request to a server through Windows 

remote procedure call (Win32 RPC). The tasks of the server include authenticating 

clients, validating clients’ versions of the hash table, synchronizing clients’ clock vectors, 

and processing clients’ requests in the internal file system. The functions of the stub 

include hashing a pathname to an island, updating local copies of the hash table, 

synchronizing the clock vectors with servers, maintaining secure RPC connections to 

servers, tolerating network failures and making file locations transparent to clients. 

The server is implemented as a user-level process. For expediency, my prototype client is 

implemented as a stub .dll that redirects requests for Archipelago files directly to servers, 

bypassing the in-kernel file system drivers. This solution is adequate for experimental 

purposes, although it does not provide total seamless integration with existing 

applications. A more complete solution would implement a full installable file system 

driver [15]. I believe the performance difference in these two solutions to be negligible 

compared with the time to service file system requests in a distributed file system. 
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The server and stub are implemented in C++, and consist of 3088 and 5415 lines of code, 

respectively. The server program is linked with the stub library for code reuse purpose. In 

addition, there are 24042 lines of automatically generated C code for RPC and system 

call interception.  

4.3 Performance 

In this section, I present the results of running micro benchmarks and operation mixes on 

Archipelago in various configurations. The 23 machines used in my experiments have 

Pentium II 300 MHz processors, 128 MB main memories and 6.4 GB Quantum Fireball 

IDE hard disks for use by Archipelago. The PCs are connected by an Intel Express 510T 

Ethernet 100Mbps 24-port switch and run in full-duplex mode. The PCs run Windows 

NT Workstation 4.0 and the hard disks for Archipelago are formatted in NTFS. 
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Figure 4.3 Single client performance. A single client runs the micro benchmarks in 
five cases: directly on NTFS (NTFS), on the local machine of an Archipelago server 
(Local), on a remote machine from the server (Remote), with two servers (2 
Servers), and with the consistency protocol turned on with two servers 
(Consistency), respectively. The y-axis in (a) is the latency in milliseconds measured 
at the client side. Lower columns represent better performance. The y-axis in (b) is 
the bandwidth in MB/s in the WriteFile and ReadFile operations measured at the 
client side. Higher columns represent better performance. 

NTFS Local Remote 2 Servers Consistency
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4.3.1 Micro benchmarks 

The set of micro benchmarks consists of 9 phases and each phase exercises one of the file 

system calls: CreateDir, SetDirAttr, CreateFile, SetFileAttr, ReadDir, WriteFile, 

ReadFile, DeleteFile and RemoveDir. The basic data set for the micro benchmarks is a 

project directory that consists of 90 directories, 646 files and 77.2 MB of data in files. I 

duplicated the directories 40 times, the files 6 times and the contents 2 times, 

respectively. The 9 resulting phases are: create 3600 directories, set 3600 directory 

attributes, create 3876 files with pre-allocated space in 540 directories, set 3876 file 

attributes, read 6634 directory entries, write 154.4 MB data in 1292 files or 180 

directories, read 154.4 MB data in 1292 files, delete 3876 files, and remove 3876 

directories. The transferred block size in the WriteFile and ReadFile phases is 64 KB or 

the file size, whichever is smaller. With the data set inflated, the results of the micro 

benchmarks are reasonably stable. Each test was run more than 3 times and the results 

shown in this section are the averages.  

Other operations, such as moving a file and reading a symbolic link, were implemented 
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speedup is calculated as the absolute throughput divided by the throughput with 1 
server. The dotted line represents the speedup with 100% efficiency. 
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with the operations in these micro benchmarks; hence, I did not include them in the tests. 

I did not intentionally flush the file cache in NTFS during the tests because I would like 

to treat NTFS, the internal file system, as a functional black box. However, the amounts 

of data in the WriteFile and ReadFile phases were large enough to overflow the cache. 

4.3.1.1 Single client performance 

I ran the micro benchmarks with a single client in 5 cases: directly on NTFS (1), in the 

same address space as an Archipelago server (2), on a separate machine from an 

Archipelago server (3), with two Archipelago servers, all on separate machines (4), and 

with the consistency protocol turned on in case 4 (5). Figure 4.3 shows the bandwidth in 

WriteFile and ReadFile and the response times in other operations, all measured at the 

client side. 

The difference between case 1 and 2 is the overhead of computing hash functions. This 

overhead, roughly 0.1 ms, is low compared to the operation time itself. The difference 

between case 2 and 3 is the communication (RPC) time between the client and the server. 

I used Win32 RPC on top of TCP/IP on 100 Mbps switched Ethernet. In my experiments, 

the average round-trip RPC latency for small messages (~256 bytes) is 0.48 ms and the 

average one-way large data (64 KB) transfer rate in RPC is 8.67 MB/s. The performance 

decreased from case 2 to case 3 by an amount comparable to the RPC overhead. The 
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Figure 4.5 Load imbalances. The y-axis is the largest number of directories, files or 
bytes stored in a server divided by the average number over all servers. The y-value 
is 1 if load is perfectly balanced. 
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difference between case 3 and case 4 is that the cross-island operations CreateDir, 

RemoveDir and SetDirAttr involve 1 island in case 3 and 2 islands in case 4. Therefore, 

the response times of CreateDir and SetDirAttr were increased by roughly 1 ms from 

case 3 to case 4. Operations such as ReadFile and RemoveDir were faster in case 4 

because there was more total cache space in case 4. The difference between case 4 and 

case 5 is the overhead of the consistency protocol. The consistency protocol slows down 

the cross-island operations by a factor of 1.6 to 2, depending on the number of islands 

involved in the operation. It adds little overhead, roughly 0.1 ms, to one-island 

operations. The response times of CreateFile are larger than those of CreateDir in all 

cases because the client pre-allocated space for each file in the CreateFile phase. 

4.3.1.2 Scalability of individual operations 

In this new set of tests, there are multiple clients, each running an instance of the micro 

benchmarks on its own private data set. Before each phase, all clients are synchronized at 

a barrier. Each server ran on a separate machine and 1 to 3 clients ran on the same 

machine. The number of clients was configured to be the same as the number of servers. 

Given the 23 machines connected by the 24-port Ethernet switch, I scaled the number of 

servers and clients up to 16 each. I have tested Archipelago with 25 servers on an 

Ethernet hub and expect the system to be able to scale to larger configurations. Here I 

0

2

4

6

8

10

12

14

16

0 4 8 12 16

Servers

R
P

C
s/

R
eq

u
es

t

CreateDir

RemoveDir

SetDirAttr

Figure 4.6 Number of server-to-server RPCs per request as a function of the 
number of servers. Operations that do not show up in this figure have zero server-
to-server RPCs. 



 59

present only the results of scaling from 1 to 16 servers. 

I measured throughput at the server side, i.e. the total number of bytes requested divided 

by the time for all servers to complete, for WriteFile and ReadFile, and the total number 

of requests divided by the time for all servers to complete for other operations. To 

compare the scalability across operations, I calculated the speedup as the absolute 

throughput divided by the throughput with 1 server. The 1 server case is the same as case 

3 in Figure 4.3. Figure 4.4 shows the speedup of throughputs on private data as a function 

of the number of servers. Most operations scale linearly with the number of servers, but 

at a less than ideal slope. The inefficiency in scalability of the one-island operations 

results from load imbalance, while the inefficiency in scalability of the cross-island 

operations results from both load imbalance and communications. 

The directory, file and byte operations are distributed across 3600, 540 and 180 

directories, respectively. The load distribution is expected to be less than ideal due to the 

small size of the data sets (compared to the size of an entire file system). I calculated the 

load imbalance as the largest load divided by the average load of servers. See Figure 4.5. 

The load imbalance ranges from 1.0 to 1.8. I expect the operations to scale better in real 

systems with the rebalance protocol, which will be studied in Section 4.3.1.6. 

Figure 4.6 shows the average number of server-to-server RPCs per request measured in 

the tests. The two-phase commit protocol was turned off in this set of tests; therefore, the 

actual numbers of RPCs will be doubled with the protocol turned on. The impact of the 

consistency protocol on performance is discussed separately in Section 4.3.1.3. One-

island operations do not show up in Figure 4.6 because they require no server-to-server 

RPCs. The number of RPCs for SetDirAttr grows linearly with the number of servers; 

therefore, the speedup curve for SetDirAttr in Figure 4.4 is nearly flat. The numbers of 

RPCs for CreateDir and RemoveDir are nearly constants; therefore, these two operations 

do scale with the number of servers, but slower than the one-island operations. 

4.3.1.3 Impact of the consistency protocol 

I turned on the consistency protocol, i.e. clock synchronization, two-phase commit and 
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logging, and reran the micro benchmarks. As expected, the protocol adds little overhead, 

roughly 0.1 ms, to one-island operations. Figure 4.7 shows the throughputs of two cross-

island operations, CreateDir and SetDirAttr. (RemoveDir is similar to CreateDir.) The 

protocol increases the RPCs between servers for cross-island operations by a factor of 2 

and requires a log write per successful cross-island operation. As expected, the 

consistency protocol brings considerable overhead to cross-island operations. The 

throughput of SetDirAttr does not scale with or without the consistency protocol. The 

throughput of CreateDir scales at roughly the same rate with or without the protocol. 

4.3.1.4 Scalability of operation mixes 

I ran a new benchmark of randomized operation mixes to measure the overall scalability 

of Archipelago. The new benchmark is similar to the SPEC SFS or LADDIS benchmark 

[12], but with the following extensions: 

• Clients access shared objects as well as private objects. 

• Files and directories are stored in a hierarchical structure rather than in a flat 

structure. 
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• The pathnames are generated with randomization, rather than pre-defined manually. 

• The file sizes are variable rather than fixed. 

• The workloads scale with the system size. 

Since Archipelago is implemented on top of NTFS, the operation mix in my benchmark 

uses NTFS API and is based on the operation breakdown I measured on Windows NT 

workstations (Section 4.1.3). 

I ran the benchmark with 1 to 16 clients and servers on 1 to 16 machines. Each client runs 

on the same machine as a server, but accesses random files, directories and symbolic 

links across the entire system. The pre-created data set includes 2000 shared directories, 

2000 shared files, 100 shared symbolic links, and the same numbers of private objects per 

client. The client randomly chooses an operation at specified frequencies. For each 

operation, the client randomly chooses an object, either from the existing shared or 

private objects, or by generating a new name in an existing directory, depending on the 

operation. The WriteFile operation writes a random number (chosen from 0 to 1 MB) of 

bytes to the file; both WriteFile and ReadFile operations transfer up to 8KB per request 
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so that the operation time is comparable to those of other operations. Each client 

maintains lists of the shared objects and its private objects, but does not synchronize with 

other clients on the creation and deletion of the objects in the shared directories. 

Therefore, an operation on a shared object might fail if it conflicts with a previous 

operation on the same object from another client. After the data set is pre-created, all 

clients run the randomized operation mix for 10 minutes. The throughput is calculated as 

the total number of successful operations by all clients divided by 10 minutes. 

I ran the benchmark with two different operation mixes. The "exaggerated mix" 

exaggerates the cross-island operations in the measured breakdown and the "realistic 

mix" is closer to the measured breakdown. The mixes cover a number of typical 

operations from each category, i.e. one-island, two-island and all-island. Uncovered 

operations in the measured breakdown are replaced by operations in the same category, 

e.g. the operation of reading a symbolic link to a file counts for 0.09% in my measured 

breakdown and is replaced in the mix with the same number of operations that read a 

symbolic link to a directory. I recorded the actual client operations and server-to-server 

RPCs in the benchmarks, and estimated the speedups of the overall operation mix 

accordingly. Table 4.5 shows the recorded operation mixes and Figure 4.8 shows both the 

measured speedups and estimated speedups. Assuming that each local operation and RPC 

takes the same amount of time, the estimated speedup with n servers is n/(1+overhead-

per-operation), where the overhead-per-operation is the total number of server-to-server 

RPCs divided by the total number of successful client operations. 

 Exaggerated mix (%) Realistic Mix (%) 
CreateDir 0.9297  0.0522 
CreateFile 4.0314  3.5661 
DeleteFile 2.7731  2.4353 

DeleteLinkDir 0.9850  0.0128 
ReadDir 14.4505 15.6528 
ReadFile 14.1343  15.2778 

RemoveDir 0.7543  0.0162 
ResolveLinkDir 1.7205 0.1014 

SetDirAttr 1.0383 0.0713 
SetFileAttr 26.6085 29.2835 
SymLinkDir 1.0089 0.0109 
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WriteFile 31.5656 33.5194 
Successful 45360 to 309960 48042 to 756120 

Total 48042 to 325534 48043 to 780260 

Table 4.5 Operation mixes. The actual numbers of operations generated in the 
benchmarks are slightly different from the specified frequencies due to 
randomization and failed requests. Each percentage in this table is the number of 
successful requests on each operation divided by the total number of successful 
requests, averaged over 1 to 16 clients and servers. The total numbers of requests 
grow with the numbers of clients and servers for the fixed 10 minutes period; the 
ranges are shown in the last two rows in the table. See Table 4.2 for explanations for 
certain operations. 

The exaggerated mix scales at a less than ideal slope due to the relatively large number of 

cross-island operations. For example, with 16 servers, the average overhead-per-

operation is 0.8. The difference between the estimated speedup and measured speedup is 

due to the assumption of equal RPC processing times and local operation times. Load is 

well balanced across servers in both operation mixes; the largest/average requests per 

server are below 1.1 in all cases. The realistic mix is closer to the measured breakdown, 

i.e. contains a smaller number of cross-island operations; it scales nearly ideally in both 

estimated and measured throughputs. It is worth noting that the realistic mix scales better 

than the pure one-island operations in Section 4.3.1 because considerable load imbalance 

is present in that benchmark due to the small number of working directories. 

4.3.1.5 Implications for larger scales 

Given the probabilities of one-island (P1), two-island (P2) and all-island (Pa) operations, 

where P1+P2+Pa=1, I can predict the speedup efficiency at large scale with a simple 

model. Assuming that each local operation and RPC takes the same amount of time, the 

estimated speedup efficiency with n servers is 1/(1+overhead-per-operation), where 

overhead-per-operation is the average number of server-to-server RPCs per operation 

and equals  (2-1)*2*P2+(n-1)*2*Pa. (The factor 2 results from the two-phase commit 

protocol. See Section 3.3.) Two-island operations include CreateDir, RemoveDir, 

ReadFileLink and ReadDirLink; all-island operations include SetDirAttr, SetDirSecurity, 

SymLinkDir and RenameDir. Some operations, e.g. SetDirSecurity and SymLinkDir, did 

not show up in my statistical experiments; I inferred their percentages from other 
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statistics [39]. The resulting percentages are P1=99.768%, P2=0.161% and Pa=0.071%. 

From the speedup efficiency model above, I predict that, with the efficiency higher than 

50%, the system can scale up to 702 islands. 

4.3.1.6 Discussion 

Although the target applications of the island-based file system are Internet services, I use 

a more generic benchmark in the scalability measurements. My purpose of those 

measurements is to learn the impact of cross-island operations on the overall scalability 

of the island-based file system, but web access logs only give file-reading operations. I do 

not model in my benchmark the self similarity or hot spots in web accesses because it is 

not clear whether the same patterns will necessarily show up in disk accesses if web 

requests can be processed with data in the main memory cache of web servers or file 

system clients. 

4.3.2 Trace-based benchmarks 

I simulated on top of Archipelago the web server of computer science department in 

Princeton University [92] and measured the performance during online reconfiguration. 

The file system that the web server originally runs on consists of 5934 directories, 

103,426 files and 4.74 GB of contents. It was first copied to an Archipelago with two 

islands. I added and then removed two islands to the system and studied the performance 

of data migration and its impact on the performance of web accesses. The hardware used 

in this set of tests is the same as in previous tests. Table 4.6 shows the statistics in the 

addition and removal of two islands without client accesses.  

The web server was a Netscape Enterprise Server 3.5.1 running on Solaris 2.6. The 

hardware for the web server was a Sun Ultraserver-2 with 256 MB of memory and 1 

Gbps fiber network connection. The web server kept access logs, which include 

pathnames of accessed pages, time stamps, client IP addresses, etc. The traces used in the 

tests were recorded from 00:01:34 through 18:01:48 on March 1, 1999.  
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Reconfiguration Addition Removal 
Time (minutes) 26.04 26.03 
Migrated (GB) 2.58 2.58 
Migrated (files) 52152 52134 
Migrated (dirs) 2964 2954 

Bytes Before(GB) 2.52, 2.64, 0, 0 1.29, 1.29, 1.29, 1.29 
Bytes After (GB) 1.29, 1.29, 1.29, 1.29 2.58, 2.58, 0, 0 

Table 4.6 Statistics in the addition and removal of two islands without client 
accesses. The row "Time" shows the elapsed time in minutes since the 
reconfiguration started till the migration of data was completed in all islands. The 
next three rows show the migrated bytes, files and directories during the 
reconfiguration, respectively. The last two rows show the byte distribution across 
four islands before and after the reconfiguration, respectively. (I use the number of 
bytes as the measure for server loads for simplicity in these experiments.) 

I simulated the web server with 16 threads on separate machines, reading the access log 

and issuing requests to Archipelago as clients. The absolute time stamps in the log were 

ignored and the traces in the log were consumed as fast as possible. Each thread issued 

3000 requests per test. 699 MB of data in 48000 files were accessed in each test, of which 

86 MB of data and 7218 files were distinct. 

I ran the simulation in five different cases relevant to the addition of two islands and 

measured the impact of data migration on client performance. The migration was 

expected to affect client accesses in three ways. 1) The background migrators compete 

with the clients for resources like disk and network bandwidths. 2) When the clients try to 

access files in the new islands, some files have to be migrated on demand from the old 

islands. 3) On-demand migration causes race conditions, which are detected and removed 

by the migrators and are made transparent to the clients. 

In addition to running the simulation before and after the reconfiguration, I ran the 

simulation in three cases during the reconfiguration to separate the impacts of different 

sources. 1) I ran the simulation in the beginning of the reconfiguration to see the impacts 

of both background migration and on-demand migration. 2) I ran the simulation again, 

later in the same reconfiguration; since all the requested files had been migrated on 

demand in the first simulation, the slowdown in this case came solely from the migrators’ 

competition. 3) I reran the reconfiguration and simulation with the migrators disabled to 
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see the slowdown solely from on-demand migration. Table 4.7 shows the results of the 

simulated web accesses in the five cases. 

The difference between the "background" and "after" cases indicates that the background 

migrators had a minor impact on the client performance, consuming only 7% of the 

overall disk bandwidth and imposing a performance penalty of only 4.5%. The 

percentages are dependent on the relative numbers of migrators to clients, i.e. 2 to 16 in 

this case. The difference between the "on-demand" and "after" cases shows that client 

bandwidth was nearly halved by on-demand migration because the amount of data 

transferred to satisfy a request was doubled. The disadvantage of disabling migrators is 

that the first accesses to files in the new islands will always require on-demand migration 

and will see a significant performance drop. Additionally, without migrators, a system 

administrator cannot tell when exactly the migration is completed. Therefore, enabling 

migrators is a good idea. 

I also recorded the number of files migrated on demand and the number of race 

conditions caused by on-demand migration. (The race conditions in the "background" 

case occurred when the migrators initiated on-demand migration for directory attributes 

replication.) The numbers of race conditions were relatively small compared to the 

number of files migrated on demand, i.e. a race condition was detected and removed for 

every 86 to 172 migrated files. With on-demand migration, the system reconfiguration 

was made transparent to the clients. 

Cases Total Client 
Bandwidth 

(MB/s) 

Total Migrator 
Bandwidth 

(MB/s) 

Migrated files Race 
conditions 

Before 3.94 0 0 0 
Both 4.52 0.36 7191 84 

On-demand 5.68 0 7218 42 
Background 9.05 0.68 0 8 

After 9.48 0 0 0 

Table 4.7 Results in the simulated web accesses. The five cases are before the 
addition of two new islands (before), with both background migrators and on-
demand migration (both), with on-demand migration only (on-demand), with 
background migrators only (background) and after the addition of two new islands 
(after). The total client bandwidth is the total number of bytes accessed by 16 
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threads during the simulation divided by the simulation time. The total migrator 
bandwidth is the total number of bytes read and written by the 2 migrators during 
the simulation divided by the simulation time. The column "Migrated files" shows 
the number of files migrated on demand during the simulation. The column "Race 
conditions" shows the number of race conditions during the simulation due to on-
demand migration. 

The measured impacts of background migrators and on-demand migration in the 

reconfiguration tests also apply to the cases of renaming directories (Section 2.2.4.1) 

because these two procedures share most of the code. 

4.4 Related work 

Existing file systems designed for high availability, such as Coda [54] and Ficus [51], 

replicate data across servers. Our approach in island-based file system, i.e. failure 

isolation, is complementary to the data redundancy approach for high availability. Client 

caching is extensively used in distributed file systems like Coda [54], Andrew [8] and 

Sprite [40] to support disconnected operations and to reduce traffic to servers. Similar to 

server replication, client caching improves availability by data redundancy, i.e. by 

replicating data in clients. It also improves scalability by reducing server load so that the 

same number of servers can serve a larger number of clients gracefully. Our scalability 

goal in island-based file system is to achieve efficient speedup when servers are added to 

the cluster, which is orthogonal to the goal of client caching. We have not implemented 

client caching in Archipelago, but we do not expect the island-based design to add any 

difficulty to such implementation. 

State-of-the-art cluster file systems like Frangipani [1] and xFS [5] achieve high 

reliability and scalability by data redundancy. A fast system area network such as ATM is 

typically used in those cluster file systems for aggressive communications across data 

replicas. The majority of operations in island-based file systems do not require 

communication or synchronization across islands; therefore, an island-based file system 

can scale efficiently with commodity networks such as Ethernet. The ideal configuration 

for maximal reliability, availability and scalability is to run an island-based file system 

with a file system like Frangipani or xFS inside each island. 
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In terms of failure isolation, cross-node communications, locality and leveraging 

functions in local file systems, island-based file systems are comparable to distributed file 

systems like NFS [9], JetFS [15] and CIFS [15]. However, those systems do not share 

with island-based file systems scalability, load balance, and/or automatic data partitioning 

and reconfiguration. 

In Teradata [56], two orthogonal hash functions are used to map data items to two nodes. 

In an island-based file system, each data item is mapped to a single island but redundancy 

might be used inside the island. The Teradata approach offers better load balance when a 

single node fails, but the failures of two nodes always render a portion of data 

inaccessible. Our approach makes most operations involve a single island, isolates 

failures across islands, and does not lose data unless all replicas in the same island fail. 

The Cluster-Based Scalable Network Services (SNS) [47] [48]provides a programming 

model for Internet applications. In particular, the authors proposed application 

decomposition and orthogonal mechanism for graceful degradation during partial 

failures. Island-based design addresses failure isolation in the storage system. While the 

programming-model approaches suffice for read-mostly access patterns and weak 

consistency requirements, a robust and scalable storage system is necessary for services 

with read-write access patterns and strong consistency requirements, such as shared 

calendar services and online shopping sites. The combination of the approaches can 

potentially achieve high availability and scalability for Internet services with a wide 

range of access patterns and consistency requirements. 

4.5 Summary 

I have designed the island-based file system as the data storage for highly available and 

scalable Internet services. I evaluated the design by statistical analysis of the access 

patterns in existing systems. I implemented Archipelago, a prototype of the island-based 

file system, and studied the performance of Archipelago in micro benchmarks and 

operation mixes. 

I draw the following conclusions on this part of my work: 
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1. The failure isolation provided by the island-based file systems is useful to Internet 

services because a temporary partial failure can be made unnoticeable to the majority 

of clients. 

The island-based file system can scale well with the system and workload sizes because 

the majority of operations do not require communication or synchronization across 

islands.
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5 Affinity-based management of clustered in-memory 
databases 

I shall start the discussion in this chapter by considering how to improve the performance 

of the new generation of Internet servers (or “application servers”) in a cost-effective 

way, i.e. how to achieve high quality of service with minimal committed resources. In 

today's Internet data centers [89], the ability to guarantee the same service level 

agreement with less committed resource allows savings in equipment cost, power 

consumption, environmental control, rack space, and administration effort. 

While the old generation of Internet sites present mostly static content, many popular 

sites today, especially e-businesses, web portals and search engines, provide value-added 

services as well as information to their clients in the format of dynamic content. Dynamic 

content is generated on demand by applications that access and perhaps update back-end 

databases and communicate with the web servers using protocols such as Common 

Gateway Interface (CGI) and Server Application Programming Interface (SAPI). Static 

content refers to files that web servers directly read from file systems, such as HTML 

pages and images. The growing popularity and the order-of-magnitudes slower delivery 

rate of dynamic content [88] led to the development of application servers [90]. 

Application servers are typically persistent processes that perform state and session 

management in addition to the roles of traditional CGI programs.  

I discuss in this chapter how to improve the performance of application server 

infrastructures in a cost-effective way by caching dynamic content. Although caching and 

buffer management inside database systems have been extensively studied [95] [97], 

traditional databases are optimized for disk I/O or client/server communications rather 

than for memory-resident operations. Therefore, light-weighted caching techniques for 

Internet infrastructures are being investigated. 

Caching query results has shown to reduce CPU cost and disk access involved in 

generating pages that do not change frequently and do not cause updates to the 

underlying database [66]. Application-specific annotation is usually needed for managing 
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cached results due to the diversity in contents and operations [67]. Result caching has the 

following limitations: 1) Certain queries modify data and hence cannot be cached. 2) 

Certain applications need to be rewritten to explicitly keep cached results up to date. 3) 

There are often overlaps across different query results and cache space is wasted on 

duplicate information. 

An alternative to result caching has been proposed: interposing between the application 

servers and the backend, on-disk databases an in-memory database that caches the 

frequently accessed data from the on-disk databases [85]. In-memory databases [86] are 

optimized in many aspects, such as retrieval and indexing, specifically for memory-

resident data, and can be backed up with Uninterrupted Power Supply (UPS) for the 

durability of transactions. Unlike result caching, which is often done in a proprietary or 

application-specific fashion, in-memory databases are available as commodity software 

and provide the same, standard functions as traditional, on-disk databases, such as 

indexed search, concurrency control and consistency guarantee. Therefore, use of in-

memory databases can potentially help reduce the time to market in building scalable and 

cost-effective services. Since an in-memory database caches raw data rather than query 

results, there will be no duplicates of cached data across queries.  

However, it is not unusual that the size of an on-disk database, e.g. tens of gigabytes to 

terabytes, exceed the physical memory capacity of a single commodity machine, e.g. 

hundreds of megabytes to a few gigabytes. A single in-memory database might limit the 

scalability of the entire infrastructure due to thrashing or CPU saturation. Intuitively, a 

scalable and cost-effective cache might be composed of a cluster of in-memory 

databases, each of which runs on a commodity computer and contributes to the aggregate 

memory capacity and computing power of the cluster as a whole. 

A well-designed management system for such a clustered in-memory database is needed 

in order to achieve the projected scalability and cost effectiveness. The task of 

management is to automatically and dynamically partition and replicate data across 

individual databases and to direct queries to the right databases, while maintaining the 

consistency across databases at a low cost. The goal of this task is to maximize effective 
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cache capacity and minimize synchronization cost.  

Conflicts across queries for dynamic content, i.e. the facts that dynamic content can be 

accessed through multiple applications or by multiple attributes and that a single query 

can access multiple data items, raise challenges for the management of clustered in-

memory databases. The conflicts result in data sharing across individual databases. If the 

data is read only, sharing causes data replication or transmission across databases. If the 

data is written, e.g. when a query implicitly causes an update to a customer preference 

database, one needs to pay synchronization cost for the data sharing. Therefore, data 

sharing across individual databases needs to be reduced for both read-only data and 

write-shared data in order to improve the performance-to-cost ratio of clustered in-

memory databases. 

In the rest of the chapter, I investigate scalable and cost-effective management strategies 

for clustered in-memory databases. First, I will show that a good partitioning of dynamic 

content does exist in certain applications despite the conflicts across queries. Second, 

given that a good partitioning exists, I propose a distribution strategy in the management 

system that implements such a partitioning by handling the conflicts properly. I evaluate 

the distribution strategy in comparison to alternative strategies that handle the conflicts to 

different degrees. Finally, I present the performance comparison of two prototype 

clusters, a clustered in-memory database backed by an on-disk database, and a replicated 

on-disk database with large buffer cache. 

5.1 Assumptions 

The discussion in the rest of this chapter is based on the following assumptions about the 

cluster-based infrastructures. A number of processing nodes run web servers and 

application servers, and each web server or application server is capable of processing 

any HTTP or application-specific requests. The application servers store all their 

persistent data in a shared, on-disk database, which I call the master database. A clustered 

in-memory database is transparently situated between the application servers and the 

master database, caching partial or all data from the master database. An individual node 

in the clustered in-memory database is called a cache server. Data accessed by a query 
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will be loaded from the master database into a cache server before the query is executed 

in that server. Data will stay in the cache server until it is evicted by a cache replacement 

policy or invalidated by a synchronization protocol. The cache servers may or may not be 

physically co-located with the application servers. See Figure 5.1. 

5.2 Challenges of dynamic content illustrated 

As discussed in the previous section, the challenges in the management strategies are 

mainly raised by the conflicts across queries for dynamic content, which result in data 

sharing across nodes in the cluster. It can be best explained by examples.  

In the first example, I consider an online bookstore like Amazon.com, where books can 

be queried by subject, by author or by ISBN. In an ideal case, the books are cached in a 

minimal number of in-memory databases, i.e. no data is stored redundantly; each query 

can be executed in one of the individual databases without data transmission from any 

others. Unfortunately, queries by different attributes require the books to be partitioned in 

different, possibly conflicting ways. For instance, if the books are assigned to individual 

databases by a random hash function on their ISBNs, none of the individual databases 
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could guarantee to contain the complete results of any query by author or subject. Even if 

the books are partitioned in the ideal way, it is still hard to direct the queries to the right 

databases for execution without knowing the query results first. 

In the second example, I consider two queries to a general search engine like Google, one 

containing the keyword “herbs” and the other “vitamins”, and a highly ranked article on 

"healthy food". The search engine will typically return this article to both queries. 

Similarly to the first example, it is hard to direct the two queries to the database that 

caches this article. In fact, it is even hard to predict that the two queries should be 

executed in the same database without executing them first. 

Both examples above are about read-only data, in which case the conflicts across queries 

result in inefficient use of memory space. If the data is written as well, e.g. when a query 

implicitly causes an update to a customer preference database, one needs to pay the cost 

of communication and synchronization across nodes for maintaining the consistency of 

write-shared data. Therefore, data sharing needs to be reduced for both read-only data 

and write-shared data in order to improve the performance-to-cost ratio of clustered in-

memory databases. 

5.3 Observation on query affinity 

Despite the variety of the contents and services that the Internet provides, I observe query 

affinity in a wide range of applications, including e-commerce, search engines, maps, 

directories, news, and digital libraries. By query affinity I mean the fact that there exists a 

way of dividing queries into groups where queries in the same group access the same or 

overlapped data sets (I call them affined queries) while queries in different groups access 

separate data sets. In addition, query affinity is a natural result of the content structures or 

access patterns of the application, rather than the result of the physical data storage.  

I hereby introduce two important sources of query affinity:  

• Containment: Data accessed by certain queries tends to contain data accessed by 

certain other queries. In the previous bookstore example, the books written by an 
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author, e.g. Biran W. Kernighan, often belong to a few particular subjects, e.g. 

computer programming, which the author has expertise knowledge in. In another 

example, such as MapQuest, the map of California contains the map of Palo Alto 

because California geographically contains Palo Alto. The containment relationship is 

transitive; therefore, there might exist chains of queries in an application where 

queries in the front contain queries in the back. In this case, data sets accessed by 

different containment chains are separate from each other. 

• Ranging: In range searches, data items "close" to each other in a domain-specific 

sense are often accessed together in the same query while data items "far" apart are 

rarely accessed together. Examples include searches for restaurants by distance to a 

given location, searches for articles by a range of publishing dates, and searches for 

people by similar names. 

Table 5.1 shows a summary of instances of query affinity in a set of popular Internet 

services. 

Services Containment Ranging 
Book stores Subject ⊃ author ⊃ ISBN Books with close publishing dates 

Auctions Category ⊃ seller ⊃ item Items with similar prices or 
locations 

Maps Country ⊃ state ⊃ city ⊃ zip code Geographically close places 
News Category ⊃ sub category ⊃ article Articles of related topics 

Yellow Pages Category ⊃ brand name ⊃  
retailer 

Geographically close businesses 

White Pages State ⊃ city ⊃ phone People with similar names 
Digital 

Libraries 
Subject ⊃ journal Papers in related areas 

Search Engines General keyword ⊃  
specific keyword 

Documents with similar 
keywords 

Table 5.1 Query affinity. The “containment” column shows the containment chains 
in the databases. The “ranging” column shows the "close" items in the databases. 

5.4 Exploiting query affinity 

The presence of query affinity indicates that a good management strategy could be found 

for clustered in-memory databases. If affined queries are directed to the same node, the 

data sharing across nodes can potentially be reduced. Queries on different nodes are 
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likely non-affined queries, and hence will access separate data sets by definition. 

Furthermore, if I can direct each query to the same node as its affined queries as it comes 

in, I can make online, localized decisions on query distribution, rather than search the 

large solution space offline for a globally optimal solution. Intuitively, query affinity may 

be exploited to find a management strategy that is as effective as the back-end data 

allocation approaches, and as light-weighted and dynamic as the front-end request 

distribution approaches. 

In order to direct a query to the same node as its affined queries as it comes in, I need the 

following inputs: 

1. To which queries in the past this query is affined. 

2. To which nodes the affined queries have been directed in the past.  

Based on the facts that affined queries access the same or overlapped data and that data 

accessed by recent queries is kept in the cache servers where the queries were executed, 

the two required inputs to the management can be reduced to the following two inputs 

respectively: 

1. What data the query will likely access. 

2. In which nodes some or all of the data is currently cached.  

By selecting the node that currently has in its cache the most data for the query, I can 

effectively partition data across nodes with reduced sharing.  

This strategy works only for applications that exhibit query affinity, and the quantitative 

reduction in data sharing is a function of the dimensions of query affinity, which I define 

as the average number of separate groups a query is affined to. The ideal number of 

dimensions is 1. Larger dimensions result in more conflicts across queries and hence less 

reduction in data sharing. In range searches, the conflicts exist in the situations where a 

data item is "close" to more than one separate set of data items. In the containment case, 

the conflicts may arise if the containment relation is not strict, i.e. the data accessed by a 
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query spreads across the data sets of more than one containing query. For example, the 

books written by Isaac Asimov belong in many different subjects. 

5.5 Affinity-based management 

I design an affinity-based management (ABM) strategy that strives to maximize effective 

cache capacity and minimize synchronization cost in clustered in-memory databases. The 

basic approach in ABM is to divide the execution of each query into two stages. The first 

stage is computation-intensive; the function and data required for the first-stage execution 

are replicated with every database client. The second stage is data-intensive; data 

accessed during the second-stage execution is partitioned into individual in-memory 

databases. The first stage determines the set of data that the query will likely access, 

which is then used to determine the destination of the query in its second stage. The 

second stage completes the rest of the query execution and generates results. The 

intention of the two-stage execution is to determine the destination of each query with the 

knowledge of the data to be accessed. 

In the discussion below, I assume that readers are familiar with the following database 

terms: table (a collection of data items of the same structure or having the same 

attributes), row (a data item with the complete set of attributes in a table), row id (the 

unique id of a row in a table), column (an attribute of all data items in a table), search key 

(a sequence of one or more attributes that is used to identify rows, uniquely or not, in 

selections), index (an auxiliary structure on a search key that is designed to efficiently 

locate all rows with a given value of the search key), selection condition (a Boolean 

combination of the comparisons of attributes to constants or other attributes), etc. 

In order to build the ABM system without modifying existing in-memory databases, I 

decompose each original query into two sub queries, called selector and imposter, which 

can be executed as regular queries in the unmodified local databases. The two stages of 

execution are then implemented as the executions of the two sub queries. The selector 

consists of all or part of the selection conditions and operations on their results, e.g. set 

operations or join operations; in other words, it consists of the components in the original 

query that identify the set of data to be accessed. The selector returns the unique ids of 
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the matching rows in database tables. The imposter is transformed from the original 

query by replacing the components that appear in the selector with the result of the 

selector. The imposter returns the same results as the original query but requires less 

execution time because it incorporates the results of the selector rather than repeats 

executing the selector. 

5.5.1 Components 

A clustered in-memory database with ABM consists of the following components: 

Database clerk: It is installed on each processing node and intercepts function calls to 

the master database client library, made by the application servers. Its major functionality 

is to decompose original queries into selectors and imposters and to execute the selectors 

locally. The search keys used in queries are replicated in each database clerk for local 

execution of the selectors. The replicated keys are kept consistent with the master 

database in the face of updates. This will be discussed in more detail in Section 5.5.3. 

Database manager: It maintains information on data locations, server loads, and 

read/write locks. It consists of the following functional components, which share a fair 

amount of information in common: 

• Location manager: It keeps track of the current location, i.e. cache server, of data at 

row granularity. With the results of the selector as input, it outputs a list of candidate 

cache servers sorted in descending order of cache hits. 

• Load manager: It keeps track of the current load, e.g. number of outstanding queries, 

of each cache server. With the list of sorted candidate servers from the location 

manager as input, it selects the server that has the most cache hits and is not 

overloaded, as defined by a set of adjustable thresholds. If there is no candidate 

server, i.e. the required data is not cached anywhere yet, or if all candidate servers are 

overloaded, the load manager selects the currently least loaded server. With this load 

balance mechanism, a small amount of frequently accessed data will be replicated or 

migrated across servers on demand. 
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• Lock manager: It maintains a consistency protocol across cache servers at row 

granularity. Multiple servers can hold a read-only copy of the same data 

simultaneously. When a server asks for a write lock on the data, the read-only copies 

will be invalidated from any other servers; otherwise, data will stay in cache till it is 

evicted as a result of cache replacement. Upon eviction of a row, the server contacts 

the lock manager for releasing the lock. 

Cache agent: It is installed on each cache server and is responsible for loading data into 

and unloading data from the in-memory database on that server in response to events like 

cache miss, cache eviction and cache invalidation. Each imposter is sent to the selected 

Selector Composer 

Selector: SELECT RowId FROM
books WHERE
author=‘kernighan’ 

Selector Executor  
(Replicated Keys) 

RowIds: 376, 812, 1045, 3937,
9914, … 

Location/Lock Manager 
(RowId-Server-Locks) 

Server: 5

Imposter Composer 

Original Query: SELECT title, review FROM 
books WHERE author=‘kernighan’ ORDER BY 
title 

Load Manager  
(Server-Loads) 

Candidate servers
(rows): 3(7), 5(6), 12(1)

Imposter: 
SELECT title, 
review FROM 
books WHERE 
RowId=376 || 
RowId=812 || 
RowId=1045 ... 
ORDER BY title 

Cache Agent 

Master Database  
(All Data) 

Rows: 812, 9914, …

Figure 5.2 A clustered in-memory database with affinity-based management. The 
data noted in parenthesis in some components of the infrastructure is the data 
stored with those components. 

In-Memory Database 
(Subset of Data) 

Results

Locks

Rows: 812, 9914, … Imposter 
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server agent for processing. The agent first makes sure that all the data the query needs is 

cached locally. If any data is missing, it loads it from the master database. This is an 

important step because, without this step, the affined queries sent to the same server in 

the future will not be guaranteed cache hits. Finally, the co-located in-memory database 

server executes the imposter as a normal query. (However, there is an upper limit on the 

number of rows that can be cached for a single query; if a query exceeds the limit, it will 

be sent to the master database rather than to a cache server.) 

Figure 5.2 illustrates the data and control flows in a clustered in-memory database with 

ABM. 

5.5.2 Data distribution and consistency 

The data distribution and consistency maintenance in the affinity-based design can be 

summarized as follows: A large table in database, which does not fit in a single in-

memory database, will both be horizontally fragmented and vertically replicated.  

The horizontal fragmentation refers the distribution of data across cache servers at row 

granularity, as discussed in the previous section. A fairly standard algorithm is used in the 

lock manager to maintain the consistency of horizontally fragmented data: namely a 

synchronous, avoidance-based algorithm with invalidation for remote updates [71].  

The vertical replication refers to the replication of the columns used in search keys in 

each database clerk for the local execution of selectors. I will discuss the vertical 

replication in more detail in the next section.  

5.5.3 Replication of search keys 

The columns used in search keys are typically of short or "narrow" data types, such as 

integers, timestamps, short character strings, etc. Columns of long or "wide" data types, 

such as texts, images, and streaming data, are either stored inside the database as regular 

columns or stored as files in external file systems and represented in the database as 

references to the external files [74]. In either case, it would be overwhelming to use the 

"wide" columns directly in search keys. For example, inverted files (containing 
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<keyword, document-id-list> pairs) are generated on the text databases of search engines 

for fast query evaluation and document retrieval [89]. In this case, the keyword columns 

in the inverted files are "narrow" columns and are used as a search key, while the 

document-id-list columns in the inverted files and the full documents in the text databases 

are "wide" columns and are not used in search keys. 

Based on this classification of columns, I vertically divide a large table into two parts, 

one with "narrow" columns (or search keys) and the other with "wide" or non-searchable 

columns. I replicate the part of search keys together with the row ids in database clerks. 

The replication enables the database clerks to locally process the selector queries that 

involve the replicated keys only. And yet the space required for replicating search keys is 

strictly less than the space required for replicating the entire table.  

In the master database, indexes are typically built on the searchable columns to speed up 

queries. For the same reason, indexes are built for the replicated keys in the database 

clerks. However, indexes on the replicated keys are not needed in the cache servers 

because, in the cache servers, data is accessed by row ids only. (See the description on 

the imposter queries in Section 5.5.) Therefore, the horizontal and vertical data 

distribution in this design does not require any more space for indexes than a fully 

replicated database. 

Any update to the database will be executed in the master database before the update 

operation finishes. The semantic guarantees of the master database, such as the ACID 

(Atomicity, Consistency, Isolation, Durability) properties of a transactional database, will 

remain intact because, with or without the caching and replication, the master database 

will receive the same sequence of updates and execute them in the same way. With the 

caching and replication, the master database will receive a smaller number of read-only 

queries, which do not alter the state of the database. 

Any update that results in modifications to the replicated keys, such as insertions, 

deletions or updates on the replicated columns, will be broadcast to all replicas. However, 

only the replicated attributes are broadcast, but not the entire update operation. For 
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example, assume that the data item on a new book is inserted to a table of books, which 

consists of the search keys title and author, and the non-searchable columns review text 

and cover page image. Only the title and author of the new book are broadcast to the 

replicas for insertions, but not the review text or the cover page image. Therefore, the 

network bandwidth required for broadcasting the updates on replicated keys is strictly 

less than the bandwidth required for broadcasting the updates in a fully replicated 

database. 

However, the replication of search keys raises a challenge for consistency, as in any other 

situations where data replication and updates to replicated data are present. The 

replication of search keys can be generalized with the same replication model as the 

metadata replication in the island-based file system (Chapter 3). In this particular case, 

the search keys are the replicated objects, the master database has the primary copy, the 

database clerks and the cache servers have the secondary copies, the master database is 

the coordinator of all updates on the search keys, and each update on the search keys 

involves all the database clerks and the cache servers that have a copy of the updated 

search keys. A single logical clock is maintained for all the replicated keys. The master 

database, the database manager, the database clerks and the cache agents keep a local 

copy of the clock each. The broadcast of updates and synchronization of clocks use the 

same protocol as described in Chapter 3. The cache servers are a special case of the 

model: they do not have a copy of the replicated keys unless they are co-located with the 

database clerks, but they participate in the consistency protocol as replicas because it is 

implicitly assumed that the cache servers have a consistent view of the database state 

with the database clerks. To determine the set of cache servers involved in an update, the 

location manager is consulted before the commit of the update starts. Another special 

case in the replication of search keys is that the secondary copies will be completely lost 

during node crashes. The write-ahead logging is no longer necessary because, during the 

recovery of a database clerk after a crash, a complete snapshot of the replicated keys, 

rather than updates that occurred after the crash, will need be copied from the master 

database. 
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The customized consistency protocol maintains the following invariants in a clustered in-

memory database with ABM: 

4. All updates on the replicated keys are atomic, e.g. if a query is pre-executed with a 

certain update in effect, the same update is guaranteed to be in effect in the selected 

cache server when the query is executed there unless the cache server is not involved 

in that update. 

5. All updates on the replicated keys are serialized, e.g. queries are pre-executed and 

executed as if all relevant updates have been committed in the same order both in the 

database clerk and in the selected cache server. 

6. In most cases, read-only queries can be executed locally, i.e. without contacting other 

database clerks or cache servers for synchronization purpose. 

5.5.4 Limitations 

Due to the replication of search keys, a table in the database needs to satisfy at least one 

of the following conditions in order to benefit from ABM: 

• The ratio of the space required for search keys to the space required for non-

searchable data is low; or 

• The ratio of the updates on search keys to the updates on non-searchable data is low. 

Applications with massive, non-searchable data, such as images of maps, description 

texts of merchandises, and PDF files in digital libraries, can potentially benefit from 

ABM. Applications with all or mostly searchable attributes in their data, such as a simple 

phone directory, might perform just as well with a fully replicated database. 

Another limitation of ABM is the potential bottleneck and single point of failure in the 

database manager. In general, clustering techniques [76], such as fail-over and mirroring, 

can improve the scalability and availability of the manager at the cost of additional 

hardware and fast interconnection. An alternative is to divide the data or functionality of 

the manager into finer grains. For example, the tables in a large database can be divided 
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into smaller groups, as long as no query will access data across groups, and a manager 

can be assigned to each group, rather than the entire database. The centralized manager 

can also run as three separate managers, the location manager, the load manager and the 

lock manager, at the cost of storing redundant information and passing synchronization 

messages across different managers. 

As a bottom line, the design of ABM guarantees correctness in all situations and offers 

lower cost and better performance than a fully replicated database. 

5.5.5 Implications to other systems 

Containment and ranging are two prevalent sources of query affinity in today’s Internet 

applications. As new types of services evolve, I expect that they will share these 

properties and may also expose new sources of query affinity or other insights that can be 

generalized and exploited in the construction of scalable infrastructures. I believe that the 

general approach to managing clustered in-memory databases by exploiting query affinity 

is valuable. 

The approach to exploiting query affinity presented in this chapter is a dynamic one. The 

key insight of exploiting query affinity, however, can be exploited by other means as 

well. For example, application writers can redesign the URLs or cookies in the HTTP 

requests to carry enough information for a front-end request distribution. Such an 

approach is a static one and has the advantage of being able to leverage a front-end 

distributor. However, it requires the applications to be modified substantially, requires the 

requests to carry information that is not necessary for processing the requests alone, and 

requires additional intelligence and human assistance in the front end. 

In the design of the clustered in-memory database with ABM, I choose relational 

database vs. object-oriented database or file system as the type of master database in the 

infrastructure, because relational databases are widely available as commercial or open 

source products and are widely used in the back end of Internet infrastructures [84] [58]. 

However, the insights on query affinity are independent of physical data storage and can 

be exploited for other types of storage systems as well.  
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5.5.6 Implementation 

I have implemented a prototype of the clustered in-memory database with ABM on a 

cluster of Linux servers connected by switched Ethernet. The database manager runs as 

an RPC server. I implement most of the database-related functionality on top of the 

MySQL database [58], an open source, relational database. The database clerk in my 

implementation intercepts the function calls to the C library of MySQL clients. (MySQL 

drivers for other languages, such as PERL, were built on top of the C library.) The in-

memory tables of MySQL, called heap tables, are used to construct the in-memory 

databases in the cache servers. The replicated columns for the database clerks are stored 

in heap tables as well. In this way, both imposter queries and selector queries can be 

processed as regular queries on the heap tables in the unmodified MySQL servers. The 

heap tables in the cache servers have the same attributes as the on-disk tables in the 

master database, while the heap tables for the database clerks have the search keys only. 

If a database clerk is co-located with a cache server, both can share the same local 

MySQL server. In theory, such an infrastructure can work with any master database that 

supports the standard query language. In my experiments, I run a MySQL as the master 

database. 

5.6 Simulations of five distribution strategies 

As discussed earlier in this chapter, handling conflicts across queries for dynamic content 

is the main challenge for the management of clustered in-memory databases. The task of 

the management system can be separated to two parts: consistency maintenance and 

data/query distribution. While the goal of consistency maintenance is correctness, the 

goal of data/query distribution is to maximize effective cache capacity and minimize 

synchronization cost by handling conflicts across queries properly. In this section, I 

present the evaluation of the distribution strategy in ABM in comparison to alternative 

distribution strategies that handle the conflicts to different degrees. With a set of 

simulations, I study the impact of the following factors on the performance of various 

distribution strategies: applications, access patterns, human assistance, dimensions of 

affinity, memory sizes and cooperative caching. This study is analogous to the study on 
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request distribution strategies for clustered web servers [3]. 

5.6.1 Experimental setups 

I use a modified version of the web server cluster simulator previously used for 

distribution strategies [3]. The original simulator models the scheduling of CPU queues, 

disk queues and incoming request queues as well as activities on the main memory cache 

in the server machines. It assumes that the entire data set is replicated on the local disks 

of all server machines and a subset of data is cached in the main memory cache of server 

machines where it is frequently accessed. A request is processed in the following steps: 

connection setup, disk reads (if needed), target data transmission, and connection 

teardown. Parameters such as memory size, CPU speed, disk speed, network speed and 

caching protocol are configurable. A detailed description of the original simulator can be 

found in [3]. 

The major modifications I make to the original simulator in order for the simulator to 

work for application servers and database servers rather than web servers and file systems 

are following. For write-shared data, I model a multi-reader-single-writer locking 

protocol for cache consistency at row granularity. (See the lock manager described in 

Section 5.5.1.) Each lock-related operation is charged for a round-trip network latency. In 

addition to the steps of connection setup and teardown for each query, each accessed row 

in the query is processed in the following steps: lock acquisition (if needed), disk reads (if 

needed), data processing or transmission, and writes (if needed). For written data, I 

assume an asynchronous cache write-through policy; that is, I charge the CPU overhead 

for sending data to disk, but not disk write time. Therefore, written data is immediately 

visible to successive reads. In fact, I do not charge the delay caused by synchronization in 

any lock-related operations. These assumptions are conservative with regard to the 

benefits of ABM because they lower the performance penalty of the events that ABM is 

designed to reduce, i.e. shared writes. 

Table 5.2 shows the parameter settings common in all simulations reported in this 

chapter. 
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Parameters Values 
Connection setup and teardown time per HTTP request 750 sµ  

Initialization overhead per request to an application server 1 ms 
Data processing or transmission time per 512 bytes 85 sµ  

Disk transfer time per 512 bytes 50 sµ  
Average disk seek time 10 ms 

CPU overhead per 512 bytes accessed on disk 4 sµ  
Memory page size 1 KB 

Replication of hot data allowed Yes 
Cache replacement policy LRU 

Table 5.2 Common parameter settings. Data is cached at row or page granularity, 
whichever is larger. 

I compare the following five distribution strategies in each experiment: 

1. Weighted round-robin distribution (WRRD): Queries are distributed to cache servers 

in a round-robin fashion, weighted by the servers’ loads. This is analogous to a front-

end, connection-based distribution strategy for clustered web servers [75]. 

2. Query-based distribution (QBD): Identical queries are directed to the same server, but 

distinct queries that return the same or overlapped data will not necessarily be 

directed to the same server. In practice, this strategy cannot make a good decision for 

queries that consist operations unrelated to selection conditions, such as an "ordered 

by" operation. However, such operations are not present in the simulations, which 

benefits this strategy. This strategy is analogous to a content-based distribution 

strategy for clustered web servers [3]. 

3. Human-assisted QBD or enhanced QBD (EQBD): Domain-specific information is 

added to QBD by application programmers or system administrators. The additional 

information helps QBD select the most relevant attributes in queries for decision 

making. Therefore, queries on the same data by the same selected attributes will be 

directed to the same server. However, queries on the same data by different selected 

attributes will not necessarily be directed to the same server. 

4. Affinity-based distribution (ABD): This is the distribution strategy used in ABM. 

Queries on the same or overlapped data, i.e. affined queries, will be directed to the 
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same server regardless of the attributes or operations in the queries. 

5. An ideal case (Ideal): This is a multi-processor machine with hardware shared 

memory of the same capacity as its cluster counterpart. No data replication or 

transmission is needed since all processors have access to all data in memory. This is 

viewed as an ideal case for comparison purpose. 

I choose two example applications for case studies, white pages [78] and auctions [79]. 

These two examples exhibit the two sources of query affinity I observe, i.e. ranging and 

containment, respectively. 

Note that all five distribution strategies achieve comparable and good load balance in the 

simulations, which confirm the previous results [3], and hence load balance is not 

discussed in detail below. 

5.6.2 Case study 1: White pages 

I extract the traces on a university white page service [78] from the access logs of the 

university web server in the year 1999, which include 809194 queries by names and 

181719 queries by phone numbers, email addresses and/or departments. 23442 distinct 

names were queried in total. Since the results of the experiments depend on the actual 

data accessed by the queries as well as the queries themselves, and since the actual data is 

not contained in the access logs, I resend the queries on the distinct names to the web 

server that generated the traces, and store the returned data from the web server for use in 

the simulations. For queries that contain multiple names, I use the intersection of the 

results for each name as the results for the query, which is what I observe the original 

CGI program does. To avoid resending an excessively large number of requests to the 

web server, I exclude the queries by phone numbers, email addresses and/or departments. 

Due to the small size of the university, only 19534 valid, distinct people’s data is 

accessed in total. Since I am interested in studying a large data set that does not fit in the 

memory of a single node, I augment the actual data set by a factor of 8. Assuming each 

person’s data takes 1024 bytes, the augmented data set is less than 153 MB. I set the 

memory size of individual nodes to 16 MB to 32 MB in my experiments. 
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I run the five simulated distribution strategies with the white page traces. QBD and 

EQBD direct each query to a node based on the whole query and the first queried name, 

respectively. Figure 5.3 shows the throughput of the five distribution strategies on 1 

through 16 nodes with 24 MB memory per node. Figure 5.4 shows the cache miss ratio, 

which explains the differences in throughput. (All ratios shown in this chapter are the 

absolute number of events, e.g. cache misses, divided by the total number of data 

accesses in the simulation.) The results of WRRD match those for static content in 

clustered web servers: the cache miss ratio does not decrease as the cluster size increases, 

because the most accessed data tends to be replicated in all nodes. In QBD and EQBD, 

queries on the same names are directed to the same node; therefore, QBD and EQBD 

achieve locality to a certain degree, reduce cache miss ratio and improve throughput by a 

factor of 5 over WRRD with 16 nodes. QBD performs slightly better than EQBD because 

EQBD, using a single name in each query for distribution, experiences a small degree of 

load imbalance. ABD reduces cache miss ratio and improves throughput by a factor of 2 

over QBD and EQBD and 9 over WRRD.  

I also run the simulations with 16 MB and 32 MB memory per node, respectively. The 

results show that, as the memory to data ratio increases, the performance difference 

among the different distribution strategies decreases, which matches the results observed 

for static content in clustered web servers [3]. 

Figure 5.3 Throughput of the white page traces. 
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To summarize, read-only dynamic content behave largely in the same way as static 

content in clustered web servers under various distribution strategies except for the fact 

that there tends to be more data sharing for dynamic content; ABD reduces data sharing 

and improves throughput and scalability by directing queries on similar names, i.e. 

affined queries, to the same node. 

5.6.3 Case study 2: Auctions 

I downloaded the bid history of the first 50 completed items in 3212 categories from the 

well-known auction site Ebay [79]. I extracted the following events with time stamps and 

relevant parameters from the bid histories: 117623 SellItem events (with the seller, 

category and item parameters), 231521 BidItem events (with the bidder and item 

parameters) and 117623 CompleteItem events (with the item parameter). 

Since these events are only a subset of the actual events at Ebay and represent only write 

accesses to the database, I synthetically add other events to the traces based on expected 

user behaviors. For each SellItem(seller, category, item) event, I generate a configurable 

number of BrowseCategor(category) events within half an hour before, 

ViewItemsBySeller(seller) events within half an hour after, ViewItem(item) events within 

half an hour after, and ReviseItem(item) events within two days after. For each 

BidItem(bidder, item) event, I generate a configurable number of 
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Figure 5.4 Cache miss ratio of the white page traces. 
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ViewItemsByCategory(item.category) events within half an hour before, ViewItem(item) 

events within 15 minutes before, ViewBidsByItem(item) events within 5 minutes before 

and after, and ViewBidsByBidder(bidder) events within 5 minutes after. To each 

generated event, I assign a time stamp that is randomly chosen within the given time 

range. I sort all generated events together with the original events in ascending order of 

time stamps and use them as the input to the simulator. 

In the traces used in the simulations, there are 698288 ViewItemsByCategory events, 

698288 ViewItem events, 117624 CompleteItem events, 231521 BidItem events, 115769 

ViewBidsByBidder events, 463042 ViewBidsByItem events, 117623 SellItem events, 

58729 ViewItemsBySeller events, and 11917 ReviseItem events. There are 2512801 

events in total and 81% of them are reads. 

The data set includes 117623 items in 3212 categories, offered by 42536 distinct sellers, 

and 231521 bids, made by 167752 distinct bidders. I assume that the row size of item is 4 

KB and the row size of bid is 128 bytes. For simplicity, rows smaller than a page are 

padded to a page in cache (1 KB in the simulations). The memory footprint of all items 

and bids is roughly 686 MB. The memory space needed for the replicated keys, e.g. item 

ids and bidders, is roughly 21 MB per node. I choose 64 MB as the memory size per node 

so that the entire data set can fit in the memory in the best case in the simulations, i.e. a 
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Figure 5.5 Throughput of the auction traces. 
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machine with 16 processors, 1 GB hardware shared memory and no replication.  

I expect that the actual memory and data sizes at Ebay are much larger than the sizes in 

the simulations, but the relative data to memory ratio in the simulations is reasonably 

realistic. It is reported that there are roughly 4 million items on sale at Ebay everyday, 

meaning that it will take 16 GB to cache the items. 

Figure 5.5 shows the throughput of the five distribution strategies on 1 through 16 nodes. 

Like in the white page case, the throughput is determined by the cache miss ratio, shown 

in Figure 5.6. Unlike the white page case, which has a read-only access pattern, the cache 

misses are caused both by memory pressure and by synchronization in this case. Figure 

5.7 shows the cache eviction ratio as a measure of the memory pressure. Figure 5.8 shows 

the cache invalidation ratio as a measure of synchronization cost. The cache eviction ratio 

decreases as the cluster size increases except in WRRD, because the effective cache size 

increases with the cluster size in the other four cases. The cache invalidation ratio slightly 

increases with the cluster size in all but the ideal case because the number of nodes that 

write-share data increases. As a result, the overall cache miss ratio decreases at a slower 

speed than the cache eviction ratio except in the ideal case. ABD, EQBD and QBD 

achieve 90%, 67% and 38% of the ideal throughput with 16 nodes, respectively.  

Figure 5.6 Cache miss ratio of the auction traces. 
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The throughput curves also suggest that, in order to achieve the same throughputs as 

WRRD, QBD and EQBD with 16 nodes, ABD requires only 4, 10 and 12 nodes, 

respectively. 

It is known for static or read-only dynamic content that increasing memory size reduces 

the difference in distribution strategies (Section 5.6.2). I rerun the auction simulations 

with the memory size increased to 128 MB per node. The results show that there are no 

longer cache evictions in ABD, EQBD and QBD with 16 nodes, but the increased 

memory size does not help reduce cache invalidations. From 12 to 16 nodes, the cache 

eviction ratio is reduced from 5%, 10% and 17% to 0% while the overall throughput is 

improved by only 1%, 5% and 2% for ABD, EQBD and QBD, respectively. 

To summarize, ABD improves the throughput and scalability of write-shared dynamic 

content because it reduces synchronization cost as well as memory pressure for write-

shared data. The difference across distribution strategies for write-shared data is not as 

sensitive to memory size as that for static or read-only data because synchronization cost 

does not decrease as memory size increases. 

Figure 5.7 Cache eviction ratio (the number of old rows evicted from cache to make 
room for new rows, divided by total accesses) of the auction traces. 
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5.6.4 Dimensions of query affinity 

The statistics on the white page traces show that on average each person’s record is 

accessed by 6.8 distinct queries in EQBD and by 2.4 distinct queries in ABD. As a result, 

ABD reduces the average number of replicas per record from 6.8 to 2.4. The number 2.4 

is in fact the dimensions of query affinity in this application. It results from the fact that 

each person has 2 to 3 names, i.e. the first name, the last name and probably the middle 

name, and queries with any of the names will access the person's record. 

In the auction application, there also exists dimensions of query affinity that are larger 

than 1. For example, the items offered by the same seller could fall into more than one 

category. I examine the cache miss ratio for three queries, ViewItem, ViewItemsBySeller 

and ViewBidsByBidder, separately in ABD to study the impact of the multi-dimensional 

affinity on cache miss ratio. Table 5.3 shows the average and maximum numbers of 

containing queries and the cache miss ratio of the three queries with 16 nodes. The 

numbers of containing queries shown in the table are statistical results from the traces. 

The table shows that larger numbers of containing queries result in higher cache miss 

ratio. 

Figure 5.8 Cache invalidation ratio (the number of rows removed from cache 
because the node no longer holds the read or write lock, divided by total accesses) of 
the auction traces. 
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Queries Containing 
Queries 

Ave. Number of 
Containing 

Queries 

Max. Number of 
Containing 

Queries 

Cache 
Miss 
Ratio 

ViewItem ViewItemsBy-
Category 

1 1 11.1% 

ViewItems- 
BySeller 

ViewItemsBy-
Category 

2.77 197 35.6% 

ViewBids- 
ByBidder 

ViewBids-
ByItem 

1.38 32 21.9% 

Table 5.3 Impact of dimensions of query affinity on cache miss ratio. 

5.6.5 Cooperative caching 

I study the impact of cooperative caching [72] [73] in both the white page case and the 

auction case. With “pull-based” cooperative caching, data can be transferred from a 

server's cache to another rather than be loaded from disks. The lock manager in the 

consistency protocol provides the locations of cached rows for cooperative caching. In 

the simulator, each cache-to-cache data transfer is charged 0.5 ms network latency and 6 

MB/s network transfer time. Without cooperative caching, each cache miss is charged 10 

ms disk seek time and 9.8 MB/s disk transfer time. 

Figure 5.9 and Figure 5.10 show the throughput of the white page traces and auction 

traces with cooperative caching, respectively. In the white page traces, the throughputs of 

QBD, EQBD and ABD are all significantly improved. In the auction traces, ABD is not 

Figure 5.9 Throughput of the white pages traces with cooperative caching. 
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improved much because it is already close to the ideal case without cooperative caching. 

Cooperative caching improves performance for two reasons: it replaces disk accesses 

with network accesses, and it helps make better cache replacement decisions due to the 

availability of global reference information. However, it is complementary to ABD in 

that it does not reduce data replication or write sharing. In other words, it does not reduce 

the number of costly events, but lowers their cost.  

QBD benefits the most from cooperative caching and achieves 86% and 78% of the 

throughput of ABD with 16 nodes in the white page and auction cases, respectively. 

However, the results are based on conservative assumptions about the cost of cooperative 

caching and on the use of simplified queries in requests. In the simulator, I assume 

infinite network capacity, no synchronization delay and no bottleneck at the centralized 

lock manager for cooperative caching. 

I have also studied another cooperative caching protocol, in which each row is cached 

and accessed in a fixed node.  It makes efficient use of cache space and avoids 

synchronization across nodes for write-shared data. However, it outperforms pull-based 

cooperative caching only under high memory pressure, e.g. with 1 to 4 nodes in the 

simulations, and suffers from lower local cache hit ratio than pull-based protocol as 

Figure 5.10 Throughput of the auction traces with cooperative caching. 
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memory size increases. 

Cooperative caching improves QBD and EQBD relative to ABD. However, in reality, the 

closing in the gap would likely be much smaller. Besides, many systems do not 

incorporate cooperative caching, while ABD is a general and easy-to-deploy strategy 

whether or not cooperative caching is present. 

5.7 Performance measurement on two prototype clusters 

In this section, I present the results of a set of experiments on two prototype clusters: a 

clustered in-memory database with ABM backed by an on-disk database (called the ABM 

cluster hereafter), and a replicated on-disk database with large buffer cache (called the 

REP cluster hereafter). It is known that various forms of replicated on-disk databases, 

often custom-built, are extensively used in real-world web sites [81] [82] [83]. The 

purpose of running the experiments is to compare the proposed cluster (ABM) with the 

existing cluster (REP) in terms of latency, throughput, memory usage, etc. 

5.7.1 Experimental setups 

The machines used in the experiments are Pentium III 500 MHz PCs with 256 MB main 

memories, running Linux 2.2.14. The machines are interconnected with 100 Mbps 

switched Ethernet. In the experiments, 1 machine is used to run the master database, 1 

machine is used to run the database manager, 6 machines are used to run the clients, and 

1 through 8 machines are used to run the web servers and application servers. 

Apache 1.3.12 [57] is used as the web server and MySQL 3.23.18 [58] is used as the 

database clerks, the cache servers and the master database servers. I implement a 

prototype of the auction server for the experiments, using FastCGI 2.2.4 [69]. FastCGI 

applications are persistent CGI processes; therefore, they do not have the overhead of 

invoking a new process or establishing a new connection to the database upon each client 

request. Roughly 256 parallel client processes are running on the 6 client machines; each 

of them makes synchronous and continuous HTTP requests to the cluster server. 

The inputs to the experiments are benchmarks based on the same Ebay traces and 
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additional events as in the simulations (Section 5.6.3). I generate three sets of traces with 

different read-to-write ratios or access patterns, namely write-intensive, read-mostly and 

read-only access patterns. The traces contain 67.4%, 85.7% and 100% read events, 

respectively. 

I run the experiments on two prototype clusters, REP and ABM. In the REP cluster, client 

requests are distributed to the Apache web servers in a round-robin fashion. The database 

is replicated on each machine that Apache runs. Replication is a built-in functionality of 

MySQL. A separate MySQL server is configured as the master server, while the others 

are slave servers. Updates to the master database are automatically propagated to the 

slaves. Apache forwards the requests to a FastCGI process, i.e. the auction server, on the 

same machine. In processing the requests, the auction server sends read-only queries to 

the local database and updates to the master database. Recently accessed data is 

automatically cached in the Linux kernel buffers [77]. All the components in this 

configuration are off-the-shelf components. In the ABM cluster, the local MySQL servers 

serve as database clerks and cache servers, rather than slaves in a replicated database. The 

built-in replication of MySQL is turned off, and the master database server is only 

responsible for managing data on its local disk, but not responsible for propagating 

updates to other MySQL servers. The auction servers send all queries and updates to the 

local database database clerks. The database clerks, the cache servers and the database 

manager together manage the clustered in-memory database.  

Because the data set in the experiments is small compared to the physical memory size 

(256 MB) per node, I artificially limit the amount of memory available (90 MB) to the 

cache servers in ABM. In REP, the amount of memory available to the buffer cache is 

only limited by the system load. The built-in replication of MySQL does not guarantee 

the atomicity or serialization of updates; to measure comparable performance, the 

consistency protocol for the replicated keys in ABM is turned off during the experiments, 

i.e. updates to the replicated keys are broadcast to all replicas in a naïve, synchronous 

manner. This has not caused any data corruption in the ABM cluster during experiments. 

5.7.2 Single server latencies 
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I measure the average request latencies of single servers in three different configurations: 

a local, standalone MySQL server, a single slave server in replicated MySQL, and a 

single cache server with ABM. The latter two correspond to the simple cases of the REP 

and ABM clusters, respectively. The measurement of single server latencies is intended 

to show the overhead of replicated MySQL and ABM added to local MySQL. In 

replicated MySQL, the expected overhead is the remote updates to the master server and 

the propagation of updates from the master server to the slave server. In ABM, the 

expected overhead is the round-trip message to the database manager, the remote updates 

to the master server, and the data transferring from the master server to the cache server 

in case of cache misses. 

Figure 5.11 shows the latencies of single servers. ABM has slightly longer latencies than 

local MySQL in the traces with write events. However, ABM is slightly faster than local 

MySQL in the read-only traces, because the overhead for updates is not present in the 

read-only traces and the speedup due to the caching in ABM dominates the overhead of 

ABM. It was not expected that, in the traces with write events, replicated MySQL 

performs better than local MySQL and ABM. This is an artificial result of the weak 
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consistency in MySQL replication. I observe from the experiments that the slaves in the 

replication are disconnected from the master when the system load is high and updates to 

the master database are not propagated to the slaves synchronously. Therefore, 

subsequent queries return smaller (and incorrect) sets of results and appear to be faster. In 

fact, many updates are still missing in the slaves after the experiments are stopped. (Note 

that this is not documented in MySQL manual [80].) In ABM, all updates are guaranteed 

to reach all replicas before the operations complete. 

5.7.3 Measurement on cluster servers 

Figure 5.12 shows the throughputs of the cluster servers in requests per second for three 

traces with different access patterns. ABM performs better than REP except with small 

numbers of servers, when the artifact of the weak consistency in MySQL replication 

dominates, as discussed in the previous section. With 8 nodes, ABM outperforms REP by 

a factor of 2 to 7. The throughput curves also suggest that, in order to achieve the same 
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throughputs as REP with 8 nodes, ABM requires only 2, 3 and 3 nodes for the write-

intensive, read-mostly and read-only patterns, respectively. 

Figure 5.13 shows the percentages of the time when the CPU of the database manager in 

ABM is idle, which can be used to predict the potential that the manager be saturated or 

become a bottleneck in the cluster. With 8 server nodes and the fastest traces, i.e. the 

read-only traces, the manager has roughly 40% idle time. Assuming that addition of 

server nodes causes linear increase of workload in the manager, I expect that a single 

manager can potentially support more than 20 server nodes of the same hardware 

configuration. The assumption is conservative in terms of the scalability of the manager 

because, as the experimental results show, decrease in the manager idle times slows down 

as the number of server nodes increases. 

Figure 5.14 shows the amounts of free memory space in the server machines during the 

experiments. In ABM, there is less free memory with 8 nodes than with 6 nodes. This is 

due to a simplification in the prototype implementation: each application has its own 

connections to all cache servers, rather than share the connections with other applications 

on the same machine. Therefore, when the number of server machines increases, the 

number of database connections increases rapidly and a larger amount of memory is 

consumed by the connections. The same effect was observed in related work [87] as well. 

The solution to this problem is to have the database clerk in ABM multiplex the 
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connections to the cache servers for the applications on the same machine. In REP, there 

is constantly high memory pressure in all experiments. It was expected because on-disk 

databases are known to be less efficient in memory management than in-memory 

databases [86] and REP does not exploit locality in the request distribution. 

5.8 Related work 

TimesTen Front-tier [85] is a commercial product that uses an in-memory database as the 

cache for a manually defined view in an on-disk database. ABM extends the existing 

work by automatic and dynamic management of clustered in-memory databases. 

An alternative to caching raw data is to cache query results in web or proxy servers [66] 

[67]. This approach has the advantage in situations where generating the results is 

computationally intensive. However, its use is largely limited to read-only data and 

proprietary environments. 

Materializing views inside or outside database systems has been studied in the web 

context [96]. Compared to application-level result caching, this approach is more generic 

and reusable; however, it does not eliminate the inefficiency in cache space usage due to 

possible overlaps in content across different views. 
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The replication of search keys in ABM is related to caching indices in clients [98] since 

both are intended to enable clients to locally perform as much selecting or scanning as 

possible. The essential difference is that index caching is part of the database systems 

while key replication is done externally without modifying the database systems. This 

leaves ABM an open and non-intrusive management system for a variety of database 

products. 

Effective front-end, content-based request distribution strategies [3] [64][61] have been 

developed to improve the performance and scalability of clustered web servers with static 

content. However, exploiting locality for dynamic content is difficult in the front end 

because URLs do not carry enough information for identifying the data that needs to be 

accessed. In the HACC project [68], there is an extension to content-based distribution 

for dynamic requests in Lotus Domino, a web server product from IBM Lotus. It makes 

decision based on requested Notes objects and actions, but does not address distribution 

of dynamic content in general. ABM extends the existing work by postponing the 

decision on query distribution till the queries are executed and by exploiting natural 

affinity in a wide range of Internet applications. 

Apers [62] presented and compared methods for obtaining optimal and heuristic solutions 

to the data allocation problem in distributed databases. The optimal methods basically 

search the large solution space for determining data allocations to minimize total 

transmission cost. The heuristic methods typically start with an initial data allocation and 

iteratively reallocate fragments to decrease the total transmission cost in a greedy fashion 

until the cost can no longer be decreased. Due to their complexity, those techniques have 

to be applied off line or statically. Therefore, they are not readily applicable to those 

Internet services with dynamic changes in access patterns and loads. Brunstrom et. al. 

[63] addressed how to dynamically reallocate data for databases with changing access 

patterns and how to incorporate individual site loads in the reallocation decision. Rather 

than complicated and expensive optimization algorithms, they use a simple heuristic that 

keeps track of accesses to each data block on each site and periodically moves data to the 

site where it is accessed most without causing load imbalance across sites. The choice of 
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the data movement interval is critical to the performance of this method: excessively 

large values will prevent the system from responding to workload changes in time while 

excessively small values will result in oscillation of data between sites and increase the 

total transmission cost. The right interval value is often application specific and varies 

access pattern changes. 

The main contribution of ABM is the combination of its effectiveness comparable to that 

of the data allocation approaches, and its light-weighted, dynamic nature comparable to 

that of the request distribution approaches. The goal of ABM is achieved by a novel 

combination of two-stage execution, vertical replication and horizontal fragmentation. 

5.9 Summary 

In this chapter, I discuss how to improve the performance of Internet application servers 

in a cost-effective way by using clustered in-memory databases as the dynamic content 

cache. In particular, I design an affinity-based management (ABM) system for clustered 

in-memory databases that strives to maximize effective cache capacity and minimize 

synchronization cost. 

With trace-based simulations, I compare the data/query distribution strategy in ABM to 

weighted round-robin strategy, basic query-based strategy, enhanced query-based 

strategy and an ideal case. The results show that ABM outperforms alternative strategies 

by a factor of 1.3 to 9 and achieves up to 90% of the ideal performance. The throughput 

comparison indicates that ABM only requires 
4
1  to 

4
3  of the resources in order to achieve 

the same throughput as the alternative strategies. The results also suggest that 

applications with dynamic content, especially write-shared content, can potentially 

benefit more from a good distribution strategy than applications with static content, due 

to the tendency for more data sharing and the synchronization cost that cannot be reduced 

by simply increasing memory size.  

I have implemented a prototype cluster with the clustered in-memory database and ABM 

(called the ABM cluster) and compared its performance to that of a replicated on-disk 
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database with large buffer cache (called the REP cluster). Experimental results show that 

the ABM cluster outperforms the REP cluster by a factor of 2 to 7 with 8 nodes. The 

throughput comparison indicates that the ABM cluster only requires 
3
1  to 

2
1  of the 

resources in order to achieve the same throughput as the REP cluster. The gain of price-

performance ratio comes both from efficient memory management and from increased 

effective cache capacity. The results also suggest that the database manager in ABM will 

not likely become a bottleneck for clusters with less than 20 processing nodes. 
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6 Conclusion 

6.1 Results 

The objective of this dissertation is to address the availability, scalability and cost-

effectiveness issues in cluster-based Internet infrastructures. The approach taken in this 

dissertation is to investigate the data and query distribution strategies of the storage 

systems in the infrastructures.  

I study a failure isolation approach that improves the availability and scalability of the 

storage systems for large-scale Internet services. This approach is complementary to 

redundancy-based methods. Based on this approach, an island-based file system is 

designed with the principle that as many operations as possible should involve exactly 

one island.  I evaluate the island-based file system by statistical analysis of the content 

structures and access patterns of existing file systems. The results show that failure 

isolation is indeed achievable in the island-based file system. On average 99.8% file 

system operations involve a single island. The results also show that the availability 

model offered by the island-based file system is useful to Internet services. In one of the 

examples, if 1 out of 32 islands is down for an hour, it is expected that 93.8% clients 

during that hour will not notice the temporary partial failure. I have implemented a 

prototype island-based file system called Archipelago on a cluster of PCs running 

Windows NT. Measurements with trace-based operation mixes show a speedup of 15.7 

on 16 islands. In an analytical model, the system is estimated to scale up to 702 islands 

with speedup efficiency higher than 50%. 

I also study management strategies for improving the price-performance ratio of clustered 

in-memory databases as the dynamic content caches for Internet applications. I observe 

that, despite the conflicts across queries for dynamic content, many applications exhibit 

query affinity, which can be exploited for a good management strategy. I design an 

affinity-driven management (ABM) system for clustered in-memory databases that strives 

to maximize effective cache capacity and minimize synchronization cost. The goal of 

ABM is achieved by a novel combination of two-stage execution, vertical replication and 
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horizontal fragmentation. I evaluate the distribution strategy in ABM with simulations on 

two example applications: white pages and auctions. The simulation results show that, in 

a cluster of 16 nodes, ABM outperforms the basic query-based strategy by a factor of 2 to 

3, outperforms the weighted round-robin strategy by a factor of 6 to 9, and achieves up to 

90% of the ideal performance. The throughput comparison indicates that ABM only 

requires 
4
1  to 

4
3  of the resources in order to achieve the same throughput as the 

alternative strategies. I run experiments with two prototype clusters on Linux servers, one 

with a clustered in-memory database and ABM (called the ABM cluster), the other with a 

replicated database and large buffer cache (called the REP cluster). Measurements with 

trace-based benchmarks under various access patterns show that, in a cluster of 8 nodes, 

ABM outperforms the REP cluster by a factor of 2 to 7. The throughput comparison 

indicates that the ABM cluster only requires 
3
1  to 

2
1  of the resources in order to achieve 

the same throughput as the REP cluster. The experimental results also suggest that the 

centralized manager in ABM will not likely become a bottleneck for clusters with less 

than 20 nodes.  

I have designed and implemented a consistency protocol for the replicated metadata in 

the island-based file system and the clustered in-memory database. The correctness of the 

protocol is checked in a randomized test engine. The impact of the consistency protocol 

on the performance and scalability of Archipelago is studied in micro benchmarks and 

trace-based operation mixes. The results show that the protocol does not have a 

noticeable impact on the common operations. This leads to my belief that it is possible to 

distribute data in a cluster under such a protocol that the system can both achieve high 

availability and strong consistency, and scale efficiently with the cluster size. 

In summary, I learn from my dissertation work that a good distribution strategy for 

cluster-based Internet infrastructures should strive to partition and replicate data in such a 

way to address locality, load balance, consistency and autonomy with balanced efforts. 

To design and implement such a system, it pays to gain insights into the content 

structures and access patterns of representative applications, then generalize and exploit 
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those insights for a wider range of applications. 

6.2 Future work 

In the near future, I would like to extend my work on the data distribution strategies to 

global or geographical distribution of Internet services with dynamic or multimedia 

content. Scaling a local, cluster-based server and delivering content with globally 

replicated servers are complementary approaches to improving the overall availability 

and scalability of Internet services. I am interested in studying the interaction of the two 

approaches, especially for dynamic data that is updated under various consistency 

requirements and for confidential data that cannot be replicated to un-trusted sites. I 

expect that global distribution of services with dynamic content involves partitioning and 

replication of functionality as well as data. 

I am also interested in exploring a related research area, system management of large 

server farms, e.g. dynamically installing, configuring, booting and launching operating 

systems and software. I learn from my personal experience that it is unexpectedly painful 

to run even a small cluster, and that the amount of system management work grows as a 

function of the number of tasks for the cluster as well as of the number of nodes in the 

cluster. Despite the availability of various management software with GUIs in the market, 

I believe that some fundamental research needs to be done in operating systems and/or 

network protocols in order to make a large cluster manageable. 
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