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Abstract

This paper describes and evaluates a probabilistic
packet scheduling algorithm for achieving propor-
tional bandwidth allocation among TCP flows. With
our approach, either end hosts or edge routers tag each
packet with a ticket that represents the share of net-
work bandwidth this flow should receive. Routers
then probabilistically decide when to forward/drop a
packet based on the value of this ticket and the cur-
rent congestion level. Our approach accommodates
network topologies that span multiple domains by al-
lowing a packet to trade in the tickets it was granted in
the source domain for an equitable number of tickets
in the target domain. The bandwidth allocation can be
controlled by either a sender-based or a receiver-based
version of the algorithm.

1 Introduction

Achieving a fair allocation of network bandwidth
among competing flows has been a subject of intense
research in recent years. Early approaches, beginning
with Weighted Fair Queuing (WFQ) and culminat-
ing in the Integrated Services architecture [2, 8], were
able to make strong promises about the level of service
provided to a given flow, but at the expense of scalabil-
ity since routers must maintain per-flow state. Subse-
quent development of the Differentiated Services ar-
chitecture [6, 1, 13], segregated flows into a small
number of service classes (making the solution scal-
able), but at the expense of being able to make only
relative statements about the service a given flow re-
ceives. Recent work by Stoica, Zhang, and Shenker,
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called Scalabe Core (SCORE) [9, 10, 11], attempts to
bridge this gap by having only edge routers maintain
per-flow state, and then encoding this state in packets
for use by core routers in the middle of the network.

This paper proposes an intuitively simple alterna-
tive based on probabilistic packet scheduling (PPS).
The approach is inspired by the probabilistic lottery
scheduling algorithm used by some CPU schedulers
[12]. It works as follows. Either end hosts or edge
routers tag each packet with a ticket that represents
the share of network bandwidth this flow should re-
ceive. Routers then run a variant of the RED algorithm
[3] to probabilistically decide when to forward/drop a
packet based on the value of this ticket and the cur-
rent congestion level. Routers also adjust the ticket
assigned to a packet based on the level of competition
for its outgoing links.

Our approach is difficult to couch as a simple vari-
ant of one of the known techniques. It really defines
a new point in the design space for bandwidth alloca-
tion.

� Like WFQ, PPS gives each flow a weighted share
of the available capacity. However, it does this
probabilistically rather than requiring per-flow
state.

� Like DiffServ, PPS scales well since it does not
require per-flow state, and it makes only rela-
tive distinctions among flows. However, PPS has
two important advantages over DiffServ. First, it
uses more bits to represent the ticket than Diff-
Serv uses to distinguish between classes, which
makes it possible for PPS to differentiate service
with a higher level of accuracy. Second, PPS bet-
ter accommodates network topologies that span
multiple domains by allowing a packet to trade
in the tickets it was granted in the source do-
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main for an equitable number of tickets in the
target domain. This trade—resulting in packet
relabeling—is governed by an exchange rate that
is easily computed by the router connecting the
two domains, based on both static inter-domain
service agreements and the dynamic traffic flow.

� Like SCORE, PPS scales well since it does not
require per-flow state. However, PPS makes a
different tradeoff of simplicity versus hardness
of guarantees. That is, SCORE makes absolute
bandwidth guarantees (PPS makes only relative
differentiations), but at the expense of requring a
non-trivial admission control mechanism. PPS
does not require network-wide admission con-
trol, although a given source host or edge router
is free to deny new flows so as to ensure that ex-
isting flows receive an adequate share of the net-
work. A source is also free to reallocate its ticket
shares in attempt to maintain a particular bit rate.

The rest of this paper describes PPS in more de-
tail, and presents the results of a comprehensive set
of simulations that show that PPS achieves a fair al-
location of network bandwidth among a collection of
competing TCP flows. The paper concludes with a
discussion of the relative strengths and weaknesses of
our approach, as compared with the alternatives.

2 Algorithm

This section describes PPS, which consists of three
components: a packet tagger, a relabeler, and a packet
scheduler. Initially, each packet is tagged with some
number of tickets by a TCP source. The tag is updated
at each hop along the path according to the local work-
load. The tag is then used to determine whether or not
to drop the packet should it encounter congestion. We
have developed both sender-based and receiver-based
versions of PPS. We first introduce the sender-based
algorithm, and postpone discussion of receiver-based
algorithm until Section 2.7.

2.1 Tickets

There are two entities of interest in the network—end
hosts and routers—both of which define a currency in
terms of tickets, and assign some number of tickets-
per-second (t/s) to their inputs in a manner that reflects
the relative importance of the inputs. For a router, the
inputs would be the various incoming links, while for
an end host, the inputs would correspond to the TCP

sources resident on the host. Suppose entityP issues
OutTktRate t/s to inputA. Packets arriving fromA
would be tagged with tickets inP’s currency, but thse
tickets should not exceedOutTktRate t/s. If at some
instant there are packets going fromA to P, we callA
an active source ofP, and all ofA’s tickets issued byP
are active tickets.P, in turn, could have multiple out-
put links. SupposeL is one of them, we letInTktRate
represent the active t/s thatL receives fromP.

Before giving the definition of fairness, we define
a bottleneckfor a TCP flow. TCP flowC may utilize
multiple links from source to destination. If the band-
width of the flow does not increase when we increase
the bandwidth of all links other thanL, thenL is the
bottleneck for flowC. C may have several bottlenecks
or no bottlenecks at all. In the latter case, the through-
put of C is limited by its upper level application not
by the network. Suppose linkL is the bottleneck for
flow C. We callC a poor flow of L. If L is not the
bottleneck ofC, we callC a rich flow of L. We use
InTktRatep andInPktRatep to represent the total t/s
and packets-per-second (p/s)L receives from all of its
poor flows, and useInTktRater and InPktRater to
represent the total t/s and p/s thatL receives from all
of its rich flows. IfL has at least one poor flow, it must
be in congestion. If the capacity ofL is Capacity p/s,
we have:

InTktRate = InTktRatep + InTktRater

Capacity = InPktRatep + InPktRater

2.2 Fairness for One-Hop Flows

We first consider bandwidth allocation among one-
hop TCP flows; we extend our discussion to multi-hop
TCP flows in Sections 2.5 and 2.6. Suppose at some
instant there aren active TCP sourcesC1, C2, : : :, Cn,
contending for linkL. They are issuedOutTktRate1,
OutTktRate2, : : :, OutTktRaten t/s by the control-
ling entity P. Link L receivesInPktRatep p/s and
InTktRatep t/s from all its poor flows. We say that
Ci obtains its “fair” share of bandwidth if one of the
following two conditions is satisfied:

1. If Ci is a rich flow ofL, Ci obtains the bandwidth
it requires;

2. If Ci is a poor flow ofL, Ci obtainsInPktRatep�

OutTktRatei / InTktRatep p/s of bandwidth.

Notice that rich flows do not make full use of their
fair share of bandwidth while poor flows try to obtain
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Figure 1: Example of Fair Allocation of Bandwidth

as much bandwidth as they can. For example, in Fig-
ure 1, entityP defines 1200 t/s in its currency, and it
issues 600, 400 and 200 t/s to TCP sourcesC1, C2 and
C3, respectively. IfC1, C2 andC3 are all poor flows of
L, they should divide the bandwidth ofL at the ratio of
3:2:1. IfC1 has a constant bit rate (CBR) of 0.3Mb/s,
which means it is a rich flow ofL, C1 should obtain
0.3Mb/s bandwidth whileC2 andC3 should divide the
remaining 0.9Mb bandwidth ofL at the ratio 2:1. Sim-
ilarly, if C1 is silent,C2 andC3 should divide the entire
bandwidth ofL at the ratio of 2:1.

2.3 Ticket Tagging

Before sending a packet, the TCP source tags it with
some number of tickets. Later, during the transmis-
sion of the packet through congested links along its
path, the tag is used to determine the probability of
dropping the packet. Suppose TCP sourceA is is-
sued OutTktRate t/s by its controlling entity and
the throughput ofA is AvgRate p/s at this point in
time. We simply tag the outgoing packet withOut-
TktRate / AvgRate tickets. That is, the tickets on
the outgoing packet are inversely proportional to the
instantaneous throughput ofA. To estimate the in-
stantaneous throughput, we use the TSW algorithm
described in [1].
Initially,

WinLength = CONSTANT;
AvgRate = 0;
TswFront = 0;

Upon the arrival of each ACK packet, TSW update its
state variables as follows:

PacketsInTsw = AvgRate � WinLength;
NewPackets = PacketsInTsw

+ AckedPackets;
AvgRate = NewPackets

/ (now - TswFront + WinLength);
TswFront = Now;

TSW maintains three state variables:WinLength,
which is pre-configured and measured in units of
time; AvgRate, which is the estimated instantaneous
throughput; andTswFront, which is the arrival time
of last ACK. The rate estimator can smooth the bursts
of TCP traffic as well as be sensitive to instantaneous
rate variation. TSW estimates the throughput upon the
arrival of each ACK and decays the past history over
time.

2.4 Packet Scheduling

Suppose at some instant there aren active TCP
flows—C1, C2, : : :, Cn—contending for link L.
They are issuedOutTktRate1, OutTktRate2, : : :,
OutTktRaten t/s by their controlling entityP. With-
out loss of generality, supposeC1, C2, : : :, Cm are poor
flows (0� m� n) and the others are rich flows. If a
poor flowCi (0� i �m) tagsAvgTkt = InTktRatep /
InPktRatep tickets onto each of its packets, according
to the ticket tagging algorithm, the throughput ofCi

should beInPktRatep� OutTktRatei / InTktRatep

p/s, which meansCi obtains its fair share of band-
width. Thus, if we can ensure that each poor flow
tags approximately the same number ofAvgTkt tick-
ets onto its packets, we will achieve a fair bandwidth
allocation among them. At the same time, rich flows
should obtain the bandwidth they require. Actually,
rich flows will tag more thanAvgTkt tickets onto their
packets because they do not make full use of their
fair share of bandwidth; this is why we call them rich
flows.

2.4.1 RED algorithm

Our packet scheduling algorithm is based on the ran-
dom early detection (RED) algorithm [3]. RED keeps
the overall throughput high while maintaining a small
average queue length, and tolerates transient conges-
tions. RED operates as follows. When the queue
length exceeds a certain threshold, it drops incom-
ing packets with some probability. The packet loss
causes the affected TCP flows to slow down. The ex-
act drop probability is a function of the average queue
length. The average queue length is calculated using a
low-pass filter from the instantaneous queue lengths,
which allows transient bursts in the queue. Persistent
congestion in the queue is reflected by a high average
queue length and results in a high drop probability.
Upon each packet arrival:

AvgQLen = (1–wght) � AvgQLen
+ wght � CurrentQLen;
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if AvgQLen � MinThresh
enqueue the packet

if MinThresh < AvgQLen < MaxThresh
calculate probability p
drop the packet with probability p

if MaxThresh � AvgQLen
drop the arriving packet

RED has three operating phases, which corre-
spond to theAvgQLen being in the range of[0,
MinThresh], (MinThresh, MaxThresh) and [Max-
Thresh, ∞). The three phases represent normal oper-
ation, congestion avoidance, and congestion control,
respectively. During normal operation, RED doesn’t
drop any packets. During the congestion avoidance
phase, each packet drop serves to notify the TCP
source to reduce its sending rate. During the conges-
tion control phase, all incoming packets are dropped.

2.4.2 Ticket-Based RED (TRED)

Ticket-based RED (TRED) is a modification of RED.
Like RED, TRED also has three phases: normal oper-
ation, congestion avoidance, and congestion control.
TRED operates in the same way as RED in the nor-
mal operation and congestion control phases. During
congestion avoidance, however, TRED uses a differ-
ent method to calculate the drop probability. In ad-
dition to AvgQLen, TRED uses two other variables:
ExpectTkt andInTkt; the former is an estimate of the
number of tickets the link expects a poor TCP flow to
tag onto its packets, and the latter represents the num-
ber of tickets carried by an arriving packet. The TRED
algorithm operates as follows.

Upon each packet arrival:

computeAvgQLen the same as in RED
computeInTktRate using TSW
computeMinTkt as defined below
if InTkt < K � MinTkt

computeExpectTktRate
andExpectPktRate using TSW

if AvgQLen � MinThresh
enqueue the packet

if MinThresh < AvgQLen < MaxThresh
calculate probability p as in RED
ExpectTkt = ExpectTktRate

/ ExpectPktRate
p= p� (ExpectTkt / InTkt) 3

if p> 1 then p= 1
drop packet with probability p

if MaxThresh � AvgQLen
drop the packet

where variableMinTkt represents the least number of
tickets seen on an arriving packet during some inter-
val. It is important to note that although TSW is ap-
plied on a per-flow basis in [1], we apply TSW to the
aggregation of all traffic arriving on a particular link.

Now we consider what happens when the link is
in congestion avoidance phase. We multiply the drop
probability p by (ExpectTkt / InTkt)3. As a result,
the more tickets a packet carries, the less the proba-
bility that it is dropped. Since packets that belong to
rich flows are likely to carry more tickets than packets
belonging to poor flows, their packets are less likely
to be dropped, and hence the poor flows are more
likely to back off during congestion. This adjustment
reflects our intention to preserve the bandwidth ob-
tained by rich flows. Amongst poor flows, those that
put fewer tickets on their packets are more likely to
back off than those that tag more tickets to their pack-
ets. When a flow backs off, its sending rate and in-
stantaneous throughput slow down and it will begin
to tag more tickets onto its packets. In the end, we
expect all poor flows to tag approximately the same
number of tickets on their packets; we call this num-
berAvgTkt’, but we cannot know it exactly. Note that
althoughAvgTkt’ does not equalExpectTkt, a greater
ExpectTkt does reflect a greaterAvgTkt’, and vice
versa.

In the above algorithm, we multiply the drop prob-
ability p by a cubic function of(ExpectTkt / InTkt).
This function represents a tradeoff between maintain-
ing high link utilization and achieving fast conver-
gence. If we use a function with higher rank, the
number of tickets on the packets of poor flows will
converge toAvgTkt’ faster, but the link utilization will
be lower because we drop packets with less thanEx-
pectTkt tickets more aggressively in the congestion
avoidance phase. The algorithm also ensures that the
number of tickets on most packets of poor flows will
be in the range of[MinTkt, K� MinTkt] for K � 1. In
our experiments, the number of tickets on more than
98% of the packets of poor flows is in this range if we
setK = 1:4.

The next issue is how to calculateExpectTkt,
where our goal is to keepExpectTkt close toAvgTkt.
This is because the packets of rich flows will be
dropped with a relative low probability since they
carry more thanAvgTkt tickets. At the same time,
if a poor flow tags much fewer tickets onto its packets
than another poor flow, the packet drop probability of
the former will be much higher than that of the lat-
ter. However, both probabilities are less than 1. We
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calculateExpectTkt as the average number of tick-
ets on those packets that fall in the range of[MinTkt,
K� MinTkt]. As AvgTkt equals toInTktRatep /
InPktRatep, most packets of poor flows will be in
this range. Although it is possible that some packets
of rich flows will also fall in this range,ExpectTkt is
still in the range of[AvgTkt, K� AvgTkt].

As we said in the beginning of Section 2.4, we
optimally expect each poor flow to tagAvgTkt =
InTktRatep / InPktRatep tickets onto its packets,
but in reality, we cannot differentiate between poor
flows and rich flows, meaning we cannot precisely
calculateAvgTkt. However, the algorithm tries to
keepAvgTkt’ aroundAvgTkt by adjustingExpect-
Tkt. WhenAvgTkt’ is less thanAvgTkt, which means
poor flows obtain more than their fair share of band-
width, AvgQLen will increase accordingly. This
causes the poor flows to slow down, and tag more tick-
ets onto their future packets. As a result,MinTkt and
ExpectTkt will increase together withAvgTkt’. On
the other hand, whenAvgTkt’ is greater thanAvgTkt,
the algorithm will cause it to decrease. In the end, the
algorithm tries to keepAvgTkt’ close toAvgTkt, so as
to fairly allocate bandwidth among poor flows.

2.5 Tag Relabeling

The previous sections consider only TCP flows with
one hop. In real networks, a flow may go through
many hops before reaching the destination. To allo-
cate fair share of bandwidth among multi-hop flows,
we need to relabel the tags on packets at each hop. Be-
cause different entities may have their own local cur-
rencies, tickets in one currency are only meaningful
to the entity that issues them. Thus, when going from
one entity to another, we need to relabel the tags ac-
cording to some currency exchange rate. We calculate
the exchange rate at each link as follows:

XRate = OutTktRate / InTktRate

As before,InTktRate corresponds to the active t/s the
link receives at some instant, and it is computed with
the TSW algorithm. TheOutTktRate is the t/s issued
to the link by its controlling entity. For each packet,
we relabel its tag as follows:

OutTkt = InTkt � XRate

In other words, the PPS relabeling algorithm simply
convertsInTkt in one entity’s currency toOutTkt in
the currency of the next hop entity.

2.6 Fairness for Multi-Hop Flows

Suppose a TCP flowC originates from sourceA,
which has been issuedOutTktRate t/s by P. Also
suppose thatC’s bottleneck is link (S, T). Based on
the per-hop exchange rates fromA to S, we can con-
vert OutTktRate in P’s currency intoInTktRatec t/s
in S’s currency. Suppose the throughput ofC is Av-
gRate, the total t/s and p/s of all poor flows of link
(S, T) areInTktRatep andInPktRatep. We say flow
C obtains its fair share of bandwidth if:

AvgRate = InPktRatep� InTktRatec

/ InTktRatep

S0

S1

S2

S3

S4

S5 S6

10Mb/s
1000 t/s

10Mb/s
500 t/s

10Mb/s
1000 t/s

2Mb/s
900 t/s

1Mb/s
300 t/s

1Mb/s
1200 t/s

Figure 2: Multi-Hop Example

In Figure 2 for example, there are three TCP flows:
A betweenS0 and S6, B betweenS1 and S6, andC
betweenS2 and S6. Links (S0, S3) and (S1, S3) re-
ceive 1000 and 500 t/s fromS3, respectively; link (S2,
S4) receives 1000 t/s fromS4; and links (S3, S5) and
(S4, S5) receive 900 and 300 t/s fromS5, respectively.
The bandwidth of link (S5, S6) is 1Mb/s. Tickets of
flow A, B andC are converted to 600, 300 and 300 t/s,
respectively, inS5’s currency. When all three flows
are poor,A, B andC should obtain 0.5Mb/s, 0.25Mb/s
and 0.25Mb/s bandwidth respectively. WhenB has a
constant bit rate of 0.16Mb/s, which is less than its
fair share bandwidth of 0.25Mb/s.B should obtain
0.16Mb/s whileA andC should obtain 0.56Mb/s and
0.28Mb/s, respectively. WhenB is silent, A andC
should divide the full bandwidth of link (S5, S6) at the
ratio of 2:1.

We now explain how the algorithm ensures that
flow C obtains its fair share of bandwidth. Since link
(S, T) is a bottleneck forC,C is a poor flow of the link.
From the TRED algorithm, we know that each packet
of C will carry approximatelyAvgTkt tickets when
passing through link(S, T), so the bandwidth thatC
obtains on link (S, T) is approximatelyInTktRatec

/ AvgTkt. Because link (S, T) is the bottleneck of
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C, AvgRate, the throughput ofC should equal to the
bandwidth thatC obtains on link (S, T). Thus, we get:

AvgRate
= InTktRatec / AvgTkt
= InPktRatep � InTktRatec / InTktRatep

This is what we are trying to achieve. Thus,C will
obtain its fair share of bandwidth.

2.7 Receiver-Based Algorithm

In the sender-based algorithm, each entity defines
its own currency (S-currency) and issues some t/s
in S-currency to its input links or TCP sources. In
the receiver-based algorithm, each entity defines its
own currency (R-currency) and issues some t/s in R-
currency to its output links or TCP sinks. The idea
behind the receiver-based algorithm is that we try to
reconstruct S-currency from R-currency for each en-
tity and compute how many t/s in S-currency an entity
should issue to its input links or TCP sources. After
this, we can simply run the sender-based algorithm to
achieve fair bandwidth allocation among TCP flows.

2.7.1 ACK Packet Tagging and Relabeling

In the sender-based algorithm, only data packets are
tagged by the TCP sources and then relabeled at each
hop. In the receiver-based algorithm, data packets are
still tagged and relabeled, but ACK packets are also
tagged by the TCP sinks and then relabeled at each
hop. The difference between the tags on data packets
and the tags on ACK packets is that the former is used
to calculate the drop probability of the data packet
when congestions occurs, while the latter is used to
calculate how many t/s in S-currency an entity should
issue to its input links or TCP sources.

The tagging and relabeling algorithms for ACK
packets are similar to those for data packets.

Tagging algorithm at TCP sink:

Before sending out an ACK packet, cal-
culate the sending rate of ACK pack-
ets, AckAvgRate, using the TSW algo-
rithm. Tag the ACK packet withAckOut-
TktRate / AckAvgRate tickets.

Relabeling algorithm at link:

Upon arrival of each ACK packet, calculate
t/s carried by the ACK packets,AckInTk-
tRate, using the TSW algorithm. Calcu-
late the exchange rate for an ACK packet as

AckXRate = AckOutTktRate / AckInTk-
tRate. Relabel the ACK packet withAck-
OutTkt = AckInTkt � AckXRate.

The AckOutTktRate stands for t/s that an entity
issues to its output links or TCP sinks in R-currency.
We use the tickets carried by ACK packets to calculate
how many t/s in S-currency that an entity should issue
to its input links or TCP sources as follows:

OutTktRate = AckInTktRate

This means the ticket rate a link or an agent can tag
on its outgoing data packets equals to the ticket rate it
receives from the incoming ACK packets. From the
above, we can deduce that at each link:

InTktRate = AckOutTktRate

This means the ticket rate a link or a sink receives
from the incoming data packets equals to the ticket
rate it tags on its outgoing ACK packets. So for each
link, the exchange rate,

XRate
= OutTktRate / InTktRate
= AckInTktRate / AckOutTktRate
= 1 / AckXRate

For any flowC that passes through linkL, we use
AckInTktRatec andInTktRatec to represent the t/sL
receives from ACK packets and data packets ofC. We
useAckOutTktRatec andOutTktRatec to represent
the t/sL tags onto ACK packets and data packets ofC.
We can further show that:

OutTktRatec = AckInTktRatec

InTktRatec = AckOutTktRatec

Having defined S-currency for each entity, we can
now run the sender-based algorithm in the same way
as described before.

2.7.2 Fairness

The fairness definition for receiver-based algorithm is
similar to that for sender-based algorithm. Suppose a
TCP flowC goes to from sourceB on end hostQ to
sink A on end hostP. A is issuedAckOutTktRate
t/s by P and the bottleneck of the flow is link (S, T).
Based on the per-hop ACK exchange rates fromA to
T, we can convertAckOutTktRate in P’s R-currency
into AckInTktRatec t/s in T ’s R-currency. Suppose
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the throughput of flowC is AvgRate p/s. Link (S,
T) receivesAckInTktRatep t/s from the ACK packets
of all poor flows. The throughput of all poor flows
is InPktRatep p/s. We sayC obtains its fair share of
bandwidth, if they satisfy:

AvgRate = InPktRatep� AckInTktRatec

/ AckInTktRatep

S6 S5

S3

S0

S1

S4

S2

1Mb/s
1200 t/s

2Mb/s
900 t/s

1Mb/s
300 t/s

10Mb/s
1000t/s

10Mb/s
500 t/s

10Mb/s
1000 t/s

Figure 3: Example of Receiver-Based Algorithm

For example, in Figure 3 there are three TCP flows:
A betweenS6 and S0, B betweenS6 and S1, andC
betweenS6 and S2. Links (S3, S0) and (S3, S1) re-
ceive 1000 and 500 t/s fromS3, respectively; link
(S4, S2) receives 1000 t/s fromS4; links (S5, S3) and
(S5, S4) receive 900 and 300 t/s fromS5, respec-
tively. The bandwidth of link (S6, S5) is 1Mb/s. Tick-
ets of flow A, B and C are converted to 600, 300
and 300 t/s, respectively, inS5’s R-currency. When
all three flows are poor flows,A, B, andC should
obtain 0.5Mb/s, 0.25Mb/s and 0.25Mb/s bandwidth,
respectively. WhenB has a constant bit rate of
0.16Mb/s, which is less than its fair share bandwidth
of 0.25Mb/s,B should obtain 0.16Mb/s, whileA and
C should obtain 0.56Mb/s and 0.28Mb/s, respectively.
WhenB is silent,A andC should divide the full band-
width of link (S6, S5) at the ratio of 2:1.

We now explain why our receiver-based algorithm
can fairly allocate bandwidth for flowC. Suppose link
(S, T) receivesInTktRatec and InTktRatep t/s from
data packets of flowC and all poor flows respectively,
and the ACK exchange rate of this link isAckXRate.
From the sender-based algorithm:

AvgRate = InPktRatep� InTktRatec

/ InTktRatep

But for link (S, T):

InTktRatec = AckOutTktRatec

InTktRatep = AckOutTktRatep

AckOutTktRatec = AckInTktRatec�

AckXRate
AckOutTktRatep = AckInTktRatep�

AckXRate

Combine all of the above, we get:

AvgRate = InPktRatep� AckInTktRatec

/ AckInTktRatep

So our receiver-based algorithm will fairly allocate
bandwidth for any TCP flow.

2.8 Ticket Policing

As discussed in Section 2.3 and 2.5, a TCP source
or link tags each outgoing packet subject to the con-
straint that the rate at which tickets are consumed does
not exceedOutTktRate t/s. To ensure the source or
link adheres to this rate, we measure the actual ticket
sending rate,ActualTktRate, with the TSW algo-
rithm, and then adjust the amount of tickets that are
tagged to the packet as follows:

At source:

OutTkt = OutTktRate / AvgRate �
OutTktRate / ActualTktRate

At links:

OutTkt = InTkt � XRate �
OutTktRate / ActualTktRate

Without such adjustment, a source or link may have
a higher or lower ticket sending rate than its allocated
rate.

3 Simulation Results

This section reports the results of several simulations
designed to evaluate our probabilistic packet schedul-
ing algorithm’s ability to fairly allocate bandwidth
among TCP flows. We use the NS network simula-
tor for our simulations [7]. We conducted each of
the following experiments for both the sender-based
and receiver-based algorithm, although we show the
results for the only sender-based algorithm. There
were no qualitative differences between the results of
sender-based and receiver-based algorithms. In all
experiments, theWinLength parameter used in the
TSW algorithm is set to 60 seconds [1]. To amortize
the instability during initialization, all experiments
run for 600 seconds of simulated time.
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3.1 One-Hop Configuration

Our first experiment measures how fairly our algo-
rithm allocates bandwidth when there is a single con-
gested link. We use the configuration shown in Fig-
ure 4, where nine TCP flows share a 1.5Mb/s bot-
tleneck link. The flows are assigned an incremental
number of t/s, ranging from 100 to 900. The RTT for
all flows is 26ms; we study the influence of RTT sep-
arately in another experiment. The throughputs are
measured over the whole simulation. As shown in
Figure 5, the achieved throughput is proportional to
the number of t/s given to each flow.
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Figure 4: Configuration for one-hop simulation.
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Figure 5: Bandwidth allocation for one-hop configu-
ration. The x and y coordinate of each point represent
the t/s issued to the flow and measured bandwidth of
the flow.

3.2 Multi-Hop Configuration

We next study the bandwidth allocation among multi-
hop TCP flows. Figure 6 shows the network configu-
ration we tested. It has three TCP flows: A between
S0 andS6, B betweenS1 andS6, and C betweenS2 and
S6. Links (S0, S3) and (S1, S3) receive 1000 and 500
t/s from S3; link (S2, S4) receives 1000 t/s fromS4;
and links (S3, S5) and (S4, S5) receive 900 and 300 t/s,
respectively, fromS5. All three flows share the bot-
tleneck 1Mb/s bandwdith of link (S5, S6). Tickets of
flow A, B and C are converted to 600, 300 and 300 t/s,
respectively, inS5’s currency. According to our fair-
ness definition, A, B and C should obtain 0.5Mb/s,
0.25Mb/s and 0.25Mb/s of bandwidth, respectively,
and as shown in the middle column of Table 1, they
do. As the table also shows that the three flows were
able to consume 98% of the bottleneck link’s capacity.
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Figure 6: Configuration for multi-hop simulation.

Flow Measured Expected
Rate (Mb/s) Rate (Mb/s)

A 0.48 0.50
B 0.25 0.25
C 0.25 0.25

Total 0.98 1.00

Table 1: Bandwidth allocation for multi-hop configu-
ration.

3.3 Variable Traffic

This experiment evaluates how well the algorithm ad-
justs to variations in the source sending rate. We use
the same topology as in Figure 6, but when the simu-
lation begins, only flow B and C are active; flow A be-
comes active after 300 seconds. The results are shown
in Figure 7, where the x-axis is time and the y-axis is
instantaneous throughput. As the plot clearly shows,
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B and C obtain approximately 0.75Mb/s and 0.25Mb/s
of bandwidth from bottleneck link (S5, S6) in the first
300 seconds, but after A starts up, A, B and C quickly
converge to 0.5Mb/s, 0.25Mb/s and 0.25Mb/s, respec-
tively.
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Figure 7: Adapting to new traffic.

3.4 Variable Ticket Allocation

Our algorithm can flexibly control bandwidth alloca-
tion among TCP flows by dynamically adjusting the
rate at which tickets are issued. This permits an ap-
plication to adjust its share in effort to maintain a cer-
tain transmission speed. To see this, we again use the
topology in Figure 6, where in the beginning, each
link is issued the same amount of tickets as in Sec-
tion 3.2, but after 300 seconds, the t/s issued to link
(S0, S3) changes from 1000 to 600 and the t/s issued
to link (S1, S3) changes from 500 to 900. By our
fairness criteria, we expect the instantaneous through-
put of A to change from 0.5Mb/s to 0.3Mb/s, and
the instantaneous throughput of B to change from
0.25Mb/s to 0.45Mb/s. The throughput of C should
not change. As can be seen in Figure 8, the system be-
haves as expected. The important point is that our al-
gorithm insulates bandwidth allocation decisions from
one another—that is, the variation of A and B has vir-
tually no influence on C.

3.5 Fairly Sharing Unused Capacity

Sometimes a flow cannot make full use of its fair share
of bandwidth because the application generates bytes
at a lower rate. The unused bandwidth should be fairly
allocated among the other flows so as to achieve high
link utilization. To test the ability of our algorithm
to achieve high link utilization in a fair way, we again
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Figure 8: Bandwidth allocation as ticket rates change.

use the topology from Figure 6, but this time the traffic
from flow B is generated by an application that trans-
mits at a fixed rate of 0.16Mb/s, less than its fair share
of 0.25Mb/s. Flow A and C should divide the remain-
ing 0.84Mb/s bandwidth at the ratio of 2:1 since their
local tickets are converted to 600 and 300 t/s inS5’s
currency. As shown in Table 2, this is exactly what
happens.

Flow Measured Expected
Rate (Mb/s) Rate (Mb/s)

A 0.53 0.56
B 0.16 0.16
C 0.29 0.28

Total 0.98 1.00

Table 2: Fair sharing of unused capacity.

3.6 Multiple Output Links

In all the experiments up to this point, the flows share
a common bottleneck link, and each router has only
one output link. In this experiment, we study how our
algorithm can fairly allocate bandwidth when some
flows have different bottlenecks and routers have mul-
tiple output links. We ran a series of experiments us-
ing the topology given in Figure 9. In this scenario,
there are three TCP flows—A, B and C—running be-
tween (S0, S8), (S1, S7) and (S2, S8), respectively.
Links (S0, S3) and (S1, S3) are issued 1000 and 500
t/s by S3; link (S2, S4) is issued 1000 t/s byS4; links
(S3, S5) and (S4, S5) are issued 900 and 300 t/s byS5;
and link(S5, S6) is issued 1200 t/s byS6.

In the first experiment, we assume the bandwidth of
link (S6, S7) is 1Mb/s and the bandwidth of link (S6,
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Figure 9: Complex configuration with multiple bottle-
neck links.

S8) is 10Mb/s. The bottleneck of flows A and B is link
(S3, S5), while the bottleneck of flow C is link (S4, S5).
By our fairness definition, flow A and B should divide
the 2Mb/s bandwidth of link (S3, S5) at the ratio of 2:1,
and flow C should obtain all the bandwidth of link (S4,
S5). The actual results are shown in Table 3.

Flow Measured Expected
Rate (Mb/s) Rate (Mb/s)

A 1.24 1.33
B 0.70 0.67
C 0.98 1.00

Table 3: Multiple Bottleneck Links: Scenario I.

In the second experiment, we set the bandwidth of
link (S6, S7) to 10Mb/s and the bandwidth of link (S6,
S8) to 1Mb/s. Now, the bottleneck of flows A and C
is link (S6, S8), while the bottleneck of flow B is link
(S3, S5). The 1000 t/s of links (S0, S3) and (S2, S4) are
converted to 600 and 300 t/s inS6’s currency. By our
fairness criteria, flow A and C should obtain 0.67Mb/s
and 0.33Mb/s bandwidth from link (S6, S8), respec-
tively. Moreover, since A is a rich flow of link (S3, S5)
and B is a poor flow, B should obtain the remaining
1.33Mb/s bandwidth of link (S3, S5). The measured
results are shown in the middle column of Table 4.

Flow Measured Expected
Rate (Mb/s) Rate (Mb/s)

A 0.63 0.67
B 1.28 1.33
C 0.35 0.33

Table 4: Multiple Bottleneck Links: Scenario II.

Note that although link (S0, S3) is issued twice as
many t/s as link (S1, S3), the actual bandwidth A ob-
tains is less than that of B. This may seems unfair at
first glance, but because A and B are going to differ-

ent destinations, they have different bottlenecks in the
network. The throughput of A is limited by link (S6,
S8), so it cannot make full use of its fair share of band-
width at link (S3, S5) and the unused bandwidth of A
is allocated to B. From this experiment, we know that
the actual bandwidth obtained by a flow is related to
both its issued ticket rate and its bottleneck.

In a final experiment, we set the bandwidth of links
(S6, S7) and (S6, S8) to 1Mb/s. This means that the
bottleneck of flow A and C is link (S6, S8) and the
bottleneck of flow B is link (S6, S7). By our fair-
ness definition, flow A and C should obtain 0.67Mb/s
and 0.33Mb/s bandwidth from link (S6, S8), and flow
B should obtain the full bandwidth of link (S6, S7).
These results are confirmed in Table 5.

Flow Measured Expected
Rate (Mb/s) Rate (Mb/s)

A 0.64 0.67
B 0.98 1.00
C 0.34 0.33

Table 5: Multiple Bottleneck Links: Scenario III.

3.7 RTT Biases

It is well-known that TCP has a bias against flows
with large round trip time. To understand the rela-
tionship between our algorithm and RTT, we experi-
mented with two different configurations.

The first configuration is depicted in Figure 10,
where ten flows share a bottleneck of 1.0Mb/s and all
input links are all issued 200 t/s. Given this config-
uration, we first set all the RTTs to 30ms. (This set-
ting also serves to demonstrate that our algorithm is
able to finely split bandwidth among many compet-
ing flows.) We then let the RTT of the flows vary,
incrementally, from 30ms to 300ms. As can be seen
from Table 6, there is only a slight bias against long-
RTT flows; each flow gets close to one-tenth of the
available capacity. This is because when a flow with
large RTT backs off, it tags more tickets onto each of
its packets. When contending with other flows, the
large-RTT packets are more likely to get through and
the flow recovers to its fair share of bandwidth faster
than standard TCP.

The second configuration is depicted in Figure 4. In
this case, we first set the RTT of flow 1, which is is-
sued 100 t/s, to 300ms, and the RTT of all other flows
to 30ms. We then reset the experiment so that the RTT
of flow 9, which is issued 900 t/s, is 300ms and the
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Figure 10: Configuration used for RTT experiments:
Scenario I.

RTT of all other flows is 30ms. As we can see from
the results shown in Figure 11 and Figure 12, a large
RTT has more negative influence on flow 9 than flow
1. This is because the fair share of bandwidth of flow
9 is greater than that of flow 1. When both flows back
off, flow 9 loses more bandwidth than flow 1, so it
takes longer for flow 9 to recover to its fair share of
bandwidth than for flow 1.

3.8 Comparison with DiffServ

DiffServ installs service profiles at end hosts and tags
each packet with one bit (in/out) to indicate if the
packet is beyond the limits set by its service profile
[1]. When congestion happens, routers preferentially
drop packets sent outside the profile. DiffServ works
well when the link capacity matches the service pro-
files, but this condition is inherently hard to achieve.
Because the service profiles are just expected sending
rates, they do not take into account the full path taken
by flows. It is possible that many flows contending for
some link in the middle of the network, or those links
that were expect to be shared are temporarily idle. It
is not possible to guarantee the link capacity matches
the total target profile rate of contending flows at any
time at any place in the network.

To evaluate the impact of this effect, we run a series
of experiments that measure the behavior of DiffServ

RTT Measured RTT Measured
(ms) Rate (Mb/s) (ms) Rate (Mb/s)
30 0.100 300 0.093
30 0.099 270 0.093
30 0.100 240 0.095
30 0.099 210 0.095
30 0.100 180 0.097
30 0.100 150 0.099
30 0.100 120 0.099
30 0.099 90 0.101
30 0.100 60 0.102
30 0.100 30 0.103

Total 0.997 Total 0.977

Table 6: Variable RTT: Scenario I.
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Figure 11: Variable RTT: Scenario II. RTT of flow 1
is 300ms, RTT of all other flows is 30ms

when there is a mismatch between link capacity and
service profiles. We use the topology in Figure 13,
which has 3 flows (A, B and C) contending for link (P,
Q) with a bandwidth of 1.2Mb/s. For each scenario,
our algorithm allocates bandwidth in proportion to the
service profiles of the three flows, independent of the
available capacity. In the tables that follow, the second
column gives the service profile used by DiffServ, the
third column gives the measured rate achieved by each
flow using DiffServ, and the fourth column gives the
measured rate achieved by the PPS algorithm. The
tables do not show the actual ticket assignment used
by PPS, but they were at the same ratio (3:2:1) as the
service profiles.

1. The target sending rate (service profile) of A, B
and C are 0.6Mb/s, 0.4Mb/s and 0.2Mb/s, respec-
tively, which matches the 1.2Mb/s capacity of the
shared link. As we can see from Table 7, Diff-
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Figure 12: Variable RTT: Scenario II. RTT of flow 9
is 300ms, RTT of all other flows is 30ms
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Figure 13: Configuration for comparing PPS with
DiffServ.

Serv and our algorithm work equally well when
the link capacity matches the service profiles.

2. The target rate of A, B and C are 0.15Mb/s,
0.1Mb/s and 0.05Mb/s, respectively, which is far
below the available 1.2Mb/s link capacity. As
we can see from Table 8, DiffServ allocates the
bandwidth that exceeds the total expected band-
width arbitrarily, while PPS allocates the band-
width in proportion to the t/s assigned to each
flow.

3. The expected sending rate of A, B and C are
1.2Mb/s, 0.8Mb/s and 0.4Mb/s, respectively,
which exceeds the capacity available on link (P,
Q). As a consequence, many in-profile packets
are dropped, causing DiffServ to degenerate to
best effort. The results are shown in Table 9.

3.9 Ticket Bits

We use 8-bit tags in all the experiments reported in
this section, which means the number of tickets on

Flow Service Measured Measured
Profile DiffServ PPS

A 0.60 0.59 0.58
B 0.40 0.40 0.40
C 0.20 0.21 0.21

Total 1.20 1.20 1.19

Table 7: PPS versus DiffServ: Profile matches capac-
ity (Mb/s).

Flow Service Measured Measured
Profile DiffServ PPS

A 0.15 0.43 0.58
B 0.10 0.42 0.40
C 0.05 0.35 0.21

Total 0.30 1.20 1.19

Table 8: PPS versus DiffServ: Profile less than capac-
ity (Mb/s).

each packet is in the range [0, 255]. We have exper-
imented with both fewer and more bits, and as one
would expect, the more bits we use, the finer differen-
tiation we can make among TCP flows. There are two
important points to make, however. First, the number
of bits needed is independent of the number of hops
across the network. Tickets are relevant on only a sin-
gle router at a time. Hence, we are not concerned that
more complex topologies will require more bits. Sec-
ond, the number of bits needed is dependent on the
levels of service one wants to differentiate among on a
given router. It is independent of the number of flows
one is trying push through the router.

From a practical point of view, Stoica and Zhang
describe how the 13-bitip o f f field in IP header can
be added to the 4 bits from the type of service (TOS)
to create a 17-bit tag [11]. Our simulations suggest
that this is more than enough for our approach.

4 Non-Responsive Flows

Tickets represent the share of network bandwidth
a flow should receive. When congestion occurs,
those packets without enough tickets are likely to
be dropped. When an adaptive protocol like TCP
detects such drops, it sends fewer packets—placing
more tickets on each packet—thereby increasing the
likelihood of its packets being delivered. The question
is what to do about non-adaptive flows, such as those
managed by UDP. One option is nothing. Such flows
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Flow Service Measured Measured
Profile DiffServ PPS

A 1.20 0.41 0.58
B 0.80 0.42 0.40
C 0.40 0.37 0.21

Total 2.40 1.20 1.19

Table 9: PPS versus DiffServ: Profile greater than ca-
pacity (Mb/s).

would effectively be penalized for sending at too fast
a rate since the flows’ packets would have insufficient
tickets to make them through a congested link. This
would effectively force all flows to be adaptive, which
is arguably a good thing.

An alternative is for routers to harvest the tickets on
any packets they are about to drop, and distribute these
tickets to other needy packets, thereby improving their
odds of being delivered. Clearly, this cannot be done
on a per-flow basis without suffering the same scala-
bility problems as IntServ, but it is possible to recover
lost tickets on a router-wide basis.

To simplify the discussion, we assume only the
sender-based scheme for one-hop UDP flows; the ap-
proach can be extended to multi-hop scenarios and the
receiver-based approach. The tagging and relabeling
mechanisms of UDP flows are similar to those of TCP.
We measure the sending rate,AvgRate, at the UDP
source, tagOutTktRate / AvgRate tickets on each
outgoing packet, and relabel each packet based on
some currency exchange rate when it passes through a
link. We then modify the packet scheduling algorithm
as follows:

Upon each packet arrival:

computeAvgQLen the same as in RED
computeInTktRate the same as in TRED
if AvgQLen � MinThresh

enqueue the packet
if MinThresh < AvgQLen < MaxThresh

AvgTkt = InTktRate / Capacity ;
p= max(0;1�InTkt / AvgTkt);
if p> 0

augment the tickets on the
packet fromInTkt to AvgTkt;

drop the packet with probability p
if MaxThresh � AvgQLen

drop the arriving packet

In the above pseudo-code,Capacity stands for the
link capacity andAvgTkt represents the number of

tickets the link expects for each incoming packet. If
all incoming packets carryAvgTkt tickets, the total
incoming packet rate will beInTktRate / AvgTkt =
Capacity. Now, suppose UDP sourceA is issued
OutTktRatea t/s from its controlling entityP and the
sending rate ofA is AvgRate p/s. The output link
capacity isCapacity p/s and the link receivesInTk-
tRate t/s fromP. When congestion happens:

InTkt = OutTktRatea / AvgRate
AvgTkt = InTktRate / Capacity
p= max(0;1� InTkt / AvgTkt)
= max(0;1�OutTktRatea�

Capacity / AvgRate / InTktRate)

If AvgRate / Capacity � OutTktRatea / InTk-
tRate, which means the sending rate ofA is less than
or equals to its fair share of bandwidth, thenp = 0.
We’ll keep the packet ofA. If AvgRate / Capacity >
OutTktRatea / InTktRate, which means sending rate
of A is greater than its fair share, then 0< p< 1. The
actual bandwidthA obtains is:

(1� p)� AvgRate
= OutTktRatea � Capacity / AvgRate

/ InTktRate � AvgRate
= Capacity � OutTktRatea / InTktRate

This is exactly the fair share of bandwidth thatA
should obtain. Note that if a packet should be dropped
with probability p (0 < p < 1) but not dropped, its
tickets are augmented toAvgTkt. The reason is that
only (1� p) fraction of the total packets fromA can
survive, which meansp fraction of its tickets are lost.
We want to keep the total tickets ofA unchanged after
passing through the link. So we augment the tickets
on those survived packets 1=(1�p) times. As a result,
the total t/s on those survived packets ofA is:

AvgTkt �(1� p)� AvgRate
= InTktRate / Capacity � Capacity

� OutTktRatea / InTktRate
= OutTktRatea

So at one hop, a UDP flow obtains its fair share of
bandwidth, and at the same time, keeps the same total
amount of t/s.

Note that this idea is similar to that of SCORE [9],
in which each flow tags its packets with its sending
rate. When congestions happen, the packet is dropped
with some probabilityp, which is determined by the
estimated fair share rate and the sending rate of the
flow.
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5 Related Work

As described in the Introduction, PPS can be under-
stood relative to WFQ/IntServ, DiffServ, and SCORE.
The additional point revealed by the simulations is
that PPS is much more effective than DiffServ when
profiles are less or more than the available link ca-
pacity, which is likely to happen somewhere in the
network, especially at the boundary between DiffServ
domains.

Also as mentioned in the Introduction, PPS was di-
rectly motivated by lottery scheduling [12], which is a
mechanism by which an OS grants tickets to processes
competing for CPU cycles. Like lottery scheduling,
the most powerful aspect of PPS is that it the band-
width obtained by a flow is proportional to the rela-
tive share of ticket rate that it is issued. Also there
need not be a single currency—each network is free to
adopt its own currency (the boundary routers merely
need to implement the exchange rate). The probabilis-
tic strategy eliminates the need for per-flow state, yet
fairly allocates bandwidth among competing flows.

Turning to other similar schemes, Gupta proposed
a priority scheduling of packets belonging to different
users [4]. Higher priority packets always depart the
routers first. This scheme may result in the starvation
of lower priority users. Compared with their scheme,
PPS ensures the users with less allocated tickets rate
always obtain their fair share of bandwidth.

MacKie-Mason and Varian propose a smart market
mechanism that attaches a bid to each packet for each
hop [5]. This bid is used to determine the packet’s
chance of being forwarded. But there is no obvious
relationship among the hop-by-hop bids. Our algo-
rithm puts tickets onto packets at end hosts and the
tag is relabeled at each hop according to the exchange
rates. When a packet carries less tickets than those re-
quired by the link and gets dropped, the correspond-
ing sender will adapt and put more tickets onto future
packets.

6 Conclusions

This paper describes probabilistic packet scheduling
algorithm (PPS) for achieving fair bandwidth alloca-
tions among TCP flows. We use tickets to represent
a relative share of bandwidth that a flow should re-
ceive. Packets are tagged with tickets at TCP sources,
and then relabeled at each hop according to an ex-
change rate calculated from the current aggregate traf-
fic. When congestion occurs, PPS calculates the drop

probability of a packet based on the congestion level
and the tickets the packet carries. We give a defini-
tion of fair bandwidth allocation and demonstrate how
the algorithm can ensure such fairness for TCP flows.
Both sender-based and receiver-based algorithms have
been developed. The main advantages of the algo-
rithm are its scalability and simplicity.
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