Probabilistic Packet Scheduling: Achieving
Proportional Share Bandwidth Allocation

Ming Zhang, Randy Wang, Larry Peterson, Arvind Krishnamutthy
Department of Computer Science
Princeton University

Technical Report TR-632—-01
February 5, 2001

Abstract called Scalabe Core (SCORE) [9, 10, 11], attempts to
bridge this gap by having only edge routers maintain
Ber-flow state, and then encoding this state in packets
for use by core routers in the middle of the network.
This paper proposes an intuitively simple alterna-
e based on probabilistic packet scheduling (PPS).

he approach is inspired by the probabilistic lottery

This paper describes and evaluates a probabilisti
packet scheduling algorithm for achieving propor-
tional bandwidth allocation among TCP flows. With
our approach, either end hosts or edge routers tag eaﬁo
packet with a ticket that represents the share of nety

work bandwidth this flow should receive. Routers . .
o . scheduling algorithm used by some CPU schedulers
then probabilistically decide when to forward/drop a[12]. It wgrksgas follows. Ei%/her end hosts or edge

packet baseql on the value of this ticket and the CUltouters tag each packet with a ticket that represents
rent congestion level. Our approach accommodate

work tooolodies that itinle d ins b It%e share of network bandwidth this flow should re-
network topologies that span multiple domains by a.q; e ' Routers then run a variant of the RED algorithm
lowing a packet to trade in the tickets it was granted i

the source domain for an equitable number of ticket 3] o probabilistically decide when to forward/drop a

. . : : acket based on the value of this ticket and the cur-
in the target domain. The bandwidth allocation can b nt congestion level. Routers also adjust the ticket

cont_r OIIeO]! 33/ eltlher'?hsender-based ora recelver-baseaisigned to a packet based on the level of competition
version otthe algorithm. for its outgoing links.

Our approach is difficult to couch as a simple vari-
ant of one of the known techniques. It really defines
a new point in the design space for bandwidth alloca-
Achieving a fair allocation of network bandwidth tion.
among competing flows has been a subject of intense
research in recent years. Early approaches, beginning ¢ Like WFQ, PPS gives each flow a weighted share

1 Introduction

with Weighted Fair Queuing (WFQ) and culminat-

ing in the Integrated Services architecture [2, 8], were
able to make strong promises about the level of service
provided to a given flow, but at the expense of scalabil-

ity since routers must maintain per-flow state. Subse-

quent development of the Differentiated Services ar-
chitecture [6, 1, 13], segregated flows into a small
number of service classes (making the solution scal-
able), but at the expense of being able to make only
relative statements about the service a given flow re-
ceives. Recent work by Stoica, Zhang, and Shenker,

*This work supported in part by DARPA contract F30602—
00-2-0561. Krishnamurthy's address is Department of Com-
puter Science, Yale University, 312 AK Watson, New Haven, CT
06520.

of the available capacity. However, it does this
probabilistically rather than requiring per-flow
state.

Like DiffServ, PPS scales well since it does not
require per-flow state, and it makes only rela-
tive distinctions among flows. However, PPS has
two important advantages over DiffServ. First, it
uses more bits to represent the ticket than Diff-
Serv uses to distinguish between classes, which
makes it possible for PPS to differentiate service
with a higher level of accuracy. Second, PPS bet-
ter accommodates network topologies that span
multiple domains by allowing a packet to trade
in the tickets it was granted in the source do-

main for an equitable number of tickets in the sources resident on the host. Suppose eRtigsues
target domain. This trade—resulting in packetOutTktRate t/s to inputA. Packets arriving fronA
relabeling—is governed by an exchange rate thatvould be tagged with tickets iR’s currency, but thse
is easily computed by the router connecting thetickets should not excegdutTktRate t/s. If at some
two domains, based on both static inter-domaininstant there are packets going fréxio P, we callA
service agreements and the dynamic traffic flow.an active source d?, and all ofA’s tickets issued by
_ _ _ are active ticketsP, in turn, could have multiple out-
e Like SCORE, PPS scales well since it does nobut links. Suppose is one of them, we ldhTktRate
require per-flow state. However, PPS makes gepresent the active t/s thiateceives fronP.
different tradeoff of simplicity versus hardness pgefore giving the definition of fairess, we define
of guarantees. That is, SCORE makes absolutg pottieneckfor a TCP flow. TCP flowC may utilize
bandwidth guarantees (PPS makes only relativgntiple links from source to destination. If the band-
differentiations), but at the expense of requring &,qth of the flow does not increase when we increase
non-trivial admission control mechanism. PPSihe pandwidth of all links other thak, thenlL is the
does not require network-wide admission con-pottieneck for flowC. C may have several bottlenecks
trol, although a given source host or edge routefy g pottlenecks at all. In the latter case, the through-
is free to deny new flows so as to ensure that exp ¢ of C is limited by its upper level application not
isting flows receive an adequate share of the netyy the network. Suppose lirk is the bottleneck for
work. A source is also free to reallocate its ticketfoy, C. We callC a poor flow of L. If L is not the
shares in attempt to maintain a particular bit rate ystjeneck ofC, we callC arich flow of L. We use
InTktRate, andInPktRate, to represent the total t/s

€and packets-per-second (piseceives from all of its

tail, and presents the results of a comprehensive S‘E)bor flows, and usénTktRate, and InPktRate, to

of simulations that show that PPS achieves a fair a"represent the total t/s and p/s thateceives from all

location of network bandwidth among a collection of 4t it rich flows. IfL has at least one poor flow, it must
competing TCP flows. The paper concludes with &, i congestion. If the capacity bfis Capacity p/s,
discussion of the relative strengths and weaknesses Qfa have:

our approach, as compared with the alternatives.

InTktRate = InTktRate, + InTktRate,
2 Algorithm Capacity = InPktRate, + InPktRate,

This section describes PPS, which consists of thre@
components: a packet tagger, a relabeler, and a packet
scheduler. Initially, each packet is tagged with someNe first consider bandwidth allocation among one-
number of tickets by a TCP source. The tag is updatetiop TCP flows; we extend our discussion to multi-hop
at each hop along the path according to the local workTCP flows in Sections 2.5 and 2.6. Suppose at some
load. The tag is then used to determine whether or ndhstant there ara active TCP source§;, Cy, ..., Cp,
to drop the packet should it encounter congestion. Weontending for linkL. They are issue@utTktRates,
have developed both sender-based and receiver-baseditTktRate,, ..., OutTktRate, t/s by the control-
versions of PPS. We first introduce the sender-baselihg entity P. Link L receivesinPktRate, p/s and
algorithm, and postpone discussion of receiver-basethTktRate, t/s from all its poor flows. We say that
algorithm until Section 2.7. Ci obtains its “fair” share of bandwidth if one of the
following two conditions is satisfied:

2 Fairness for One-Hop Flows

2.1 Tickets
- _ . 1. If G is arich flow ofL, C; obtains the bandwidth
There are two entities of interest in the network—end it requires;

hosts and routers—both of which define a currency in

terms of tickets, and assign some number of tickets- 2. If G is a poor flow ofl, C; obtainsinPktRate, x
per-second (t/s) to their inputs in a manner that reflects ~ OutTktRate; / InTktRatep p/s of bandwidth.
the relative importance of the inputs. For a router, the

inputs would be the various incoming links, while for Notice that rich flows do not make full use of their
an end host, the inputs would correspond to the TCRair share of bandwidth while poor flows try to obtain

2

600t,s@ TSW maintains three state variabléafinLength,
which is pre-configured and measured in units of
time; AvgRate, which is the estimated instantaneous

4OOUS@ p oty g\@ throughput; andr'swFront, which is the arrival time
. S

of last ACK. The rate estimator can smooth the bursts
of TCP traffic as well as be sensitive to instantaneous
@ rate variation. TSW estimates the throughput upon the
arrival of each ACK and decays the past history over

Figure 1: Example of Fair Allocation of Bandwidth time.

2001t/s

as much bandwidth as they can. For example, in Fig-z'4 Packet Scheduling

ure 1, entityP defines 1200 t/s in its currency, and it Suppose at some instant there areactive TCP
issues 600, 400 and 200 t/s to TCP soueg<, and flows—C;, C,, ..., C,—contending for link L.

Cs, respectively. IC;, C; andCs are all poor flows of They are issuedOutTktRate;, OutTktRatey, ...,

L, they should divide the bandwidth bfat the ratio of OutTktRate, t/s by their controlling entityP. With-
3:2:1. IfCy has a constant bit rate (CBR) of 0.3Mb/s, out loss of generality, suppo&g, Co, ..., C, are poor
which means it is a rich flow of, C; should obtain flows (0< m < n) and the others are rich flows. If a
0.3Mb/s bandwidth whil€; andCs should divide the poor flowC; (0 < i < m) tagsAvgTkt = InTktRate, /
remaining 0.9Mb bandwidth df at the ratio 2:1. Sim- InPktRate, tickets onto each of its packets, according
ilarly, if Cy is silent,C, andCs should divide the entire to the ticket tagging algorithm, the throughput @f

bandwidth ofL at the ratio of 2:1. should belnPktRate,x OutTktRate; / InTktRatep
p/s, which mean£; obtains its fair share of band-
2.3 Ticket Tagging width. Thus, if we can ensure that each poor flow

_ ~tags approximately the same numberrofy Tkt tick-
Before sending a packet, the TCP source tags it Witlys onto its packets, we will achieve a fair bandwidth
some number of tickets. Later, during the transmis—)|ocation among them. At the same time, rich flows
sion of the packet through congested links along itshoyld obtain the bandwidth they require. Actually,
path, the tag is used to determine the probability ofjcp flows will tag more thamwvgTkt tickets onto their
dropping the packet. Suppose TCP soukces is- packets because they do not make full use of their

sued OutTktRate ts by its controlling entity and fajr share of bandwidth; this is why we call them rich
the throughput ofA is AvgRate p/s at this point in fjgus.

time. We simply tag the outgoing packet widut-

TktRate /' AvgRate tlcket_s. That is, the t.lckets oN 5,41 RED algorithm
the outgoing packet are inversely proportional to the
instantaneous throughput éf To estimate the in- Our packet scheduling algorithm is based on the ran-
stantaneous throughput, we use the TSW algorithndom early detection (RED) algorithm [3]. RED keeps

described in [1]. the overall throughput high while maintaining a small
Initially, average queue length, and tolerates transient conges-
tions. RED operates as follows. When the queue
WinLength = CONSTANT; length exceeds a certain threshold, it drops incom-
AvgRate = 0; ing packets with some probability. The packet loss
TswFront = 0; causes the affected TCP flows to slow down. The ex-

act drop probability is a function of the average queue

length. The average queue length is calculated using a
low-pass filter from the instantaneous queue lengths,
which allows transient bursts in the queue. Persistent
congestion in the queue is reflected by a high average

Upon the arrival of each ACK packet, TSW update its
state variables as follows:

PacketsInTsw = AvgRate x WinLength;
NewPackets = PacketsInTsw

+ AckedPackets: queue length and results in a high drop probability.
AvgRate = NewPackets Upon each packet arrival:

/ (now - TswFront + WinLength); AvgQLen = (1-wght) x AvgQLen
TswFront = Now; + wght x CurrentQLen;

if AvgQLen < MinThresh
enqueue the packet
if MinThresh < AvgQLen < MaxThresh
calculate probability p
drop the packet with probability p
if MaxThresh < AvgQLen
drop the arriving packet

where variableVinTkt represents the least number of
tickets seen on an arriving packet during some inter-
val. It is important to note that although TSW is ap-
plied on a per-flow basis in [1], we apply TSW to the
aggregation of all traffic arriving on a particular link.

Now we consider what happens when the link is

in congestion avoidance phase. We multiply the drop
RED has three operating phases, which correprobability p by (ExpectTkt / InTkt)3. As a result,
spond to theAvgQLen being in the range of0, the more tickets a packet carries, the less the proba-
MinThresh], (MinThresh, MaxThresh) and Max- bility that it is dropped. Since packets that belong to
Thresh, «). The three phases represent normal opertich flows are likely to carry more tickets than packets
ation, congestion avoidance, and congestion controhelonging to poor flows, their packets are less likely
respectively. During normal operation, RED doesn’tto be dropped, and hence the poor flows are more
drop any packets. During the congestion avoidancdkely to back off during congestion. This adjustment
phase, each packet drop serves to notify the TCPeflects our intention to preserve the bandwidth ob-
source to reduce its sending rate. During the congegained by rich flows. Amongst poor flows, those that

tion control phase, all incoming packets are dropped.put fewer tickets on their packets are more likely to
back off than those that tag more tickets to their pack-
ets. When a flow backs off, its sending rate and in-
stantaneous throughput slow down and it will begin
Ticket-based RED (TRED) is a modification of RED. to tag more tickets onto its packets. In the end, we
Like RED, TRED also has three phases: normal operexpect all poor flows to tag approximately the same
ation, congestion avoidance, and congestion controhumber of tickets on their packets; we call this num-
TRED operates in the same way as RED in the norper AvgTkt’, but we cannot know it exactly. Note that
mal operation and congestion control phases. DuringithoughAvgTkt' does not equdExpectTkt, a greater
congestion avoidance, however, TRED uses a differExpectTkt does reflect a greatekvgTkt’, and vice
ent method to calculate the drop probability. In ad-yersa.

dition to AvgQLen, TRED uses two other variables:
ExpectTkt a}ndInTkt; th_e former is an estimate of the ability p by a cubic function ofExpectTkt / InTKt).
number (.)f ickets the link expects a poor TCP flow toThis function represents a tradeoff between maintain-
tag onto its packets, and the latter represents the nunihg high link utilization and achieving fast conver-
ber of tickets carried by an arriving packet. The TREDgence. If we use a function with higher rank, the

algorithm operates as follows. number of tickets on the packets of poor flows will
converge tAvgTkt' faster, but the link utilization will

be lower because we drop packets with less than
pectTkt tickets more aggressively in the congestion
avoidance phase. The algorithm also ensures that the
number of tickets on most packets of poor flows will
be in the range dMinTkt, Kx MinTkt] for K > 1. In

our experiments, the number of tickets on more than
98% of the packets of poor flows is in this range if we
setk =1.4.

The next issue is how to calculatéxpectTkt,
where our goal is to keepxpectTkt close toAvgTkt.
This is because the packets of rich flows will be
dropped with a relative low probability since they
carry more tharmAvgTkt tickets. At the same time,
if a poor flow tags much fewer tickets onto its packets
than another poor flow, the packet drop probability of
the former will be much higher than that of the lat-
ter. However, both probabilities are less than 1. We

2.4.2 Ticket-Based RED (TRED)

In the above algorithm, we multiply the drop prob-

Upon each packet arrival:

computeAvgQLen the same as in RED
computenTktRate using TSW
computeMinTkt as defined below
if INTkt < K x MinTkt
computeExpectTktRate
and ExpectPktRate using TSW
if AvgQLen < MinThresh
enqueue the packet
if MinThresh < AvgQLen < MaxThresh
calculate probability p as in RED
ExpectTkt = ExpectTktRate
| ExpectPktRate
p = px (ExpectTkt/ InTkt) 3
if p>1lthenp=1
drop packet with probability p
if MaxThresh < AvgQLen
drop the packet

calculateExpectTkt as the average number of tick- 2.6 Fairness for Multi-Hop Flows

ets on those packets that fall in the ranggMinTkt, o

Kx MinTkt]. As AvgTkt equals tolnTktRate / Suppose a TCP floiC originates from source,
InPktRate,, most packets of poor flows will be in which has been issueutTkiRate ts by P. Also

this range. Although it is possible that some packetSUPPOSe thal's bottleneck is link (S, T). Based on
of rich flows will also fall in this rangeExpectTktis "€ Per-nop exchange rates fraito S, we can con-
still in the range ofAvgTkt, K x AvgTk]. vert OutTktRate in P's currency intolnTktRate t/s

in S’s currency. Suppose the throughputCofs Av-
gRate, the total t/s and p/s of all poor flows of link
(S, T) areinTktRate, andInPktRate,. We say flow
C obtains its fair share of bandwidth if:

As we said in the beginning of Section 2.4, we
optimally expect each poor flow to ta@vgTkt =
InTktRate, / InPktRate tickets onto its packets,
but in reality, we cannot differentiate between poor
flows and rich flows, meaning we cannot precisely
calculateAvgTkt. However, the algorithm tries to AvgRate = InPktRatepx InTktRatec
keep AvgTkt' aroundAvgTkt by adjustingExpect- /' InTkiRatey,

Tkt. WhenAvgTkt' is less thamivgTkt, which means

poor flows obtain more than their fair share of band-

width, AvgQLen will increase accordingly. This 10Mb/s

causes the poor flows to slow down, and tag more tick- 1000vs

ets onto their future packets. As a resitinTkt and \@ Zggg/tsls Mb/s
ExpectTkt will increase together witlvgTkt'. On 10Mb/s
the other hand, whefAvgTkt' is greater tharvgTkt, 500 t/s

the algorithm will cause it to decrease. In the end, the Mbls
algorithm tries to keepvgTkt' close toAvgTkt, so as @m 300t/s
to fairly allocate bandwidth among poor flows. 1000 t/s

2.5 Tag Relabeling Figure 2: Multi-Hop Example

The previous sections consider only TCP flows with In Figure 2 for example, there are three TCP flows:
one hop. In real networks, a flow may go throughA betweenS and S, B betweenS, and S, andC
many hops before reaching the destination. To allobetweenS, and . Links (S, S) and &, Ss) re-
cate fair share of bandwidth among multi-hop flows,ceive 1000 and 500 t/s froi®, respectively; link &,
we need to relabel the tags on packets at each hop. B&s) receives 1000 t/s frory; and links &,) and
cause different entities may have their own local cur{$, Ss) receive 900 and 300 t/s fro&, respectively.
rencies, tickets in one currency are only meaningfulThe bandwidth of link §,) is 1Mb/s. Tickets of
to the entity that issues them. Thus, when going fronflow A, B andC are converted to 600, 300 and 300 t/s,
one entity to another, we need to relabel the tags adespectively, inS’s currency. When all three flows
cording to some currency exchange rate. We calculataére poorA, B andC should obtain 0.5Mb/s, 0.25Mb/s

the exchange rate at each link as follows: and 0.25Mb/s bandwidth respectively. Whgias a
constant bit rate of 0.16Mb/s, which is less than its
XRate = OutTktRate / InTktRate fair share bandwidth of 0.25Mb/sB should obtain

0.16Mb/s whileA andC should obtain 0.56Mb/s and
As before InTktRate corresponds to the active t/s the 0.28Mb/s, respectively. WheB is silent, A andC
link receives at some instant, and it is computed withshould divide the full bandwidth of linkSs, Sg) at the
the TSW algorithm. Th®©utTktRate is the t/s issued ratio of 2:1.
to the link by its controlling entity. For each packet, We now explain how the algorithm ensures that

we relabel its tag as follows: flow C obtains its fair share of bandwidth. Since link
(S, T)is abottleneck fa€, C is a poor flow of the link.
OutTkt = InTkt x XRate From the TRED algorithm, we know that each packet

of C will carry approximatelyAvgTkt tickets when
In other words, the PPS relabeling algorithm simplypassing through link(S, T), so the bandwidth tlat
convertsinTkt in one entity’s currency t®utTkt in obtains on link (S, T) is approximatelynTktRate
the currency of the next hop entity. / AvgTkt. Because link (S, T) is the bottleneck of

C, AvgRate, the throughput o€ should equal to the AckXRate = AckOutTktRate / AckinTk-
bandwidth thaC obtains on link (S, T). Thus, we get: tRate. Relabel the ACK packet witick-
OutTkt = AckInTkt x AckXRate.

AvgRate
= InTktRate. / AvgTkt The AckOutTktRate stands for t/s that an entity
= InPktRatep x InTktRate. / InTktRate, issues to its output links or TCP sinks in R-currency.
o _ _ _ We use the tickets carried by ACK packets to calculate
Th|s.|s_wha_t we are trying to achieve. Th@will g many t/s in S-currency that an entity should issue
obtain its fair share of bandwidth. to its input links or TCP sources as follows:
2.7 Receiver-Based Algorithm OutTktRate = AckInTktRate

In the sender-based algorithm, each entity defines thig means the ticket rate a link or an agent can tag

its own currency (S-currency) and issues some g, jis gutgoing data packets equals to the ticket rate it

in S-currency to its input links or TCP sources. N oceives from the incoming ACK packets. From the
the receiver-based algorithm, each entity defines itSpqve we can deduce that at each link:

own currency (R-currency) and issues some t/s in R-
currency to its output links or TCP sinks. The idea InTktRate = AckOutTktRate
behind the receiver-based algorithm is that we try to

reconstruct S-currency from R-currency for each enThis means the ticket rate a link or a sink receives
tity and compute how many t/s in S-currency an entityfrom the incoming data packets equals to the ticket

should issue to its input links or TCP sources. Afterrate it tags on its outgoing ACK packetsl So for each
this, we can simply run the sender-based algorithm tqink, the exchange rate,

achieve fair bandwidth allocation among TCP flows.

XRate
2.7.1 ACK Packet Tagging and Relabeling = OutTktRate / InTktRate
. = AckinTktRate / AckOutTktRate
In the sender-based algorithm, only data packets are _ 1 ; aAckXRate

tagged by the TCP sources and then relabeled at each

hop. In the receiver-based algorithm, data packets are gqy any flowC that passes through lirlk, we use
still tagged and relabeled, but ACK packets are alsq\ckinTktRate, andIinTktRate, to represent the ts
tagged by the TCP sinks and then relabeled at eaghceives from ACK packets and data packet€ oive
hop. The difference between the tags on data packe{fse AckOutTktRate, and OutTktRate, to represent

and the tags on ACK packets is that the former is useghe t/sL_ tags onto ACK packets and data packet€ of
to calculate the drop probability of the data packete can further show that:

when congestions occurs, while the latter is used to
calculate how many t/s in S-currency an entity should OutTktRate; = AckinTktRate.

issue to its input links or TCP sources. InTktRate. = AckOutTktRate

The tagging and relabeling algorithms for ACK
packets are similar to those for data packets. Having defined S-currency for each entity, we can
Tagging algorithm at TCP sink: now run the sender-based algorithm in the same way

_ as described before.
Before sending out an ACK packet, cal-

culate the sending rate of ACK pack-
ets, AckAvgRate, using the TSW algo-
rithm. Tag the ACK packet witlAckOut- The fairness definition for receiver-based algorithm is
TktRate / AckAvgRate tickets. similar to that for sender-based algorithm. Suppose a
TCP flowC goes to from sourc& on end hosQ to
sink A on end hostP. A is issuedAckOutTktRate
Upon arrival of each ACK packet, calculate t/s by P and the bottleneck of the flow is link (S, T).
t/s carried by the ACK packet#ckinTk- Based on the per-hop ACK exchange rates fridho
tRate, using the TSW algorithm. Calcu- T, we can converAckOutTktRate in P's R-currency
late the exchange rate for an ACK packet as into AckinTktRate, t/s in T's R-currency. Suppose

2.7.2 Fairness

Relabeling algorithm at link:

the throughput of flowC is AvgRate p/s. Link (S, InTktRate. = AckOutTktRate.

T) receivesAckinTktRate, t/s from the ACK packets InTktRate, = AckOutTktRate

of all poor flows. The throughput of all poor flows AckOutTktRate; = AckinTktRate. x

is InPktRate, p/s. We sayC obtains its fair share of AckXRate

bandwidth, if they satisfy: AckOutTktRate, = AckInTktRatex
AckXRate

AvgRate = InPktRate,x AckinTktRate.)
| AckinTktRate,, Combine all of the above, we get:

AvgRate = InPktRate,x AckinTktRate.
| AckinTktRate

10Mb/s

So our receiver-based algorithm will fairly allocate
bandwidth for any TCP flow.

2.8 Ticket Policing

As discussed in Section 2.3 and 2.5, a TCP source
or link tags each outgoing packet subject to the con-
straint that the rate at which tickets are consumed does
not exceedOutTktRate t/s. To ensure the source or
link adheres to this rate, we measure the actual ticket
sending rate ActualTktRate, with the TSW algo-
rithm, and then adjust the amount of tickets that are
tagged to the packet as follows:

Figure 3: Example of Receiver-Based Algorithm

For example, in Figure 3 there are three TCP flowsAt source:

A betweenS; and %, B betweenS; and 5, andC OutTkt = OutTktRate / AvgRate x

betweenSs and S. Links (S, &) and &,) re- OutTktRate / ActualTktRate
ceive 1000 and 500 t/s frors, respectively; link

(S1, S) receives 1000 t/s frory; links (S5, S) and ~ Atlinks:
(S5, Sy) receive 900 and 300 t/s frorSs, respec- OUtTkt = InTkt x XRate x

tively. The bandwidth of link &,) is 1Mb/s. Tick- OutTktRate / ActualTktRate
ets of flow A, B and C are converted to 600, 300 With h adi link h
and 300 t/s, respectively, i&’'s R-currency. When fthout such adjustment, a source or link may have

all three flows are poor flows, B, andC should a higher or lower ticket sending rate than its allocated

obtain 0.5Mb/s, 0.25Mb/s and 0.25Mb/s bandwidth,"2t:

respectively. WhemB has a constant bit rate of _ _

0.16Mb/s, which is less than its fair share bandwidth3 Simulation Results

of 0.25Mb/s,B should obtain 0.16Mb/s, whilé& and _ _ _ _

C should obtain 0.56Mb/s and 0.28Mb/s, respectively.Th'S section reports the results of several simulations

WhenB is silent,A andC should divide the full band- designed to evaluate our probabilistic packet schedul-

width of link (Ss, S5) at the ratio of 2:1. ing algorithm’s ability to fairly allocate bandwidth
We now explain why our receiver-based algorithmamong TCP flows. We use the NS network simula-

can fairly allocate bandwidth for flo®. Suppose link tor for our simulations [7]. We conducted each of

(S, T) receivegnTktRateC and|nTktRatep t/s from the fO”OW|ng eXpe”mentS for both the sender-based

data packets of floi and all poor flows respectively, and receiver-based algorithm, although we show the

and the ACK exchange rate of this linkAskXRate. results for the only sender-based algorithm. There

From the sender-based algorithm: were no qualitative differences between the results of
sender-based and receiver-based algorithms. In all
AvgRate = InPktRatepx InTktRate, experiments, th&VinLength parameter used in the
/ InTktRate, TSW algorithm is set to 60 seconds [1]. To amortize
the instability during initialization, all experiments
But for link (S, T): run for 600 seconds of simulated time.

3.1 One-Hop Configuration 3.2 Multi-Hop Configuration

Our first experiment measures how fairly our algo-We next study the bandwidth allocation among multi-
rithm allocates bandwidth when there is a single conhop TCP flows. Figure 6 shows the network configu-
gested link. We use the configuration shown in Fig-ration we tested. It has three TCP flows: A between
ure 4, where nine TCP flows share a 1.5Mb/s bot&§ andSs, B betweers; andS;, and C betwee, and
tleneck link. The flows are assigned an incrementass. Links (S, $3) and &, S3) receive 1000 and 500
number of t/s, ranging from 100 to 900. The RTT fort/s from S3; link (S, ;) receives 1000 t/s frong;
all flows is 26ms; we study the influence of RTT sep-and links &, S) and &, Ss5) receive 900 and 300 t/s,
arately in another experiment. The throughputs areespectively, fromSs. All three flows share the bot-
measured over the whole simulation. As shown intleneck 1Mb/s bandwdith of linkSs, S). Tickets of
Figure 5, the achieved throughput is proportional toflow A, B and C are converted to 600, 300 and 300 t/s,
the number of t/s given to each flow. respectively, inSs's currency. According to our fair-
ness definition, A, B and C should obtain 0.5Mb/s,
0.25Mb/s and 0.25Mb/s of bandwidth, respectively,
and as shown in the middle column of Table 1, they
do. As the table also shows that the three flows were
able to consume 98% of the bottleneck link’s capacity.

10Mb/s
@ 1000 t/s
\@ 2Mbls
900 t/s 1Mb/s

@ P Q Si4 @/
1.5Mb/s
10Mb/s 1200 t/s
@/ 26ms 500 t/s
(s
10Mb/s 300t/

®

4

1000 t/s

Figure 6: Configuration for multi-hop simulation.

®

Figure 4: Configuration for one-hop simulation. Flow | Measured | Expected
Rate (Mb/s)| Rate (Mb/s)
A 0.48 0.50

035 B B 0.25 0.25

osf P C 0.25 0.25

el e | Total 0.98 1.00

' A Table 1: Bandwidth allocation for multi-hop configu-
e 2T e l ration.
s S

0.15 | L E

01 L / .

s * . 3.3 \Variable Traffic

0 0/ 200 200 500 500 1000 This experiment evaluates how well the algorithm ad-
tickets/second justs to variations in the source sending rate. We use

the same topology as in Figure 6, but when the simu-
Figure 5: Bandwidth allocation for one-hop configu- lation begins, only flow B and C are active; flow A be-
ration. The x and y coordinate of each point representomes active after 300 seconds. The results are shown
the t/s issued to the flow and measured bandwidth ah Figure 7, where the x-axis is time and the y-axis is
the flow. instantaneous throughput. As the plot clearly shows,

B and C obtain approximately 0.75Mb/s and 0.25Mb/s 0.6
of bandwidth from bottleneck linkSs, &) in the first

300 seconds, but after A starts up, A, B and C quickly
converge to 0.5Mb/s, 0.25Mb/s and 0.25Mb/s, respec-

tively.

0.8

0.7 |

0.6

05 |

04

avg_rate(Mb/s)

03 |

01 H¢

o2t /.

.............

ot ‘
0 100

200 300

time(seconds)

400

500

Figure 7: Adapting to new traffic.

3.4 Variable Ticket Allocation

happens.
Our algorithm can flexibly control bandwidth alloca-
tion among TCP flows by dynamically adjusting the Flow | Measured | Expected
rate at which tickets are issued. This permits an ap- Rate (Mb/s)| Rate (Mb/s)
plication to adjust its share in effort to maintain a cer- A 0.53 0.56
tain transmission speed. To see this, we again use the B 0.16 0.16
topology in Figure 6, where in the beginning, each C 0.29 0.28
link is issued the same amount of tickets as in Sec- Total 0.98 1.00

tion 3.2, but after 300 seconds, the t/s issued to link

0.4

03

avg_rate(Mb/s)

0.2

0 100

200 300

400 500 600

time(seconds)

Figure 8: Bandwidth allocation as ticket rates change.

use the topology from Figure 6, but this time the traffic
from flow B is generated by an application that trans-
mits at a fixed rate of 0.16Mb/s, less than its fair share
of 0.25Mb/s. Flow A and C should divide the remain-
ing 0.84Mb/s bandwidth at the ratio of 2:1 since their
local tickets are converted to 600 and 300 t/sSifs
currency. As shown in Table 2, this is exactly what

(S, S) changes from 1000 to 600 and the t/s issued
to link (S, S3) changes from 500 to 900. By our

fairness criteria, we expect the instantaneous through-
put of A to change from 0.5Mb/s to 0.3Mb/s, and 3 g Multiple Output Links
the instantaneous throughput of B to change from

Table 2: Fair sharing of unused capacity.

0.25Mb/s to 0.45Mb/s. The throughput of C shouldIn all the experiments up to this point, the flows share
not change. As can be seen in Figure 8, the system b& common bottleneck link, and each router has only
haves as expected. The important point is that our alone output link. In this experiment, we study how our
gorithm insulates bandwidth allocation decisions fromalgorithm can fairly allocate bandwidth when some
one another—that is, the variation of A and B has vir-flows have different bottlenecks and routers have mul-
tually no influence on C. tiple output links. We ran a series of experiments us-
ing the topology given in Figure 9. In this scenario,
there are three TCP flows—A, B and C—running be-
tween &,), (S, &) and &, %), respectively.
Sometimes a flow cannot make full use of its fair shardLinks (S, S3) and &, S) are issued 1000 and 500
of bandwidth because the application generates bytdss by Ss; link (S, &) is issued 1000 t/s b$; links

at a lower rate. The unused bandwidth should be fairlfS;, S) and &, Ss) are issued 900 and 300 t/s By,
allocated among the other flows so as to achieve highnd link(Ss, S) is issued 1200 t/s b$s.

link utilization. To test the ability of our algorithm In the first experiment, we assume the bandwidth of
to achieve high link utilization in a fair way, we again link (Ss, ;) is 1Mb/s and the bandwidth of links§,

3.5 Fairly Sharing Unused Capacity

9

10Mb/s

10Mb/s
500t/s

1Mb/s

10Mbls 300t/s

1000t/s

Figure 9: Complex configuration with multiple bottle-
neck links.

S) is 10Mb/s. The bottleneck of flows A and B is link
(S, S5), while the bottleneck of flow Cis [inkg;, S5).
By our fairness definition, flow A and B should divide
the 2Mb/s bandwidth of linkSs, S) at the ratio of 2:1,
and flow C should obtain all the bandwidth of lin®(
S5). The actual results are shown in Table 3.

ent destinations, they have different bottlenecks in the
network. The throughput of A is limited by links,

), so it cannot make full use of its fair share of band-
width at link (S3,) and the unused bandwidth of A
is allocated to B. From this experiment, we know that
the actual bandwidth obtained by a flow is related to
both its issued ticket rate and its bottleneck.

In a final experiment, we set the bandwidth of links
(S, &) and &, &) to 1Mb/s. This means that the
bottleneck of flow A and C is link%, S) and the
bottleneck of flow B is link &, S7). By our fair-
ness definition, flow A and C should obtain 0.67Mb/s
and 0.33Mb/s bandwidth from links§, Sg), and flow
B should obtain the full bandwidth of linkS§, 7).
These results are confirmed in Table 5.

Flow | Measured | Expected
Rate (Mb/s)| Rate (Mb/s)
A 1.24 1.33
B 0.70 0.67
C 0.98 1.00

Flow | Measured | Expected
Rate (Mb/s)| Rate (Mb/s)
A 0.64 0.67
B 0.98 1.00
C 0.34 0.33

Table 5: Multiple Bottleneck Links: Scenario Ill.

Table 3: Multiple Bottleneck Links: Scenario I.

3.7 RTT Biases

In the second experiment, we set the bandwidth oft is well-known that TCP has a bias against flows

link (Ss, S7) to 10Mb/s and the bandwidth of link&f,
$) to 1Mb/s. Now, the bottleneck of flows A and C
is link (S5, Sg), while the bottleneck of flow B is link
(53,). The 1000 t/s of links%y,) and &, &) are
converted to 600 and 300 t/s §’s currency. By our

with large round trip time. To understand the rela-
tionship between our algorithm and RTT, we experi-
mented with two different configurations.

The first configuration is depicted in Figure 10,
where ten flows share a bottleneck of 1.0Mb/s and all

fairness criteria, flow A and C should obtain 0.67Mb/sinput links are all issued 200 t/s. Given this config-

and 0.33Mb/s bandwidth from linkS§,), respec-
tively. Moreover, since A is arich flow of linkS, S5)

uration, we first set all the RTTs to 30ms. (This set-
ting also serves to demonstrate that our algorithm is

and B is a poor flow, B should obtain the remainingable to finely split bandwidth among many compet-
1.33Mb/s bandwidth of link%s, S5). The measured ing flows.) We then let the RTT of the flows vary,
results are shown in the middle column of Table 4. incrementally, from 30ms to 300ms. As can be seen

from Table 6, there is only a slight bias against long-

Flow | Measured | Expected RTT flows; each flow gets close to one-tenth of the
Rate (Mb/s)| Rate (Mb/s) available capacity. This is because when a flow with

A 0.63 0.67 large RTT backs off, it tags more tickets onto each of
B 1.28 1.33 its packets. When contending with other flows, the
C 0.35 0.33 large-RTT packets are more likely to get through and

the flow recovers to its fair share of bandwidth faster
than standard TCP.

The second configuration is depicted in Figure 4. In
Note that although link%, S3) is issued twice as this case, we first set the RTT of flow 1, which is is-
many t/s as link §, S3), the actual bandwidth A ob- sued 100 t/s, to 300ms, and the RTT of all other flows
tains is less than that of B. This may seems unfair ato 30ms. We then reset the experiment so that the RTT
first glance, but because A and B are going to differ-of flow 9, which is issued 900 t/s, is 300ms and the

Table 4: Multiple Bottleneck Links: Scenario II.

10

RTT | Measured | RTT | Measured
(ms) | Rate (Mb/s)|| (ms) | Rate (Mb/s)
30 0.100 300 0.093
30 0.099 270 0.093
30 0.100 240 0.095
30 0.099 210 0.095

®)

@ 30 0.100 180 0.097
30 0.100 150 0.099
()P Q (si5 30 0.100 || 120 | 0.099
1.0Mb/s 30 0.099 20 0.101
@/ 26ms (s16 30 | 0100 || 60 | 0102
30 0.100 30 0.103
S17 Total 0.997 Total 0.977
@ @ Table 6: Variable RTT: Scenario |.
(s19
= @
0.25 + i
Figure 10: Configuration used for RTT experiments: 02 e]

Scenario |.

Mb/s

0.15 | i
RTT of all other flows is 30ms. As we can see from orr i
the results shown in Figure 11 and Figure 12, a large oosf 7 1
RTT has more negative influence on flow 9 than flow ‘ ‘ ‘ ‘
1. This is because the fair share of bandwidth of flow 0 200 400 600 800 1000
9 is greater than that of flow 1. When both flows back ticketsisecond
off, flow 9 loses more bandwidth than flow 1, so it

takes longer for flow 9 to recover to its fair share of Figure 11: Variable RTT: Scenario Il. RTT of flow 1
bandwidth than for flow 1. is 300ms, RTT of all other flows is 30ms

3.8 Comparison with DiffServ when there is a mismatch between link capacity and
service profiles. We use the topology in Figure 13,
DiffServ installs service profiles at end hosts and tagsvhich has 3 flows (A, B and C) contending for link (P,
each packet with one bit (in/out) to indicate if the Q) with a bandwidth of 1.2Mb/s. For each scenario,
packet is beyond the limits set by its service profileour algorithm allocates bandwidth in proportion to the
[1]. When congestion happens, routers preferentiallyservice profiles of the three flows, independent of the
drop packets sent outside the profile. DiffServ worksavailable capacity. In the tables that follow, the second
well when the link capacity matches the service pro-column gives the service profile used by DiffServ, the
files, but this condition is inherently hard to achieve.third column gives the measured rate achieved by each
Because the service profiles are just expected sendirfgpw using DiffServ, and the fourth column gives the
rates, they do not take into account the full path taketmeasured rate achieved by the PPS algorithm. The
by flows. It is possible that many flows contending fortables do not show the actual ticket assignment used
some link in the middle of the network, or those links by PPS, but they were at the same ratio (3:2:1) as the
that were expect to be shared are temporarily idle. Iservice profiles.
is not possible to guarantee the link capacity matches
the total target profile rate of contending flows at any 1. The target sending rate (service profile) of A, B
time at any place in the network. and C are 0.6Mb/s, 0.4Mb/s and 0.2Mb/s, respec-
To evaluate the impact of this effect, we run a series tively, which matches the 1.2Mb/s capacity of the
of experiments that measure the behavior of DiffServ shared link. As we can see from Table 7, Diff-

11

0.35 Flow | Service| Measured| Measured
sl] Profile | DiffServ PPS
' T A 0.60 0.59 0.58
025 - e 1 B 0.40 0.40 0.40
o2 L o | C 0.20 0.21 0.21
E Total | 1.20 1.20 1.19
1 A | Table 7: PPS versus DiffServ: Profile matches capac-
0.1 e 1 ity (Mb/s).
005 - 4
0= 200 200 500 200 1000 Flow | Service| Measured| Measured
tickets/second Profile DiffServ PPS
A 0.15 0.43 0.58
Figure 12: Variable RTT: Scenario Il. RTT of flow 9 B 0.10 0.42 0.40
is 300ms, RTT of all other flows is 30ms C 0.05 0.35 0.21
Total | 0.30 1.20 1.19
@ Table 8: PPS versus DiffServ: Profile less than capac-
x ity (Mb/s).
S2 P Q S5
Q 1.2Mb/s Q
each packet is in the range [0, 255]. We have exper-
@ imented with both fewer and more bits, and as one
would expect, the more bits we use, the finer differen-

)))) . tiation we can make among TCP flows. There are two
Figure 13: Configuration for comparing PPS With jn5qrtant points to make, however. First, the number
DiffServ. of bits needed is independent of the number of hops

across the network. Tickets are relevant on only a sin-
Serv and our algorithm work equally well when gle router at a time. Hence, we are not concerned that
the link capacity matches the service profiles. more complex topologies will require more bits. Sec-

ond, the number of bits needed is dependent on the

2. The target rate of A, B and C are 0.15Mb/s, levels of service one wants to differentiate among on a

0.1Mb/s and 0.05Mb/s, respectively, which is far given router. It is independent of the number of flows
below the available 1.2Mb/s link capacity. As one is trying push through the router.

we can see from Table 8, DiffServ allocates the From a practical point of view, Stoica and Zhang
bandwidth that exceeds the total expected banddescribe how the 13-bip_of f field in IP header can
width arbitrarily, while PPS allocates the band- be added to the 4 bits from the type of service (TOS)
width in proportion to the t/s assigned to eachto create a 17-bit tag [11]. Our simulations suggest
flow. that this is more than enough for our approach.

3. The expected sending rate of A, B and C are
1.2Mb/s, 0.8Mb/s and 0.4Mb/s, respectively,4 Non-Responsive Flows
which exceeds the capacity available on link (P,
Q). As a consequence, many in-profile packetsTickets represent the share of network bandwidth
are dropped, causing DiffServ to degenerate t@a flow should receive. When congestion occurs,
best effort. The results are shown in Table 9. those packets without enough tickets are likely to
be dropped. When an adaptive protocol like TCP
detects such drops, it sends fewer packets—placing
39 Ticket Bits more tickets on each packet—thereby increasing the
likelihood of its packets being delivered. The question
We use 8-bit tags in all the experiments reported ins what to do about non-adaptive flows, such as those
this section, which means the number of tickets ormanaged by UDP. One option is nothing. Such flows

12

Flow | Service| Measured| Measured tickets the link expects for each incoming packet. If
Profile | DiffServ PPS all incoming packets carnpvgTkt tickets, the total
A 1.20 0.41 0.58 incoming packet rate will bénTktRate / AvgTkt =
B 0.80 0.42 0.40 Capacity. Now, suppose UDP sourck is issued
C 0.40 0.37 0.21 OutTktRate, t/s from its controlling entityP and the
Total | 2.40 1.20 1.19 sending rate ofA is AvgRate p/s. The output link
Table 9: PPS versus DiffServ: Profile greater than cac@pPacity isCapacity p/s and the link receivesiTk-
pacity (Mbr/s). tRate t/s fromP. When congestion happens:

InTkt = OutTktRate, / AvgRate
AvgTkt = InTktRate / Capacity
would effectively be penalized for sending at too fast p=max0,1— InTkt/ AvgTkt)

a rate since the flows’ packets would have insufficient = max0,1-OutTktRate, x

tickets to make them through a congested link. This Capacity / AvgRate / InTktRate)

would effectively force all flows to be adaptive, which

is arguably a good thing. If AvgRate / Capacity < OutTktRate, / InTk-

An alternative is for routers to harvest the tickets ontRate, which means the sending rateAfs less than
any packets they are about to drop, and distribute theg¥ equals to its fair share of bandwidth, thpr= 0.
tickets to other needy packets, thereby improving thei¥Ve'll keep the packet oh. If AvgRate / Capacity >
odds of being delivered. Clearly, this cannot be donéUutTktRate, / InTktRate, which means sending rate
on a per-flow basis without suffering the same scala®f Ais greater than its fair share, therdOp < 1. The
bility problems as IntServ, but it is possible to recoveractual bandwidttA obtains is:
lost tickets on a router-wide basis.

To simplify the discussion, we assume only the
sender-based scheme for one-hop UDP flows; the ap-
proach can be extended to multi-hop scenarios and the
receiver-based approach. The tagging and relabeling
mechanisms of UDP flows are similar to those of TCP. o : ;

We measure the sending rafvgRate, at the UDP This is exactly the fair share of bandwidth that
source, tagOutTktRate / AvgRate tickets on each
outgoing packet, and relabel each packet based
some currency exchange rate when it passes throug
link. We then madify the packet scheduling algorithm

(1— p)x AvgRate
= QutTktRate, x Capacity / AvgRate
/ InTktRate x AvgRate
= Capacity x OutTktRate, / InTktRate

should obtain. Note that if a packet should be dropped
with probability p (0 < p < 1) but not dropped, its
kets are augmented #wvgTkt. The reason is that
Aly (1— p) fraction of the total packets fromA can
survive, which meang fraction of its tickets are lost.

as follows: We want to keep the total tickets Afunchanged after
Upon each packet arrival: passing through the link. So we augment the tickets
on those survived packetg (Il — p) times. As aresult,
computeAvgQLen the same as in RED the total t/s on those survived packetsAaE:
computelnTktRate the same as in TRED
if AvgQLen < MinThresh AvgTkt x(1— p)x AvgRate
enqueue the packet = InTktRate / Capacity x Capacity
if MinThresh < AvgQLen < MaxThresh x OutTktRate, / InTktRate
AvgTkt = InTktRate / Capacity ; = OutTktRate,
p =max0,1-InTkt / AvgTkt);
ifp>0 So at one hop, a UDP flow obtains its fair share of
augment the tickets on the bandwidth, and at the same time, keeps the same total
packet frominTkt to AvgTkt; amountofts.
drop the packet with probability p Note that this idea is similar to that of SCORE [9],
if MaxThresh < AvgQLen in which each flow tags its packets with its sending
drop the arriving packet rate. When congestions happen, the packet is dropped

with some probabilityp, which is determined by the
In the above pseudo-cod€apacity stands for the estimated fair share rate and the sending rate of the
link capacity andAvgTkt represents the number of flow.

13

5 Related Work probability of a packet based on the congestion level
and the tickets the packet carries. We give a defini-

As described in the Introduction, PPS can be undertion of fair bandwidth allocation and demonstrate how

stood relative to WFQ/IntServ, DiffServ, and SCORE.the algorithm can ensure such fairness for TCP flows.

The additional point revealed by the simulations isBoth sender-based and receiver-based algorithms have

that PPS is much more effective than DiffServ whenbeen developed. The main advantages of the algo-

profiles are less or more than the available link carithm are its scalability and simplicity.

pacity, which is likely to happen somewhere in the

network, especially at the boundary between DiffServkReferences

domains.

Also as mentioned in the Introduction, PPS was di- [1] D. Clark and W. Fang. Explicit allocation of best-
rectly motivated by lottery scheduling [12], which is a effort packet delivery servicelEEE/ACM Transac-
mechanism by which an OS grants tickets to processes ~ 1°nS on Networking6(4):362-373, Aug. 1998.
competing for CPU cycles. Like lottery scheduling, [2] A. Demers, S. Keshav, and S. Shenker. Analysis and
the most powerful aspect of PPS is that it the band- ~ simulation of a fair queueing algorithnProceedings
width obtained by a flow is proportional to the rela- of ACM SIGCOMMpages 362-373, Aug. 1989.
tive share of ticket rate that it is issued. Also there [3] S. Floyd and V. Jacobson. Random early detec-
need not be a single currency—each network is freeto tion gateways for congestion avoidand&EE/ACM
adopt its own currency (the boundary routers merely ~ Transactions on Networking1(4):397-413, July
need to implement the exchange rate). The probabilis- ~ 1993.
tic strategy eliminates the need for per-flow state, yet[4] A. Gupta, D. Stahl, and A. Whinston. Priority pric-
fairly allocates bandwidth among competing flows. ing of integrated services networksnternet Eco-

Turning to other similar schemes, Gupta proposed nomics, L. McKnight and J. Bailey (edsppges 253
a priority scheduling of packets belonging to different 279, 1997.
users [4]. Higher priority packets always depart the [5] J. MacKie-Mason and H. Varian. Economic faq's
routers first. This scheme may result in the starvation about the internetinternet Economics, L. McKnight
of lower priority users. Compared with their scheme, andJ. Bailey (eds,pages 27-63, 1997.

PPS ensures the users with less allocated tickets ratgs] K. Nichols, V. Jacobson, and L. Zhang. An approach
always obtain their fair share of bandwidth. to service allocation in the internetnternet Draft

MacKie-Mason and Varian propose a smart market ~ Nov. 1997.
mechanism that attaches a bid to each packet for eacliz] ns 2 (online). http://mww.isi.edu/nsnam/ns.
hop [5] This_ bid is used to determine_ the packet’s 8] S. Shenker, R. Braden, and D. Clark. Integrated ser-
Chan_ce Of. being forwarded. But therg s no obvious {° vices in the internet architecture: an overvi%m/cer-
relationship among the hop-by-hop bids. Our algo- 1t RFC 16331994
rithm puts tickets onto packets at end hosts and the
tag is relabeled at each hop according to the exchangel,;9 : ; . ; .
rates. When a packet carries less tickets than those re- fair queueing: Achieving approximately fair band-

width allocations in high speed networkBroceed-

quired by the link and gets dropped, the correspond- o< of SIGCOMMpages 118-130, Aug. 1998.
ing sender will adapt and put more tickets onto future[

] I. Stoica, S. Shenker, and H. Zhang. Core-stateless

10] I. Stoica and H. Zhang. Lira: An approach for service

packets. differentiation in internetProceedings of NOSSDAV
July 1998.
6 Conclusions [11] 1. Stoica and H. Zhang. Providing guaranteed ser-

vices without per flow managemer®roceedings of
This paper describes probabilistic packet scheduling ~ SIGCOMM pages 81-94, Aug. 1999.
algorithm (PPS) for achieving fair bandwidth alloca- [12] . waldspurger and W. Weihl. Lottery schedul-
tions among TCP flows. We use tickets to represent ing: Flexible proportional-share resource manage-
a relative share of bandwidth that a flow should re- ment. Proceedings of OSDpages 1-12, Nov. 1994,
ceive. Packets are tagged with tickets at _TCP SOUrce$;3] 7. Wang. User-share differentiation (usd) scalable
and then relabeled at each hop according to an ex- = pandwidth allocation for differentiated services-
change rate calculated from the current aggregate traf- ternet Draft May 1998.
fic. When congestion occurs, PPS calculates the drop

14

