Optimal Spilling for CISC Machines with Few Registers

Andrew W. Appel Lal George
Princeton University Lucent Technologies

appel@cs.princeton.edu Bell Laboratories
george@research.bell-labs.com

ABSTRACT Unfortunately, this approach has not worked well for machines like
Many graph-coloring register-allocation algorithms don’t work well the Pentium, which hau€ = 6 allocable registers (there are 8 regis-
for machines with few registers. Heuristics for live-range split- ters but usually two are dedicated to specifc purposes). What hap-
ting are complex or suboptimal; heuristics for register assignment pens is that there will typically be many nodes with degree much
rarely factor the presence of fancy addressing modes; these prob-greater tharK, and there is an enormous amount of spilling. Of
lems are more severe the fewer registers there are to work with. Wecourse, with few registers there will inevitably be spilling, as the
show how to optimally split live ranges and optimally use address- live variables cannot all be kept in registers; but if a variable is
ing modes, where the optimality condition measures dynamically spilled because it has a long live range, then it stays spilled even
weighted loads and stores but not register-register moves. Our al-(for example) in some loop where it is frequently used.
gorithm uses integer linear programming but is much more efEcient
than previous ILP-based approaches to register allocation. We thenin the last few years some researchers have taken a completely dif-
show a variant of Park and Moon’s optimistic coalescing algorithm ferent approach to register allocation: formulate the problem as an
that does a very good (though not provably optimal) job of remov- integer linear program (ILP) and solve it exactly with a general-
ing the register-register moves. The result is Pentium code that ispurpose ILP solver. ILP is NP-complete, but approaches that com-
9.5% faster than code generated by SSA-based splitting with iter- bine the simplex algorithm with branch-and-bound can be success-
ated register coalescing. ful on some problems. Unfortunately, the work to date in optimal
register allocation via ILP has not quite been practical: Goodwin’s
optimal register allocator can take hundreds of seconds to solve for
1. INTRODUCTION. a large procedure [11, 12]. Goodwin has formulated “near-optimal
Register allocation by graph coloring has been a big success forregister allocation (NORA)” as an ILP; our solution can be viewed
machines with 30 or more registers. The instruction selector gener-as a different approach to near-optimal register allocation.
ates code using an unlimited supply of temporaries; liveness analy-
sis constructs an interference graph with an edge between any twoA two-phase approach.Our new approach decomposes the regis-
temporaries that are live at the same time (and thus cannot be al-ter allocation problem into two parts: spilling, then register assign-
located to the same register); a graph coloring algorithm £nds a ment. Instead of asking, “at program pomtshould variables be
K-coloring of the interference graph (whekeis the number of in registerr?” we £rst ask, “at program poirg, should variable
registers on the machine). If the graph is kotolorable, then v be in a register or in memory?” Clearly, this is a simpler ques-
some nodes are spilled: the temporaries are implemented in mem+ion, and in fact we can formulate an integer linear program (ILP)
ory instead of registers, with a cost for loading them and storing that solves it optimally and ef£ciently (tens of milliseconds). This
them when necessary. Graph coloring is NP-complete, but simple phase of register allocation £nds the optimal set of splits and spills.
algorithms can often do well.
Not only does our algorithm compute where to insert loads and
An important improvement to this algorithm was the idea that the stores to implement spills, but it also optimally selects addressing
live range of a temporary should be split into smaller pieces, with modes for CISC instructions that can get operands directly from
move instructions connecting the pieces. This relaxes the inter- memory. For example, the add instruction on the Pentium takes
ference constraints a bit, making the graph more likely tdkbe two operands andd, and computed < d +s. The operands can
colorable. The graph-coloring register allocator should coalesce be in registers or in memory, but they cannot both be in memory.
two temporaries that are related by a move instruction if this can be On a modern implementation of the instruction set, the instruction
done without increasing the number of spills. mx] < m[X] + sis no faster than the sequence of instructiors
m[X; r —r+Xx; m[x] < r. However, the latter sequence requires an
explicit temporaryr, and if there are many other live values at this
point, some other value will have to be spilled; the former sequence
wouldn't require the spilling of some other value. Therefore, it is
important to make use of the CISC instructions.

The second phase is to allocate the unspilled variables to registers

in a way that leaves as few as possible register-register moves in

the program. This is difEcult to do optimally, but we will show an
Princeton University Computer Science TR-630-00, November 14, 2000.

model:

setT ;

setR ;

varx {T,R};
param cost {T};
vteT---

data:

set T={t; to}

set R={ry rp}

param cost= {(t1 3) (t24)}

AMPL

Xty rp X, >3
Xpry +Xpr, > 4

Figure 1: AMPL modeling system

efEcient algorithm can get very good results.

In judging our decomposition into two phases, there are three im-
portant questions to ask:

1. When we decompose the problem into two subproblems (spilliﬁg

and coloring) and solve each subproblem optimally, does that
lead to an optimal solution to the original problem? We will
present empirical evidence that the solutions are excellent,
but there is no theoretical reason that they will be optimal.

. Can the spilling subproblem be solved optimally and ef£-
ciently? We will show that it can, using integer linear pro-
gramming.

. Can the coloring subproblem be solved optimally and ef£-
ciently? We can do it optimally but far too slowly using
integer programming; we can do it quickly and adequately
(though suboptimally) usingptimistic coalescing

2. OPTIMAL SPILLING VIA ILP

We model the register-spilling problem as a 0-1 linear program: an
optimization problem with constraints that are linear inequalities,

a linear cost function, and the additional constraint that every vari-
able must take the value 0 or 1. We use AMPL [8] to describe, gen-
erate, and solve the linear program. The AMPL compiler derives
an instance of the optimization problem by instantiating a mathe-
matical model with problem-specifc data, and feeds the resulting
linear program (in a suitable form) to a standard off-the-shelf sim-

plex solver.

The AMPL model consists of variable, set, and parameter declara-
tions, and templates to generate the constraints for the linear pro-
gram. The sets, in their simplest form, are a symbolic enumeration set Exists

and declared in the model using a declaration similar to:

set T;
set R;

Sets may also be built from cartesian products of other sets. Vari-

ables are usually indexed over sets, so a declaration such as:
var x {T,R};

defnes a set of variableg; wherei ranges ovell andj overR.
Parameter declarations inject concrete values into the model, so a
declaration such as:

param cost {T};

defnes a parameteost thatis indexed over elements in the $et
The equations are generated from templates and are derived from
logical connections among the sets. For example:

weT. ERX” > costt]
re

If T={t1t2} andR={rq r2} then, the template above will gen-
erate two equations, one for each member:of

Xeyry + X, > COSt]
Xep,rq T Xtp,12 > COSt[tZ]

This AMPL example is illustrated in Figure 1 which shows the
model, data, and system of linear equations that is generated.

Set Declarations: The description of our ILP formulation of op-
timal spilling begins with the various set declarations required to
characterize the input sowgraph containing Intel I1A-32 instruc-
tions. At the lowest level, our model contains a set of symbolic
variablesV corresponding to temporaries in the program, and a set
P of points within the mowgraph. There is a point between any two
sequential instructions. A branch instruction terminates in a single
int that is then connected to all points at the targets of the branch.
the AMPL model, these sets are declared simply as:

set V;
set P;

The remaining data declarations deal with liveness properties and
a characterization of the type of IA-32 instructions between two
points. There are several different classes of instructions in the 1A-
32 instruction set, such as two-address binary instructibrs (©),
and unary instructiongd(— f(s)), for example. If there is an add
instructionv, < v + v1 between program poimg; and a successor
point p2, with source variabler; and destination variable,, we
model this by writing(p1, p2,Vv1,V2) € Binary , and similarly for
Unary . That is, seBinary is a subsetoP x PxV xV and is
declared in the AMPL model using:

(PxPxVxV) ;
(PxPxVxV) ;

set Binary
set Unary

C
C

For any variables; that is live at a pointp;, we write (p1,v1) €
Exists . TheExists set is similar to the live set but not iden-
tical: if an instruction between poin{y and p; produces a result
v that is immediately dead, thenis nowhere live butpy,v) €
Exists . If a variablev; is live and carried unchanged from point
p1 to p2, then we say thafps, p2,v1) € Copy. If from point py

to point pp variablev; is copied to variables, (e.g., by a move
instruction), we write(p1, p2,Vv1,Vv2) € Copy2.

c (PxV) ;
set Copy C (PxPxV) ;
set Copy2 C (PxPxVxV) ;

IAMPL actually uses the wordross instead of the symbok,
andwithin instead ofC. In general, we will use mathematical
notation instead of strictly AMPL notation in this paper, and give
the full AMPL code (93 lines long) in our forthcoming technical
report.

The compiler will sometimes refer to speci£c hardware registers Then it is necessary to propagate this liveness along the edges of
(Yoeax, %esp, ...), either because a machine instruction requires the branch, and we represent this by generating:
an operand in a speciEc register or because of parameter-passing

conventions. Now consider the instruction: (P1,P2,v1) € UseUp;
movl - %eax, %v {(p1,P2,V3), (P2, P3,V3), (P2, P4, V3),
that moves the contents of registéeax to the variablev. We (P1,P2;V1), (P2, Pa;v1),} C Copy

model this as an instruction that takes no argument (because NONjote thatvy
temporary is a source operand) and produces a resuitidmary
instructions (such amovl) can take their source or destination
operands from registers or memory, but they cannot both be from

memory. In this case, since the soufbeaxis known tobe areg- ghacia) cases of instruction€Consider an add instruction whose

ister, the destination can be a register or memory. The class of in'destination is known to be in memomyx] < mjx] +v. This could

structions that take no argument an_d prod_uce a rgglster Or MeMOrYsceur because is the address of an array element, for example.
result we calNullary . In contrast, in the instruction

Thenv must be in a register, andmust be in a register. We can

is used and propagated between the pgiatand po,
and the other variables are propagated along the appropriate branch
edges.

movl 4(%esp), %v model this as:
that moves the contents of memory at addr@éssp+4) tov, (P1, P2,X) € UseUpReg
the operand’ must be a register. The instruction class that take no (P1, P2, V) € UseUpReg

argument and produce a register-only result weNallaryReg

set Nullary C (PxPxV); Similarly, the instructiorv < v+ m[x] is modeled as:
set NullaryReg c (PxPxV) ;

(p1, P2,V) € MutateReg

Some instructions accomplish— f(v), wherev can be in a register (P1, P2,x) € UseUpReg

or memory (e.g.addl($256, %v) , that adds an immediate to

the variablev); others require thatmust be in a register and noth- Or consider the case where the source operand is a constant,
ing else (e.g.addl(4(%esp), %v)). We call theseMutate vV+C

andMutateReg respectively:

set Mutate C (PxPxV) ; (P1, p2,v) € Mutate

set MutateReg C (PxPxV) ;

There are many variations on this theme, but the point is that each

For cases where no results are produced, the instruction may takeSPecial case of an instruction (where one of the operands is forced
two operands of which at most one can be in memory (e.gcdhe to be in memory, or in registers, or constant) reduces to a case that
pareinstruction); or take one operand which can be either a regis- ¢an also be described in the model. The compiler does this reduc-
ter or memory (e.g.add(%v, %eax)): or take one operand tion before generating the data set sent to AMPL.

that must be in a register. We call these three instruction-classes)
UseUp2, UseUp, andUseUpReg respectively: Parameter Declarations: The model declares several scalar and

vector parameters (that are indexed symbolically using sets such
asP). Each point in the program has an estimated frequency of
execution that is used to weight the cost of spill or reload instruc-
tions in our optimal spilling framework. The frequencies can be
obtained by pro£ling or by static estimation [18] (which we use in
Consider a branch instruction between popit&ndp, that branches our implementation). In our model we have:

to ps if v1 =0, but otherwise falls through tps. It is necessary
to know about points such g that are associated with a branch
as we cannot insert spill or reload instructiongat We therefore to associate the frequency of execution with each point.
have a set of branching points:

set UseUp2 C (PxPxVxV) ;
set UseUp C (PxPxV) ;
set UseUpReg C (PxPxV) ;

param weight { P};

At points where the compiler has explicitly used a machine reg-

set Branch C P
ister, e.g.,movl(%eax,%v) , register%eax is not available for

with pp € Branch . Supposevs is live throughout, and is live coloring temporaries live at that point. We communicate this to the
only in the ps successor. model via a parametét
param K { P};

whereK[p] is the number of available registers at pgint

Finally we have some scalar cost parameters:
param Cioad, Cstore Cmove, Cinstr

'IP3 'p‘}. Cioad: Cstore aNdCiove are the cost of executing a load, store, and
Vs € live Vi Ve live move instruction.Cinstr is the cost of fetching and decoding one
instruction byte. Presumabloag > Cstore > Cmove > Cinstr- (In

fac: pushl %ebp ;; save frame pointer fac:
movl %esp, %ebp ;v hew frame pointer op1
movl 8(%ebp), t1 ;; n pushl %ebp
movl #1, t2 o fac =1 oDy
testl t1, t1 ;; cc = n A n movl %esp%ebp
je L1 ;» if n=0 goto L1 op3
L2: imull t1, t2 ;v fac = n * fac movl 8(%ebp),t1
decl t1 nono: =n-1 oDy
jnz L2 ;; if n <> 0 goto L2 movl #1to
L1: movl t2, %eax ;; return register op5
leave ;; done testl 1,11
ret *Pg
je L1
*p7 \
Figure 2: Intel IA-32 instructions for the factorial function 7"
°pPg
imull t1,t2
fact, Cinstr really measures the cost of a slight extra pressure on the *Po decl t
instruction cache.) . !
Pio
jnz L2
Example. *P11
. . . L1:
Figure 2 shows the Intel IA-32 instructions that may be generated | ¢p;,
for the factorial function, and Figure 3 shows the corresponding movl tp, %eax
aowgraph annotated with points surrounding each instruction. The | ®P13
AMPL sets generated are: leave
P14
set P = { p1 P2 Ps . Pua Pis) o
set V= { t1 t3} P15
set Branch = { p; pi1} . . .
set NullaryReg := { (ps pa t1)} Figure 3: Flowgraph annotated with points

set UseUp2 = { (ps pe t1 1)}

set UseUp = { (ps po t1) (P12 P13 t2)}

set Mutate := { (po P10 t)}

set MutateReg = { (ps po t2)}

set Binary := { (ps py t1 t2)}

set Copy :=
{(Pa ps t1) (Ps Ps t1) (Pe P7 t1) (P7 Ps t1) (Ps Po ta)
(Pro P11 t1) (P11 ps t1) (Ps Ps t2) (Ps P7 t2)

cet E(X?;'[Spg:tZ) (Po P10 f2) (Pro Pu1 f2) (P P 2} e arrive in a register and depart in memorgyy (for stored,

{(ps t1) (ps t1) (Ps t1) (P7 t1) (ps t1) (Po t1) (P10 t1)
(P11 t1) (Ps t2) (Ps t2) (P7 t2) (Ps t2) (Po t2) (P10 t2)
(P11 t2) (P12 t2) (P13 t2)}

arrive atp in a register and depart in a registeryy,

arrive in memory and depart in memorynp y,

or arrive in memory and depart in a registépy (for loaded.

A solution to the spilling problem is just the description of where

Theimull instruction is not classifed asBinary instruction the loads and stores are to be inserted. We model this as follows:

as the destination must be a register operand, and cannot be memvar r {Exists} binary;
ory, while the source operand can be in either class. Therefore,var m {Exists} binary;
imull is classifed adMutateReg for the destination operand ~ Var | {Exists} binary;
andUseUp for the source operand. var s {Exists} binary;
This says that for eadtp, V) in Exists - that is, for each variable
Missing in the data are the concrete parameters such as the execuy live at a program poinp — there are linear-program variablgs,,
tion frequency of each point, the costs, and the valuk af each Mp.v, lpv, @andspy; the binary keyword says that the variable
point. If we assume thatesp and%ebp are dedicated, then the must take on the value 0 or 1. We wish to £nd the values of these
value ofK at all points in the nowgraph is 6, except at pom8 variables subject to a set of linear constraints.
where%eaxis de£ned and the value Kfis 5.
Exists: The £rst constraint is that exactly one of these variables is
set for anyp andv:

3. VARIABLES AND CONSTRAINTS)

Spilling is the insertion of loads and stores between the instructions V(p,v) € Exists . lpy+Tpy+Spy+mpy=1

of the program. Each instruction of our program spans a pair of

points, and “between the instructions” means “at a point.” Thus, granch: At a branch-point it's not possible to load or store, be-
we will insert loads/stores at points, not between them. cause we can't insert an instruction after a conditional-branch in-

. struction but before its targets.
Consider a variable live at a program poinp. The variablev

could: V(p,v) € Exists st. peBranch . Ipy+5,y=0

Coloring: Atany pointp, all the stores can be performed before all

the loads. However, the variables to be stored originate in registers,

These constraints are all Pentium-specifc, but by illustrating how
easily they are speci£ed we hope to convince the reader that many

therefore the sum of variables that are already in registers and thosekinds of CISC instructions could be specifed within this frame-
that are to be spilled must be no more than the number of registerswork.

available for coloring ap.

VpeP. K[p] > rpv+Spv

(p,v)€Exists

Similarly, after all the loads have been done at a point, the number

of variables in registers should be no more thkan

VpeP. K[p] > rpv+lpy

(p,v)€Exists

Copy propagation: If a variablev is copied fromp; to py, then
either it departs fronpy in a register and arrives @b in a register,

or it departs fromp; in memory and arrives gl in memory. If it
departs fronpy in a register it must have already been in a register
(i.e. rp,v = 1), or was loaded into a register pd (Ip, v = 1). If it
arrives atpy in a register, it can either continue in a registepat
(rp,,v = 1) or it can be stored gi (sp,v = 1):

v(p:l.v pZaV) € COpy lp1,V+ rD;[,V = sz,V+ r.pz.V

The constraingp, y + Mp, v = Ip, v + Mp, v is redundant and must
not be specifed (redundant constraints will — with the inevitable
rounding errors — overconstrain the problem so that the LP solver
fails to £nd a solution).

If a variablev at p; is copied to a variable, at py, then if it
departsyy in a register it must arrive, in a register. The constraint
is similar to theCopy case except that two variables are involved.

V(p1, P2, V1, V2) € Copy2.
lpLVl v = Spove Ty,

3.1 Specifying the CISC instructions

Onthe IA-32 (x86, Pentium), if there isBinary instruction (e.g.,
two-operand add) betwegn andpy, operating on source variable
v1 and destination variable, then at least one off andv, must
departp; in registers:

V(p1, P2, V1, Vo) € Binary
lpyve +pive +lpive +pv, > 1

Furthermore, the destination operandnust be in registers depart-
ing pp if and only if it is in registers arriving,:

V(P1, P2, V1, V2) € Binary
Iprvz +Tprve = Spave +1pve

There are similar constraints for the other classes of instructions,
as shown in the full technical report. They say that the result of a
NullaryReg must arrivepy in a register; at least one operand of
aUseUp2 must be in a register; the operand diseUpReg must

be in a register; the operand ofMutate must deparfp; in the
same storage class as it arriyes the operand of MutateReg

must deparps in a register and arrivg, in a register; and that at
least one operand ofdnary must be in a register.

3.2 Objective function
The objective function of our linear program calculates the esti-

mated runtime cost of the spill-related loads, stores, and CISC operands.

The £rst component of the cost comes from loads and stores:

minimize COST :

(Z(p.v)€EXists
weight p((CIoad + 3Cinstr)l pyv+
(Cstore+ 3Cinstr)Spv))
+

The cost of executing a load Ggag. The cost of a 3-byte load
instruction (in i-cache occupancy) i€3sy. For each poinp and
variablev such that there is a spill-load @fat p we incur this cost;
and similarly for stores.

If the destination operand ofBinary instruction is in memory,

we incur a cos€Cioaq andCstore and one extra byte @i, COSt to
specify the operand. If the source operand is in memory, then we
incur a load cost and one instruction-byte cost:

+(2_(P1,P2.,V1,V2)EBinary
weight ((Cioad+Cinstr) (Mp,,s+Sp.vi)
+(Cioad+Cstore+ Cinstr) (Mpv, +1p2v2)))
+ .

There are similar clauses to account for the cost of memory operands
of the other classes of instructiorignary , Mutate , and so on.

3.3 Temporary loads

When we execute a load instruction to bring a value from mem-
ory to registers, the value becomes accessible from both places,
and similarly when we store from registers to memory. The model
we have described does not account for this fact; it acts as if a
value lives only in one place at a time. We constructed a more
ambitious model that accurately accounts for values that continue
to live in both memory and registers after a load or store, but we
had little success with it: the equations seem to be sufEciently un-
derconstrained that the integer LP solvers do enormous amounts
of branch-and-bound search. Therefore we use the model that as-
sumes that each value lives in one place (memory or registers) at a
time. Our spilling is optimal only with respect to this model.

However, we were able to incorporate one useful special case into
our model. A variable can be loaded from (a spill location in) mem-
ory to a register for use in the very next instruction, with the as-
sumption that the register is then dead and the memory value lives
on. We have not described this mathematically in the body of the
paper, but our implemented AMPL model includes this feature.

This completes the description of our linear-program model of spill
costs.

4. SOLVING THE MODEL.

Our compiler [2][10] feeds the data associated with a sowgraph | fac:

together with the model to AMPL. AMPL generates a linear pro- | ®P1

gram with variables, constraints, and an objective function. From pushl %ebp

the example in Figure 3 the variables: *P2
movl %esp%ebp

Mpatys |p4-11ﬁ Spatys Mpgty D3

would be generated fdar corresponding to the poinpa, since movl 8(%ebp),t)

(p4,t1) € Exists . A constraint corresponding to thexists for-

mula (Section 3) would establish the equation: ops tf —t9

3 movl #1,t0
Fpaty + I534-11 1 Spaty + Mpy = 1

In a typical large cluster of basic blocks spanning several source-| eps tf <—t% [t% — tg

program functions, there will be a few thousand poiptsnd sev- testl tf,tf

eral hundred temporaries yielding tens of thousands of linear-

program variables. ops 3 t7|[t3 —t}
je L1

AMPL £rst runs a “presolve” phase in which as many variables as | ep;

possible are eliminated; for example, any usengf, could be re-
placed by - (rpv+Ipv+Spy). After the presolve, AMPL formats tf - tf I tg‘ - t%
the linear program in a way acceptable to the back end, which is any
one of several commercial or noncommercial LP solvers. Some of

these solvers can solve integer linear programs using a combination

of the simplex method with branch-and-bound; others can do only 2"
continuous LP’s using simplex alone. We have used CPLEX [7] t5 —t2 ops
and IBM’s OSL [13]; CPLEX is an order of magnitude faster but imull tf tg

sometimes dumps core.
. . g tf%tf”tg’%tg
After the ILP solver is £nished, AMPL formats the results — a table decl 12
of r,I,s,mfor each(p,v). Our compiler computes all the spilling 1
from this information inserting load and store instructions at points
wherelpy andspy is set, and introduces memory operands at in- hz
structions for whichmp,, is set. A prior phase assigns a logical !

spill location for every temporary, ensuring that nonoverlapping 3 P11
live ranges share the same memory location. Lt ~———~

t} |ty 1§

opio tf — 17 [[t§ — 5

5. REGISTER COALESCING oo

The resulting mowgraph has no more th@rvariables simultane- movl t3.%eax
ously live at any point, but it may still be the case that there is no P13 2
K-coloring of the variables — th&t registers do not suffce. ¥ leave
interferes withy; at pointps, y1 interferes withz; at pointp,, and P14

z; interferes withx; at point pz, then even though there are only ret

two temporaries live at any time, there is no 2-coloring of the inter- epis

ference graph.
. . Figure 4: Flowgraph with internal splits

Our solution is to copy every variable to a freshly named temporary

at every program point. At poinp; we will copy x; « x; and

Y2 < y1, at p We copyys < y> and z3 « 2, and so on. We ylemented by a sequence Kfregister-register move instructions.
assume the copies are done in parallel, so yhanterferes only If the parallel copy corresponds to a permutation with one or more
with X, and not withx; or z3. Then no temporary interferes with ¢y cles, then extra work (and extra storage) may be required to move
more tharK — 1 others, and the graph is colorable. avalue out of the way and then move it back. Fortunatelyxthe

. . (exchange two registers) instruction on the IA-32 avoids the need
Whenever there is an edge from program pginto p, such that for extra storage.

the optimal-spill model has@opy or Copy?2 relation, we also in-

troduce a copy in the optimal-coalescing graph. That is, all the gecayse there are no more tharive variables at any time, and
variables copied across an edge are formed into a parallel copypecayse a variable-span live at one time is never live at any other
that is meant to occur simultaneously with any ot.her |nstruct|qn time (only related to other live ranges), the graph is trivialk-
executed at the edge. For edges that don't contain any “real” in- ¢5|oraple. Any conaicts that arise at an instruction can be removed
struction, a new basic block must sometimes be introduced; this 50 appropriate set of parallel copies before the instruction. That
is callededge splittingand is common in register-allocation prob- i from the result of the spill phase, we can construct an interfer-

lems [1, £gs. 19.2-3]. The resulting sowgraph for the example in g graph in which every nofléas degree less thaq Such a
Figure 2 is shown in Figure 4.

2The situation is more complicated for machines with instructions
After the graph is colored, eadtrway parallel copy must be im- that both overwrite some of the input operands and generate new

graph can be easily colored by Kempe’s algorithm [14] (rediscov- If no color is available, Briggs would spill the node. Park and Moon

ered 102 years later by Chaitin [5]). point out that we can instead undo the coalescing that caused this
node to have high degree. We go even further: in our context,

Having K “artifcial” move instructions before every “natural” in- because we start with a graph whatenodes have low degree, we

struction would be expensive. Given a move instruction v, if know that it will alwaysbe possible to undo the coalescing of a

u andv can be colored the same — assigned to the same register -spill candidate and color the nodes individually.

then the move can be deleted. Tiegister coalescingroblem is

to £nd a coloring so that as many moves as possible have sourceHowever, we don't always need to undo this coalescing all the way.

and destination colored the same. When we formulate the coloring We £rst split the spill candidate into its constituent primitive nodes.

problem, we say that andv aremove-related Then we reconsider each move instruction, and coalesce it if the
resulting node is colorable in the current context.

The coloring/coalescing problem is signi£cantly simpler than the

problem hanQIed by most graph-cgloring register aIIocator;, be- 7 BENCHMARKS

cause the spills have already b_een |dent|£ed_ and the graph is guarye evaluate the method as follows:

anteedK-colorable. Therefore it's worth stating exactly what the

algorithmic problem is.

How costly is the optimal spilling algorithm?

Optimal register coalescing. Given an undirected graph of max-

imum degreek — 1 (these are thinterferenceedges), and an ad- e How many spills remain, compared to other algorithms?
ditional set of weighted edges (these are th@veedges), £nd a

K-coloring of the graph such that e How costly is the optimistic coalescing algorithm? We will

not even perform measurements to answer this question; the
algorithm is clearly linear-time (for any givef), and should

1. No two nodes connected by an interference edge have the be about as fast as Briggs’s algorithm, which is known to be
same color; very efEcient when implemented carefully.

. . 5
2. There s the lowest possible cost, where cost is the sum of the e How many moves remain, compared to other algorithms?

weights of those move edges whose endpoints are colored

differently. It would also be interesting to know how much suboptimality is
caused by splitting the problem into two phases, spilling and co-
alescing. Answering this question would require an optimal al-
gorithm for coalescing; although we have implemented one using
integer programming, it blows up on any but the tiniest examples.

This problem is clearly NP-complete; it reduces the general graph-
coloring problem (though we won’t show the reduction here).

6. ALGORITHMS FOR COALESCING 7.1 Optimal Spilling

We have tried three approaches to the coalescing problem: iteratedrigure 5 shows the spill statistics. TBgills andReloadscolumns
register coalescing [9], integer linear programming, and optimistic show the number of spill and reload instructions inserted into the
coalescing [17]. The £rst two don’t work: iterated coalescing is program. In other words, these columns are a count of the number
fast but too conservative for the highly constrained problems that of memory loads and stores from spill instructions. Some spills and
result from our optimal spiller, and our integer programs produce reloads can be combined with addressing modes, and the number
optimal solutions but not in a reasonable amount of time. of instructions affected is shown in the last column. No distinction
is made between instructions that use memory as a source operand
Optimistic coalescing. Our third approach is based on Park and and a destination, and those that use memory for a source only.
Moon'’s optimistic coalescing [17] and works as follows: We per- Each column shows the base SML/NJ compiler (version 110.23),
form aggressive coalescing & Chaitin), which may overconstrain and the same compiler modifed to use our new algorithm for opti-
the graph so that it becomes uncolorable. We do this coalescing inmal spilling (Opt).
priority order, so that the expensive moves get coalesced £rst. Of
course, we do not coalesce nodes that interfere — hence the need foThe base compiler uses static single-assignment (SSA) form, which
priorities. divides each program variable into several temporaries based on the
relation of de£nitions of the variable to the dominator tree of the
We then do a Briggs-style [4] optimistic coloring: that is, we re- program. Then a Chaitin-style spiller implements each temporary
move nodes of degree K and push them on a stack. When the eijther entirely in registers or entirely in memory. Briggs [3] con-
graph contains only nodes of degreeK, we select apill candi- jectured that SSA was the best way to split the variables prior to
dateusing Chaitin’s heuristics and remove it from the graph, push- coloring with coalescing. Our current paper can be viewed as a test
ing it on the stack. Briggs called this optimistic because there is of his conjecture; we have described an entirely different method
always the chance that in the stack-popping (coloring) phase, sev-for splitting the variables.
eral neighbors of the spill candidate will be colored the same, so
that a color is available. A characteristic of SSA form is that there will typically be one spill

- . and multiple reloads for any temporary that is spilled. The number
[)?]S;Irt] g\[/)eersehncdhsirfs’\:fdthgggg I?r}?ezigf(fr?élr%nr:():é'\ggf)hsa{)f?errc'o%rtif\r!;al of spill and reloads from the base compiler is 30% higher than the

spilling may have some nodés of degre&,, but these nodes won't th version, however the pumber' of spills i.n the Opt \(ersion is
have high-degree neighbors, so the graph will still be trivially col- higher than the base compiler. This can easily be explained as the
orable by Kempe’s algorithm. ILP model is splitting a live range into multiple parts, some subset

600 — Memory instructions

» == Reloads
§ | == Spills

©

>

B

£

S

o}

o

S

=

c

6000 —
1 == Memory instructions

2 — Reloads
2 = Spills
o

=}

12}

£

G

o}

Qo

£

p}

e

6%&
2

A
kA %

Figure 5: Comparison of static spill statistics for SML/NJ
v110.23 (Base) using previous algorithm (SSA splitting and it-
erated register coalescing) and same compiler based on optimal
spilling via integer linear programming (Opt)

of which are implemented in registers and the others in memory. In
other words, there is only one transition from register to memory in
the base compiler, but multiple transitions in the ILP model.

A different story applies to thReloadscolumn. The Opt column

Optimal Solution Time (secs)

100000
Number of |A32 Instructions

Figure 6: Solve time versus program points.
The polygon shows the approximate performance of Goodwin’s
algorithm, (as reported by him [11]) on a different data set.

scatter plot is a crude bounding box obtained from Figures 3.4 in
Goodwin'’s thesis [11]3

The mostimportant result from Figure 6 is that two minutes was the
longest time taken on a 250MHz SGI MIPS processor, with most
clusters being solved within 10 seconds. The complexity is close
to linear O(n'3), taking the least square £t), and is signifcantly
better than the(n?®) reported by Goodwin and Wilken [12] for
general purpose processors. In all fairness, Goodwin and Wilken
are solving the entire register allocation problem for an architecture
with many more registers. Kong and Wilken [15] get much better
performance (though they do not report any empirical complexity
result), and they also solve the whole register allocation problem.
Our number of constraints grows almost linearly with the program
size p(n”)) which is signiEcantly better than the models solved
by Wilken et al. [12, 15].

7.3 Register Allocation

Figure 7 shows the number of splits remaining in the SSA based
compiler with iterated register coalescing (Base), and the number
remaining using ILP and optimistic coalescing (Opt). The third
column is the number of non-split instructions in the Opt compiler;
the corresponding column for the Base compiler is not shown. ILP
with optimistic coalescing produces programs in which 1 in 17 in-

reloads less than half as many variables as the base compiler, as thtructions are moves, and the static number of splits in all but one

ILP model effectively keeps active temporaries in registers.
TheMemory instructions column again demonstrates that the op-

timal spilling has made much better use of effective addressing
modes.

7.2 Optimal-spill performance

benchmark is better than our SSA-based splitting with iterated reg-
ister coalescing. We don’t know how many of these are required by
the two-address nature of the instruction set or by other constraints
— that is, we don’t know how many moves an optimal coalescer

would leave. However, we have measured the overall performance
of several standard ML benchmarks using our old algorithm (SSA-

based splitting with iterated register coalescing [9]) and our new

one (optimal spilling with optimistic coalescing). The results (in

Figure 6 shows the size of the AMPL model and the speed of gen- g re 8) show a speedup of 9.5% improvement in execution speed
erating an optimal solution. Each dot in these £gures represents(taking the geometric mean of ratios), which we feel can be im-

a cluster, and each benchmark is made up of multiple clusters. A r4ved even further by the use of accurate profles instead of static
cluster is a call graph in which every function in the graph has at ogimates.

least one call-edge with another function in the graph. Since this

is a continuation passing style (CPS) compiler, there are usually 3The technical report explains why we believe the machine on
a large number of clusters for each benchmark. Superimposed onwhich Goodwin got his results is about as fast as our machine.

Splits Non-splits | Instructions Optimal spilling \ Optimistic coalescing

Base Opt Opt Per Split ¢ Spilling e Register assignment
barnes-hut 391 326 7430 23 e Live range splitting e Copy elimination
boyer 489 254 16495 65 o Callee/caller-save management
count-graphs 223 215 3705 17 e Rematerialization
fft 145 212 3669 17
icfp00 1413 1008 19332 19
knuth-bendix 776 648 7912 12 We did not implement rematerialization, but it should £t naturally
lexgen 1767 1352 14543 11 into our spilling model.
life 230 203 2118 10
logic 201 163 3653 22 Kong and Wilken [15] extend the work of Goodwin and Wilken to
mandelbrot 26 16 262 16 handle irregular architectures and in particular the IA-32 instruction
mlyacc 3184 2559 39267 15 set, but their treatment of addressing modes appears to be much
ray 403 311 4735 15 weaker than ours. Many of the extensions deal with special aspects
simple 1288 930 15133 16 of register assignment on the Intel architecture, such as the penalty
tsp 292 291 3395 12 in code size for using addressing modes involving regiStezsp
Geometric Mean 17 and%ebp, and the use of short (8 and 16 bit) registers; we do not

deal with these issues. They also consider the insertion of splits
before commutative operations, i.e., a commutative operation such

Figure 7: Number of splits and instructions as B3« S1+ X could be translated by either movilgi or S2
into S3 and performing the appropriate two address instruction —
Benchmark Base Opt \ Speedup the choice is made by the linear program. They do not consider the
barnes-hut 292 29 0.0% possibility of inserting splits at any program point.
boyer 1257 124 0.0
mlyacc 9.14 9.1 0.0 Lueh, Gross, and Adl-Tabatabai[16]. Fusionbased register al-
tsp 6.92 6.77 2.2 location breaks up register allocation into a per-region basis, where
lexgen 9.08 8.8 2.7 the simplest region is a basic block. Spilling is performed inside
count-graphs 24.07 22.1 8.7 the region so that the resulting interference graph is simplifable. It
icfp00 109.29 99.7 9.6 may be necessary to spitlansparentlive ranges for the graph to
fft 8.58 7.80 10.0 be simplifable, but the actual spilling of transparent live ranges is
logic 510 4.61 10.6 delayed. A transparent live range is one that is live on entry and
knuth-bendix 8.08 7.2 11.9 exit to a region and is not used within the region. It is similar to
mandelbrot 27.92 232 20.3 members of ouCopyset. As neighboring regions are fused to-
life 19.03 15.24 24.9 gether, each region can be individually colored by inserting splits
simple 3153 251 25.5 for all the transparent live ranges at the boundaries of the region
and coloring each region individually. Of course this naive strat-
Figure 8: Execution speed egy is undesirable, and great effort is made to stretch the lifetimes

of transparent live ranges in memory or registers across the multi-
ple regions being fused together. This is precisely what our linear
programming phase does, but with a lot less bookkeeping, and our

8. RELATED WORK version is simpler to specify.

Goodwin and Wilken [12] address several optimization problems
such as live range splitting, register assignment, spill placement, chow and Hennessy[6] use priority-based coloringbefore in-
rematerialization, callee/caller-save register management, and copystruction selection. Higher-priority temporaries are more impor-
elimination, within the single framework of 0-1 integer linear pro- tant to keep in registers. They assign colors to the interference
gramming. They do not handle CISC instruction selection, though graph in order of priority; when a temporary is uncolorable, they
our new result implies that instruction selection could be incorpo- yse a greedy heuristic to split it into smaller live ranges. Some of
rated into their framework. these live ranges will be colorable (with copies between one and
the next, if they have different colors), and some will spill. This
Our Optlmal Spllllng algorithm can handle pI’Oblem sizes at least an algorithm is no particu|ar|y Simp|e to imp|ement’ makes no guar-
order of magnitude larger than theirs, as £gure 6 shows. We believeantee of optimality, and they describe results only for the relatively
this is an important bene£t of separating spilling from coloring. unconstrained problem of a 32-register RISC machine.

Goodwin and Wilken’s algorithm has a different (and incompara-
ble) optimality guarantee than ours. They guarantee an optimal set9. CONCLUSIONS
of spills and register-register moves, given a predetermined set of We have formulated the register allocation problem for CISC archi-
potential split points. We guarantee an optimal set of spills (but tectures with few registers into one involving optimal placement of
not optimal moves) over all possible split points. In principle, one spill code, followed by optimal register coalescing. We have given
could run their algorithm on an input that specifes a split point some empirical evidence that dividing the problem into these two
at every possible place, but we believe the resulting problem size phases does not signiEcantly worsen the overall quality of the so-
would swamp their algorithm in practice. lution, but a full demonstration of this fact would require optimal
solutions to the overall problem that no one has been able to cal-
Each optimization performed by Goodwin and Wilken can be done culate. We have demonstrated an effcient algorithm using integer
in one of the two phases that we have described: linear programming for optimal spill-code placement.

The optimal coalescing problem has a signifcantly simpler struc- [12] D. W. Goodwin and K. D. Wilken. Optimal and near-optimal
ture than the general register-allocation problem, as the spilling has global register allocation using 0-1 integer programming.
already been taken care of, and every node in the graph has small Software—Practice and Experien@§(8):929-965, 1996.
degree. Because of this, our adaptation of Park and Moon’s opti- o . o

mistic coalescing algorithm is simpler and stronger than the origi- [13] M- S. Hung.Optimization with IBM-OSLScienti£c Press,
nal. South San Francisco, CA, 1993.

[14] A. B. Kempe. On the geographical problem of the four

Although optimistic coalescing performs well, it is not optimal. colors.American Journal of Mathematicg:193—200, 1879.

We have formulated the optimal coalescing problem (at the end of
section 5) in such a simple way — signi£cantly simpler than tradi- [15] T. Kong and K. D. Wilken. Precise register allocation for
tional register-allocation problems that require spilling — that other irregular architectures. 181st International

researchers can continue to investigate optimal coalescing. Microarchitecture ConferencACM, December 1998.

Programs compiled with optimal spilling followed by optimistic [16] G. Lueh, T. Gross, and A. AdI-Tabatabai. Global register
coalescing run about 9.7% faster than when compiled with SSA- allocation based on graph fusion.languages and
based splitting followed by iterated register coalescing (though this Compilers for Parallel Computingages 246-265. Springer
number is based on an inadequate set of small programs). This Verlag, LNCS 1239, August 1997.

refutes a conjecture by Briggs [3] that the splits induced by SSA

would be appropriate for register allocation and spilling. [17] J. Park and S.-M. Moon. Optimistic register coalescing. In

Proceedings of the 1998 International Conference on
Parallel Architecture and Compilation Techniquesages
10. REFERENCES 196-204, 1998.
[1] A. W. Appel. Modern Compiler Implementation in ML .
Cambridge University Press, Cambridge, England, 1998. [18] Y. Wu and J. R Larus. Static branch freqqency and program
profle analysis. I”27th IEEE/ACM International Symposium
[2] A. W. Appel and D. B. MacQueen. Standard ML of New on Microarchitecture (MICRO-27)Nov. 1994.
Jersey. In M. Wirsing, editoBrd International Symp. on
Prog. Lang. Implementation and Logic Programmipgges
1-13, New York, Aug. 1991. Springer-Verlag.

[3

[}

P. Briggs.Register Allocation via Graph Coloring®hD
thesis, Rice University, April 1992.

[4] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to
graph coloring register allocatioACM Trans. on
Programming Languages and Systety3):428-455, May
1994,

[5] G.J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,
M. E. Hopkins, and P. W. Markstein. Register allocation via
coloring.Computer Language$:47-57, January 1981.

[6] F. C. Chow and J. L. Hennessy. The priority-based coloring
approach to register allocatioACM Trans. on Programming
Languages and Systeni®(4):501-536, October 1990.

[7] CPLEX mixed integer solver. www.cplex.com, 2000.

[8] R. Fourer, D. M. Gay, and B. W. KernighaAMPL: A
Modeling Language for Mathematical Programming
Scientifc Press, South San Francisco, CA, 1993.
www.ampl.com.

[9] L. George and A. W. Appel. Iterated register coalescing. In
23rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languaggsages 208-218, New
York, Jan 1996. ACM Press.

[10] L. George, F. Guillame, and J. Reppyportable and
optimizing back end for the SML/NJ compjleolume 786 of
LNCS pages 83-97. Springer-Verlag, 1994.

[11] D. W. Goodwin.Optimal and Near-Optimal Global Register

Allocation PhD thesis, University of California at Davis,
1996.

10

