
Optimal Spilling for CISC Machines with Few Registers

Andrew W. Appel
Princeton University

appel@cs.princeton.edu

Lal George
Lucent Technologies

Bell Laboratories

george@research.bell-labs.com

ABSTRACT
Many graph-coloring register-allocation algorithms don’t work well
for machines with few registers. Heuristics for live-range split-
ting are complex or suboptimal; heuristics for register assignment
rarely factor the presence of fancy addressing modes; these prob-
lems are more severe the fewer registers there are to work with. We
show how to optimally split live ranges and optimally use address-
ing modes, where the optimality condition measures dynamically
weighted loads and stores but not register-register moves. Our al-
gorithm uses integer linear programming but is much more ef£cient
than previous ILP-based approaches to register allocation. We then
show a variant of Park and Moon’s optimistic coalescing algorithm
that does a very good (though not provably optimal) job of remov-
ing the register-register moves. The result is Pentium code that is
9.5% faster than code generated by SSA-based splitting with iter-
ated register coalescing.

1. INTRODUCTION.
Register allocation by graph coloring has been a big success for
machines with 30 or more registers. The instruction selector gener-
ates code using an unlimited supply of temporaries; liveness analy-
sis constructs an interference graph with an edge between any two
temporaries that are live at the same time (and thus cannot be al-
located to the same register); a graph coloring algorithm £nds a
K-coloring of the interference graph (whereK is the number of
registers on the machine). If the graph is notK-colorable, then
some nodes are spilled: the temporaries are implemented in mem-
ory instead of registers, with a cost for loading them and storing
them when necessary. Graph coloring is NP-complete, but simple
algorithms can often do well.

An important improvement to this algorithm was the idea that the
live range of a temporary should be split into smaller pieces, with
move instructions connecting the pieces. This relaxes the inter-
ference constraints a bit, making the graph more likely to beK-
colorable. The graph-coloring register allocator should coalesce
two temporaries that are related by a move instruction if this can be
done without increasing the number of spills.

Princeton University Computer Science TR-630-00, November 14, 2000.

Unfortunately, this approach has not worked well for machines like
the Pentium, which haveK = 6 allocable registers (there are 8 regis-
ters but usually two are dedicated to speci£c purposes). What hap-
pens is that there will typically be many nodes with degree much
greater thanK, and there is an enormous amount of spilling. Of
course, with few registers there will inevitably be spilling, as the
live variables cannot all be kept in registers; but if a variable is
spilled because it has a long live range, then it stays spilled even
(for example) in some loop where it is frequently used.

In the last few years some researchers have taken a completely dif-
ferent approach to register allocation: formulate the problem as an
integer linear program (ILP) and solve it exactly with a general-
purpose ILP solver. ILP is NP-complete, but approaches that com-
bine the simplex algorithm with branch-and-bound can be success-
ful on some problems. Unfortunately, the work to date in optimal
register allocation via ILP has not quite been practical: Goodwin’s
optimal register allocator can take hundreds of seconds to solve for
a large procedure [11, 12]. Goodwin has formulated “near-optimal
register allocation (NORA)” as an ILP; our solution can be viewed
as a different approach to near-optimal register allocation.

A two-phase approach.Our new approach decomposes the regis-
ter allocation problem into two parts: spilling, then register assign-
ment. Instead of asking, “at program pointp, should variablev be
in registerr?” we £rst ask, “at program pointp, should variable
v be in a register or in memory?” Clearly, this is a simpler ques-
tion, and in fact we can formulate an integer linear program (ILP)
that solves it optimally and ef£ciently (tens of milliseconds). This
phase of register allocation £nds the optimal set of splits and spills.

Not only does our algorithm compute where to insert loads and
stores to implement spills, but it also optimally selects addressing
modes for CISC instructions that can get operands directly from
memory. For example, the add instruction on the Pentium takes
two operandss andd, and computesd ← d+s. The operands can
be in registers or in memory, but they cannot both be in memory.
On a modern implementation of the instruction set, the instruction
m[x] ← m[x]+ s is no faster than the sequence of instructionsr ←
m[x]; r ← r +x; m[x]← r. However, the latter sequence requires an
explicit temporaryr, and if there are many other live values at this
point, some other value will have to be spilled; the former sequence
wouldn’t require the spilling of some other value. Therefore, it is
important to make use of the CISC instructions.

The second phase is to allocate the unspilled variables to registers
in a way that leaves as few as possible register-register moves in
the program. This is dif£cult to do optimally, but we will show an

1

model:
set T ;
set R ;
var x {T,R};
param cost {T};
∀t ∈ T · · ·︸ ︷︷ ︸

²²data:
set T= {t1 t2}
set R= {r1 r2}
param cost= {(t1 3) (t2 4)}

 // AMPL

²²
 xt1,r1 +xt1,r2 ≥ 3

xt2,r1 +xt2,r2 ≥ 4
...

Figure 1: AMPL modeling system

ef£cient algorithm can get very good results.

In judging our decomposition into two phases, there are three im-
portant questions to ask:

1. When we decompose the problem into two subproblems (spilling
and coloring) and solve each subproblem optimally, does that
lead to an optimal solution to the original problem? We will
present empirical evidence that the solutions are excellent,
but there is no theoretical reason that they will be optimal.

2. Can the spilling subproblem be solved optimally and ef£-
ciently? We will show that it can, using integer linear pro-
gramming.

3. Can the coloring subproblem be solved optimally and ef£-
ciently? We can do it optimally but far too slowly using
integer programming; we can do it quickly and adequately
(though suboptimally) usingoptimistic coalescing.

2. OPTIMAL SPILLING VIA ILP
We model the register-spilling problem as a 0-1 linear program: an
optimization problem with constraints that are linear inequalities,
a linear cost function, and the additional constraint that every vari-
able must take the value 0 or 1. We use AMPL [8] to describe, gen-
erate, and solve the linear program. The AMPL compiler derives
an instance of the optimization problem by instantiating a mathe-
matical model with problem-speci£c data, and feeds the resulting
linear program (in a suitable form) to a standard off-the-shelf sim-
plex solver.

The AMPL model consists of variable, set, and parameter declara-
tions, and templates to generate the constraints for the linear pro-
gram. The sets, in their simplest form, are a symbolic enumeration
and declared in the model using a declaration similar to:

set T;
set R;

Sets may also be built from cartesian products of other sets. Vari-
ables are usually indexed over sets, so a declaration such as:

var x {T,R};

de£nes a set of variablesxi, j wherei ranges overT andj overR.
Parameter declarations inject concrete values into the model, so a
declaration such as:

param cost {T};

de£nes a parametercost that is indexed over elements in the setT.
The equations are generated from templates and are derived from
logical connections among the sets. For example:

∀t ∈ T . ∑
r∈R

xt,r ≥ cost[t]

If T = {t1 t2} andR= {r1 r2} then, the template above will gen-
erate two equations, one for each member ofT:

xt1,r1 +xt1,r2 ≥ cost[t1]
xt2,r1 +xt2,r2 ≥ cost[t2]

This AMPL example is illustrated in Figure 1 which shows the
model, data, and system of linear equations that is generated.

Set Declarations: The description of our ILP formulation of op-
timal spilling begins with the various set declarations required to
characterize the input ¤owgraph containing Intel IA-32 instruc-
tions. At the lowest level, our model contains a set of symbolic
variablesV corresponding to temporaries in the program, and a set
P of points within the ¤owgraph. There is a point between any two
sequential instructions. A branch instruction terminates in a single
point that is then connected to all points at the targets of the branch.
In the AMPL model, these sets are declared simply as:

set V;
set P;

The remaining data declarations deal with liveness properties and
a characterization of the type of IA-32 instructions between two
points. There are several different classes of instructions in the IA-
32 instruction set, such as two-address binary instructions (d← d⊕s),
and unary instructions (d← f(s)), for example. If there is an add
instructionv2← v2+v1 between program pointp1 and a successor
point p2, with source variablev1 and destination variablev2, we
model this by writing,(p1, p2,v1,v2) ∈ Binary , and similarly for
Unary . That is, setBinary is a subset ofP×P×V×V and is
declared in the AMPL model using:1

set Binary ⊂ (P×P×V×V) ;
set Unary ⊂ (P×P×V×V) ;

For any variablev1 that is live at a pointp1, we write (p1,v1) ∈
Exists . TheExists set is similar to the live set but not iden-
tical: if an instruction between pointsp1 and p2 produces a result
v that is immediately dead, thenv is nowhere live but(p2,v) ∈
Exists . If a variablev1 is live and carried unchanged from point
p1 to p2, then we say that(p1, p2,v1) ∈ Copy. If from point p1
to point p2 variablev1 is copied to variablev2 (e.g., by a move
instruction), we write(p1, p2,v1,v2) ∈ Copy2 .

set Exists ⊂ (P×V) ;
set Copy ⊂ (P×P×V) ;
set Copy2 ⊂ (P×P×V×V) ;

1AMPL actually uses the wordcross instead of the symbol×,
andwithin instead of⊂. In general, we will use mathematical
notation instead of strictly AMPL notation in this paper, and give
the full AMPL code (93 lines long) in our forthcoming technical
report.

2

The compiler will sometimes refer to speci£c hardware registers
(%eax, %esp, . . .), either because a machine instruction requires
an operand in a speci£c register or because of parameter-passing
conventions. Now consider the instruction:

movl %eax, %v

that moves the contents of register%eax to the variablev . We
model this as an instruction that takes no argument (because no
temporary is a source operand) and produces a result intov . Binary
instructions (such asmovl) can take their source or destination
operands from registers or memory, but they cannot both be from
memory. In this case, since the source%eax is known to be a reg-
ister, the destination can be a register or memory. The class of in-
structions that take no argument and produce a register or memory
result we callNullary . In contrast, in the instruction

movl 4(%esp), %v

that moves the contents of memory at address(%esp+4) to v ,
the operandv must be a register. The instruction class that take no
argument and produce a register-only result we callNullaryReg .

set Nullary ⊂ (P×P×V) ;
set NullaryReg ⊂ (P×P×V) ;

Some instructions accomplishv← f(v), wherev can be in a register
or memory (e.g.addl($256, %v) , that adds an immediate to
the variablev); others require thatv must be in a register and noth-
ing else (e.g.addl(4(%esp), %v)). We call theseMutate
andMutateReg respectively:

set Mutate ⊂ (P×P×V) ;
set MutateReg ⊂ (P×P×V) ;

For cases where no results are produced, the instruction may take
two operands of which at most one can be in memory (e.g., thecom-
pare instruction); or take one operand which can be either a regis-
ter or memory (e.g.addl(%v, %eax)); or take one operand
that must be in a register. We call these three instruction-classes
UseUp2, UseUp, andUseUpReg respectively:

set UseUp2 ⊂ (P×P×V×V) ;
set UseUp ⊂ (P×P×V) ;
set UseUpReg ⊂ (P×P×V) ;

Consider a branch instruction between pointsp1 andp2 that branches
to p4 if v1 = 0, but otherwise falls through top3. It is necessary
to know about points such asp2 that are associated with a branch
as we cannot insert spill or reload instructions atp2. We therefore
have a set of branching points:

set Branch ⊂ P

with p2 ∈ Branch . Supposev3 is live throughout, andv1 is live
only in thep4 successor.

•p1
if (v1 = 0)

•p2

²² %%KKKKKKKKKK

•p3
v3 ∈ live

•p4
v1 v3 ∈ live

Then it is necessary to propagate this liveness along the edges of
the branch, and we represent this by generating:

(p1, p2,v1) ∈ UseUp;

{(p1, p2,v3),(p2, p3,v3),(p2, p4,v3),
(p1, p2,v1),(p2, p4,v1),} ⊂ Copy

Note thatv1 is used and propagated between the pointsp1 andp2,
and the other variables are propagated along the appropriate branch
edges.

Special cases of instructionsConsider an add instruction whose
destination is known to be in memory:m[x]←m[x]+v. This could
occur becausex is the address of an array element, for example.
Thenv must be in a register, andx must be in a register. We can
model this as:

(p1, p2,x) ∈ UseUpReg
(p1, p2,v) ∈ UseUpReg

Similarly, the instructionv← v+m[x] is modeled as:

(p1, p2,v) ∈MutateReg
(p1, p2,x) ∈ UseUpReg

Or consider the case where the source operand is a constant,v←
v+c:

(p1, p2,v) ∈Mutate

There are many variations on this theme, but the point is that each
special case of an instruction (where one of the operands is forced
to be in memory, or in registers, or constant) reduces to a case that
can also be described in the model. The compiler does this reduc-
tion before generating the data set sent to AMPL.

Parameter Declarations: The model declares several scalar and
vector parameters (that are indexed symbolically using sets such
as P). Each point in the program has an estimated frequency of
execution that is used to weight the cost of spill or reload instruc-
tions in our optimal spilling framework. The frequencies can be
obtained by pro£ling or by static estimation [18] (which we use in
our implementation). In our model we have:

param weight { P};

to associate the frequency of execution with each point.

At points where the compiler has explicitly used a machine reg-
ister, e.g.,movl(%eax,%v) , register%eax is not available for
coloring temporaries live at that point. We communicate this to the
model via a parameterK:

param K { P};

whereK[p] is the number of available registers at pointp.

Finally we have some scalar cost parameters:

param Cload, Cstore, Cmove, Cinstr

Cload, Cstore andCmove are the cost of executing a load, store, and
move instruction.Cinstr is the cost of fetching and decoding one
instruction byte. Presumably,Cload > Cstore> Cmove > Cinstr. (In

3

fac: pushl %ebp ;; save frame pointer
movl %esp, %ebp ;; new frame pointer
movl 8(%ebp), t1 ;; n
movl #1, t2 ;; fac := 1
testl t1, t1 ;; cc := n ∧ n
je L1 ;; if n=0 goto L1

L2: imull t1, t2 ;; fac := n * fac
decl t1 ;; n : = n - 1
jnz L2 ;; if n <> 0 goto L2

L1: movl t2, %eax ;; return register
leave ;; done
ret

Figure 2: Intel IA-32 instructions for the factorial function

fact,Cinstr really measures the cost of a slight extra pressure on the
instruction cache.)

Example.

Figure 2 shows the Intel IA-32 instructions that may be generated
for the factorial function, and Figure 3 shows the corresponding
¤owgraph annotated with points surrounding each instruction. The
AMPL sets generated are:

set P := { p1 p2 p3 . . . p14 p15}
set V := { t1 t2}
set Branch := { p7 p11}
set NullaryReg := { (p3 p4 t1)}
set UseUp2 := { (p5 p6 t1 t2)}
set UseUp := { (p8 p9 t1) (p12 p13 t2)}
set Mutate := { (p9 p10 t1)}
set MutateReg := { (p8 p9 t2)}
set Binary := { (p8 p9 t1 t2)}
set Copy :=

{ (p4 p5 t1) (p5 p6 t1) (p6 p7 t1) (p7 p8 t1) (p8 p9 t1)
(p10 p11 t1) (p11 p8 t1) (p5 p6 t2) (p6 p7 t2)
(p7 p8 t2) (p9 p10 t2) (p10 p11 t2) (p11 p8 t2)}

set Exists :=
{ (p4 t1) (p5 t1) (p6 t1) (p7 t1) (p8 t1) (p9 t1) (p10 t1)
(p11 t1) (p5 t2) (p6 t2) (p7 t2) (p8 t2) (p9 t2) (p10 t2)
(p11 t2) (p12 t2) (p13 t2)}

The imull instruction is not classi£ed as aBinary instruction
as the destination must be a register operand, and cannot be mem-
ory, while the source operand can be in either class. Therefore,
imull is classi£ed asMutateReg for the destination operand
andUseUp for the source operand.

Missing in the data are the concrete parameters such as the execu-
tion frequency of each point, the costs, and the value ofK at each
point. If we assume that%esp and%ebp are dedicated, then the
value ofK at all points in the ¤owgraph is 6, except at pointp13
where%eax is de£ned and the value ofK is 5.

3. VARIABLES AND CONSTRAINTS
Spilling is the insertion of loads and stores between the instructions
of the program. Each instruction of our program spans a pair of
points, and “between the instructions” means “at a point.” Thus,
we will insert loads/stores at points, not between them.

Consider a variablev live at a program pointp. The variablev
could:

f ac :
•p1

pushl %ebp
•p2

movl %esp,%ebp
•p3

movl 8(%ebp), t1•p4
movl #1, t2•p5
testl t1, t1•p6
je L1

•p7

²²

!!B
BB

BB
BB

B

L2 :
•p8

imull t1, t2•p9
decl t1•p10
jnz L2

•p11

yyrrrrrrrr @A BC

FEDwwooo

L1 :
•p12

movl t2,%eax
•p13

leave
•p14

ret
•p15

Figure 3: Flowgraph annotated with points

• arrive atp in a register and depart in a register –rp,v,

• arrive in memory and depart in memory –mp,v,

• arrive in a register and depart in memory –sp,v (for stored),

• or arrive in memory and depart in a register –l p,v (for loaded).

A solution to the spilling problem is just the description of where
the loads and stores are to be inserted. We model this as follows:

var r {Exists} binary;
var m {Exists} binary;
var l {Exists} binary;
var s {Exists} binary;

This says that for each(p,v) in Exists – that is, for each variable
v live at a program pointp – there are linear-program variablesr p,v,
mp,v, l p,v, andsp,v; the binary keyword says that the variable
must take on the value 0 or 1. We wish to £nd the values of these
variables subject to a set of linear constraints.

Exists: The £rst constraint is that exactly one of these variables is
set for anyp andv:

∀(p,v) ∈ Exists . l p,v + rp,v +sp,v +mp,v = 1

Branch: At a branch-point it’s not possible to load or store, be-
cause we can’t insert an instruction after a conditional-branch in-
struction but before its targets.

∀(p,v) ∈ Exists s.t. p∈ Branch . l p,v +sp,v = 0

4

Coloring: At any pointp, all the stores can be performed before all
the loads. However, the variables to be stored originate in registers,
therefore the sum of variables that are already in registers and those
that are to be spilled must be no more than the number of registers
available for coloring atp.

∀p∈ P. K[p] ≥ ∑
(p,v)∈Exists

rp,v +sp,v

Similarly, after all the loads have been done at a point, the number
of variables in registers should be no more thanK.

∀p∈ P. K[p] ≥ ∑
(p,v)∈Exists

rp,v + l p,v

Copy propagation: If a variablev is copied fromp1 to p2, then
either it departs fromp1 in a register and arrives atp2 in a register,
or it departs fromp1 in memory and arrives atp2 in memory. If it
departs fromp1 in a register it must have already been in a register
(i.e. rp1,v = 1), or was loaded into a register atp1 (l p1,v = 1). If it
arrives atp2 in a register, it can either continue in a register atp2
(rp2,v = 1) or it can be stored atp2 (sp2,v = 1):

∀(p1, p2,v) ∈ Copy. l p1,v + rp1,v = sp2,v + rp2,v

The constraintsp1,v + mp1,v = l p2,v + mp2,v is redundant and must
not be speci£ed (redundant constraints will – with the inevitable
rounding errors – overconstrain the problem so that the LP solver
fails to £nd a solution).

If a variablev1 at p1 is copied to a variablev2 at p2, then if it
departsv1 in a register it must arrivev2 in a register. The constraint
is similar to theCopy case except that two variables are involved.

∀(p1, p2,v1,v2) ∈ Copy2 .
l p1,v1 + rp1,v1 = sp2,v2 + rp2,v2

3.1 Specifying the CISC instructions
On the IA-32 (x86, Pentium), if there is aBinary instruction (e.g.,
two-operand add) betweenp1 andp2, operating on source variable
v1 and destination variablev2, then at least one ofv1 andv2 must
departp1 in registers:

∀(p1, p2,v1,v2) ∈ Binary
l p1,v1 + rp1,v1 + l p1,v2 + rp1,v2 ≥ 1

Furthermore, the destination operandv2 must be in registers depart-
ing p1 if and only if it is in registers arrivingp2:

∀(p1, p2,v1,v2) ∈ Binary
l p1,v2 + rp1,v2 = sp2,v2 + rp2,v2

There are similar constraints for the other classes of instructions,
as shown in the full technical report. They say that the result of a
NullaryReg must arrivep2 in a register; at least one operand of
aUseUp2 must be in a register; the operand of aUseUpReg must
be in a register; the operand of aMutate must departp1 in the
same storage class as it arrivesp2; the operand of aMutateReg
must departp1 in a register and arrivep2 in a register; and that at
least one operand of aUnary must be in a register.

These constraints are all Pentium-speci£c, but by illustrating how
easily they are speci£ed we hope to convince the reader that many
kinds of CISC instructions could be speci£ed within this frame-
work.

3.2 Objective function
The objective function of our linear program calculates the esti-
mated runtime cost of the spill-related loads, stores, and CISC operands.
The £rst component of the cost comes from loads and stores:

minimize COST :
(∑(p,v)∈Exists
weight p((Cload+3Cinstr)l p,v+

(Cstore+3Cinstr)sp,v))
+ . . .

The cost of executing a load isCload. The cost of a 3-byte load
instruction (in i-cache occupancy) is 3Cinstr. For each pointp and
variablev such that there is a spill-load ofv at p we incur this cost;
and similarly for stores.

If the destination operand of aBinary instruction is in memory,
we incur a costCload andCstore, and one extra byte ofCinstr cost to
specify the operand. If the source operand is in memory, then we
incur a load cost and one instruction-byte cost:

+(∑(p1,p2,v1,v2)∈Binary
weight p1((Cload+Cinstr)(mp1,s+sp1,v1)

+(Cload+Cstore+Cinstr)(mp2,v2 + l p2,v2)))
+ . . .

There are similar clauses to account for the cost of memory operands
of the other classes of instructions:Unary , Mutate , and so on.

3.3 Temporary loads
When we execute a load instruction to bring a value from mem-
ory to registers, the value becomes accessible from both places,
and similarly when we store from registers to memory. The model
we have described does not account for this fact; it acts as if a
value lives only in one place at a time. We constructed a more
ambitious model that accurately accounts for values that continue
to live in both memory and registers after a load or store, but we
had little success with it: the equations seem to be suf£ciently un-
derconstrained that the integer LP solvers do enormous amounts
of branch-and-bound search. Therefore we use the model that as-
sumes that each value lives in one place (memory or registers) at a
time. Our spilling is optimal only with respect to this model.

However, we were able to incorporate one useful special case into
our model. A variable can be loaded from (a spill location in) mem-
ory to a register for use in the very next instruction, with the as-
sumption that the register is then dead and the memory value lives
on. We have not described this mathematically in the body of the
paper, but our implemented AMPL model includes this feature.

This completes the description of our linear-program model of spill
costs.

4. SOLVING THE MODEL.

5

Our compiler [2][10] feeds the data associated with a ¤owgraph
together with the model to AMPL. AMPL generates a linear pro-
gram with variables, constraints, and an objective function. From
the example in Figure 3 the variables:

rp4,t1 , l p4,t1 , sp4,t1 , mp4,t1

would be generated fort1 corresponding to the pointp4, since
(p4, t1) ∈ Exists . A constraint corresponding to theExists for-
mula (Section 3) would establish the equation:

rp4,t1 + l p4,t1 + sp4,t1 + mp4,t1 = 1

In a typical large cluster of basic blocks spanning several source-
program functions, there will be a few thousand pointsp and sev-
eral hundred temporariesv, yielding tens of thousands of linear-
program variables.

AMPL £rst runs a “presolve” phase in which as many variables as
possible are eliminated; for example, any use ofmp,v could be re-
placed by 1−(rp,v+ l p,v+sp,v). After the presolve, AMPL formats
the linear program in a way acceptable to the back end, which is any
one of several commercial or noncommercial LP solvers. Some of
these solvers can solve integer linear programs using a combination
of the simplex method with branch-and-bound; others can do only
continuous LP’s using simplex alone. We have used CPLEX [7]
and IBM’s OSL [13]; CPLEX is an order of magnitude faster but
sometimes dumps core.

After the ILP solver is £nished, AMPL formats the results – a table
of r, l ,s,m for each(p,v). Our compiler computes all the spilling
from this information inserting load and store instructions at points
wherel p,v andsp,v is set, and introduces memory operands at in-
structions for whichmp,v is set. A prior phase assigns a logical
spill location for every temporary, ensuring that nonoverlapping
live ranges share the same memory location.

5. REGISTER COALESCING
The resulting ¤owgraph has no more thanK variables simultane-
ously live at any point, but it may still be the case that there is no
K-coloring of the variables – thatK registers do not suf£ce. Ifx1
interferes withy1 at pointp1, y1 interferes withz1 at pointp2, and
z1 interferes withx1 at point p3, then even though there are only
two temporaries live at any time, there is no 2-coloring of the inter-
ference graph.

Our solution is to copy every variable to a freshly named temporary
at every program point. At pointp1 we will copy x2 ← x1 and
y2 ← y1, at p2 we copyy3 ← y2 and z3 ← z2, and so on. We
assume the copies are done in parallel, so thaty2 interferes only
with x2 and not withx1 or z3. Then no temporary interferes with
more thanK−1 others, and the graph is colorable.

Whenever there is an edge from program pointp1 to p2 such that
the optimal-spill model has aCopy or Copy2 relation, we also in-
troduce a copy in the optimal-coalescing graph. That is, all the
variables copied across an edge are formed into a parallel copy
that is meant to occur simultaneously with any other instruction
executed at the edge. For edges that don’t contain any “real” in-
struction, a new basic block must sometimes be introduced; this
is callededge splittingand is common in register-allocation prob-
lems [1, £gs. 19.2–3]. The resulting ¤owgraph for the example in
Figure 2 is shown in Figure 4.

After the graph is colored, eachK-way parallel copy must be im-

f ac :
•p1

pushl %ebp
•p2

movl %esp,%ebp
•p3

movl 8(%ebp), t0
1

•p4 t1
1 ← t0

1
movl #1, t0

2

•p5 t2
1 ← t1

1 || t1
2 ← t0

2
testl t2

1, t2
1

•p6 t3
1 ← t2

1 || t2
2 ← t1

2
je L1

•p7

²²

t3
2 ← t2

2

¼¼

t4
1 ← t3

1 || t4
2 ← t2

2

22
22

22
22

22
22

22
22

L2 :
•p8

imull t4
1, t4

2

•p9 t5
1 ← t4

1 || t5
2 ← t4

2
decl t5

1

•p10 t6
1 ← t5

1 || t6
2 ← t5

2
jnz L2

•p11

ÄÄ

t3
2 ← t6

2

ÄÄ

ÄÄ
ÄÄ

@A BC
t4
1 ← t6

1 || t4
2 ← t6

2

FED¢¢¤¤
¤

L1 :
•p12

movl t3
2,%eax

•p13
leave

•p14
ret

•p15

Figure 4: Flowgraph with internal splits

plemented by a sequence ofK register-register move instructions.
If the parallel copy corresponds to a permutation with one or more
cycles, then extra work (and extra storage) may be required to move
a value out of the way and then move it back. Fortunately, thexchg
(exchange two registers) instruction on the IA-32 avoids the need
for extra storage.

Because there are no more thanK live variables at any time, and
because a variable-span live at one time is never live at any other
time (only related to other live ranges), the graph is triviallyK-
colorable. Any con¤icts that arise at an instruction can be removed
by an appropriate set of parallel copies before the instruction. That
is, from the result of the spill phase, we can construct an interfer-
ence graph in which every node2 has degree less thanK. Such a

2The situation is more complicated for machines with instructions
that both overwrite some of the input operands and generate new

6

graph can be easily colored by Kempe’s algorithm [14] (rediscov-
ered 102 years later by Chaitin [5]).

HavingK “arti£cial” move instructions before every “natural” in-
struction would be expensive. Given a move instructionu← v, if
u andv can be colored the same – assigned to the same register –
then the move can be deleted. Theregister coalescingproblem is
to £nd a coloring so that as many moves as possible have source
and destination colored the same. When we formulate the coloring
problem, we say thatu andv aremove-related.

The coloring/coalescing problem is signi£cantly simpler than the
problem handled by most graph-coloring register allocators, be-
cause the spills have already been identi£ed and the graph is guar-
anteedK-colorable. Therefore it’s worth stating exactly what the
algorithmic problem is.

Optimal register coalescing.Given an undirected graph of max-
imum degreeK−1 (these are theinterferenceedges), and an ad-
ditional set of weighted edges (these are themoveedges), £nd a
K-coloring of the graph such that

1. No two nodes connected by an interference edge have the
same color;

2. There is the lowest possible cost, where cost is the sum of the
weights of those move edges whose endpoints are colored
differently.

This problem is clearly NP-complete; it reduces the general graph-
coloring problem (though we won’t show the reduction here).

6. ALGORITHMS FOR COALESCING
We have tried three approaches to the coalescing problem: iterated
register coalescing [9], integer linear programming, and optimistic
coalescing [17]. The £rst two don’t work: iterated coalescing is
fast but too conservative for the highly constrained problems that
result from our optimal spiller, and our integer programs produce
optimal solutions but not in a reasonable amount of time.

Optimistic coalescing. Our third approach is based on Park and
Moon’s optimistic coalescing [17] and works as follows: We per-
form aggressive coalescing (á lÁa Chaitin), which may overconstrain
the graph so that it becomes uncolorable. We do this coalescing in
priority order, so that the expensive moves get coalesced £rst. Of
course, we do not coalesce nodes that interfere – hence the need for
priorities.

We then do a Briggs-style [4] optimistic coloring: that is, we re-
move nodes of degree< K and push them on a stack. When the
graph contains only nodes of degree≥ K, we select aspill candi-
dateusing Chaitin’s heuristics and remove it from the graph, push-
ing it on the stack. Briggs called this optimistic because there is
always the chance that in the stack-popping (coloring) phase, sev-
eral neighbors of the spill candidate will be colored the same, so
that a color is available.

result operands. (Neither the IA-32 (Pentium), MIPS, Sparc, or Al-
pha have such instructions.) The interference graph after optimal
spilling may have some nodes of degree≥K, but these nodes won’t
have high-degree neighbors, so the graph will still be trivially col-
orable by Kempe’s algorithm.

If no color is available, Briggs would spill the node. Park and Moon
point out that we can instead undo the coalescing that caused this
node to have high degree. We go even further: in our context,
because we start with a graph whereall nodes have low degree, we
know that it will alwaysbe possible to undo the coalescing of a
spill candidate and color the nodes individually.

However, we don’t always need to undo this coalescing all the way.
We £rst split the spill candidate into its constituent primitive nodes.
Then we reconsider each move instruction, and coalesce it if the
resulting node is colorable in the current context.

7. BENCHMARKS
We evaluate the method as follows:

• How costly is the optimal spilling algorithm?

• How many spills remain, compared to other algorithms?

• How costly is the optimistic coalescing algorithm? We will
not even perform measurements to answer this question; the
algorithm is clearly linear-time (for any givenK), and should
be about as fast as Briggs’s algorithm, which is known to be
very ef£cient when implemented carefully.

• How many moves remain, compared to other algorithms?

It would also be interesting to know how much suboptimality is
caused by splitting the problem into two phases, spilling and co-
alescing. Answering this question would require an optimal al-
gorithm for coalescing; although we have implemented one using
integer programming, it blows up on any but the tiniest examples.

7.1 Optimal Spilling
Figure 5 shows the spill statistics. TheSpills andReloadscolumns
show the number of spill and reload instructions inserted into the
program. In other words, these columns are a count of the number
of memory loads and stores from spill instructions. Some spills and
reloads can be combined with addressing modes, and the number
of instructions affected is shown in the last column. No distinction
is made between instructions that use memory as a source operand
and a destination, and those that use memory for a source only.
Each column shows the base SML/NJ compiler (version 110.23),
and the same compiler modi£ed to use our new algorithm for opti-
mal spilling (Opt).

The base compiler uses static single-assignment (SSA) form, which
divides each program variable into several temporaries based on the
relation of de£nitions of the variable to the dominator tree of the
program. Then a Chaitin-style spiller implements each temporary
either entirely in registers or entirely in memory. Briggs [3] con-
jectured that SSA was the best way to split the variables prior to
coloring with coalescing. Our current paper can be viewed as a test
of his conjecture; we have described an entirely different method
for splitting the variables.

A characteristic of SSA form is that there will typically be one spill
and multiple reloads for any temporary that is spilled. The number
of spill and reloads from the base compiler is 30% higher than the
Opt version, however the number of spills in the Opt version is
higher than the base compiler. This can easily be explained as the
ILP model is splitting a live range into multiple parts, some subset

7

mandelbrot

life
tsp boyer

count-graphs

ray

0

200

400

600

nu
m

be
r

of
 in

st
ru

ct
io

ns

Memory instructions
Reloads
Spills

Opt

Bas
e

barnes-hut

logic
knuth-bendix

lexgen

simple

mlyacc

0

2000

4000

6000

nu
m

be
r

of
 in

st
ru

ct
io

ns

Memory instructions
Reloads
Spills

Opt

Bas
e

Figure 5: Comparison of static spill statistics for SML/NJ
v110.23 (Base) using previous algorithm (SSA splitting and it-
erated register coalescing) and same compiler based on optimal
spilling via integer linear programming (Opt)

of which are implemented in registers and the others in memory. In
other words, there is only one transition from register to memory in
the base compiler, but multiple transitions in the ILP model.

A different story applies to theReloadscolumn. The Opt column
reloads less than half as many variables as the base compiler, as the
ILP model effectively keeps active temporaries in registers.

TheMemory instructions column again demonstrates that the op-
timal spilling has made much better use of effective addressing
modes.

7.2 Optimal-spill performance
Figure 6 shows the size of the AMPL model and the speed of gen-
erating an optimal solution. Each dot in these £gures represents
a cluster, and each benchmark is made up of multiple clusters. A
cluster is a call graph in which every function in the graph has at
least one call-edge with another function in the graph. Since this
is a continuation passing style (CPS) compiler, there are usually
a large number of clusters for each benchmark. Superimposed on

1 10 100 1000 10000 100000

Number of IA32 Instructions

0

0

1

10

100

1000

O
pt

im
al

 S
ol

ut
io

n
T

im
e

(s
ec

s)

largest number of instructions = 15,561
longest time = 144 s

Figure 6: Solve time versus program points.
The polygon shows the approximate performance of Goodwin’s

algorithm, (as reported by him [11]) on a different data set.

scatter plot is a crude bounding box obtained from Figures 3.4 in
Goodwin’s thesis [11] .3

The most important result from Figure 6 is that two minutes was the
longest time taken on a 250MHz SGI MIPS processor, with most
clusters being solved within 10 seconds. The complexity is close
to linear (O(n1.3), taking the least square £t), and is signi£cantly
better than theO(n2.5) reported by Goodwin and Wilken [12] for
general purpose processors. In all fairness, Goodwin and Wilken
are solving the entire register allocation problem for an architecture
with many more registers. Kong and Wilken [15] get much better
performance (though they do not report any empirical complexity
result), and they also solve the whole register allocation problem.
Our number of constraints grows almost linearly with the program
size (O(n1.3)) which is signi£cantly better than the models solved
by Wilken et al. [12, 15].

7.3 Register Allocation
Figure 7 shows the number of splits remaining in the SSA based
compiler with iterated register coalescing (Base), and the number
remaining using ILP and optimistic coalescing (Opt). The third
column is the number of non-split instructions in the Opt compiler;
the corresponding column for the Base compiler is not shown. ILP
with optimistic coalescing produces programs in which 1 in 17 in-
structions are moves, and the static number of splits in all but one
benchmark is better than our SSA-based splitting with iterated reg-
ister coalescing. We don’t know how many of these are required by
the two-address nature of the instruction set or by other constraints
– that is, we don’t know how many moves an optimal coalescer
would leave. However, we have measured the overall performance
of several standard ML benchmarks using our old algorithm (SSA-
based splitting with iterated register coalescing [9]) and our new
one (optimal spilling with optimistic coalescing). The results (in
Figure 8) show a speedup of 9.5% improvement in execution speed
(taking the geometric mean of ratios), which we feel can be im-
proved even further by the use of accurate pro£les instead of static
estimates.

3The technical report explains why we believe the machine on
which Goodwin got his results is about as fast as our machine.

8

Splits Non-splits Instructions
Base Opt Opt Per Split

barnes-hut 391 326 7430 23
boyer 489 254 16495 65
count-graphs 223 215 3705 17
fft 145 212 3669 17
icfp00 1413 1008 19332 19
knuth-bendix 776 648 7912 12
lexgen 1767 1352 14543 11
life 230 203 2118 10
logic 201 163 3653 22
mandelbrot 26 16 262 16
mlyacc 3184 2559 39267 15
ray 403 311 4735 15
simple 1288 930 15133 16
tsp 292 291 3395 12
Geometric Mean 17

Figure 7: Number of splits and instructions

Benchmark Base Opt Speedup
barnes-hut 2.92 2.92 0.0%
boyer 12.57 12.49 0.0
mlyacc 9.14 9.11 0.0
tsp 6.92 6.77 2.2
lexgen 9.08 8.84 2.7
count-graphs 24.07 22.15 8.7
icfp00 109.29 99.72 9.6
fft 8.58 7.80 10.0
logic 5.10 4.61 10.6
knuth-bendix 8.08 7.22 11.9
mandelbrot 27.92 23.21 20.3
life 19.03 15.24 24.9
simple 31.53 25.12 25.5

Figure 8: Execution speed

8. RELATED WORK
Goodwin and Wilken [12] address several optimization problems
such as live range splitting, register assignment, spill placement,
rematerialization, callee/caller-save register management, and copy
elimination, within the single framework of 0-1 integer linear pro-
gramming. They do not handle CISC instruction selection, though
our new result implies that instruction selection could be incorpo-
rated into their framework.

Our optimal spilling algorithm can handle problem sizes at least an
order of magnitude larger than theirs, as £gure 6 shows. We believe
this is an important bene£t of separating spilling from coloring.

Goodwin and Wilken’s algorithm has a different (and incompara-
ble) optimality guarantee than ours. They guarantee an optimal set
of spills and register-register moves, given a predetermined set of
potential split points. We guarantee an optimal set of spills (but
not optimal moves) over all possible split points. In principle, one
could run their algorithm on an input that speci£es a split point
at every possible place, but we believe the resulting problem size
would swamp their algorithm in practice.

Each optimization performed by Goodwin and Wilken can be done
in one of the two phases that we have described:

Optimal spilling Optimistic coalescing
• Spilling • Register assignment
• Live range splitting • Copy elimination
• Callee/caller-save management
• Rematerialization

We did not implement rematerialization, but it should £t naturally
into our spilling model.

Kong and Wilken [15] extend the work of Goodwin and Wilken to
handle irregular architectures and in particular the IA-32 instruction
set, but their treatment of addressing modes appears to be much
weaker than ours. Many of the extensions deal with special aspects
of register assignment on the Intel architecture, such as the penalty
in code size for using addressing modes involving registers%esp
and%ebp, and the use of short (8 and 16 bit) registers; we do not
deal with these issues. They also consider the insertion of splits
before commutative operations, i.e., a commutative operation such
as S3← S1+S2 could be translated by either movingS1 or S2
into S3 and performing the appropriate two address instruction –
the choice is made by the linear program. They do not consider the
possibility of inserting splits at any program point.

Lueh, Gross, and Adl-Tabatabai[16]. Fusion-based register al-
location breaks up register allocation into a per-region basis, where
the simplest region is a basic block. Spilling is performed inside
the region so that the resulting interference graph is simpli£able. It
may be necessary to spilltransparentlive ranges for the graph to
be simpli£able, but the actual spilling of transparent live ranges is
delayed. A transparent live range is one that is live on entry and
exit to a region and is not used within the region. It is similar to
members of ourCopy set. As neighboring regions are fused to-
gether, each region can be individually colored by inserting splits
for all the transparent live ranges at the boundaries of the region
and coloring each region individually. Of course this naive strat-
egy is undesirable, and great effort is made to stretch the lifetimes
of transparent live ranges in memory or registers across the multi-
ple regions being fused together. This is precisely what our linear
programming phase does, but with a lot less bookkeeping, and our
version is simpler to specify.

Chow and Hennessy[6] use priority-based coloringbefore in-
struction selection. Higher-priority temporaries are more impor-
tant to keep in registers. They assign colors to the interference
graph in order of priority; when a temporary is uncolorable, they
use a greedy heuristic to split it into smaller live ranges. Some of
these live ranges will be colorable (with copies between one and
the next, if they have different colors), and some will spill. This
algorithm is no particularly simple to implement, makes no guar-
antee of optimality, and they describe results only for the relatively
unconstrained problem of a 32-register RISC machine.

9. CONCLUSIONS
We have formulated the register allocation problem for CISC archi-
tectures with few registers into one involving optimal placement of
spill code, followed by optimal register coalescing. We have given
some empirical evidence that dividing the problem into these two
phases does not signi£cantly worsen the overall quality of the so-
lution, but a full demonstration of this fact would require optimal
solutions to the overall problem that no one has been able to cal-
culate. We have demonstrated an ef£cient algorithm using integer
linear programming for optimal spill-code placement.

9

The optimal coalescing problem has a signi£cantly simpler struc-
ture than the general register-allocation problem, as the spilling has
already been taken care of, and every node in the graph has small
degree. Because of this, our adaptation of Park and Moon’s opti-
mistic coalescing algorithm is simpler and stronger than the origi-
nal.

Although optimistic coalescing performs well, it is not optimal.
We have formulated the optimal coalescing problem (at the end of
section 5) in such a simple way – signi£cantly simpler than tradi-
tional register-allocation problems that require spilling – that other
researchers can continue to investigate optimal coalescing.

Programs compiled with optimal spilling followed by optimistic
coalescing run about 9.7% faster than when compiled with SSA-
based splitting followed by iterated register coalescing (though this
number is based on an inadequate set of small programs). This
refutes a conjecture by Briggs [3] that the splits induced by SSA
would be appropriate for register allocation and spilling.

10. REFERENCES
[1] A. W. Appel. Modern Compiler Implementation in ML.

Cambridge University Press, Cambridge, England, 1998.

[2] A. W. Appel and D. B. MacQueen. Standard ML of New
Jersey. In M. Wirsing, editor,3rd International Symp. on
Prog. Lang. Implementation and Logic Programming, pages
1–13, New York, Aug. 1991. Springer-Verlag.

[3] P. Briggs.Register Allocation via Graph Coloring. PhD
thesis, Rice University, April 1992.

[4] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to
graph coloring register allocation.ACM Trans. on
Programming Languages and Systems, 16(3):428–455, May
1994.

[5] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,
M. E. Hopkins, and P. W. Markstein. Register allocation via
coloring.Computer Languages, 6:47–57, January 1981.

[6] F. C. Chow and J. L. Hennessy. The priority-based coloring
approach to register allocation.ACM Trans. on Programming
Languages and Systems, 12(4):501–536, October 1990.

[7] CPLEX mixed integer solver. www.cplex.com, 2000.

[8] R. Fourer, D. M. Gay, and B. W. Kernighan.AMPL: A
Modeling Language for Mathematical Programming.
Scienti£c Press, South San Francisco, CA, 1993.
www.ampl.com.

[9] L. George and A. W. Appel. Iterated register coalescing. In
23rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 208–218, New
York, Jan 1996. ACM Press.

[10] L. George, F. Guillame, and J. Reppy.A portable and
optimizing back end for the SML/NJ compiler, volume 786 of
LNCS, pages 83–97. Springer-Verlag, 1994.

[11] D. W. Goodwin.Optimal and Near-Optimal Global Register
Allocation. PhD thesis, University of California at Davis,
1996.

[12] D. W. Goodwin and K. D. Wilken. Optimal and near-optimal
global register allocation using 0-1 integer programming.
Software—Practice and Experience, 26(8):929–965, 1996.

[13] M. S. Hung.Optimization with IBM-OSL. Scienti£c Press,
South San Francisco, CA, 1993.

[14] A. B. Kempe. On the geographical problem of the four
colors.American Journal of Mathematics, 2:193–200, 1879.

[15] T. Kong and K. D. Wilken. Precise register allocation for
irregular architectures. In31st International
Microarchitecture Conference. ACM, December 1998.

[16] G. Lueh, T. Gross, and A. Adl-Tabatabai. Global register
allocation based on graph fusion. InLanguages and
Compilers for Parallel Computing, pages 246–265. Springer
Verlag, LNCS 1239, August 1997.

[17] J. Park and S.-M. Moon. Optimistic register coalescing. In
Proceedings of the 1998 International Conference on
Parallel Architecture and Compilation Techniques, pages
196–204, 1998.

[18] Y. Wu and J. R. Larus. Static branch frequency and program
pro£le analysis. In27th IEEE/ACM International Symposium
on Microarchitecture (MICRO-27), Nov. 1994.

10

