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Abstract tion system. The semantics of the type constructors and
the validity of the lemmas concerning them are proved
The proofs of “traditional” proof carrying code (PCC) rigorously but without mechnical verification by the
are type-specialized in the sense that they require axiomsdesigners of the PCC verification system. We will call
about a specific type system. In contrast, the proofs of this type-specialized PCC.
foundational PCC explicitly define all required typesand  Unlike type-specialized PCC, the foundational PCC
explicitly prove all the required properties of those types described by Appel and Felty [AFO0Ob] avoids any com-
assuming only a fixed foundation of mathematics such as mitment to a particular type system. In foundational PCC
higher-order logic. Foundational PCC is both more flexi- the operational semantics of the machine code is defined
ble and more secure than type-specialized PCC. in some logicL, such as higher-order logic, that is suit-
For foundational PCC we need semantic models of ably expressive to serve as a foundation of mathematics.
type systems on von Neumann machines. Previous mod-L consists of a small set of axioms and definitional princi-
els have been either too weak (lacking general recur- ples from which it is possible to build up most of modern
sive types and first-class function-pointers), too complex mathematics. The operational semantics of machine in-
(requiring machine-checkable proofs of large bodies of structions [MAOQ] and safety policies [AF00a] are easily
computability theory), or not obviously applicable to von defined in higher-order logic. In foundational PCC the
Neumann machines. Our new model is strong, simple, code provider must give both the executable code plus a
and works either iA-calculus or on Pentiums. proof in L that the code satisfies the consumer’s safety
policy. In foundational PCC the proof must explicitly de-
fine, down to the foundations of mathematics, all required
1 Introduction concepts and explicitly prove any needed properties of
these concepts.
Proof-carrying code (PCC) [Nec97] is a method of as-  Foundational PCC has two main advantages over type-
suring that an untrusted program does no harm — doesspecialized PCC — it is more flexible and more secure.
not access unauthorized resources, read private data, oFoundational PCC is more flexible because the code pro-
overwrite valuable data. The provider of a PCC program ducer can “explain” a novel type system or safety argu-
must provide both the executable code and a machine-ment to the code consumer. It is more secure because the
checkable proof that this code does not violate the safety trusted base can be smaller: its trusted base consists only
policy of the host computer. The host computer does not of the foundational verification system together with the
run the given code until it has verified the given proofthat definition of the machine instruction semantics and the
the code is safe. safety policy. A verification system for higher-order logic
In most  current  approaches to PCC can be made quite small [HHP93, Pfe94].
[Nec97, MWCG98], the machine checkable proofs  This paper presents a new type semantics intended
are written in a logic with a built-in understanding of a to reduce the complexity of foundational type-theoretic
particular type system. More formally, type constructors proofs. The new semantics is particularly well suited for
appear as primitives of the logic and certain lemmas general recursive types, which are particularly tricky to
about these type constructors are built into the verifica- handle semantically. Recursive types have been given a



semantics in terms of metric spaces [MPS86] and in termstions of all concepts used. Foundational subject reduction
of PER models of Turing machine computations [MV96]. theorems would require the explicit definition of infer-
The metric space approach is less powerful — it mod- ence rules and derivations in terms of foundational math-
els which terms are in which types, but does not prop- ematical concepts — sets, pairs, and functions. They
erly model equivalences between terms — but it would be would also require case analyses over the different ways
adequate for applications in proof-carrying code. But a that a given type judgement might be derived. While this
prelinary investigation by the first author found no obvi- can all be done, here we take a different approach to prov-
ous definition of an appropriate metric for types on von ing that typability implies safety.
Neumann machines. On the other hand the Mitchell-  Following [AFO0b] we take a semantic approach. In a
Viswanathan model [MV96] is adaptable to von Neu- semantic proof one assigns a meaning (a semantic truth
mann machines, but would require years of effort “im- value) to type judgements. One then proves that if a type
plementating” machine-checked proofs of basic results in judgement is true then the typed machine state is safe.
computability theory [AFO1]. One further proves that the type inference rules are sound,

Our new semantics is a term model, with type judge- i.e., if the premises are true then the conclusion is true.
ments that are are indexed:k T intuitively means that, = This ensures that derivable type judgements are true and
in any computation running for no more thlsteps, the hence typable machine states are safe.
valuev behaves as if it were an element of the tgp&he To contrast a semantic approach with syntactic subject
recursive types of interest are well founded in the sense reduction consider the following standard inference rule
that in order to determine whethey 1 it suffices to know for typing applications.
whetherw :j T for all valuesw and j < k. Well founded
recursions always have unique fixed points. r-fia—p, ke

Our indexed type approach appears to be novel in that r-(fe:p
itis intensional. In an intensional system two denotation-
ally equivalent functions can be treated differently. In

particular, in our system equivalent functions with dif- inference rule must be formalized as part of the defini-
ferent running times will satisfy different indexed type tion of a relation between syntactic t pe environments
judgements. The semantic treatments of recursive types : . y Ry )
mentioned above are all extensional — equivalent terms (mappings from variable to syntactic type expressions)
are treated equivalentl and syntactic type judgements. This requires formalizing

Althouah we do noi/. rove the result here indexed syntactic type expressions and formalizing the relation
tvoes car?also simplify thpe semantic treatment éf the fixed 25 the least relation on syntactic expressions closed under
yp P . ) . a given set of inference rules.
point rule used to type recursive functions. This rule . . . .
states that iff - a — a then fix(f) : a. The soundness The semantic approach avoids formalizing syntactic

i o e type expressions. Instead, one formalizes a type as a set
of this rule is usually proved by defining a complete par- . X
yp y 9 P P of semantic values. One defines the operatas a func-

tial order (CPO) semantics and showing that all functions 'on taking two sets as arquments and returning a set. The
are monotone and continuous and hence have a least fixecti gu 9 o g '
above type inference rule for application can then be re-

point. Indexed types provide a direct soundness proof by i : X
induction on index, which avoids any use of semantic do- E;C;d rbOyO]Ehe following semantic lemma in the founda
mains, term orders, or monotonicity. proot.

A syntactic proof that typability implies safety must
formalize the syntactic notion of typability. The above

M=f:a—p, r=e:p
Syntactic versus semantic approaches F=(fe):p

We are particularly interested in safety proofs based on  Although the two forms of the application type infer-
type systems and in theorems stating that typability im- ence rule look very similar they are actually significantly
plies safety. Proofs that typability implies safety are typi- different. In the second rule and3 range over seman-
cally done by syntactic subject reduction — one proves tic sets rather than type expressions. Furthermore, in the
that each step of computation preserves typability and second versiof is a function from program variables to
that typable states are safe. However, in foundational semantic sets rather than a function from program vari-
PCC the transmitted proof must contain all details down ables to type expressions. The relatjerin the second

to the foundations of mathematics including the defini- version is defined directly in terms of a semantics for
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Figure 1: Small step semantics % %

assertions of the forre: a. The second “rule” is actu-
ally a lemma to be proved while the first rule is simply
a part of the definition of the syntactic relation For
the purposes of foundational PCC, we view the semantic Definition 1

proofs as preferable to syntactic subject-reduction proofs A type is a seft of pairs of the form(k,v) wherek is a
because they lead to shorter and more manageable founnonnegative integer andis a value and where the set
dational proofs. The semantic approach avoids the needis such that ifk,v) € T and0 < j < k then(j,v) € 1. For
for any formalization of type expressions and avoids the any closed expressiaiand typer we writee i T if e is
formalization of proofs or derivations of type judgements  safe fork steps and if whenever—I v for some valuer

Figure 2: Type Inference Lemmas

involving type expressions. with j < k we havelk— j,v) € 1; that is,
extT = Vjve. 0<j<kAe—lé& anie) =
2 Indexed Types for the Lambda k—j,&)et

Calculus wherenf(€) means tha€' is a normal form — has no

Before giving a semantic treatment of foundational PCC successor in the step relation.

for von Neumann machine instructions, we give a seman- Intuitively, e :x T means thag behaves like an element
tic treatement of recursive types in the lambda calculus 4 1 for k steps of computation. Note thatéf: T and

with cartesian products and the constantThe syntax 0< j <kthene:j 1. Also, for a valuev andk > 0, the

of Iambda terms with products arilis defined by the  gtatements « T and (k,v) € T are equivalent. We now
following grammar. define various functions from sets to sets and an operation
K which takes a set function&l — a function from sets

to sets — and returns a set that (we will show) is a fixed
point of F. Thep operator allows us to define recursive

e i= x| 0| (e1, &) | () | Te(e) | Axe| (1 €2)

A termv is avalueif it is 0, a closed term of the form

AX.e, or a pair{vq, v2) of values. The small-step semantics types.

(figure 1) is entirely conventional. We wriee—1 € to L o=0

mean that there exists a chainjoteps of the forne — T = {kv) |k>0}

el — ... — € wWhereej is€. We writee—"* € if e/ & int = {(k0) |k>0}

for somej > 0. We say that is safe fork steps if for T xT2 = {(k (Vi,v2)) | V] <k (j,v1) €T1 A (j,V2) € T2}
any reductiore —/ € of j < k steps, eithe€ is a value 0—1 = {(kAxe) |Vj<kW. (j,v) €0 = elv/x :j 1}
or € — €’. Note that any term is safe for O steps. A term uF = {(kv) | (kVv) e F*L(1)}

eis called safe if it is safe for ak > 0. In this section we

are interested in constructing methods for proving that a Definition 2

given term is safe. The semantic approach taken here isA type environmenis a mapping from lambda calculus
based on types as sets rather than type expressions. variables to types. Aalue environmenfalso called a



ground substitutiohis a mapping from lambda calculus
variables to values. For any type environmeand value
environments we writec I’ (“o approximately obeys
") if for all variablesx € dom(I") we haveo(x) : I (x).

Finally, we define a semantic entailment relatien
We writel” =, e: o to mean that

Vo.o kI = o(e) xa

wherea(e) is the result of replacing the free variables
in e with their values undeo. We writel =e: o if for
allk > 0 we havel' e a. We writel=e: a to mean
lol=e: a for the empty environment.

The remainder of this section is devoted to proving the

type inference lemmas in figure 2. Each of these lemmas statements implye; &) ik B.

states that if certain instances of the relatiohold, then
certain other instances hold. Note thaican be viewed
as a three place relation whdre-e: a means that the re-
lation = holds on the type environmehf the terme, and

Proof: Sincee; ;x 0 — B ande; ;x a we immediately
have that botte; ande, are safe fok steps and that if
e generates a value in fewer thénsteps, that value
must be a lambda expression. Hence, the application
(e1 &) either reduces fok steps without any top-level
beta-reduction, or there exists a lambda expression
and a value such thaie; ) —1 (Ax.e) vwith j < k. In
the first case we have théd; &) is safe fork steps and
does not generate a value in less tlesteps and hence
(e1 &) k B (for any B). In the second case definition 1
implies that (k— j,Ax.e) € a — B and (using closure
under decreasing index — j — 1,v) € a. The definition
of — then impliese[v/x] ik_j—1 B. But we now have
(e1 &) —I*t ejv/x] and e[v/X] _(j+1) B. These two
]

Theorem 6 (Application)
If T is a type environmen&, ande;, are (possibly open)

the typea. Once we have proved the type inference lem- terms, anax andp are types such thét=e; : a — B and
mas in figure 2, these lemmas can be used in the same =e, : o thenl=(e1 &) : B
manner as standard type inference rules to prove state-

ments of the forni |=e: a. We now observe that defini-
tions 1 and 2 immediately imply the following.

Lemma 3
If Ee:a then eis safe.

We now consider each of the type inference lemmas in
figure 2. Note that there is a type inference lemma for

each case in the grammar of lambda terms plus two rules

for the type constructqe. The lemma for variables, stat-
ing thatl"=x: I (x), follows immediately from the defini-
tion of =. The fact that int is a type, and the type infer-
ence lemma for O statinG}=0 : int, both follow directly
from the definition of int. We now consider the rules for

applications and lambda expressions. First we have the

following lemma which follows directly from the defini-
tion of —.

Lemma 4
If a andp are types thea — [ is also a type.

Proof: By the definition of— it is obvious thatn —
is closed under decreasing index.

We now prove the type theorems for application and
lambda expressions.

Lemma 5
If e andey are closed terms arml and are type sets
such thae; :x o — B andes ik o then(er &) ik B.

Proof: We must prove that under the premises of the
theorem and for anly> 0 we havd =, (e1 &) : B. More
specifically, for anyo such thato :x ' we must show
o(e1 &) k B. By the premises of the theorem we have
o(er) ik 0 — B ando(e) ik a. The result now follows
from lemma 5. [ |

Theorem 7 (Abstraction)

LetT be a type environment, let andf3 be types, and
letT[x:= a] be the type environment that is identical to
I except that it mapg to a. If I['x:= da]=e: B then
M=Axe:a — .

Proof: As in theorem 6, we must show that under the
premises of the theorem we have that for dny 0
and ground substitutiom such thato :x ' we have
o(Ax.e) ;xa — B. Supposes k. Letvandj < k be
such thatv :j; a. By the definition of— it now suffices

to show thato(e[v/x]) :j B. Leta[x:= V] be the ground
substitution identical t@ except that it maps to v. We
now have that(x:=V| :; ['[x:= a]. By the premise of
the theorem we then have thaix := v|(e) :j B. But this
impliesa(e[v/x]) :j B. |

Lemma 8
If a andp are types then so 5 x [3.



Lemma 9 Definition 11
If a andp are types ané, ande, are closed terms such  Thek-approximatiorof a set is the subset of its elements
thate; :x a andey ik B then(er, e2) ik a x B. whose index is less thda

Proof: The proof is similar to the proof of lemma 5. approxk.) = {(j,v) [ ] <k (j.v) €T}

Again we have thae; ande, are safe fork steps. |If We have that it is a type then apprdk, o) is a type.
(e1, &) does not reduce to a pair of values within fewer We now define a notion of well founded functional. Intu-
thank steps then we immediately have, &) :x o x B. itively, a recursive definition of a type is well founded

So without loss of generality we can assume that if, in order to determine whether or nety q, it suffices
(e1, &) —J (v1, Vo) with j < k and wherey; andv are to knowe :; a for all termse’ and indices < k.

values. Since; x o ande; ik B we now havev; ik_j a o

andv, _j B, which implies(va, Vo) i j a x B. We now ~ Definition 12 . .

have (er, &) —! (v, V2) and (v1, v2) i_j a x B and A well founded functionals a functionF from types to
henceler, &) ik a x p. m types such that for any tygeandk > 0 we have

approXk+ 1,F (1)) = approXk—+ 1, F (approxk,1)))
The type inference theorem for pair expressions now

follows from lemma 2 in the same manner that theorem 6 Note thatifF is a function from types to types awd

follows from lemma 5. is a type therFX(a) is a type for ank > 0.
Lemma 13
Lemma 10 ForF well founded and <k,
If a andp are types ané is a closed term such thaty L L
o x B thenmy (e) i a andry(e) i B. 1) approxj,F!(11)) = approxj,F!(12))
(2) approx j,FJ(t)) = approxj, F¥(1))

Proof: We consider only they case. Since is safe

for k steps we can assume without loss of generality Proof. (1) By induction.

thate —! v for some valuev and j < k. We now have approx0,FJ(t1)) = L = approx0,FI(1y)).
Vk—j a x B which implies thatv is a pair(vy, Vo) with approXj +1,Fitl(1y)) =
Vi k_j-1 0. But we now have thaty(e) —J/*1 v, and approxj+1,F(Fi(11))) =
V1 lk—(j+1) 0 and hencey (e) i a. | approxj + 1,F (approXj,F!(11)))) =
approxj + 1,F (approxj,F!(12)))) =
The type inference lemmas for projection terms follow approXj +1,F(F!(12))) =
from lemma 2 in the same way that theorem 6 follows approxj +1,Fi1(12)))

from lemma 5.

We have now proved all of the type inference lemmas
except those for the type construciar To understand
some of the subtleties involved in the type construgtor Theorem 14
let Q be the termAx.xx)(Ax.xX). The derivation in fig- If F is well founded, thepF is a type.
ure 3 shows how to use the type lemmas in figure 2 to
derive=Q : 1. By lemma 3 we then have thétis safe.

In the derivation\a.a — L is the set functional map-
ping the set to the seth — L. The proof thaQ is safe (k,v) € uF

(2) Using (1), takingo = F*~1(1y). [

Proof: We must show thagi(F) is closed under decreas-
ing index. Suppose thék,v) € u(F) and considef < k.

(shown in figure 3) relies on the type lemmasfion fig- (k,v) € FKHL(1) by def'n of uF

ure 2 which we now prove. We first observe the following  (j,v) e Fk+1(1) by def’'n of type

lemma. (j,v) € approXj+ 1,F<t1(1)) by def'n of approx
We will prove that the type inference farholds in the (j,v) € approXj+1,Fi*1(1)) byLemma 13

case wheré is well foundedand that all nontrivial type (j,v) e FIT1(1) by def’'n of approx

constructors built from type constants, andx are well (j,v) € uF by def'n of uF

founded. -



X:=pAa.a — L)]E=x: p(Aa.a — L)
[X:=p(Ao.a — L)]Ex: p(Aa.a — 1), [x:=pAa.a — L)]Ex: (WAoo — 1)) — L
[X:=pAa.a0 — L)]ExX): L
EAXXX: (M(A0.o— L)) — L
EAMxx: (MA0.0 — L)) — L EAXXX: W(Aa.a — L)
E ((AXXX) (AX.xX)) : L

Figure 3: A derivation of=Q : L

Lemma 15 Proof: Each of the following sets is equivalent

approxk, uF)

approxk,approxk+1,1)) = approxk, 1) approxk, F¥ 1) by Lemma 16a
approxk, Fk+11) by Lemma 13
Lemma 16 approxk,approxk+ 1, Fk+1L)) by Lemma 15
If F is well founded, approxk,approxk+1,F(uF))) by Lemma 16b
approxk, F (uF)) by Lemma 15
(@) approxk, uF) = approxk, F¥.L) -

(b) approxk+1,F(uF)) = approxk+1,F<11)

Proof: (a) Fork =0, each side is equivalent to. For Theorem 18

k > 0, each of the following lines is equivalent: If F is well founded themF = F(uF). Hence the type
inference lemmas fop in figure 2 hold for any well
(J,v) € approxk, uF) founded functiondf .
j <kA(j,v) e uF by def’'n of approx
j<kA(j,v) eFIt1L by def'n of uF Proof: We have that (k,v) € pF iff (kv) €
j <kA(j,Vv) €approXj+1,FI*11) by defnofapprox approxk+1, pF) iff (k,v) € approxk + 1, F(uF))
j <kA(j,v) €approXj+1,Fk1)  byLemma13 iff (k,v) € F(UF). n
j<kA(j,v) e FKL by def’n of approx
(j,v) € approxk,Fk 1) by def'n of approx ~ Theorem 18 justifies the derivationin figure 3 provided
that one can show that the functiorek.a — L is well
(b) Each of the following sets is equivalent. founded. Letn be the sefi(Aa.a — L). Intuitively, we
should haver = a — L. So we have thatk,Ax.e) € a
approxk +1,Fk11) iff for all j <k and(j,v) € a We_havee[v/x] ;j L. So
approxk+ 1, F(FKL)) to determine !f<k,)\x.e> € a it suffices to kpow whether
approxk+ 1, F (approxk,F¥ L)))  well-foundedness (j,v) € a for j <k. More formally, functionals can be
approxk+ 1,F (approxk, uF))) by () proved to be well founded using lemma 20 below.
approXk+ 1,F (uF)) well-foundedness Definition 19
n A nonexpansive type constructeris one such that

approXk, F (1)) = approXk, F (approxk,1)))

Lemma 17 The constructorAa.a is nonexpansive but not well
If F is well founded, founded. Other examples (definable as extensions to the
tiny type system of this paper) afea.aNt, Aa.a UT,
approxk, uF) = approxk; F (uF)) and theoffset  constructor of Appel and Felty [AFOOb].



Lemma 20

a.
b.

C.

Every well founded constructor is nonexpansive.
Aa.a is nonexpansive.

Na.T, wherea is not free i, is well founded.

. The composition of nonexpansive constructors is

nonexpansive.

. The composition of a nonexpansive constructor with

a well founded constructor (in either order) is well
founded.

If F andG are nonexpansive, théxo.Fa — Ga is
well founded.

. If F andG are nonexpansive, thexo.Fa x Ga is

well founded.

Proof: In the following we assume thd& and G are
nonexpansive and thét is well founded.

a.

®

approx0, H(a)) = approx0, H(approx0, a)))

a)) =

approxk, a))) =

approxk, approxk+1, a)))) =
approxk+1, a))))

approXxk+1, H
approxk+1, H
approXxk+1, H
approXxk+1, H

—_— = =

Letl beAa.a.
approxk, I(a)) = approxk, I (approxk, a)))
LetK be a constant function.

approxk, K(a)) = approxk, K(approxk, a)))

approxk, F(G(a))) =
approxk, F(approxk, G(approxk, a))))) =
approxk, F(G(approxk, a)))) =

approx0, F (H(a))) = approx0, F (H (approx0, a)))

approxk+1, F(H(a))) =
approXk+ 1, F(approxXk+ 1, H(approxk, a))))) =
approXk+1, F(H(approxk, a)))) =

approx0, H(F (a))) = approx0, H(F(approx0, a)))

approXk+1, H(F(a))) =
approXk+ 1, H(approxk, F(approxk, a))))) =
approXk+1, H(F(approxk, a)))) =

f. By the definition of— we have the following.
approxk+1, a — ) =approxk+1, approxk, o) — approxk, B))
This gives the following.

approx0, F(a) — G(a)))) =
approx0, F(approxX0, a)) — G(approx0, a))))

approXxk+1, F(a) — G(a)) =
approXk+ 1, approxk, F(a)) — approxk, G(a))) =
approxk+ 1, approxk, F(approxk, a)))

— approxk, G(approxk, a)))) =
approXk+ 1, F(approxk, a)) — G(approxk, a)))

g. By the definition ofx we have the following.
approXk+1, a x ) = approxk+1, approxk, a) x approxk, B))
This gives the following.

approX0, F(a) x G(a)))) =
approx0, F(approx0, a)) x G(approx0, a)))

approxk+1, F(a) x G(a)) =

approXk+ 1, approxk, F(a)) x approxk, G(a))) =

approxXk+ 1, approxk, F(approxk, a)))
xapproxk, G(approxk, a)))) =

approXk+ 1, F(approxk, a)) x G(approxk, a)))

Lemma 21
If F is the identity constructoXa.a, thenuF = F(uF).

Proof: Fi(L)= 1, so both sides are equal fa [ ]

Quantified types. We can also model existential types
— useful for data abstraction — and universal types — use-
ful for polymorphic functions. The semantic constructors
are,

F= JFt V= [)Frt

Tetype 1€type

wheret € type means, as usual, thais closed under
decreasing index.



Theorem 22 (Typing rules for quantified types) equivalent) result independent of the representation of its

argument; this more perfect information hiding across in-

terfaces. Readers not interested in per’s can skip this sec-

tion, as later sections do not depend on it.

(@) (IF) etype  (VF) e type Our indexed model extends easily to per (partial equiv-

. alence relation) models of types. We define a type as a set
Teype MEviFT of triples (k, v, w), with the (informal) meaning thatin any

(b) MEv:3F computation of no more thanstepsy approximatesv—

Mev:3F that is, if f(v) halts ink steps, therf (w) also halts and

- yields the same result.
© Jretype Mi=v:F We extend this relation from values to expressions us-

Vtetype F1 etype

vietype ME=v:FT ing the four-place relatioa < f :k 1, defined as
(d) MEv:vF e<fyt = Vjve. 0<j<kA e—ié& Anf(€)
(e) Vietype M=v:Ft The statemené ik T is an abbreviation foe < ek T,

o o and serves as a “conventional” typing judgement.
These rules all follow trivially from the definitions. How-

ever, rulesb—e are rather operational; they don't look L ={
exactly like the usual type-checking rules for quantified "t = {(k0,0) |k>0}
types, which usually involve the explicit management of 2% T2 = {{k (vi.v2). (Wi, wz)) [
a set of type variables. It should be possible to define {X(J;X I;';\;’}';"Wﬁ €T (], V2, Wo) € T2}
an extendgd notion of semantic entailmAnt =, e: 1to Vi < KW (juw) €0 = ev/x] < F[W/y] 5T
support this fqrm of type checklpg.. W = {(kvw) | (kvw) e FKH(L))

But even with our current definitions we can state the-
orems such as parametricity. For example, we can prove As before, we define well-typed substitutions, and we
that the only functions of typ¥a.a — o are the empty  define typing entailmentsi=e < f : 1.
(always nonterminating) function and the identity func-
tion; the usual method of considering, for each value
the singleton typea, works straightforwardly in our se-

mantics. Mee<f:t=
V01,02. 01 <02k [ = 01(€) < 02(f) kT

o1<oyl =
domoi =domoy = doml™ A VX 61(X) < 02(X) ik I'(X)

Conclusion. Any type constructorAa.t, wheret is

built from a and the operatormit, T, L, x,— is either Mee<f:t = VkIe<fit
well founded or the identity. Thus all of the typing rules
of Figure 2 are valid. By Lemma 3, any well typed closed
expression is safe. Therefore we have a model of general
recursive types that is powerful enough to prove safety of Lemma 23

Now we can prove the type entailment theorems corre-
sponding to Figure 2.

any conventionally typed-expressions. If ey, f1, e, fo are closed terms, aruip are types such
thate; < f1 ko — B andey < fa i o then(erfy) <
(e2f2) B

3 Anindexed PER model
Proof: By analogy with the proof of Lemma 5. Both

We have shown a model of types in which we can rea- e; ande; are safe fok steps. Ife; —J1 vy with j <Kk,
son about the membership of terms in types. Even morethenv; must be a lambda expressidr.e and f; —* f]
useful is a model in which we can reason about the equiv- with (k— j,Ax.e, f]) € a — B. Hence, the application
alence of terms. This allows us to use the model to prove, e; & either reduces fdk steps without any top-level beta-
for example, that a compiler optimization has correctly reduction — in which case;e; < f i 1 for any f andt
transformed an expression. Just as useful is the ability — or (e1e) —/1 (Ax.€)ex —J2 (Ax.e)v with j1 + j2 <k,
to prove that some functiofi produces the same (i.e., fo—* f}, and(k— jo,v, f}) € a.



Since the only values ino — B are lambdas,
fi = Ay.f for somey and f. By decreasing index,
(k—j1—Jj2—1v,f})) € a, and by the definition of
a — Bwe haveelv/x] < f[f2/y] k_j,—j,—1. Eithere[v/x]
steps for anothdt— j1 — jo — 1 — in which case; e, has
now stepped fok steps andye; < f i T for any f and
T — or (because it is approximately well typed) reduces
to a valuevs in |3 steps, withjs < k— j1 — jo— 1. Then
f[f2/y] —* f3 and (K—j1—j2—1—jsvs, f3) € B.
Thus, e1e; —1tiztHs var put f1fo —* f3, with the
required relation between andfs. [ ]

Theorem 24 (Application)
rFe<fita—p MEex<f:a
M=(e1e2) < (f1f2): B

By analogy with Theorem 6, but using
|

Proof:
Lemma 23.

Corollary25 TFei:a—B TEe:a
M=(ere): B

Theorem 26 (Abstraction)
Mx:=aje< f:f
M=(Axe) < (MAx.f):a—p

Proof: We must show that for arlyando1, g2 such that
01 < 02 ik I, we haveai(Ax.e) < ox(Ax.f) x a — B.
Let vyw and j < k be such thatv < w:j a. By the
definition of — it suffices to show thatj(elv/x]) <
o2(f[w/x]) :j B. We can extendo; and o2 so that
o1[x:=V] < o2[x:=Ww| :j ['[x:=a]. By the premise of
the theorem we havey[x := V] < oz[x:=w] :j B. This
impliesoy(e[v/x]) < oz(f[w/X]) :j B. ]

INx:=alke: B
Fr=Axe:a—f

Corollary 27

Lemma 28
If a andp are types (i.e., closed under decreasing index),
then so are., int, a x 3, anda — f.

Definitions, Lemmas, and Theorems 11-18 hold, using
sets of triples instead of sets of pairs. That is, the defini-
tion of approxk, 1) and well-foundedness, and the lem-

Lemma 29
All the statements (a)—(g) of Lemma 20, and Lemma 21,
hold for indexed-per type constructors.

Theorem 30
Any type constructoF expressible in the “syntax” of
constructorant, x,—, | is well founded, so therefore

WF = F (uF).

Lemma 31
If =e:a then eis safe.

But in the per model, we get more than just the lemma
that typability implies safety. We also get congruence and
extensionality results: a well-typed function must map
equivalent arguments to equivalent results, and if two
functions behave the same then the type system judges
them equivalent.

Definee~ f:Ttomeare< f:1A f<e:T.

Theorem 32 (Congruence)

e~ fiia—p M=ex~fa:a
M=(eie) ~ (fif2) 1 B

Proof: By Theorem 24. |
Theorem 33 (Extensionality)
YW,wW Evew:ia = Efv~gw: B
Ef~g:a—p
Proof: From the definition ot — 3. |

Theorem 34 (Observational Equivalence)
If e~ f .1 thene andf have the same observable behav-
ior in any context of type.

Proof: By the definition of~, via Theorem 24 (and a
similar theorem for pairingg is applicatively equivalent
to f. Observational equivalence follows via a straight-

mas and theorems about well founded type constructors,forward adaption (for this calculus) of Milner's Context

up to and includinquF = F(pF), are written in exactly
the same way.

Lemma [Mil77]. |



4 Proof-carrying code

For the application of proof-carrying code, we need
a soundness proof of recursive types not in lambda-
calculus, but on a von Neumann machine — in Pentium
instructions, for example. The step relation of interest
is not a predicate on pairs of expressias— & but
on pairs of machine statés;,m;) — (rz,my), wherer
is the contents of the register bank amdis the con-
tents of the memory — the execution of one instruction
can take the machine from stdta, m ) to state(rz,mp)
[AFO0b, MAQQ].

On such machines it is most convenient to define sim-
pler type primitives than the cartesian product and func-
tion arrow of lambda calculus:

int The type of one-word machine integers.

constn) The singleton type containing only the integer
valuen.

ref(t) Pointer to a memory location containing a value
of typeT.

offset(n,t) A value that, if you adah to it, yields a value
of typer.

oNT The intersection o6 andt. The (boxed) cartesian
producto x T can be built fromoffset(0, ref(c)) N
offset(1, ref(1)); this is a record with a value in
the first field and a value in the second field.

oUT The union ofo andt. A (tagged) disjoint union
0+ 1T can be built fron{const0) x o) U (const(1) x
1), that is, a record with a tag in the first field and
(depending on the tag value) eitheoa@r at in the
second field.

Ja.t An existential type.

codeptr(t) A first-order continuation; that is, an address
in the machine code that is safe to jump to as long as
an argument of type is passed in a designated reg-
ister. Higher-order continuations (i.e., closures) can
be constructed using first-order closures and existen-
tial types; higher-order functions can be constructed
from higher-order closures [MWCG98, AF00b].

A valueis a pair(m,x) wheremis a finite partial func-
tion from integers to integers (a partial memory) and
an integer (typically representing an addréss).

1Appel and Felty use a triplga, m,x) wheremis a total function and
ais the set describing the domain of interest; the two formulations are
equivalent.
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To represent a pointer data structure that occupies a
certain portion of the machine’s memory, we Xdbe the
root address of that structure, and the domainmois
the set of addresses occupied by the data. For example,
the boxed pair of integer&,7) represented at address
108 would be represented as the va{i£08— 5,109+
7},108).

X m
108— 108 5
109 7

To represent a function (actually, a continuation) value,
we let x be the entry address of the function, and the
domain of m be the set of addresses containing ma-
chine instructions of the function. Here is the function
f(x,k) = k(x+ 1), assuming that is in register 1, and
is passed in register 7:

X m
200 200 1111 ry o= rgtl
201 4070 jump(r;)

We assume that one of the registers is the program
counter — for example, perhaps registé87) is the pro-
gram counter, pe= 37. Then a machine state, m)in
which we have just jumped to location 200 has the prop-
ertyr(pc) = 200.

The step relation(r,m) — (r’,m) is defined on to-
tal functionsm and m'; that is, a machine instruction
might fetch from any location. Any particular data struc-
ture (i.e., valugmy, x1)) occupies only a finite portion of
memory (the domain afy is finite). In order for the pro-
gram to create and initialize new data structures, it must
know what addresses im are not part of any existing
data structures. That is, at any time all existing values
live in allocatedaddress of the heap, and unallocated ad-
dresses can be used for new data structures; and the allo-
cated set must be computable from the current contents
of the register bank and memory. We model this with a
function allocr, m) that takes a register bank and mem-
ory and returns a set of addresses (integers). An example
of a simple alloc function is

alloc(r,m) = {x] 0<x<r(6)}

where register 6 points to the boundary between allo-
cated and unallocated locations. To allocate and initialize
a new data structure, the program would store at locations
r(6),r(6)+1,... and then incremen{6).



We say that a machine staem) is stuckif it has no
successor state in the relation. A safe state is one that

cannot evaluate to a stuck state, type(t) = Vmnt,x j,k
C j <
safgr,m) =vr’,m. (rr,m)—*(r',m) = m<_j Tf/;(>Je_rkA lomx) €=
Il (¢, ml) e (0, ) -
We say that a machine stetem) is safe to execute for As explained by Appel and Felty [AFOOb], closure un-
k stepsf it cannot get stuck withirk instructions: der extension of the memory is necessary so that the pro-

gram can allocate and initialize a new value while pre-
serving existing typing judgements about old values.

As in ourA-calculus model, we define an approx oper-

We writem C m' to mean that one partial memory ap- ator on types,
proximates another,

saferfk,r,m) = Vj <kv(r',m). (r,m) —1 (', m) =
Il (1) e (17, ")

approxk, 1) = {(j,m j <KA(j,mx)e

mCn = Vxedomm). x € dom(nf) A m(x) = m(x) pproxk. ) = {(1:mx) | | (mx) €t}
Sometimes we will want to talk about the safety of par- and we say that a type construckors well founded if

tial memories, i.e. partial functions from addresses to in-

tegers. We can view a partial memory as an underspec- vy type(t) =

ified total memory, and it will be safe if every possible (type(FT)A

extension of it is safe. vk.approxk+ 1,F1) = approxk+ 1, F (approxk,1))))

safepp(k,r,m) = vm.mC ' = saferik,r,nT) o _ o
Similarly, F is nonexpansive if

5 Sets of indexed values VLtype(t) =
. . : (type(FT)A
Just as in ouh-calculus model, &peis a set of indexed Vk.approxk, FT) = approxk, F (approxk,T))))

values{(k,m x)} wherek is an approximation indexn

is a partial memory, andis an integer (perhaps the root . o .

pointer of a data structuré).Unlike theA model, there Atype environmen® or[" is a finite map from integers
are no expressions that are not values, since we are deall© types. We will useb to specifylocal invariantsthat
ing with machine states. Therefore we have the corre- 9ive the types of (some subset of) the registers at a certain
spondence, program point, and to specify theglobal invariantthat

gives the types of various program-counter locations in
(MmXx) kT = (kmx) €1 the program code.

A mappingf satisfiesdp if
Intuitively, (m,X) :x T means that the data structure PPIng

(m,x) approximately belongs to: if a continuation of
typet — Answer is applied tqm,x), then the machine
will not get stuck withink steps.

(m ) ® = ¥xedomd). (m, f(x)) ik P(x)

~ We say that a set of indexed values is a vafieif it Type environments are used for two purposes: to sum-
is closed under extension of the memory and under de- marize the types of the contents of machine registers (in
creasing index: which casef will be a register bank), and to summarize

2The triples(k,m,x) do not correspond to the triplek, v,w) used the types of a]l ent_ry points (_maChine,'COd_e addre_sses) of
in Section 3. If we were designing the notation for more general- the program (in which casewill be the identity function,

ity, we would write an indexed von Neumann per model with sets of as we will explain).
(k, ({ma,X1), (Mg, X2))) wherev = (my,x;) andw = (mp,X2); then we . . . . .
could even generalize so that the single-argument “relatjom%) and A valid type environmentis Composed of valid types:
the two-argument relatiofi(my,x1 ), (mp,X2)) could be uniformly in-

dexed byk in all the definitions, lemmas, and proofs. We avoided this

extravaganza of abstraction in the interests of readability. typen(®) = Vx e dom®P). type(P(x))
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it = {(kmx)}
constn) = {(kmx)|x=n}
ref(t) = {(k,m,x)|x e domm)A
Vi <k (j,mm(x)) €1}
oNnt = ont
ouUT = guUt
F = {(k,mx)|3Ja.typela) A (k,m,x) € F(a)}
codeptr(®) = {(k,mx)| Vj,r',m
mC m A dom(m') = alloc(r’,m)
Nj<kATr(pe)=xA (m,r):;d
= safeny(j,r’,m)
uF = {(kmx)|(kmx)cF1l}

A programp is a sequence of machine instructions at
a specific place in memory; that is, it is a finite function
from address to integer, where the integer codes for an
instruction. Thug is just a partial memory, and we can
say thatp is embedded in a memonyg by writing p C m.

At each point in the program there is a precondition,
or invariant, such that if the registers and memory satisfy
the precondition it is safe to execute the program. Follow-
ing Necula [Nec97] we express these preconditions using
types, e.0.r(1) : 11 Ar(2) : 12Ar(5) : 5. (We haven't
formally defined unindexed typing judgements, so let's
not assign too formal a meaning to this statement.)

But this is the same as saying thatatisfies a type
environment : ®, where® = {1— 11,2+ 1,5+ T5}.

Any valuex can be seen as a machine integer (regard- And the statement that this is the precondition of location

less of the memoryn that accompanies it). Intersection
(respectively, union) types are defined via intersection
(resp., union) of sets. ...

Theorem 35
Each of our types is a valid type:

type(int).

. type(const(n)).

. type(t) = type(ref(T)).

- type(0) A type(T) = typ&oN1)).

- type(o) Atype(T) = type(oUT)).
f. nonexpansivé-) = type(3F).

o

Q o

type(t) = type(codeptr(T)).
wellfoundedF) = type(uF).

g.
h.

Theorem 36
The following typing rules apply:

(m,x) i int
xedomm) (mm(X)) k1T
(m, %) :k ref(1)

(m,x) : ref(1)
xedomm) (mm(X)) k1T
wellfoundedF) (m,x) :x F (UF)

(m,x) :x UF
wellfoundedF) (m,x) :x uF

(m,x) :k F (1F)

(m,x) :x const(x)
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| is the same as: codeptr(®), that is, it is safe to execute
from locationl as long as the registers satisby

The statement that all the locations in the program have
their respective codeptr types,

vl € dom(p). | : codeptr(®dy)

is the same as the statement tfatd) : I, wherel (1) =
codeptr(dy) for all | in the domain ofp, and id is the
identity function; the identity function because here we
are not reasoning about tlententsof the ith register,
but theaddres=f theith program location.

To prove an initial machine state,m) safe, we will
need premises of the formC m (that is, a certain pro-
gram is loaded in memory) amdpc) = lg (that is, the
program counter is initially at a specified entry point).
Then we will provevk.(p,id) :x ' for somel” such that
I"(lo) = codeptr(Py,); as we will explain, this will be by
induction overk. Finally we will provevk. (p,r) i @,
that is, the initial precondition of the program is met; this
may be trivial if, for exampleg,, is trivial. Then from
the definition of codeptr, safénr,m) for anyk and any
j <k, and thus safe, m).

Theorem 37 VK. (p,id) 3

Proof:

By induction overk. Eachl (1) is a codeptr type, and
these have the property that they accept any value to ap-
proximation zero; this proves the base case.

To prove (p,id) :;x I = (p,id) k1 I we work
by cases; that is, we prove for eat¢hin dom(p)
that | : codeptr(d;), or more precisely(k+1,p,l) €



codeptr(®y). By the definition ofcodeptr this is, The preconditionP, of the instructions says, in effect

Vi.r',m r():int  r(3):int  r(4):TixT2
pCm A domm') = alloc(r’, )
N <k+L1Ar'(pe)=1 A (M 1) The postcondition is

= safeny(j,r’,m)
r(1):int r(3):m r(4): 11 x1

Pick arbitrary j,r',m and assume the premisgsC
m, domm) = alloc(r’,m'), j < k+1, r’(pc) =1, and The instruction fetches the first field of the pair; since the
(m,r’) :j ®. What we must prove is that at location  type of the first field is1, the destination registeg ends
in p there is some instructionsatisfying Lemma 38; an  Up with typet;.
instance of this lemma must be proved for ehdh the We claim that Lemma 38 holds.
program. We discuss strategies for such proofs in the next
section. Basically, the lemma says that starting from lo-
cationl, the machine will execute at least one instruction
and then satisf{ to approximatiork — 1; this is sufficient
to prove that at the machine satisfidsto approximation
k.

Meanwhile, by the induction hypothesis,
(k,p,1"”} € codeptr(dy»). This, along with the con-
clusions of Lemma 38, proves safgn— 1,r",m’),
it is safe to executg — 1 instructions from(r”, m").

Proof: By the premisesp C m'. Thus, the instruction at
locationl that was originally in the program is still in
memory (has not been overwritten) by the time we reach
state(r’,m).

Since a valid instructionis in p’ (and therefore imr)
at locationl, and (by a premisea)(pc) =1, we know that
the machine can execute a step, leading to a gtataet’).

Our example instructiondoes not store into memory,
som = m’; but if it were a store, premise dgm’) =
alloc(r’,m'). could help us prove that the address stored

But the step(r’,m') v (”,nt") means that from state iy is not within donfint), and thus C nv". Sincep C
(r',m’) it must have been safe to execute at least .y \ve havepC n’. - -

instructions; and this proves the desired conclusion, that o instruction has modified neither dém) nor the
(k+1,p,1) € codeptr(®y). u registers withinr that determine the alloc function; that
. . . is, M = m’, so donfm’) = dom(m') and allog¢r’,m) =
This proof has relied on details qgf andI", through alloc(r”,m"). Therefore dorfm’) = alloc(r”, n"). But if
many instances (one for eabyof the following lemma: we had an instruction that increased the allocated set (as
described by Appel and Felty [AFOOb]), this is where we

Lemma 38 .
would need to account for it.
Our example instruction is not a jump, so in the state
pCn’  domm) = allog(r’, ) r’ we will have incremented the program counter by 1;
(pid) %I j<k+1 r(po=I (m,r'):d that is,r”(pc) = 1+r'(pc) = 1”. If it were a jump, then
. we would need to account féf in a more sophisticated
el 1 Dy (v ) S (17, r(pe) =17 way than just” =1 +1.
r(I") = codeptr(®;~) pCm’ Finally, we must provém’”,r”) :j_1 ®y41. That s, for
dom(m") = alloc(r”, m'") (", r") o1 B all nin the domain ofb; .1, {(j — 1,m",r"(n)) € ®;1(n).

. . The domainis jus{1,3,4}; forn= 1 or 4 the proposition
We will sketch instances of how the lemma can be is trivial, since(j,m,r'(n)) € ®;(n), d(n) = dy41(n)

proved, and then argue that these proofs are conssten‘,ﬂ -
with other formulations of proof-carrying code, so that
we can expect this method to scale to real programs.

r’(n) = r’(n), and types are closed under de-
creasing index.

To prove (j—1,m"r"(3)) € 11 we work as
follows. The premise (m,r’') :; &  implies
(j,m,r'(4)) € 11 x 1. By the definition of x
(j,m r'(4)) € ref(t1). By the definition of ref,
(j—1,m m(r'(4))) € 11. By the semantics of the fetch
instruction,r”(3) = m/(r (4)) so(j—1,m,r"(3)) € 11.
® = {1:int,3:int,4:11 x Tp} Sincem' =nt’, (j—1,m",r"(3)) e 11. u
P ={1:int,3:11,4:11 X T2}

Example 39

At location| there is an integer that codes for the in-
structiornrz < m(ra). (1) = codeptr(®dy) andr (1+1) =
codeptr(®41), where
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Certain details that we omit in this paper, such as the ginning of the program. In contrast, the proof method
axiomatization of the instructions, and the enforcement presented using indexed types, as presented in the previ-
of memory safety such that only fetches from designated ous section, is by induction over future execution steps.
ranges of memory, are easily handled by the techniquesintuitively, codeptr values are (first-order) continuations,
shown in earlier papers [AFO0b, MAQQ]. so it is natural that reasoning about future execution is

The reasoning in the proof of Example 39 is similar to the right way to proceed. And indeed, our indexed-type
what proof-carrying code systems do already: a combi- method is strong enough to handle programs with func-
nation of types (in the local invariants) and dataflow (to tion pointers.
model instruction semantics) leads to a proof that the lo- We will show an example, using a short machine-
cal invariant at locatioh naturally leads to the invariant language program that puts a function-pointer into a reg-
atl +1. The main difference is that we don't assume the ister, then calls the function. In this example we use
typing rules as axioms of our system, but model the types a very simple-minded notion of continuation type —
within a more primitive logic and prove the rules as de- cont(1) is a continuation accepting a return-value of type
rived lemmas. Tin register 1,

A natural generalization of our technique is to let
dom(I") be only a subset of program locationspnfor
example, on@ at the e_ntrance of each basic block. Then 5nq an equally simple notion of function type, that is,
we need to show that b, holds, there is some sequence
of n instructions (the entire basic block) that can be exe- 11 — T2 = codeptr{ry : T1,r7: cont(t2)}

cuted, leading teb; , , (or to some other location, if there . ]
has been a jump) whose invariant is then satisfied to at NS means that the formal parameter (of typerrives
least degreg — n. in register 1, and the return address (of tyoat(t2) ar-

rives in register 7. Return values (of typg are passed
back in register 1. We ignore here the problem of stack-

6 First-class functions ing return addresses for nested calls, which is treated in
depth elsewhere [MCGW98].

In a source language with first-class functions, the re- Our program (with local invariant) is

cont(t) = codeptr{ry: 1}

sult of an expression can be a function value, which can | p(l) o
be bound to a variable, stored into a data structure, and 100° 0
eventually applied to an argument. In a conventional rp 102
translation to machine language, we will see the address 101 : {r:int — int}
of a segment of machine code being bound to a vari- ' jump 104'
able, stored into a data structure, and eventually jumped 102 - {r1:int, r7: cont(int)}
to (with arguments in the appropriate registers). In lan- e+ ’
guages with higher-order functions implemented as clo- 103 : {r1:int, r7: cont(int)}
sures, the machine-code pointers are still there, hidden ' jump v R
inside the closures. 104 - {r2:int — int}

A type system for proof-carrying code must account r 3
for function values. Appel and Felty give a type sys- 145 {r1:int,ra:int — int}
tem which includes function values (through a codeptr r — 107 ’
type similar in spirit to the one we have presented here) 106 : {r1:int, rz:int — int, r7 : cont(int)}
and covariant recursive types (not the general recursive jump r2 ’ ’
types we have presented here). They also sketch a proof 107 : {r1:int}

method for using these types to prove safety of programs.

The problem is that their proof method is too weak to
accommodate first-class function values. No formal re-  Instruction 100 moves the function-pointer 102 ingp
sultin their paper is (known to be) wrong, but they appear then jumps to 104. Instruction 104 marshals the argument
to imply that their method can accommodate function- 3 and return address 107 into registeysandry, then
pointers, they are mistaken. The problem is that their jumps to the function-pointer. Instruction 107 (safely)
induction is forward, over execution steps since the be- infinite-loops.

jump 107
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We construct the global invariafitfrom the ® func- method invocation transfers control to a known set of pos-
tions shown in the table. sible instruction locations. Higher order type-theoretic
methods, such as the one we present in this paper, seem
more general than first order control-flow methods, e.g.,
type theoretic methods easily handle the polymorphic

Proof: Most of the necessary conclusions are trivial. Case.

Example 40
Lemma 38 is provable for locatidr= 100.

Certainly if p C m, thennt(100) still contains the in- Each of our types contains more (operational) informa-
structionry « 102, so(r’,n) — (r”,m’) with r”(2) = tion than types used in other semantics sucBasnod-
102 andr” (pc) = 101. Certainly (101) = ®101 = {r2: els and the ideal model of MacQueen, Plotkin, and Sethi
int — int}. Sincem = m’ and the predicate allogm) [MPS86]. To strip away the extra information from an in-
is independent of (2) andr(pc), we havep C nt’ and dexed type, one can take the limit (or infinite intersection)
dom(m’) = alloc(r”, n"). overk: .

Finally, we must show(n’,r") :j_; ®i01. By strip(t) = {v| Vk. (k,v) € T}
a premise, p ik I, so vx € dom(p).(p,X) k [(X). An analogous “strip” operator can be defined for indexed
Thus, (p,102) :x codeptr(P102). But codeptr(P102) = per types.
codeptr({ry :int,r7 : cont(int)}) = int — int. Thus, One implication of this extra internal structure is that

an indexed type can distinguish (just a little bit) between
equivalent expressions, depending on the efficiency (in

Sincer”(2) = 102 and types are closed underand execution steps) of the computations. For example, take

(p,102) ;¢ int — int

under decreasink] we have the eXpreSSi0n81 =0ande; = ()\XX)O We havee; 1
int — int, but note; :1 int — int. However, neither
(m",r"(2)) :j_1int — int & :int — int nore; : int — int, since as we refine the
i ) , approximation we can detect that the expressions are not
Since®1p1= {rz:int — int} we have functions.
(m’,r") tj-1 @101 Theorem 41 (Metric spaces)
- Well founded type constructors amdntractivein the

metric-space sense of MacQueen, Plotkin, and Sethi.
Therefore oum operator is a construction of the fixed

7 Related work point that they prove must exist.
Appel and Felty’s type system [AFOOb] defines a seman- Proof:  Use the metric|ty — T = 2 neamestta),
tics for types on von Neumann machines with higher or- where the neame@s,Tz) is the leastk such that
der types and monotone recursive types. However, theirap,pm)(k’“) 7 appr.o>(k,rz). : ) : - .
proof method involves establishing program invariants Still, they are‘:‘ pr.ovmg"the exstepce of fixed points di-
by induction over steps of computation. The classical rectly on the “stripped” types, which we do not do. And,

program-invariant method can not handle assignments ofOf COurse, they model_only membershlp_, whereas our ap-

the formx = f wherex is a program variable anflis a proach easily generalizes to model equivalence.

(higher order) procedure constant (or instruction pointer).

Here we give a type semantics that includes general recur-Recursion-theoretic  semantics. Mitchell  and

sive types and give a proof method approriate for higher Viswanathan's per semantics [MV96] is powerful

order program invariants. The proof method is analogous and expressive, but it relies on many “elementary” results

to a mutual recursion fixed point rule similar to the ~ Of recursion theory. It turns out in practice [AFO1],

calculus fixed point rule mentioned in the introduction.  that building a machine-checked proof of these results
Assignments of the fornx = f where f is an ob- for a real machine architecture would require a very

ject (as opposed to a procedure) are hand|ed in a C|as_|arge imp|ementati0n effort, and for thIS reason the

sical program-invariant style in a (type-specialized) PCC recursion-theoretic approach is not attractive.

system for Java developed by Colby et al. [CLOO].

Program-invariant safety proofs for object-oriented pro- Compactness of evaluation. The notion ofminimal in-

grams can be interpreted as control-flow analyses — eachvariance— as defined by Pitts [Pit96] and adapted by
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Birkedal and Harper to an operational setting [BH97] —
provides a relational interpretation of general recursive

types. Like other earlier approaches, these approaches
treat terms extensionally and hence appear to be funda-{aro1j
mentally different from our approach. We have not in-
vestigated generalizing our approach to arbitrary logical
relations, but the ease with which our indexed-sets proof
generalized to indexed-pers s a hint that such generaliza-
tions should be possible.

[BHI7]

8 Conclusion [CLN*00]
We have presented a direct construction of general recur-

sive types that is well suited for “implementation” as a
machine-checked proof in a von Neumann setting. No
significant libraries of mathematics are required as sup-

port. In contrast, previous per models of computable [HHP93]
functions use large bodies of computability theory, such

as simulation theorems; metric-space models use the the-

ory of complete metric spaces (Cauchy sequences) andMAQQ]
the Banach fixed point theorem. We have “implemented”
a machine-checked proof of Theorems 35 and 36 in about
2000 lines of Twelf [PS99] code, using the logic de-
scribed by Appel and Felty [AF0O0Db].

Actually, the theory of complete metric spaces is not so
hard to implement in higher-order logic; the first author
(working with Amy Felty) built most of an implementa-
tion, in preparation for a machine-checked model of types ;77
based on MacQueen, Plotkin, Sethi. But the problem was
in finding an appropriate metric for computation on a von
Neumann machine. This paper demonstrates the metric,
but in doing so it avoids the need for metric spaces at all.

Our model has a unary (type membership only) variant
and a per (partial equivalence relation) variant, so it is
expressive enough for a wide variety of applications.

The key feature of our model is that it reasons in-
ductively about the number of future computation steps.
Thus it is well suited to modelling type systems that use
continuations, which are abstractions of future computa-
tions.

[MCGWO8]

[MPS86]

[MV96]

[MWCG98]
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