
An Indexed Model of Recursive Types
for Foundational Proof-Carrying Code

Andrew W. Appel
Princeton University

David McAllester
AT&T Research

November 21, 2000

Abstract

The proofs of “traditional” proof carrying code (PCC)
are type-specialized in the sense that they require axioms
about a specific type system. In contrast, the proofs of
foundational PCC explicitly define all required types and
explicitly prove all the required properties of those types
assuming only a fixed foundation of mathematics such as
higher-order logic. Foundational PCC is both more flexi-
ble and more secure than type-specialized PCC.

For foundational PCC we need semantic models of
type systems on von Neumann machines. Previous mod-
els have been either too weak (lacking general recur-
sive types and first-class function-pointers), too complex
(requiring machine-checkable proofs of large bodies of
computability theory), or not obviously applicable to von
Neumann machines. Our new model is strong, simple,
and works either inλ-calculus or on Pentiums.

1 Introduction

Proof-carrying code (PCC) [Nec97] is a method of as-
suring that an untrusted program does no harm – does
not access unauthorized resources, read private data, or
overwrite valuable data. The provider of a PCC program
must provide both the executable code and a machine-
checkable proof that this code does not violate the safety
policy of the host computer. The host computer does not
run the given code until it has verified the given proof that
the code is safe.

In most current approaches to PCC
[Nec97, MWCG98], the machine checkable proofs
are written in a logic with a built-in understanding of a
particular type system. More formally, type constructors
appear as primitives of the logic and certain lemmas
about these type constructors are built into the verifica-

tion system. The semantics of the type constructors and
the validity of the lemmas concerning them are proved
rigorously but without mechnical verification by the
designers of the PCC verification system. We will call
this type-specialized PCC.

Unlike type-specialized PCC, the foundational PCC
described by Appel and Felty [AF00b] avoids any com-
mitment to a particular type system. In foundational PCC
the operational semantics of the machine code is defined
in some logicL, such as higher-order logic, that is suit-
ably expressive to serve as a foundation of mathematics.
L consists of a small set of axioms and definitional princi-
ples from which it is possible to build up most of modern
mathematics. The operational semantics of machine in-
structions [MA00] and safety policies [AF00a] are easily
defined in higher-order logic. In foundational PCC the
code provider must give both the executable code plus a
proof in L that the code satisfies the consumer’s safety
policy. In foundational PCC the proof must explicitly de-
fine, down to the foundations of mathematics, all required
concepts and explicitly prove any needed properties of
these concepts.

Foundational PCC has two main advantages over type-
specialized PCC — it is more flexible and more secure.
Foundational PCC is more flexible because the code pro-
ducer can “explain” a novel type system or safety argu-
ment to the code consumer. It is more secure because the
trusted base can be smaller: its trusted base consists only
of the foundational verification system together with the
definition of the machine instruction semantics and the
safety policy. A verification system for higher-order logic
can be made quite small [HHP93, Pfe94].

This paper presents a new type semantics intended
to reduce the complexity of foundational type-theoretic
proofs. The new semantics is particularly well suited for
general recursive types, which are particularly tricky to
handle semantically. Recursive types have been given a

semantics in terms of metric spaces [MPS86] and in terms
of PER models of Turing machine computations [MV96].
The metric space approach is less powerful – it mod-
els which terms are in which types, but does not prop-
erly model equivalences between terms – but it would be
adequate for applications in proof-carrying code. But a
prelinary investigation by the first author found no obvi-
ous definition of an appropriate metric for types on von
Neumann machines. On the other hand the Mitchell-
Viswanathan model [MV96] is adaptable to von Neu-
mann machines, but would require years of effort “im-
plementating” machine-checked proofs of basic results in
computability theory [AF01].

Our new semantics is a term model, with type judge-
ments that are are indexed:v :k τ intuitively means that,
in any computation running for no more thank steps, the
valuev behaves as if it were an element of the typeτ. The
recursive types of interest are well founded in the sense
that in order to determine whetherv :k τ it suffices to know
whetherw : j τ for all valuesw and j < k. Well founded
recursions always have unique fixed points.

Our indexed type approach appears to be novel in that
it is intensional. In an intensional system two denotation-
ally equivalent functions can be treated differently. In
particular, in our system equivalent functions with dif-
ferent running times will satisfy different indexed type
judgements. The semantic treatments of recursive types
mentioned above are all extensional — equivalent terms
are treated equivalently.

Although we do not prove the result here, indexed
types can also simplify the semantic treatment of the fixed
point rule used to type recursive functions. This rule
states that iff : α→ α then fix(f) : α. The soundness
of this rule is usually proved by defining a complete par-
tial order (CPO) semantics and showing that all functions
are monotone and continuous and hence have a least fixed
point. Indexed types provide a direct soundness proof by
induction on index, which avoids any use of semantic do-
mains, term orders, or monotonicity.

Syntactic versus semantic approaches

We are particularly interested in safety proofs based on
type systems and in theorems stating that typability im-
plies safety. Proofs that typability implies safety are typi-
cally done by syntactic subject reduction — one proves
that each step of computation preserves typability and
that typable states are safe. However, in foundational
PCC the transmitted proof must contain all details down
to the foundations of mathematics including the defini-

tions of all concepts used. Foundational subject reduction
theorems would require the explicit definition of infer-
ence rules and derivations in terms of foundational math-
ematical concepts — sets, pairs, and functions. They
would also require case analyses over the different ways
that a given type judgement might be derived. While this
can all be done, here we take a different approach to prov-
ing that typability implies safety.

Following [AF00b] we take a semantic approach. In a
semantic proof one assigns a meaning (a semantic truth
value) to type judgements. One then proves that if a type
judgement is true then the typed machine state is safe.
One further proves that the type inference rules are sound,
i.e., if the premises are true then the conclusion is true.
This ensures that derivable type judgements are true and
hence typable machine states are safe.

To contrast a semantic approach with syntactic subject
reduction consider the following standard inference rule
for typing applications.

Γ ` f : α→ β, Γ ` e : α
Γ ` (f e) : β

A syntactic proof that typability implies safety must
formalize the syntactic notion of typability. The above
inference rule must be formalized as part of the defini-
tion of a relatioǹ between syntactic type environments
(mappings from variable to syntactic type expressions)
and syntactic type judgements. This requires formalizing
syntactic type expressions and formalizing the relation`
as the least relation on syntactic expressions closed under
a given set of inference rules.

The semantic approach avoids formalizing syntactic
type expressions. Instead, one formalizes a type as a set
of semantic values. One defines the operator→ as a func-
tion taking two sets as arguments and returning a set. The
above type inference rule for application can then be re-
placed by the following semantic lemma in the founda-
tional proof.

Γ|= f : α→ β, Γ|=e : β
Γ|=(f e) : β

Although the two forms of the application type infer-
ence rule look very similar they are actually significantly
different. In the second ruleα andβ range over seman-
tic sets rather than type expressions. Furthermore, in the
second versionΓ is a function from program variables to
semantic sets rather than a function from program vari-
ables to type expressions. The relation|= in the second
version is defined directly in terms of a semantics for

2

(λx.e) v 7→ e[v/x]

e1 7→ e′1
e1 e2 7→ e′1 e2

e2 7→ e′2
(λx.e1) e2 7→ (λx.e1) e′2

π1〈v1, v2〉 7→ v1 π2〈v1, v2〉 7→ v2

e1 7→ e′1
〈e1, e2〉 7→ 〈e′1, e2〉

e2 7→ e′2
〈v1, e2〉 7→ 〈v1, e′2〉

Figure 1: Small step semantics

assertions of the forme : α. The second “rule” is actu-
ally a lemma to be proved while the first rule is simply
a part of the definition of the syntactic relatioǹ. For
the purposes of foundational PCC, we view the semantic
proofs as preferable to syntactic subject-reduction proofs
because they lead to shorter and more manageable foun-
dational proofs. The semantic approach avoids the need
for any formalization of type expressions and avoids the
formalization of proofs or derivations of type judgements
involving type expressions.

2 Indexed Types for the Lambda
Calculus

Before giving a semantic treatment of foundational PCC
for von Neumann machine instructions, we give a seman-
tic treatement of recursive types in the lambda calculus
with cartesian products and the constant0. The syntax
of lambda terms with products and0 is defined by the
following grammar.

e ::= x | 0 | 〈e1, e2〉 | π1(e) | π2(e) | λx.e | (e1 e2)

A term v is a value if it is 0, a closed term of the form
λx.e, or a pair〈v1,v2〉 of values. The small-step semantics
(figure 1) is entirely conventional. We writee 7→ j e′ to
mean that there exists a chain ofj steps of the forme 7→
e1 7→ . . . 7→ ej whereej is e′. We writee 7→∗ e′ if e 7→ j e′

for some j ≥ 0. We say thate is safe fork steps if for
any reductione 7→ j e′ of j < k steps, eithere′ is a value
or e′ 7→ e′′. Note that any term is safe for 0 steps. A term
e is called safe if it is safe for allk≥ 0. In this section we
are interested in constructing methods for proving that a
given term is safe. The semantic approach taken here is
based on types as sets rather than type expressions.

Γ|=x : Γ(x) Γ|=0 : int

Γ|= f : α→ β Γ|=e : α
Γ|=(f e) : β

Γ[x := α]|=e : β
Γ|=λx.e : α→ β

Γ|=e1 : α Γ|=e2 : β
Γ|=〈e1, e2〉 : α×β

Γ|=e : α×β
Γ|=π1(e) : α

Γ|=e : α×β
Γ|=π2(e) : β

Γ|=e : µF

Γ|=e : F(µF)
Γ|=e : F(µF)

Γ|=e : µF

Figure 2: Type Inference Lemmas

Definition 1
A type is a setτ of pairs of the form〈k,v〉 wherek is a
nonnegative integer andv is a value and where the setτ
is such that if〈k,v〉 ∈ τ and0≤ j ≤ k then〈 j,v〉 ∈ τ. For
any closed expressione and typeτ we writee :k τ if e is
safe fork steps and if whenevere 7→ j v for some valuev
with j < k we have〈k− j,v〉 ∈ τ; that is,

e :k τ ≡ ∀ j∀e′. 0≤ j < k ∧ e 7→ j e′ ∧ nf(e′) ⇒
〈k− j,e′〉 ∈ τ

wherenf(e′) means thate′ is a normal form — has no
successor in the step relation.

Intuitively, e :k τ means thatebehaves like an element
of τ for k steps of computation. Note that ife :k τ and
0≤ j ≤ k thene : j τ. Also, for a valuev andk> 0, the
statementsv :k τ and〈k,v〉 ∈ τ are equivalent. We now
define various functions from sets to sets and an operation
µ which takes a set functionalF — a function from sets
to sets — and returns a set that (we will show) is a fixed
point of F . Theµ operator allows us to define recursive
types.

⊥ ≡ {}
> ≡ {〈k,v〉 | k≥ 0}
int ≡ {〈k,0〉 | k≥ 0}

τ1×τ2 ≡ {〈k,(v1,v2)〉 | ∀ j < k. 〈 j ,v1〉 ∈ τ1 ∧ 〈 j ,v2〉 ∈ τ2}
σ→ τ ≡ {〈k,λx.e〉 | ∀ j < k∀v. 〈 j ,v〉 ∈ σ ⇒ e[v/x] : j τ}

µF ≡ {〈k,v〉 | 〈k,v〉 ∈ Fk+1(⊥)}

Definition 2
A type environmentis a mapping from lambda calculus
variables to types. Avalue environment(also called a

3

ground substitution) is a mapping from lambda calculus
variables to values. For any type environmentΓ and value
environmentσ we writeσ :k Γ (“σ approximately obeys
Γ”) if for all variablesx∈ dom(Γ) we haveσ(x) :k Γ(x).

Finally, we define a semantic entailment relation|=.
We writeΓ |=k e : α to mean that

∀σ.σ :k Γ ⇒ σ(e) :k α

whereσ(e) is the result of replacing the free variables
in e with their values underσ. We writeΓ|=e : α if for
all k ≥ 0 we haveΓ|=ke : α. We write |=e : α to mean
Γ0|=e : α for the empty environmentΓ0.

The remainder of this section is devoted to proving the
type inference lemmas in figure 2. Each of these lemmas
states that if certain instances of the relation|= hold, then
certain other instances hold. Note that|= can be viewed
as a three place relation whereΓ|=e : α means that the re-
lation |= holds on the type environmentΓ, the terme, and
the typeα. Once we have proved the type inference lem-
mas in figure 2, these lemmas can be used in the same
manner as standard type inference rules to prove state-
ments of the formΓ|=e : α. We now observe that defini-
tions 1 and 2 immediately imply the following.

Lemma 3
If |=e : α then e is safe.

We now consider each of the type inference lemmas in
figure 2. Note that there is a type inference lemma for
each case in the grammar of lambda terms plus two rules
for the type constructorµ. The lemma for variables, stat-
ing thatΓ|=x : Γ(x), follows immediately from the defini-
tion of |=. The fact that int is a type, and the type infer-
ence lemma for 0 statingΓ|=0 : int, both follow directly
from the definition of int. We now consider the rules for
applications and lambda expressions. First we have the
following lemma which follows directly from the defini-
tion of→.

Lemma 4
If α andβ are types thenα→ β is also a type.

Proof: By the definition of→ it is obvious thatα→ β
is closed under decreasing index. �

We now prove the type theorems for application and
lambda expressions.

Lemma 5
If e1 ande2 are closed terms andα andβ are type sets
such thate1 :k α→ β ande2 :k α then(e1 e2) :k β.

Proof: Sincee1 :k α→ β ande2 :k α we immediately
have that bothe1 ande2 are safe fork steps and that if
e1 generates a value in fewer thank steps, that value
must be a lambda expression. Hence, the application
(e1 e2) either reduces fork steps without any top-level
beta-reduction, or there exists a lambda expressionλx.e
and a valuev such that(e1 e2) 7→ j (λx.e) v with j < k. In
the first case we have that(e1 e2) is safe fork steps and
does not generate a value in less thank steps and hence
(e1 e2) :k β (for any β). In the second case definition 1
implies that 〈k− j,λx.e〉 ∈ α → β and (using closure
under decreasing index)〈k− j−1,v〉 ∈α. The definition
of → then impliese[v/x] :k− j−1 β. But we now have
(e1 e2) 7→ j+1 e[v/x] and e[v/x] :k−(j+1) β. These two
statements imply(e1 e2) :k β. �

Theorem 6 (Application)
If Γ is a type environment,e1 ande2 are (possibly open)
terms, andα andβ are types such thatΓ|=e1 : α→ β and
Γ|=e2 : α thenΓ|=(e1 e2) : β

Proof: We must prove that under the premises of the
theorem and for anyk≥ 0 we haveΓ |=k (e1 e2) : β. More
specifically, for anyσ such thatσ :k Γ we must show
σ(e1 e2) :k β. By the premises of the theorem we have
σ(e1) :k α→ β andσ(e2) :k α. The result now follows
from lemma 5. �

Theorem 7 (Abstraction)
Let Γ be a type environment, letα andβ be types, and
let Γ[x := α] be the type environment that is identical to
Γ except that it mapsx to α. If Γ[x := α]|=e : β then
Γ|=λx.e : α→ β.

Proof: As in theorem 6, we must show that under the
premises of the theorem we have that for anyk ≥ 0
and ground substitutionσ such thatσ :k Γ we have
σ(λx.e) :k α→ β. Supposeσ :k Γ. Let v and j < k be
such thatv : j α. By the definition of→ it now suffices
to show thatσ(e[v/x]) : j β. Let σ[x := v] be the ground
substitution identical toσ except that it mapsx to v. We
now have thatσ[x := v] : j Γ[x := α]. By the premise of
the theorem we then have thatσ[x := v](e) : j β. But this
impliesσ(e[v/x]) : j β. �

Lemma 8
If α andβ are types then so isα×β.

4

Lemma 9
If α andβ are types ande1 ande2 are closed terms such
thate1 :k α ande2 :k β then〈e1, e2〉 :k α×β.

Proof: The proof is similar to the proof of lemma 5.
Again we have thate1 and e2 are safe fork steps. If
〈e1, e2〉 does not reduce to a pair of values within fewer
thank steps then we immediately have〈e1, e2〉 :k α×β.
So without loss of generality we can assume that
〈e1, e2〉 7→ j 〈v1, v2〉 with j < k and wherev1 andv2 are
values. Sincee1 :k α ande2 :k β we now havev1 :k− j α
andv2 :k− j β, which implies〈v1, v2〉 :k− j α×β. We now
have 〈e1, e2〉 7→ j 〈v1, v2〉 and 〈v1, v2〉 :k− j α× β and
hence〈e1, e2〉 :k α×β. �

The type inference theorem for pair expressions now
follows from lemma 2 in the same manner that theorem 6
follows from lemma 5.

Lemma 10
If α andβ are types ande is a closed term such thate :k
α×β thenπ1(e) :k α andπ2(e) :k β.

Proof: We consider only theπ1 case. Sincee is safe
for k steps we can assume without loss of generality
that e 7→ j v for some valuev and j < k. We now have
v :k− j α× β which implies thatv is a pair〈v1, v2〉 with
v1 :k− j−1 α. But we now have thatπ1(e) 7→ j+1 v1 and
v1 :k−(j+1) α and henceπ1(e) :k α. �

The type inference lemmas for projection terms follow
from lemma 2 in the same way that theorem 6 follows
from lemma 5.

We have now proved all of the type inference lemmas
except those for the type constructorµ. To understand
some of the subtleties involved in the type constructorµ
let Ω be the term(λx.xx)(λx.xx). The derivation in fig-
ure 3 shows how to use the type lemmas in figure 2 to
derive|=Ω :⊥. By lemma 3 we then have thatΩ is safe.
In the derivationΛα.α→ ⊥ is the set functional map-
ping the setα to the setα→⊥. The proof thatΩ is safe
(shown in figure 3) relies on the type lemmas forµ in fig-
ure 2 which we now prove. We first observe the following
lemma.

We will prove that the type inference forµ holds in the
case whereF is well foundedand that all nontrivial type
constructors built from type constants,→, and× are well
founded.

Definition 11
Thek-approximationof a set is the subset of its elements
whose index is less thank:

approx(k,τ) = {〈 j,v〉 | j < k ∧ 〈 j,v〉 ∈ τ}

We have that ifα is a type then approx(k, α) is a type.
We now define a notion of well founded functional. Intu-
itively, a recursive definition of a typeα is well founded
if, in order to determine whether or note :k α, it suffices
to knowe′ : j α for all termse′ and indicesj < k.

Definition 12
A well founded functionalis a functionF from types to
types such that for any typeτ andk≥ 0 we have

approx(k+ 1,F(τ)) = approx(k+ 1,F(approx(k,τ)))

Note that ifF is a function from types to types andα
is a type thenFk(α) is a type for anyk≥ 0.

Lemma 13
ForF well founded andj ≤ k,

(1) approx(j,F j(τ1)) = approx(j,F j(τ2))

(2) approx(j,F j(τ)) = approx(j,Fk(τ))

Proof: (1) By induction.

approx(0,F j(τ1)) =⊥= approx(0,F j(τ2)).
approx(j + 1,F j+1(τ1)) =
approx(j + 1,F(F j(τ1))) =
approx(j + 1,F(approx(j,F j(τ1)))) =
approx(j + 1,F(approx(j,F j(τ2)))) =
approx(j + 1,F(F j(τ2))) =
approx(j + 1,F j+1(τ2)))

(2) Using (1), takingτ2 = Fk− j (τ1). �

Theorem 14
If F is well founded, thenµF is a type.

Proof: We must show thatµ(F) is closed under decreas-
ing index. Suppose that〈k,v〉 ∈ µ(F) and considerj ≤ k.

〈k,v〉 ∈ µF
〈k,v〉 ∈ Fk+1(⊥) by def’n ofµF
〈 j,v〉 ∈ Fk+1(⊥) by def’n of type
〈 j,v〉 ∈ approx(j + 1,Fk+1(⊥)) by def’n of approx
〈 j,v〉 ∈ approx(j + 1,F j+1(⊥)) by Lemma 13
〈 j,v〉 ∈ F j+1(⊥) by def’n of approx
〈 j,v〉 ∈ µF by def’n ofµF

�

5

[x := µ(Λα.α→⊥)]|=x : µ(Λα.α→⊥)
[x := µ(Λα.α→⊥)]|=x : µ(Λα.α→⊥), [x := µ(Λα.α→⊥)]|=x : (µ(Λα.α→⊥))→⊥

[x := µ(Λα.α→⊥)]|=(x x) :⊥
|=λx.xx : (µ(Λα.α→⊥))→⊥

|=λx.xx : (µ(Λα.α→⊥))→⊥ |=λx.xx : µ(Λα.α→⊥)
|= ((λx.xx) (λx.xx)) :⊥

Figure 3: A derivation of|=Ω :⊥

Lemma 15

approx(k,approx(k+ 1,τ)) = approx(k,τ)

Lemma 16
If F is well founded,

(a) approx(k,µF) = approx(k,Fk⊥)
(b) approx(k+ 1,F(µF)) = approx(k+ 1,Fk+1⊥)

Proof: (a) For k = 0, each side is equivalent to⊥. For
k> 0, each of the following lines is equivalent:

〈 j,v〉 ∈ approx(k,µF)
j < k∧〈 j,v〉 ∈ µF by def’n of approx
j < k∧〈 j,v〉 ∈ F j+1⊥ by def’n ofµF
j < k∧〈 j,v〉 ∈ approx(j + 1,F j+1⊥) by def’n of approx
j < k∧〈 j,v〉 ∈ approx(j + 1,Fk⊥) by Lemma 13
j < k∧〈 j,v〉 ∈ Fk⊥ by def’n of approx
〈 j,v〉 ∈ approx(k,Fk⊥) by def’n of approx

(b) Each of the following sets is equivalent.

approx(k+ 1,Fk+1⊥)
approx(k+ 1,F(Fk⊥))
approx(k+ 1,F(approx(k,Fk⊥))) well-foundedness
approx(k+ 1,F(approx(k,µF))) by (a)
approx(k+ 1,F(µF)) well-foundedness

�

Lemma 17
If F is well founded,

approx(k,µF) = approx(k,F(µF))

Proof: Each of the following sets is equivalent

approx(k,µF)
approx(k,Fk⊥) by Lemma 16a
approx(k,Fk+1⊥) by Lemma 13
approx(k,approx(k+ 1,Fk+1⊥)) by Lemma 15
approx(k,approx(k+ 1,F(µF))) by Lemma 16b
approx(k,F(µF)) by Lemma 15

�

Theorem 18
If F is well founded thenµF = F(µF). Hence the type
inference lemmas forµ in figure 2 hold for any well
founded functionalF .

Proof: We have that 〈k,v〉 ∈ µF iff 〈k,v〉 ∈
approx(k + 1, µF) iff 〈k,v〉 ∈ approx(k + 1, F(µF))
iff 〈k,v〉 ∈ F(µF). �

Theorem 18 justifies the derivation in figure 3 provided
that one can show that the functionalΛα.α→⊥ is well
founded. Letα be the setµ(Λα.α→⊥). Intuitively, we
should haveα = α→⊥. So we have that〈k,λx.e〉 ∈ α
iff for all j < k and〈 j,v〉 ∈ α we havee[v/x] : j ⊥. So
to determine if〈k,λx.e〉 ∈ α it suffices to know whether
〈 j,v〉 ∈ α for j < k. More formally, functionals can be
proved to be well founded using lemma 20 below.

Definition 19
A nonexpansive type constructorF is one such that

approx(k,F(τ)) = approx(k,F(approx(k,τ)))

The constructorΛα.α is nonexpansive but not well
founded. Other examples (definable as extensions to the
tiny type system of this paper) areΛα.α∩ τ, Λα.α∪ τ,
and theoffset constructor of Appel and Felty [AF00b].

6

Lemma 20
a. Every well founded constructor is nonexpansive.

b. Λα.α is nonexpansive.

c. Λα.τ, whereα is not free inτ, is well founded.

d. The composition of nonexpansive constructors is
nonexpansive.

e. The composition of a nonexpansive constructor with
a well founded constructor (in either order) is well
founded.

f. If F andG are nonexpansive, thenΛα.Fα→ Gα is
well founded.

g. If F andG are nonexpansive, thenΛα.Fα×Gα is
well founded.

Proof: In the following we assume thatF and G are
nonexpansive and thatH is well founded.

a. approx(0, H(α)) = approx(0, H(approx(0, α)))

approx(k+1, H(α)) =
approx(k+1, H(approx(k, α))) =
approx(k+1, H(approx(k, approx(k+1, α)))) =
approx(k+1, H(approx(k+1, α))))

b. Let I beΛα.α.

approx(k, I(α)) = approx(k, I(approx(k, α)))

c. LetK be a constant function.

approx(k, K(α)) = approx(k, K(approx(k, α)))

d.

approx(k, F(G(α))) =
approx(k, F(approx(k, G(approx(k, α))))) =
approx(k, F(G(approx(k, α)))) =

e. approx(0,F(H(α))) = approx(0,F(H(approx(0, α)))

approx(k+1, F(H(α))) =
approx(k+1, F(approx(k+1, H(approx(k, α))))) =
approx(k+1, F(H(approx(k, α)))) =

approx(0, H(F(α))) = approx(0, H(F(approx(0, α)))

approx(k+1, H(F(α))) =
approx(k+1, H(approx(k, F(approx(k, α))))) =
approx(k+1, H(F(approx(k, α)))) =

f. By the definition of→ we have the following.

approx(k+1, α→β) = approx(k+1, approx(k, α)→approx(k, β))

This gives the following.

approx(0, F(α)→G(α)))) =
approx(0, F(approx(0, α))→G(approx(0, α))))

approx(k+1, F(α)→G(α)) =
approx(k+1, approx(k, F(α))→ approx(k, G(α))) =
approx(k+1, approx(k, F(approx(k, α)))

→ approx(k, G(approx(k, α)))) =
approx(k+1, F(approx(k, α))→G(approx(k, α)))

g. By the definition of× we have the following.

approx(k+1, α×β) = approx(k+1, approx(k, α)×approx(k, β))

This gives the following.

approx(0, F(α)×G(α)))) =
approx(0, F(approx(0, α))×G(approx(0, α)))

approx(k+1, F(α)×G(α)) =
approx(k+1, approx(k, F(α))×approx(k, G(α))) =
approx(k+1, approx(k, F(approx(k, α)))

×approx(k, G(approx(k, α)))) =
approx(k+1, F(approx(k, α))×G(approx(k, α)))

�

Lemma 21
If F is the identity constructorΛα.α, thenµF = F(µF).

Proof: F j(⊥) =⊥, so both sides are equal to⊥. �

Quantified types. We can also model existential types
– useful for data abstraction – and universal types – use-
ful for polymorphic functions. The semantic constructors
are,

∃F ≡
[

τ∈type

F τ ∀F ≡
\

τ∈type

F τ

whereτ ∈ type means, as usual, thatτ is closed under
decreasing index.

7

Theorem 22 (Typing rules for quantified types)

(a)
∀τ ∈ type. F τ ∈ type

(∃F) ∈ type (∀F) ∈ type

(b)
τ ∈ type Γ |=v : Fτ

Γ |=v : ∃F

(c)
Γ |=v : ∃F

∃τ ∈ type. Γ |=v : Fτ

(d)
∀τ ∈ type. Γ |=v : Fτ

Γ |=v : ∀F

(e)
Γ |=v : ∀F

∀τ ∈ type. Γ |=v : Fτ

These rules all follow trivially from the definitions. How-
ever, rulesb–e are rather operational; they don’t look
exactly like the usual type-checking rules for quantified
types, which usually involve the explicit management of
a set of type variables. It should be possible to define
an extended notion of semantic entailment∆,Γ|=ke : τ to
support this form of type checking.

But even with our current definitions we can state the-
orems such as parametricity. For example, we can prove
that the only functions of type∀α.α→ α are the empty
(always nonterminating) function and the identity func-
tion; the usual method of considering, for each valuev,
the singleton typeτv works straightforwardly in our se-
mantics.

Conclusion. Any type constructorΛα.τ, where τ is
built from α and the operatorsint ,>,⊥,×,→ is either
well founded or the identity. Thus all of the typing rules
of Figure 2 are valid. By Lemma 3, any well typed closed
expression is safe. Therefore we have a model of general
recursive types that is powerful enough to prove safety of
any conventionally typedλ-expressions.

3 An indexed PER model

We have shown a model of types in which we can rea-
son about the membership of terms in types. Even more
useful is a model in which we can reason about the equiv-
alence of terms. This allows us to use the model to prove,
for example, that a compiler optimization has correctly
transformed an expression. Just as useful is the ability
to prove that some functionf produces the same (i.e.,

equivalent) result independent of the representation of its
argument; this more perfect information hiding across in-
terfaces. Readers not interested in per’s can skip this sec-
tion, as later sections do not depend on it.

Our indexed model extends easily to per (partial equiv-
alence relation) models of types. We define a type as a set
of triples〈k,v,w〉, with the (informal) meaning that in any
computation of no more thank steps,v approximatesw –
that is, if f (v) halts ink steps, thenf (w) also halts and
yields the same result.

We extend this relation from values to expressions us-
ing the four-place relatione≤ f :k τ, defined as

e≤ f :k τ ≡ ∀ j∀e′. 0< j < k ∧ e 7→ j e′ ∧ nf(e′)
⇒ ∃ f ′. f 7→∗ f ′ ∧ 〈k− j,e′, f ′〉 ∈ τ

The statemente :k τ is an abbreviation fore≤ e :k τ,
and serves as a “conventional” typing judgement.

⊥ ≡ {}
int ≡ {〈k,0,0〉 | k≥ 0}

τ1×τ2 ≡ {〈k,(v1,v2),(w1,w2)〉 |
∀ j < k. 〈 j ,v1,w1〉 ∈ τ1 ∧ 〈 j ,v2,w2〉 ∈ τ2}

σ→ τ ≡ {〈k,λx.e,λy. f 〉 |
∀ j < k∀v,w. 〈 j ,v,w〉 ∈ σ ⇒ e[v/x] ≤ f [w/y] : j τ}

µF ≡ {〈k,v,w〉 | 〈k,v,w〉 ∈ Fk+1(⊥)}

As before, we define well-typed substitutions, and we
define typing entailmentsΓ|=e≤ f : τ.

σ1 ≤ σ2 :k Γ ≡
domσ1 = domσ2 = domΓ ∧ ∀x. σ1(x)≤ σ2(x) :k Γ(x)

Γ |=k e≤ f : τ ≡
∀σ1,σ2. σ1 ≤ σ2 :k Γ ⇒ σ1(e)≤ σ2(f) :k τ

Γ |=e≤ f : τ ≡ ∀k. Γ |=k e≤ f : τ

Now we can prove the type entailment theorems corre-
sponding to Figure 2.

Lemma 23
If e1, f1,e2, f2 are closed terms, andα,β are types such
that e1 ≤ f1 :k α → β and e2 ≤ f2 :k α then (e1 f1) ≤
(e2 f2) :k β.

Proof: By analogy with the proof of Lemma 5. Both
e1 ande2 are safe fork steps. Ife1 7→ j1 v1 with j < k,
thenv1 must be a lambda expressionλx.e and f1 7→∗ f ′1
with 〈k− j,λx.e, f ′1〉 ∈ α → β. Hence, the application
e1e2 either reduces fork steps without any top-level beta-
reduction – in which casee1e2 ≤ f :k τ for any f andτ
– or (e1e2) 7→ j1 (λx.e)e2 7→ j2 (λx.e)v with j1 + j2 < k,
f2 7→∗ f ′2, and〈k− j2,v, f ′2〉 ∈ α.

8

Since the only values inα → β are lambdas,
f ′1 = λy. f for some y and f . By decreasing index,
〈k− j1− j2−1,v, f ′2〉 ∈ α, and by the definition of
α→ β we havee[v/x]≤ f [f2/y] :k− j1− j2−1. Eithere[v/x]
steps for anotherk− j1− j2−1 – in which casee1e2 has
now stepped fork steps ande1e2 ≤ f :k τ for any f and
τ – or (because it is approximately well typed) reduces
to a valuev3 in j3 steps, withj3 < k− j1− j2−1. Then
f [f2/y] 7→∗ f3 and 〈k− j1− j2−1− j3,v3, f3〉 ∈ β.
Thus, e1e2 7→ j1+ j2+1+ j3 v3; but f1 f2 7→∗ f3, with the
required relation betweenv3 and f3. �

Theorem 24 (Application)
Γ|=e1≤ f1 : α→ β Γ|=e2≤ f2 : α

Γ|=(e1e2)≤ (f1 f2) : β

Proof: By analogy with Theorem 6, but using
Lemma 23. �

Corollary 25 Γ|=e1 : α→ β Γ|=e2 : α
Γ|=(e1 e2) : β

Theorem 26 (Abstraction)
Γ[x := α]|=e≤ f : β

Γ|=(λx.e)≤ (λx. f) : α→ β

Proof: We must show that for anyk andσ1,σ2 such that
σ1 ≤ σ2 :k Γ, we haveσ1(λx.e) ≤ σ2(λx. f) :k α → β.
Let v,w and j < k be such thatv ≤ w : j α. By the
definition of → it suffices to show thatσ1(e[v/x]) ≤
σ2(f [w/x]) : j β. We can extendσ1 and σ2 so that
σ1[x := v] ≤ σ2[x := w] : j Γ[x := α]. By the premise of
the theorem we haveσ1[x := v] ≤ σ2[x := w] : j β. This
impliesσ1(e[v/x])≤ σ2(f [w/x]) : j β. �

Corollary 27 Γ[x := α]|=e : β
Γ|=λx.e : α→ β

Lemma 28
If α andβ are types (i.e., closed under decreasing index),
then so are⊥, int , α×β, andα→ β.

Definitions, Lemmas, and Theorems 11–18 hold, using
sets of triples instead of sets of pairs. That is, the defini-
tion of approx(k,τ) and well-foundedness, and the lem-
mas and theorems about well founded type constructors,
up to and includingµF = F(µF), are written in exactly
the same way.

Lemma 29
All the statements (a)–(g) of Lemma 20, and Lemma 21,
hold for indexed-per type constructors.

Theorem 30
Any type constructorF expressible in the “syntax” of
constructorsint ,×,→,µ is well founded, so therefore
µF = F(µF).

Lemma 31
If |=e : α then e is safe.

But in the per model, we get more than just the lemma
that typability implies safety. We also get congruence and
extensionality results: a well-typed function must map
equivalent arguments to equivalent results, and if two
functions behave the same then the type system judges
them equivalent.

Definee∼ f : τ to meane≤ f : τ ∧ f ≤ e : τ.

Theorem 32 (Congruence)

Γ|=e1∼ f1 : α→ β Γ|=e2∼ f2 : α
Γ|=(e1e2)∼ (f1 f2) : β

Proof: By Theorem 24. �

Theorem 33 (Extensionality)

∀v,w. |=v∼ w : α ⇒ |= f v∼ gw : β
|= f ∼ g : α→ β

Proof: From the definition ofα→ β. �

Theorem 34 (Observational Equivalence)
If e∼ f : τ theneand f have the same observable behav-
ior in any context of typeτ.

Proof: By the definition of∼, via Theorem 24 (and a
similar theorem for pairing)e is applicatively equivalent
to f . Observational equivalence follows via a straight-
forward adaption (for this calculus) of Milner’s Context
Lemma [Mil77]. �

9

4 Proof-carrying code

For the application of proof-carrying code, we need
a soundness proof of recursive types not in lambda-
calculus, but on a von Neumann machine — in Pentium
instructions, for example. The step relation of interest
is not a predicate on pairs of expressionse1 7→ e2 but
on pairs of machine states(r1,m1) 7→ (r2,m2), wherer
is the contents of the register bank andm is the con-
tents of the memory — the execution of one instruction
can take the machine from state(r1,m1) to state(r2,m2)
[AF00b, MA00].

On such machines it is most convenient to define sim-
pler type primitives than the cartesian product and func-
tion arrow of lambda calculus:

int The type of one-word machine integers.

const(n) The singleton type containing only the integer
valuen.

ref(τ) Pointer to a memory location containing a value
of typeτ.

offset(n,τ) A value that, if you addn to it, yields a value
of typeτ.

σ∩ τ The intersection ofσ andτ. The (boxed) cartesian
productσ× τ can be built fromoffset(0, ref(σ))∩
offset(1, ref(τ)); this is a record with aσ value in
the first field and aτ value in the second field.

σ∪ τ The union ofσ andτ. A (tagged) disjoint union
σ+τ can be built from(const(0)×σ)∪(const(1)×
τ), that is, a record with a tag in the first field and
(depending on the tag value) either aσ or aτ in the
second field.

∃α.τ An existential type.

codeptr(τ) A first-order continuation; that is, an address
in the machine code that is safe to jump to as long as
an argument of typeτ is passed in a designated reg-
ister. Higher-order continuations (i.e., closures) can
be constructed using first-order closures and existen-
tial types; higher-order functions can be constructed
from higher-order closures [MWCG98, AF00b].

A valueis a pair(m,x) wherem is a finite partial func-
tion from integers to integers (a partial memory) andx is
an integer (typically representing an address).1

1Appel and Felty use a triple(a,m,x) wherem is a total function and
a is the set describing the domain of interest; the two formulations are
equivalent.

To represent a pointer data structure that occupies a
certain portion of the machine’s memory, we letx be the
root address of that structure, and the domain ofm is
the set of addresses occupied by the data. For example,
the boxed pair of integers〈5,7〉 represented at address
108 would be represented as the value({108 7→ 5,109 7→
7},108).

5

7

108

mx

108

109

To represent a function (actually, a continuation) value,
we let x be the entry address of the function, and the
domain of m be the set of addresses containing ma-
chine instructions of the function. Here is the function
f (x,k) = k(x+ 1), assuming thatx is in register 1, andk
is passed in register 7:

1111

4070

r1 := r1+1

jump(r7)

200

mx

200

201

We assume that one of the registers is the program
counter — for example, perhaps registerr(37) is the pro-
gram counter, pc= 37. Then a machine state(r,m)in
which we have just jumped to location 200 has the prop-
erty r(pc) = 200.

The step relation(r,m) 7→ (r ′,m′) is defined on to-
tal functionsm and m′; that is, a machine instruction
might fetch from any location. Any particular data struc-
ture (i.e., value(m1,x1)) occupies only a finite portion of
memory (the domain ofm1 is finite). In order for the pro-
gram to create and initialize new data structures, it must
know what addresses inm are not part of any existing
data structures. That is, at any time all existing values
live in allocatedaddress of the heap, and unallocated ad-
dresses can be used for new data structures; and the allo-
cated set must be computable from the current contents
of the register bank and memory. We model this with a
function alloc(r,m) that takes a register bank and mem-
ory and returns a set of addresses (integers). An example
of a simple alloc function is

alloc(r,m) = {x| 0≤ x< r(6)}

where register 6 points to the boundary between allo-
cated and unallocated locations. To allocate and initialize
a new data structure, the program would store at locations
r(6), r(6)+ 1, . . . and then incrementr(6).

10

We say that a machine state(r,m) is stuckif it has no
successor state in the7→ relation. A safe state is one that
cannot evaluate to a stuck state,

safe(r,m)≡ ∀r ′,m′. (r,m) 7→∗ (r ′,m′) ⇒
∃r ′′,m′′.(r ′,m′) 7→ (r ′′,m′′)

We say that a machine state(r,m) is safe to execute for
k stepsif it cannot get stuck withink instructions:

safen(k, r,m)≡ ∀ j < k∀(r ′,m′). (r,m) 7→ j (r ′,m′) ⇒
∃r ′′,m′′.(r ′,m′) 7→ (r ′′,m′′)

We writemvm′ to mean that one partial memory ap-
proximates another,

mvm′ ≡ ∀x∈ dom(m). x∈ dom(m′) ∧m(x) = m′(x)

Sometimes we will want to talk about the safety of par-
tial memories, i.e. partial functions from addresses to in-
tegers. We can view a partial memory as an underspec-
ified total memory, and it will be safe if every possible
extension of it is safe.

safenp(k, r,m) ≡ ∀m′. mvm′ ⇒ safen(k, r,m′)

5 Sets of indexed values

Just as in ourλ-calculus model, atypeis a set of indexed
values{〈k,m,x〉} wherek is an approximation index,m
is a partial memory, andx is an integer (perhaps the root
pointer of a data structure).2 Unlike theλ model, there
are no expressions that are not values, since we are deal-
ing with machine states. Therefore we have the corre-
spondence,

(m,x) :k τ ≡ 〈k,m,x〉 ∈ τ

Intuitively, (m,x) :k τ means that the data structure
(m,x) approximately belongs toτ: if a continuation of
type τ→ Answer is applied to(m,x), then the machine
will not get stuck withink steps.

We say that a set of indexed values is a validtypeif it
is closed under extension of the memory and under de-
creasing index:

2The triples〈k,m,x〉 do not correspond to the triples〈k,v,w〉 used
in Section 3. If we were designing the notation for more general-
ity, we would write an indexed von Neumann per model with sets of
〈k,〈〈m1,x1〉 ,〈m2,x2〉〉〉 wherev = 〈m1,x1〉 andw = 〈m2,x2〉; then we
could even generalize so that the single-argument “relation”〈m,x〉 and
the two-argument relation〈〈m1,x1〉 ,〈m2,x2〉〉 could be uniformly in-
dexed byk in all the definitions, lemmas, and proofs. We avoided this
extravaganza of abstraction in the interests of readability.

type(τ) ≡ ∀m,m′,x, j,k.
mvm′ ∧ j ≤ k ∧ 〈k,m,x〉 ∈ τ ⇒
〈 j,m′,x〉 ∈ τ

As explained by Appel and Felty [AF00b], closure un-
der extension of the memory is necessary so that the pro-
gram can allocate and initialize a new value while pre-
serving existing typing judgements about old values.

As in ourλ-calculus model, we define an approx oper-
ator on types,

approx(k,τ) = {〈 j,m,x〉 | j < k ∧ 〈 j,m,x〉 ∈ τ}

and we say that a type constructorF is well founded if

∀τ.type(τ)⇒
(type(Fτ)∧
∀k.approx(k+ 1,Fτ) = approx(k+ 1,F(approx(k,τ))))

Similarly, F is nonexpansive if

∀τ.type(τ)⇒
(type(Fτ)∧
∀k.approx(k,Fτ) = approx(k,F(approx(k,τ))))

A type environmentΦ orΓ is a finite map from integers
to types. We will useΦ to specifylocal invariantsthat
give the types of (some subset of) the registers at a certain
program point, andΓ to specify theglobal invariantthat
gives the types of various program-counter locations in
the program code.

A mappingf satisfiesΦ if

(m, f) :k Φ ≡ ∀x∈ dom(Φ). (m, f (x)) :k Φ(x)

Type environments are used for two purposes: to sum-
marize the types of the contents of machine registers (in
which casef will be a register bankr), and to summarize
the types of all entry points (machine-code addresses) of
the program (in which casef will be the identity function,
as we will explain).

A valid type environment is composed of valid types:

typenv(Φ) ≡ ∀x∈ dom(Φ). type(Φ(x))

11

int = {〈k,m,x〉}
const(n) = {〈k,m,x〉 |x = n}
ref(τ) = {〈k,m,x〉 |x∈ dom(m)∧

∀ j < k. 〈 j,m,m(x)〉 ∈ τ}
σ∩ τ = σ∩ τ
σ∪ τ = σ∪ τ
∃F = {〈k,m,x〉 |∃α. type(α)∧〈k,m,x〉 ∈ F(α)}

codeptr(Φ) = {〈k,m,x〉 | ∀ j, r ′,m′

mvm′ ∧ dom(m′) = alloc(r ′,m′)
∧ j < k ∧ r ′(pc) = x ∧ (m′, r ′) : j Φ
⇒ safenp(j, r ′,m′)

µF = {〈k,m,x〉 | 〈k,m,x〉 ∈ Fk+1⊥}

Any valuex can be seen as a machine integer (regard-
less of the memorym that accompanies it). Intersection
(respectively, union) types are defined via intersection
(resp., union) of sets. ...

Theorem 35
Each of our types is a valid type:

a. type(int).

b. type(const(n)).

c. type(τ) ⇒ type(ref(τ)).

d. type(σ)∧ type(τ) ⇒ type(σ∩ τ)).

e. type(σ)∧ type(τ) ⇒ type(σ∪ τ)).

f. nonexpansive(F) ⇒ type(∃F).

g. type(τ) ⇒ type(codeptr(τ)).

h. wellfounded(F) ⇒ type(µF).

Theorem 36
The following typing rules apply:

(m,x) :k int (m,x) :k const(x)

x∈ dom(m) (m,m(x)) :k−1 τ
(m,x) :k ref(τ)

(m,x) :k ref(τ)
x∈ dom(m) (m,m(x)) :k−1 τ

wellfounded(F) (m,x) :k F(µF)
(m,x) :k µF

wellfounded(F) (m,x) :k µF

(m,x) :k F(µF)

A programp is a sequence of machine instructions at
a specific place in memory; that is, it is a finite function
from address to integer, where the integer codes for an
instruction. Thusp is just a partial memory, and we can
say thatp is embedded in a memorymby writing pvm.

At each point in the program there is a precondition,
or invariant, such that if the registers and memory satisfy
the precondition it is safe to execute the program. Follow-
ing Necula [Nec97] we express these preconditions using
types, e.g.,r(1) : τ1∧ r(2) : τ2∧ r(5) : τ5. (We haven’t
formally defined unindexed typing judgements, so let’s
not assign too formal a meaning to this statement.)

But this is the same as saying thatr satisfies a type
environmentr : Φ, whereΦ = {1 7→ τ1,2 7→ τ2,5 7→ τ5}.
And the statement that this is the precondition of location
l is the same asl : codeptr(Φ), that is, it is safe to execute
from locationl as long as the registers satisfyΦ.

The statement that all the locations in the program have
their respective codeptr types,

∀l ∈ dom(p). l : codeptr(Φl)

is the same as the statement that(p, id) : Γ, whereΓ(l) =
codeptr(Φl) for all l in the domain ofp, and id is the
identity function; the identity function because here we
are not reasoning about thecontentsof the ith register,
but theaddressof the ith program location.

To prove an initial machine state(r,m) safe, we will
need premises of the formpv m (that is, a certain pro-
gram is loaded in memory) andr(pc) = l0 (that is, the
program counter is initially at a specified entry point).
Then we will prove∀k.(p, id) :k Γ for someΓ such that
Γ(l0) = codeptr(Φl0); as we will explain, this will be by
induction overk. Finally we will prove∀k.(p, r) :k Φl0,
that is, the initial precondition of the program is met; this
may be trivial if, for example,Φl0 is trivial. Then from
the definition of codeptr, safen(j, r,m) for anyk and any
j < k, and thus safe(r,m).

Theorem 37 ∀k. (p, id) :k Γ

Proof:
By induction overk. EachΓ(l) is a codeptr type, and

these have the property that they accept any value to ap-
proximation zero; this proves the base case.

To prove (p, id) :k Γ ⇒ (p, id) :k+1 Γ we work
by cases; that is, we prove for eachl in dom(p)
that l : codeptr(Φl), or more precisely,〈k+ 1, p, l〉 ∈

12

codeptr(Φl). By the definition ofcodeptr this is,

∀ j, r ′,m′

pvm′ ∧ dom(m′) = alloc(r ′,m′)
∧ j < k+ 1 ∧ r ′(pc) = l ∧ (m′, r ′) : j Φl

⇒ safenp(j, r ′,m′)

Pick arbitrary j, r ′,m′ and assume the premisesp v
m′, dom(m′) = alloc(r ′,m′), j < k + 1, r ′(pc) = l , and
(m′, r ′) : j Φl . What we must prove is that at locationl
in p there is some instructioni satisfying Lemma 38; an
instance of this lemma must be proved for eachl in the
program. We discuss strategies for such proofs in the next
section. Basically, the lemma says that starting from lo-
cationl , the machine will execute at least one instruction
and then satisfyΓ to approximationk−1; this is sufficient
to prove that atl the machine satisfiesΓ to approximation
k.

Meanwhile, by the induction hypothesis,
〈k, p, l ′′〉 ∈ codeptr(Φl ′′). This, along with the con-
clusions of Lemma 38, proves safenp(j − 1, r ′′,m′′),
it is safe to executej − 1 instructions from(r ′′,m′′).
But the step(r ′,m′) i7→ (r ′′,m′′) means that from state
(r ′,m′) it must have been safe to execute at leastj
instructions; and this proves the desired conclusion, that
〈k+ 1, p, l〉 ∈ codeptr(Φl). �

This proof has relied on details ofp and Γ, through
many instances (one for eachl) of the following lemma:

Lemma 38

pvm′ dom(m′) = alloc(r ′,m′)
(p, id) :k Γ j < k+ 1 r ′(pc) = l (m′, r ′) : j Φl

∃! r ′′,m′′, l ′′,Φl ′′ .(r ′,m′)
i7→ (r ′′,m′′) r ′′(pc) = l ′′

Γ(l ′′) = codeptr(Φl ′′) pvm′′

dom(m′′) = alloc(r ′′,m′′) (m′′, r ′′) : j−1 Φl ′′

We will sketch instances of how the lemma can be
proved, and then argue that these proofs are consistent
with other formulations of proof-carrying code, so that
we can expect this method to scale to real programs.

Example 39
At location l there is an integer that codes for the in-
structionr3←m(r4). Γ(l) = codeptr(Φl) andΓ(l +1) =
codeptr(Φl+1), where

Φl = {1 : int ,3 : int ,4 : τ1× τ2}
Φl+1 = {1 : int ,3 : τ1,4 : τ1× τ2}

The preconditionΦl of the instructions says, in effect

r(1) : int r(3) : int r(4) : τ1× τ2

The postcondition is

r(1) : int r(3) : τ1 r(4) : τ1× τ2

The instruction fetches the first field of the pair; since the
type of the first field isτ1, the destination registerr3 ends
up with typeτ1.

We claim that Lemma 38 holds.

Proof: By the premises,pvm′. Thus, the instruction at
locationl that was originally in the programp is still in
memory (has not been overwritten) by the time we reach
state(r ′,m′).

Since a valid instructioni is in p′ (and therefore inm′)
at locationl , and (by a premise)r ′(pc) = l , we know that
the machine can execute a step, leading to a state(r ′′,m′′).

Our example instructioni does not store into memory,
so m′ = m′′; but if it were a store, premise dom(m′) =
alloc(r ′,m′). could help us prove that the address stored
into is not within dom(m′), and thusm′ vm′′. Sincepv
m′, we havepvm′′.

Our instruction has modified neither dom(m) nor the
registers withinr that determine the alloc function; that
is, m′ = m′′, so dom(m′′) = dom(m′) and alloc(r ′,m′) =
alloc(r ′′,m′′). Therefore dom(m′′) = alloc(r ′′,m′′). But if
we had an instruction that increased the allocated set (as
described by Appel and Felty [AF00b]), this is where we
would need to account for it.

Our example instruction is not a jump, so in the state
r ′′ we will have incremented the program counter by 1;
that is,r ′′(pc) = 1+ r ′(pc) = l ′′. If it were a jump, then
we would need to account forl ′′ in a more sophisticated
way than justl ′′ = l + 1.

Finally, we must prove(m′′, r ′′) : j−1 Φl+1. That is, for
all n in the domain ofΦl+1, 〈 j−1,m′′, r ′′(n)〉 ∈Φl+1(n).
The domain is just{1,3,4}; for n= 1 or 4 the proposition
is trivial, since〈 j,m′, r ′(n)〉 ∈ Φl (n), Φl (n) = Φl+1(n),
m′ = m′′, r ′′(n) = r ′(n), and types are closed under de-
creasing index.

To prove 〈 j−1,m′′, r ′′(3)〉 ∈ τ1 we work as
follows. The premise (m′, r ′) : j Φl implies
〈 j,m′, r ′(4)〉 ∈ τ1 × τ2. By the definition of ×,
〈 j,m′, r ′(4)〉 ∈ ref(τ1). By the definition of ref,
〈 j−1,m′,m′(r ′(4))〉 ∈ τ1. By the semantics of the fetch
instruction,r ′′(3) = m′(r ′(4)), so 〈 j−1,m′, r ′′(3)〉 ∈ τ1.
Sincem′ = m′′, 〈 j−1,m′′, r ′′(3)〉 ∈ τ1. �

13

Certain details that we omit in this paper, such as the
axiomatization of the instructions, and the enforcement
of memory safety such that only fetches from designated
ranges of memory, are easily handled by the techniques
shown in earlier papers [AF00b, MA00].

The reasoning in the proof of Example 39 is similar to
what proof-carrying code systems do already: a combi-
nation of types (in the local invariants) and dataflow (to
model instruction semantics) leads to a proof that the lo-
cal invariant at locationl naturally leads to the invariant
at l + 1. The main difference is that we don’t assume the
typing rules as axioms of our system, but model the types
within a more primitive logic and prove the rules as de-
rived lemmas.

A natural generalization of our technique is to let
dom(Γ) be only a subset of program locations inp; for
example, oneΦ at the entrance of each basic block. Then
we need to show that ifΦl holds, there is some sequence
of n instructions (the entire basic block) that can be exe-
cuted, leading toΦl+n (or to some other location, if there
has been a jump) whose invariant is then satisfied to at
least degreej−n.

6 First-class functions

In a source language with first-class functions, the re-
sult of an expression can be a function value, which can
be bound to a variable, stored into a data structure, and
eventually applied to an argument. In a conventional
translation to machine language, we will see the address
of a segment of machine code being bound to a vari-
able, stored into a data structure, and eventually jumped
to (with arguments in the appropriate registers). In lan-
guages with higher-order functions implemented as clo-
sures, the machine-code pointers are still there, hidden
inside the closures.

A type system for proof-carrying code must account
for function values. Appel and Felty give a type sys-
tem which includes function values (through a codeptr
type similar in spirit to the one we have presented here)
and covariant recursive types (not the general recursive
types we have presented here). They also sketch a proof
method for using these types to prove safety of programs.

The problem is that their proof method is too weak to
accommodate first-class function values. No formal re-
sult in their paper is (known to be) wrong, but they appear
to imply that their method can accommodate function-
pointers, they are mistaken. The problem is that their
induction is forward, over execution steps since the be-

ginning of the program. In contrast, the proof method
presented using indexed types, as presented in the previ-
ous section, is by induction over future execution steps.
Intuitively, codeptr values are (first-order) continuations,
so it is natural that reasoning about future execution is
the right way to proceed. And indeed, our indexed-type
method is strong enough to handle programs with func-
tion pointers.

We will show an example, using a short machine-
language program that puts a function-pointer into a reg-
ister, then calls the function. In this example we use
a very simple-minded notion of continuation type —
cont(τ) is a continuation accepting a return-value of type
τ in register 1,

cont(τ) = codeptr{r1 : τ}

and an equally simple notion of function type, that is,

τ1→ τ2 = codeptr{r1 : τ1, r7 : cont(τ2)}

This means that the formal parameter (of typeτ1 arrives
in register 1, and the return address (of typecont(τ2) ar-
rives in register 7. Return values (of typeτ2 are passed
back in register 1. We ignore here the problem of stack-
ing return addresses for nested calls, which is treated in
depth elsewhere [MCGW98].

Our program (with local invariantsΦ) is

l p(l) Φl

100 : {}
r2← 102

101 : {r2 : int → int}
jump 104

102 : {r1 : int , r7 : cont(int)}
r1← r1 + 1

103 : {r1 : int , r7 : cont(int)}
jump r7

104 : {r2 : int → int}
r1← 3

105 : {r1 : int , r2 : int → int}
r7← 107

106 : {r1 : int , r2 : int → int , r7 : cont(int)}
jump r2

107 : {r1 : int}
jump 107

Instruction 100 moves the function-pointer 102 intor2,
then jumps to 104. Instruction 104 marshals the argument
3 and return address 107 into registersr1 and r7, then
jumps to the function-pointer. Instruction 107 (safely)
infinite-loops.

14

We construct the global invariantΓ from theΦ func-
tions shown in the table.

Example 40
Lemma 38 is provable for locationl = 100.

Proof: Most of the necessary conclusions are trivial.
Certainly if p v m′, thenm′(100) still contains the in-
structionr2← 102, so(r ′,m′) 7→ (r ′′,m′′) with r ′′(2) =
102 andr ′′(pc) = 101. CertainlyΓ(101) = Φ101 = {r2 :
int → int}. Sincem′ = m′′ and the predicate alloc(r,m)
is independent ofr(2) and r(pc), we havep v m′′ and
dom(m′′) = alloc(r ′′,m′′).

Finally, we must show(m′′, r ′′) : j−1 Φ101. By
a premise, p :k Γ, so ∀x ∈ dom(p).(p,x) :k Γ(x).
Thus,(p,102) :k codeptr(Φ102). But codeptr(Φ102) =
codeptr({r1 : int , r7 : cont(int)}) = int → int . Thus,

(p,102) :k int → int

Sincer ′′(2) = 102 and types are closed underv and
under decreasingk, we have

(m′′, r ′′(2)) : j−1 int → int

SinceΦ101 = {r2 : int → int} we have

(m′′, r ′′) : j−1 Φ101

�

7 Related work

Appel and Felty’s type system [AF00b] defines a seman-
tics for types on von Neumann machines with higher or-
der types and monotone recursive types. However, their
proof method involves establishing program invariants
by induction over steps of computation. The classical
program-invariant method can not handle assignments of
the formx = f wherex is a program variable andf is a
(higher order) procedure constant (or instruction pointer).
Here we give a type semantics that includes general recur-
sive types and give a proof method approriate for higher
order program invariants. The proof method is analogous
to a mutual recursion fixed point rule similar to theλ-
calculus fixed point rule mentioned in the introduction.

Assignments of the formx = f where f is an ob-
ject (as opposed to a procedure) are handled in a clas-
sical program-invariant style in a (type-specialized) PCC
system for Java developed by Colby et al. [CLN+00].
Program-invariant safety proofs for object-oriented pro-
grams can be interpreted as control-flow analyses — each

method invocation transfers control to a known set of pos-
sible instruction locations. Higher order type-theoretic
methods, such as the one we present in this paper, seem
more general than first order control-flow methods, e.g.,
type theoretic methods easily handle the polymorphic
case.

Each of our types contains more (operational) informa-
tion than types used in other semantics such asD∞ mod-
els and the ideal model of MacQueen, Plotkin, and Sethi
[MPS86]. To strip away the extra information from an in-
dexed type, one can take the limit (or infinite intersection)
overk:

strip(τ) = {v| ∀k. 〈k,v〉 ∈ τ}
An analogous “strip” operator can be defined for indexed
per types.

One implication of this extra internal structure is that
an indexed type can distinguish (just a little bit) between
equivalent expressions, depending on the efficiency (in
execution steps) of the computations. For example, take
the expressionse1 = 0 ande2 = (λx.x)0. We havee2 :1
int → int , but not e1 :1 int → int . However, neither
e2 : int → int nor e1 : int → int , since as we refine the
approximation we can detect that the expressions are not
functions.

Theorem 41 (Metric spaces)
Well founded type constructors arecontractivein the
metric-space sense of MacQueen, Plotkin, and Sethi.
Therefore ourµ operator is a construction of the fixed
point that they prove must exist.

Proof: Use the metric |τ1 − τ2| = 2−nearness(τ1,τ2),
where the nearness(τ1,τ2) is the least k such that
approx(k,τ1) 6= approx(k,τ2). �

Still, they are proving the existence of fixed points di-
rectly on the “stripped” types, which we do not do. And,
of course, they model only membership, whereas our ap-
proach easily generalizes to model equivalence.

Recursion-theoretic semantics. Mitchell and
Viswanathan’s per semantics [MV96] is powerful
and expressive, but it relies on many “elementary” results
of recursion theory. It turns out in practice [AF01],
that building a machine-checked proof of these results
for a real machine architecture would require a very
large implementation effort, and for this reason the
recursion-theoretic approach is not attractive.

Compactness of evaluation. The notion ofminimal in-
variance— as defined by Pitts [Pit96] and adapted by

15

Birkedal and Harper to an operational setting [BH97] —
provides a relational interpretation of general recursive
types. Like other earlier approaches, these approaches
treat terms extensionally and hence appear to be funda-
mentally different from our approach. We have not in-
vestigated generalizing our approach to arbitrary logical
relations, but the ease with which our indexed-sets proof
generalized to indexed-pers is a hint that such generaliza-
tions should be possible.

8 Conclusion

We have presented a direct construction of general recur-
sive types that is well suited for “implementation” as a
machine-checked proof in a von Neumann setting. No
significant libraries of mathematics are required as sup-
port. In contrast, previous per models of computable
functions use large bodies of computability theory, such
as simulation theorems; metric-space models use the the-
ory of complete metric spaces (Cauchy sequences) and
the Banach fixed point theorem. We have “implemented”
a machine-checked proof of Theorems 35 and 36 in about
2000 lines of Twelf [PS99] code, using the logic de-
scribed by Appel and Felty [AF00b].

Actually, the theory of complete metric spaces is not so
hard to implement in higher-order logic; the first author
(working with Amy Felty) built most of an implementa-
tion, in preparation for a machine-checked model of types
based on MacQueen, Plotkin, Sethi. But the problem was
in finding an appropriate metric for computation on a von
Neumann machine. This paper demonstrates the metric,
but in doing so it avoids the need for metric spaces at all.

Our model has a unary (type membership only) variant
and a per (partial equivalence relation) variant, so it is
expressive enough for a wide variety of applications.

The key feature of our model is that it reasons in-
ductively about the number of future computation steps.
Thus it is well suited to modelling type systems that use
continuations, which are abstractions of future computa-
tions.

References
[AF00a] Andrew W. Appel and Edward W. Felten. Models

for security policies in proof-carrying code. Oc-
tober 2000.

[AF00b] Andrew W. Appel and Amy P. Felty. A seman-
tic model of types and machine instructions for
proof-carrying code. InPOPL ’00: The 27th ACM

SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 243–253. ACM
Press, January 2000.

[AF01] Andrew W. Appel and Amy P. Felty. Recursion-
theoretic semantics for proof-carrying code. (in
preparation), 2001.

[BH97] Lars Birkedal and Robert Harper. Relational in-
terpretations of recursive types in an operational
setting. InTheoretical Aspects of Computer Soft-
ware, 1997.

[CLN+00] Christopher Colby, Peter Lee, George C. Nec-
ula, Fred Blau, Ken Cline, and Mark Plesko.
A certifying compiler for Java. InProceedings
of the 2000 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation
(PLDI ’00). ACM Press, June 2000.

[HHP93] Robert Harper, Furio Honsell, and Gordon
Plotkin. A framework for defining logics.Journal
of the ACM, 40(1):143–184, January 1993.

[MA00] Neophytos G. Michael and Andrew W. Appel.
Machine instruction syntax and semantics in
higher-order logic. In17th International Confer-
ence on Automated Deduction, June 2000.

[MCGW98] Greg Morrisett, Karl Crary, Neal Glew, and David
Walker. Stack-based typed assembly language. In
ACM Workshop on Types in Compilation, Kyoto,
Japan, March 1998.

[Mil77] Robin Milner. Fully abstract models of typedλ-
calculi. Theoretical Computer Science, 4:1–22,
1977.

[MPS86] David MacQueen, Gordon Plotkin, and Ravi
Sethi. An ideal model for recursive polymophic
types.Information and Computation, 71(1/2):95–
130, 1986.

[MV96] John C. Mitchell and Ramesh Viswanathan. Ef-
fective models of polymorphism, subtyping and
recursion. In 23rd International Colloquium
on Automata, Languages, and Programming.
Springer-Verlag, 1996.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and
Neal Glew. From System F to typed assem-
bly language. InPOPL ’98: 25th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 85–97. ACM
Press, January 1998.

[Nec97] George Necula. Proof-carrying code. In24th
ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 106–119,
New York, January 1997. ACM Press.

16

[Pfe94] Frank Pfenning. Elf: A meta-language for deduc-
tive systems. In A. Bundy, editor,Proceedings of
the 12th International Conference on Automated
Deduction, pages 811–815, Nancy, France, June
1994. Springer-Verlag LNAI 814.

[Pit96] Andrew M. Pitts. Relational properties of do-
mains.Information and Computation, 127(2):66–
90, 1996.

[PS99] Frank Pfenning and Carsten Sch¨urmann. System
description: Twelf — a meta-logical framework
for deductive systems. InThe 16th International
Conference on Automated Deduction. Springer-
Verlag, July 1999.

17

