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Abstract

This paper presents a model of the TCP Vegas congestion control mechanism as a distributed
optimization algorithm. Doing so has three important benefits. First, it helps us gain a funda-
mental understanding of why TCP Vegas works, and an appreciation of its limitations. Second,
it allows us to prove that Vegas stabilizes at a weighted proportionally fair allocation of network
capacity when there is sufficient buffering in the network. Third, it suggests how we might use
explicit feedback to allow each Vegas source to determine the optimal sending rate when there
is insufficient buffering in the network. In addition to presenting the model and exploring these
three issues, the paper presents simulation results that validate our conclusions.

1 Introduction

TCP Vegas was introduced in 1994 as an alternative source-based congestion control mechanism for the
Internet [12]. In contrast to the TCP Reno algorithm, which induces congestion to learn the available
network capacity, a Vegas source anticipates the onset of congestion by monitoring the difference between
the rate it is expecting to see and the rate it is actually realizing. Vegas’ strategy is to adjust the source’s
sending rate (congestion window) in an attempt to keep a small number of packets buffered in the routers
along the transmission path.

Although experimental results presented in [7] and [2] show that TCP Vegas achieves better throughput
and fewer losses than TCP Reno under many scenarios, at least two concerns remained: is Vegas stable, and
if so, does it stabilize to a fair distribution of resources; and does Vegas result in persistent congestion. In
short, Vegas has lacked a theoretical explanation of why it works.

This paper addresses this shortcoming by presenting a model of Vegas as a distributed optimization
algorithm. Specifically, we show that the global objective of Vegas is to maximize the aggregate utility of all
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sources (subject to the capacity constraints of the network’s resources), and that the sources solve the dual
of this maximization problem by implementing an approximate gradient projection algorithm. This model
implies that Vegas stabilizes at a weighted proportionally fair allocation of network capacity when there is
sufficient buffering in the network, that is, when the network has enough buffers to accommodate the extra
packet(s) the algorithm strives to keep in the network. If sufficient buffers are not available, equilibrium
cannot be reached, and Vegas reverts to Reno.

Our analysis shows that Vegas does have the potential to induce persistent queues (up to the point that
Reno-like behavior kicks in), but that by augmenting Vegas with explicit feedback—for example, in the
form of the recently proposed ECN bit [25]—it is possible to avoid this problem. Explicit feedback serves
to decouple the buffer process from the feedback required by each Vegas source to determine its optimal
sending rate.

The paper concludes by presenting simulation results that both serve to validate the model and to illus-
trate the impact of this explicit feedback mechanism. Models of Vegas are also analyzed in [6, 22] using a
different framework.

2 A Model of Vegas

This section presents a model of Vegas and shows that 1) the objective of Vegas is to maximize aggregate
source utility subject to capacity constraints of network resources, and 2) the Vegas algorithm is a dual
method to solve the maximization problem. The primary goal of this effort is to better understand Vegas’
stability, loss and fairness properties, which we discuss in Section 3.

2.1 Preliminaries

A network of routers is modeled by a sebf unidirectional links of capacity;, [ € L. It is shared by a set
S of sources. A sourcetraverses a subsét(s) C L of links to the destination, and attains a utility(x5)
when it transmits at rate, (e.g., in packets per second). L&tbe the round trip propagation delay for
sources. For each linkl let S(1) = {s € S|l € L(s)} be the set of sources that uses liniBy definition

l € L(s)ifand only if s € S(1).

According to one interpretation of Vegas, a source monitors the difference between its expected rate and
its actual rate, and increments or decrements its window by one in the next round trip time according to
whether the difference is less or greater than a parametérif the difference is zero, the window size is
unchanged. We model this by a synchronous discrete time system, (zgtbe the window of source at
time ¢ and letD;(¢) be the associated round trip time (propagation plus queueing delay). Not@,fftat
depends not only on sourees own window w;(t) but also on those of all other sources, possibly even
those sources that do not share a link wittWe model the change in window size by one packet per round
trip time in actual implementation, with a changelgfD,(¢) per discrete time. Thus, soureeadjusts its
window according to:

1The actual algorithm in [7] tries to keep this difference betwaerand 3,, with o, < 3, to reduce oscillation. Our model
assumesy; = ;. Itis simpler and captures the essence of Vegas.



Vegas Algorithm:

wl) o I B <o
w(t+l) =y w®-gin - EG > ®
ws(t) else

In the original paper [7lws(t)/ds is referred to as thExpectedate,ws(t)/ D as theActualrate, and the
differencew;(t)/ds—ws(t)/Ds(t) asDIFF. The actual implementation estimates the round trip propagation
delayd, by the minimum round trip time observed so far. The unitgfs, say, KB/s. We will explain the
significance ofxs on fairness in Section 3.

When the algorithm converges the equilibrium windaws= (w?, s € S) and the associated equilib-
rium round trip timesD* = (D%, s € S) satisfy

* *

Wy Wy

d_S_D_;‘:as foralls € S (2)

Let z4(t) := Ws(t)/Ds(t) denote the bandwidth realized by sourcat timet. The window size
ws(t) minus the bandwidth—delay produtiz(¢) equals the total backlog buffered in the pathsoHence,
multiplying the conditional in (1) by, we see that a source increments or decrements its window according
to whether the total backlog(t) — dsxs(t) is smaller or larger thand,. This is a second interpretation
of Vegas.

2.2 Objective of Vegas

We now show that Vegas sources have
Us(xs) = ogdglogx (3

as their utility functions. Moreover the objective of Vegas is to choose sourcerratds , s € S) so as to

max ZS:US(J:S) = Zs:asds log s (4)
subjectto Y w, < ¢, €L (5)

seS(1)

Constraint (5) says that the aggregate source rate at anydiogs not exceed the capacity. We will refer to
(4-5) as the primal problem. A rate vectothat satisfies the constraints is calfedsibleand a feasible:
that maximizes (4) is calledrimal optimal(or socially optimalor simply optimal). A unique optimal rate
vector exists since the objective function is strictly concave, and hence continuous, and the feasible solution
set is compact.

The following theorem clarifies the objective of Vegas. It was first proved in [23].

Theorem 1 Let w* = (w},s € S) be the equilibrium windows of Vegas aef = (D},s € S) the
associated equilibrium round trip times. Then the equilibrium source rates- (z%,s € S) defined by
xk = wk /DY is the unique optimal solution of (4-5).
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Proof. By the Karush—Kuhn—-Tucker theorem a feasible source rate vettor 0 is optimal if and only if
there exists a vectgr* = (p;,l € L) > 0 such that, for alk,

* Oésds *
Ulal)=—>= > 1 (6)
s leL(s)

and, for alll, p; = 0 if the aggregate source rate at lihks strictly less than the capacily . S() xs < ¢
(complementary slackness). We now prove that the equilibrium backlog at the links provide such a vector
p*, and hence the equilibrium rates are optimal.

Let b; be the equilibrium backlog at link The fraction oft; that belongs to sourceunder first—in—
first—out service discipline i%b;‘ where¢; is the link capacity. Hence soureemaintains a backlog of
ZIEL(s) %b;‘ in its path in equilibrium. Since the window size equals the bandwidth—delay product plus the
total backlog in the path, we have

* % _ § : l’_: *
Wg xsds - a bl (7)
leL(s)

Thus, from (2) we have in equilibrium (recalling = w}/D?)

« %
» *

Ag —

= d—s(ws—%ds) A > C_lbl
leL(s)

e
S

where the last equality follows from (7). This yields (6) upon identifying
b

a

o=
and rearranging terms. Clearly; must be feasible since otherwise the backlog will grow without bound,
contradicting (7). Since the equilibrium backlag= 0 at a link! if the aggregate source rate is strictly less
than the capacity, the complementary slackness condition is also satisfied. [ |

2.3 Dual problem

Solving the primal problem (4-5) directly is impractical over a large network since it requires coordination
among all sources due to coupling through shared links. However, a distributed solution can be obtained
by appealing to duality theory, a standard technique in mathematical programming. In this subsection, we
briefly present the dual problem of (4-5), interpret it in the context of congestion control, and derive a scaled
gradient projection algorithm to solve it. A more detailed description can be found in [20] for general utility
functions. In the next subsection, we interpret the Vegas algorithm (1) as a smoothed version of the scaled
gradient projection algorithm.

Associated with each linkis a dual variablg;. The dual problem of (4-5) is to choose the dual vector
p=(p;,l € L) soasto [5, 20]:

p=>0

min  D(p) = Y Bip*)+ > pa (8)
s l



Bs(p®) = g}n%}é Us(ws) — wsp® 9)
P = > (10)
leL(s)

If we interpret the dual variablg; as the price per unit bandwidth at lirkthenp® in (10) is the price
per unit bandwidth in the path ¢f Hencez,p® in (9) represents the bandwidth cost to souwraghen it
transmits at rate:s, Us(x5) — zsp° is the net benefit of transmitting at ratg, and B;(p®) represents the
maximum benefits can achieve at the given (scalar) prige A vectorp > 0 that minimizes the dual
problem (8) is callediual optimal Given a vector price = (p;,l € L) or a scalar price® = ZzeL(s) Dl
we will abuse notation and denote the unique maximizer in (9)Jdy) or by z5(p®). A feasible rate vector
z(p) = (zs(p),s € S) is calledindividually optimal(with respect tgp) when each individual rate,(p)
minimizes (9). By duality theory, there exists a dual optimal ppte> 0 such that these individually
optimal ratesc™ = (x5(p*), s € S) are also socially optimal, that is, solve (4-5) as well.

In the rest of the paper we will refer g as link price,p® as path price (of source), and the vector
p = (pi,1 € L) simply as price. In case of Vegas with its particular utility function, the link ppiderns out
to be thequeueingdelay at linki; see Section 3. Anptimalp* is a shadow price (Lagrange multiplier) with
the interpretation thai; is the marginal increment in aggregate utility, U,(z) for a marginal increment
in link I's capacityc;.

A scaled gradient projection algorithm to solve the dual problem takes the following form [20]. Let
z4(p(t)) denote the unique source rate that maximizes (9-10) witbplaced byp(t), andz!(p(t)) =
>_sesq) Ts(p(t)) denote the aggregate source rate atlirikhen linkl computes, (¢) according to:

pt+1) = [pt) +40(= (p(t) — )] (11)

wherey > 0 and; > 0 are constants. Hete (p(t)) represents the demand for bandwidth at lirdnd ¢
represents the supply. The price is adjusted according to the law of demand and supply: if demand exceeds
the supply, raise the price; otherwise reduce it.

Let p*(t) = > jer(s) Pi(t) denote the path price at time Then sources sets its rate to the unique
maximizer of (9—10) given by (setting the derivativeldf(xs) — zsp®(t) to zero):

gdy
p(t)
This is referred to as the demand function in economics: the higher the pathppfi¢gi.e., the more
congested the path), the lower the source rate.

The following result says that the scaled gradient projection algorithm defined by (11-12) converges
to yield the unique optimal source rates. It is a minor modification of Theorem 1 of [20]; indeed the
convergence proof in [3] for a (different) scaled gradient projection algorithm applies directly here.

(12)

Theorem 2 Provided that the step-sizgis sufficiently small, then starting from any initial rate§0) > 0
and pricesp(0) > 0, every limit point(z*, p*) of the sequenceéx(t), p(t)) generated by algorithm (11—12)
is primal—dual optimal.



2.4 \egas Algorithm

We now interpret the Vegas algorithm as approximately carrying out the scaled gradient projection algorithm
(11-12).

The algorithm takes the familiar form of adaptive congestion control: the link algorithm (11) computes a
congestion measugg(t), and the source algorithm (12) adapts the transmission rate to congestion feedback
p*(t). In order to execute this algorithm, Vegas, a source—based mechanism, must address two issues: how
to compute the link prices and how to feed back the path prices to individual sources for them to adjust their
rates. We will see that, first, the price computation (11) is performed by the buffer processlatriiddéed,
link price can be taken as the queueing delpy(t) = b;(t)/c;, whereb;(t) denotes the buffer occupancy at
link [ at timet. Second, the path prices draplicitly fed back to sources through round trip times. Given
the path price®(t), sources carries out amoothedersion of (12).

Specifically, suppose the input rate at linkom sources is z,(t) at timet.? Then the aggregate input
rate at linkl is 2'(t) = >°, . zs(t), and the buffer occupandy(t) at link [ evolves according to:

: +
bt +1) = [bl(t) +al(t) — cl}
Dividing both sides by; we have
bt +1 b(t) 1 *
D [0 L) o) (13)
] ] C|

Identifying p;(t) = b;(t)/c;, we see that (13) is the same as (11) with stepsize 1 and scaling factor
0; = 1/c;, except that the source rateg(t) in z'(t) are updated slightly differently from (12).
Recall from (1) that the Vegas algorithm updates the windq) based on whether

ws(t) —xs(t)ds < asds  OF  wy(t) — xs(t)ds > agds (14)

As for (7) this quantity is related to the backlog, and hence the prices, in the path:

we(t) —zs(t)ds = wo(t) Y ) _ zo(t) Y mt) = ws(t) p(t) (15)

@i
leL(s) leL(s)
Thus, the conditional in (14) becomes (cf. (12)):

agdg asds
P*(t) P*(t)
Hence, a Vegas source compares the current source Jf@bewith the target ratev,d,/p*(t). The window
is incremented or decremented byD;(¢) in the next period according as the current source xate) is
smaller or greater than the target ratels /p°(t). In contrast, the algorithm (12) sets the rate directly to the
target rate.

The sufficient condition in Theorem 2 requires that the stepsize0 be sufficiently small to guarantee
convergence. The original Vegas algorithm however assumes that; see (13). We now describe a way

(16)

or xzs(t) >

zs(t) <

2This is an approximation which holds in equilibrium when buffer stabilizes; see [18] for a more accurate model of the buffer
process.



to reintroducey into the Vegas algorithm which can then be adjusted to ensure convergence. Multiplying
both sides of (13) by > 0 and identifyingp;(t) = blc—(f) we obtain
1
pt+1) = [p(t)+ Vc—l(ﬂﬁl(l?(t)) — o)t
that is, by usingveightedjqueueing delays as prices, they are updated with a step#izt is not necessarily
one. Then (15) is modified to

V(ws(t) - xs(t)ds) = xs(t) Z Y = xs(t) ps(t) 17)
leL(s)
Since the modification should not alter the utility functions nor the equilibrium ratgs) should still be
adjusted according to (16) so that, in equilibriupi; = «a.ds/x%. This together with (17) modifies the
Vegas algorithm from (14) to:

we(t) — zs()ds < “2dy or  wy(t) — ws()ds > —2d,
Y Y

This amounts to using @, that is1/~ times larger, i.e., use a unit of 10KBps (say) instead of KBps/fot
Note thaty (or unit of ;) should be the same at all sources.

Smaller~ ensures convergence of source rates, albeit slower, but it leads to a larger backlog since
bi(t) = ¢pi(t)/v. This dilemma can be overcome by introducing marking to decouple the buffer process
from price computation; see Section 5.

3 Delay, Fairness and Loss

3.1 Delay

The previous section developed two equivalent interpretations of the Vegas algorithm. The first is that a
Vegas source adjusts its rate so as to maintain its actual rate to be betwapd 5, KB/s lower than its
expected rate, where; (typically 1/ds) and 3, (typically 3/ds) are parameters of the Vegas algorithm.
The expected rate is the maximum possible for the current window size, realized if and only if there is no
gueueing in the path. The rationale is that a rate that is too close to the maximum underutilizes the network,
and one that is too far indicates congestion. The second interpretation is that a Vlegas source adjusts its rate
S0 as to maintain betweend; (typically 1) andgsd; (typically 3) number of packets buffered in its path,
S0 as to take advantage of extra capacity when it becomes available.

The optimization model suggests a third interpretation. The dynamics of the buffer processiat link
implies the relation (comparing (11) and (13)):

n(t) = %lt)

It says that the link price; () is just the queueing delay at linkfaced by a packet arrival at timte The
path pricep®(t) = ZleL(s) pi(t) is thus theend-to—endjueueing delay (without propagation delay). It is

3Using a smaller link capacity, say, Mbps instead of 10Mbps, has the same effect.



the congestion signal a source needs to adjust its rate, and the source computes it by taking the difference
between the round trip time and the (estimated) propagation delay. Then (12) implies that a Vegas source
sets its (target) rate to be proportional to the ratio of propagation to queueing delay, the proportionality
constant being between, andj3;. Hence the larger the queueing delay, the more severe the congestion and
the lower the rate.

It also follows from (12) that in equilibrium the bandwidtiteueingdelay product of a source is equal
to the extra packets,d; buffered in its path:

*, kS

rep™ = agds (18)

This is just Little’s Law in queueing theory when propagation delay is ignored. As the number of sources
increases, individual source rates necessarily decrease. The relation (18) then implies that queueing delay
p®(t) must increase with the number of sources. This is just a restatement that every source attempts to keep
some extra packets buffered in its path.

3.2 Fairness

Although we did not recognize it at the time, there are two equally valid implementations of Vegas, each
springing from a different interpretation of an ambiguity in the algorithm. The first, which corresponds to
the actual code, defines thg and§,; parameters in terms of bytes (packets) jpemd trip time while the
second, which corresponds to the prose in [7], defineand 3, in terms of bytes (or packets) psecond
These two implementations have an obvious impact on fairness: the second favors sources with a large
propagation delay,

In terms of our model, Theorem 1 implies that the equilibrium rateareweighted proportionally fair
[13, 15]: for any other feasible rate vectorwe have

Zasds Ts ~ T < 0

x*

The first implementation has; = «/d, inversely proportional to the source’s propagation delay, and the
second has identical, = « for all sources.

These two implementations lead to different fairness in equilibrium. VWhén = « (in unit of packets)
are the same for all sources, the utility functidiig(zs) = asdslogzs = alogz, are identical for all
sources, and the equilibrium rates ameportionally fair and are independent pfopagationdelays. We
call this implementatiomproportionally fair (PF).

When a; = « are identical, sources have different utility functions, and the equilibrium rates are
weighted proportional fair, with weights proportional to sources’ propagation delays. (18) implies that if
two sources: and s face the same path price, e.g., in a network with a single congested link, then their
equilibrium rates are proportional to their propagation delays:

d, ds
In a network with multiple congested links, weighting the utility by propagation delay has a balancing effect
to the discrimination against long connections, if the propagation delay is proportional to the number of
congested links in a source’s path. We call the second implementagighted proportionally fai{WPF).
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This constrasts with TCP Reno which attempts to equalinelow[14, 16, 19]:
x,Df = ziD}

and hence a source with twice the (round trip) delay receives half as much bandwidth. This discrimination
against connections with high propagation delay is well known in the literature, e.g., [8, 10, 17, 21, 6].

3.3 Loss

Provided that buffers at links are large enough to accommodate the equilibrium backfog- p;c;, a

Vegas source will not suffer any loss in equilibrium since the aggregate sourcgg@gql) x% IS no more

than the link capacity; in the network (feasibility condition (5)). This is in contrast to TCP Reno which
constantly probes the network for spare capacity by linearly increasing its window until packets are lost,
upon which the window is multiplicatively decreased. Thus, by carefully extracting congestion information
from observed round trip time and intelligently reacting to it, Vegas avoids the perpetual cycle of sinking
into and recovering from congestion. This is confirmed by the experimental results of [7] and [2].

As observed in [7] and [6], if the buffers are not sufficiently large, equilibrium cannot be reached, loss
cannot be avoided, and Vegas reverts to Reno. This is because, in attempting to reach equilibrium, Vegas
sources all attempt to placed; number of packets in their paths, overflowing the buffers in the network.

This plausibly explains an intriguing observation in [11] where a detailed set of experiments are reported
that assess the relative contribution of various mechanisms in Vegas to its performance improvement over
Reno. The study observes that the loss recovery mechanism, not the congestion avoidance mechanism, of
Vegas makes the greatest contribution. This is exactly what should be expected if the buffers are so small
as to prevent Vegas from reaching an equilibrium. In [11], the router buffer size is 10 segments; with
background traffic, it can be easily filled up, leaving little space for Vegas'’ backlog. The effect of buffer size
on the throughput and retransmission of Vegas is illustrated through simulations in Section 6.4 below.

4 Persistent Congestion

This section examines the phenomenon of persistent congestion, as a consequence of both Vegas’ exploita-
tion of buffer process for price computation and of its need to estimate propagation delay. The next section
explains how this can be overcome by Random Exponential Marking (REM) [4], in the form of the recently
proposed ECN bit [9, 25].

4.1 Coupling Backlog and Price

Vegas relies on the buffer process to compute its pj¢e = b;(t)/c¢;. Theequilibrium prices depend

not on the congestion control algorithm tsdlely on the state of the network: topology, link capacities,
number of sources, and their utility functions. As the number of sources increases the equilibrium prices,
and hence the equilibrium backlog, increases (sifice: pjc;). This not only necessitates large buffers in

the network, but worse still, it leads to large feedback delay and possibly oscillation. Indeed, if every source
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keepsads = o packets buffered in the network, the equilibrium backlog willkh€ packets, linear in the
numberN of sources.

4.2 Propagation Delay Estimation

We have been assuming in our model that a source knows its round trip propagation ddiayractice
it sets this value to the minimum round trip time observed so far. Error may arise when there is route
change, or when a new connection starts [22]. First, when the route is changed to one that has a longer
propagation delay than the current route, the new propagation delay will be taken as increased round trip
time, an indication of congestion. The source then reduces its window, while it should have increased it.
Second, when a source starts, its observed round trip time includes queueing delay due to packets in its
path from existing sources. It hence overestimates its propagation dietayd attempts to put more than
asds packets in its path, leading to persistent congestivve now look at the effect of estimation error on
stability and fairness.

Suppose each soureaises an estimat@(t) := (1 + €5)ds(t) of its round trip propagation delay; in
the Vegas algorithm (1), wheeg is the percentage error that can be different for different sources. Naturally
we assume-1 < e, < D,(t)/d,(t) — 1 for all ¢ so that the estimate satisfies< d(t) < D,(t). The next
result says that the estimation error effectively changes the utility function: seapgeears to have a utility

(cf. (3)

Us(zs) = (14 €s)asdslogas + €sdsxs (29)
and the objective of the Vegas sources appears to
I;lg(}]( ; Us(zs) = ;(1 + €5)asds log xs + esdszs (20)
subjectto Y w, < ¢, €L (21)
seS(1)

Theorem 3 Let w* = (w},s € S) be the equilibrium windows of Vegas afet = (D},s € S) the
associated equilibrium round trip times. Then the equilibrium source rates- (z%,s € S) defined by
x}¥ = wk /DY is the unique optimal solution of (20-21).

Proof. The argument follows the proof of Theorem 1, except that (6) is replaced by

P\ (1 + es)asds _ *
Udl(zy) = — +esds = E D] (22)
s leL(s)
To show that the equilibrium backlog at the links provide such a vectoand hence the equilibrium rates
are optimal, substitute the estimated propagation dégay (1 + €5)d} for the true valuel; in (2) to get

* *
Wy Wy

o = _—
s (1+e€5)ds D

“A remedy is suggested for the first problem in [22] where a source keeps a record of the round trip times ofltheNast
packets. When their minimum is much larger than the current estimate of propagation delay, this is taken as an indication of route
change, and the estimate is set to the minimum round trip time of th&/lasickets. However, persistent congestion may interfere
with this scheme. The use of Random Exponential Marking (REM) eliminates persistent congestion and facilitates the proposed
modification.

10



Usingw; — z3ds = 25 > e s b] /a1 We thus have

(1+es)asds = (wi —dsxhy) — esdszy = Z P esds |
leL(s)
This yields (22) upon identifying; = l;—’l and rearranging terms. As in the proof of Theorem*lmust be
feasible and the complementary slackness condition must be satisfied. Hence the proof is complie.

The significance of Theorem 3 is twofold. First, it implies that incorrect propagation delay does not
upset the stability of Vegas algorithm— the rates simply converge to a different equilibrium that optimizes
(20-21). Second, it allows us to compute the new equilibrium rates, and hence assess the fairness, when we
know the relative error in propagation delay estimation. It provides a qualitative assessment of the effect of
estimation error when such knowledge is not available.

For example, suppose sourgeands see the same path price. If there is zero estimation error then their
equilibrium rates are proportional to their weights:

apdr  ads
* *
:L"I" xS

With error, their rates are related by

1 T ’I”d’f‘ 1 S sds
Atelondy g - Qtedasds ) (23)
xT

*
S

Hence, a large positive error generally leads to a higher equilibrium rate to the detriment of other sources.
For PF implementation where,.d, = a,d,, if sources have identical absolute errerd, = eds, then
source rates are proportional tor €.

Although Vegas can be stable in the presence of error in propagation delay estimation, the error may
cause two problems. First, overestimation increases the equilibrium source rate. This pushes up prices and
hence buffer backlogs, leading to persistent congestion. Second, error distorts the utility function of the
sources, leading to an unfair network equilibrium in favor of newer sources.

4.3 Remarks

Note that we did not see persistent congestion in our original simulations of Vegas. This is most likely due to
three factors. One is that Vegas reverts to Reno-like behavior when there is insufficient buffer capacity in the
network. The second is that our simulations did not take the possibility of route changes into consideration,
but on the other hand, evidence suggests that route changes are not likely to be a problem in practice [24].
The third is that the situation of connections starting up serially is pathological. In practice, connections
continually come and go, meaning that all sources are likely to measure a baseRTT that represents the
propagation delay plus the average queuing delay.

5 Vegas with REM

As explained in the last section, excessive backlog may arise because 1) each source maintains some ex-
tra packets buffered in its path and hence backlog increases as the number of sources increases, and 2)
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overestimation of a source’s propagation delay distorts the utility, leading to larger equilibrium prices and
backlogs (as well as unfairness to older sources). Fundamentally, both are consequences of Vegas’ reliance
onqueueingdelay as a congestion measure, which makes backlog indispensible in conveying congestion to
the sources. This section demonstrates how REM (Random Exponential Marking) [4] can be used to correct
this situation.

REM is an active queue management scheme like RED [10] that feeds back congestion information
to sources by probabilistically dropping or marking packets. Unlike RED, REM attempts to match rate
and clear buffer, leading to high utilization with negligible delay or buffer overflow. With buffer cleared,
minimum round trip time would be an accurate approximation to propagation delay. Round trip times
however no longer convey price information to a source. The path price must be estimated by the source
from packet dropping or marking. We now summarize REM; see [4] for derivation, performance evaluation,
and parameter setting.

Each link! updates a link price;(t) in periodt based on thaggregateinput ratex!(¢) and the buffer
occupancyy(t) at link I:

pt+1) = [p() +Gubi(t) +2'(t) = )]t (24)

wherey > 0 is a small constant andl < p; < 1. The parametety controls the rate of convergence
and y; trades off link utilization and average backlog. Hengg) is increased when the weighted sum
of backlogb;(t) and mismatch in rate!(t) — ¢;, weighted byy;, is positive, and is reduced otherwise.
Note that the algorithm does not require per—flow information. Moreover, the price adjustment (24) leads
to small backlog & ~ 0) and high utilization £"* ~ ¢;) in equilibrium, regardless of the equilibrium price
pj. Hence high utilization is not achieved by maintaining a large backlog, but by feeding back accurate
congestion information for sources to set their rates. This is confirmed by simulation results in the next
section.

To convey prices to sources, liknarks each packet arriving in periodthat is not already marked at
an upstream link, with a probability:;(¢) that is exponentially increasing in the congestion measure:

my(t) = 1—¢ 7O (25)

where¢ > 1is a constant. Once a packet is marked, its mark is carried to the destination and then conveyed
back to the source via acknowledgement.

The exponential form is critical for multilink network, because ¢émel-to—engbrobability that a packet
of sources is marked after traversing a sk{s) of links is then

mi(t) = 1— J] @=mt) = 1-¢7" (26)
leL(s)

wherep®(t) = ZleL(S) pi(t) is the path price. The end—to—end marking probability is high wii¢t) is
large.

Sources estimates this end—to—end marking probabitity(¢) by the fraction /() of its packets
marked in period, and estimates the path prip&t) by inverting (26):

PP(t) = —logy(l —m’(t))

12



wherelog is logarithm to base. It then adjusts its rate using marginal utility (cf. (12)):

agd agd
r,(t) = —=2 = A (27)
D= 50 T Tle0-w0)
In practice a source may adjust its rate more gradually by incrementing it slightly if the current rate is
less than the target (the right hand side of (27)), and decrementing it slightly otherwise, in the spirit of the

original Vegas algorithm (1):

Vegas with REM:

wi(t) + oy i — B2 log, (1—1m3(1)) < auds
wy(t+1) = § wi(t) = ply 0 — B logy (1—1m*(t)) > aed,
wg(t) else

6 Evaluation

This section presents four sets of simulation results. The first set shows that source rate converges quickly
under Vegas to the theoretical equilibrium, thus validating our model. The second set illustrates the phe-
nomenon of persistent congestion discussed in Section 4. The third set shows that the source rates (windows)
under Vegas/REM behave similarly to those under plain Vegas, but the buffer stays low. The last set shows
that enough buffer space is necessary for Vegas to work properly.

We use thens-2 network simulator [1] configured mostly with the topology shown in Figure 1. Each
host on the left runs an FTP application that transfers a large file to its counterpart on the right. We use a
packet size of 1KB. The various simulations presented in this section use different latency and bandwidth
parameters, as described below.

Figure 1: Network Topology

6.1 Equilibrium and Fairness
6.1.1 Single Link Case

We first run five connections across the network (i.e., between Hostla and Hostlb, 2a and 2b etc.) to
understand how they compete for bandwidth. The round trip latency for the connections are 15ms, 15ms,
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Figure 2: Stability (PF): sending rate of five connections

20ms, 30ms and 40ms respectively. The shared link has a bandwidth of 48Mbps and all host—router links
have a bandwidth of 100Mbps. Routers maintain a FIFO queue with unlimited capacity.

As described in Section 3, there are two different implementations of Vegas with different fairness
properties. For proportional fairness, we agt= 2 packetgper RTTand we letws = [ in ns-2 The model
predicts that all connections receive an equal share (1200KBps) of the bottleneck link and the simulations
confirm this. This contrasts sharply with Reno which is well known to discriminate against connections
with large propagation delays. Figure 2 plots the sending rate against the predicted rates (straight lines): all
connections quickly converge to the predicted rate. Table 1 summarizes other performance whicés,
further demonstrate how well the model predicts the simulation.

Host la 2a 3a 4a 5a
M S M S M S M S M S
baseRTT (ms) 15.34 | 15.34 | 15.34 | 15.34 | 20.34 | 20.34 | 30.34 | 30.34 | 40.34 | 40.34
RTT w/ queueing (ms) 17 17.1 17 17.1 22 219 32 31.9 42 41.9
Sending rate (KB/s) 1200 | 1205 | 1200 | 1183 | 1200 | 1228 | 1200 | 1247 | 1200 | 1161
Congestion window (pkts) 20.4 | 20.5 | 204 | 20.2 | 26.4 27 384 | 399 | 504 | 498
Buffer occupancy Model Simulation
at Routerl (pkts) 10 9.8

Table 1: Stability (PF): comparison of theoretical and simulation results. M stands for Model and S stands
for Simulation. All simulation numbers are averaged at the equilibrium point.

For weighted proportional fairness, we get to 2 packetgper 10ms which means each source will

The reported baseRTT includes both the round trip latency and transmit time.
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have a different number of extra packets in the pipe and the optimal sending rate will be proportional to
the propagation delay. The results for the two (of the five) connections are shown in Figure 3, except this
time we show the congestion windows instead of the sending rates. The other performance numbers are in
Table 2, which again show that the simulations closely follow the model’s predictions.

TCP Vegas window sizes for Host2a (Weighted Proportionally Fair) TCP Vegas window sizes for Host4a (Weighted Proportionally Fair)

window size KB
window size KB
w
S

theoretical equilibrium window

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
time (second) time (second)

(a) Host2a delay = 15ms (b) Host4a delay= 30ms

Figure 3: Stability (WPF): congestion window size for two (of the five) connections

Host la 2a 3a 4a 5a
M S M S M S M S M S
baseRTT (ms) 15.34 | 15.34 | 15.34 | 15.34 | 20.34 | 20.34 | 30.34 | 30.34 | 40.34 | 40.34
RTT w/ queueing (ms) | 19.4 | 1955| 19.4 | 1958 | 244 | 244 | 344 | 343 | 444 | 443
Sending rate (KB/s) 756.3| 781 | 756.3| 774 | 1003 | 994 | 1496 | 1495 | 1990 | 1975
Congestion window (pkts) 14.7 | 15.1 | 14.7 | 149 | 245 | 246 | 515 | 51.7 | 884 | 88.6
Buffer occupancy Model Simulation
at Routerl (pkts) 24.34 24.24

Table 2: Stability (WPF): comparison of theoretical and simulation results. M-Model, S-Simulation.

Both the sending rates (Figure 2) and the congestion windows (FiguscBlate around the equilib-
rium. This is an artifact of setting; = & in our simulations, which we have assumed in the model for
simplicity. Vegas adjusts the congestion window by one packet in each round trip time. The adjustment
is large relative tax; = 3; = 2 packets, rendering the window prone to oscillation. We have repeated the
simulation using any, that is 10 times as large (corresponding to a stepsgid® times as small). This
smoothed out the curves.

6.1.2 Multi-link Case

We also simulated network topology with multiple links as shown in Figure 4. This topology is almost the
same as that used in [7], expect that to simplify computation, we set the bandwidth of the “backbone” to be
48Mbps and we now have six sources (HostXa) and six sinks (HostXb). Similar to previous simulations, an
FTP application on each “a” Host transfers a large file to its counterpart sink on the “b” Host using a packet
size of 1KB.
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Figure 4. Complex Network Topology

Host la 2a 3a 4a 5a 6a
M S M S M S M S M S M S
baseRTT (ms) 75.51 | 7551 | 80.51 | 80.51 | 15.34 | 15.34 | 60.34 | 60.34 | 20.34 | 20.34 | 100.69 | 100.69
RTT w/ queueing (ms) 76.96 76.98 81.96 | 81.98 | 15.89 | 15.89 | 61.23 | 61.22 | 20.89 | 20.9 | 102.69| 102.73
Sending rate (KB/s) 1382 1368 1382 | 1374 | 3618 | 3630 | 2236 | 2245 | 3618 | 3632 | 1000 980
Congestion window (pkts) 106.35| 106.45 | 113.27 | 113.7 | 57.5 | 58.3 | 136.93| 139 75.6 | 75.7 | 102.69 | 100.6
Buffer occupancy LA SF CH
(pkts) M S M S M S
3.32 35 5.37 5.51 3.32 3.31

Table 3: Multi-Link (PF): comparison of theoretical and simulation results. M-Model and S-Simulation.

We repeated simulations for Proportionally Fair and Weighed Proportionally Fair cases under this new
setup for 20 seconds. At the same time, we use our theory to predict the RTT (including queueing delay),
cwnd etc. of the sources and the queue size at the routers. Tables 3 and 4 summarize the results. Again, the
simulation measurements match our predictions very well.

6.2 Persistent Congestion

We next validate that Vegas leads to persistent congestion under pathological conditions. We set the round
trip latency to 10ms foall connections, the host—router links are all 1600 Mbps, and the bottleneck link
has a bandwidth of 48 Mbps. We setto 2 packets—per—-ms and we assume the routers have infinite buffer
capacity. We pick such extreme numbers so as to make the result trend more obvious.

We first hard—code the round trip propagation delay to be 10 ms for each source, thus eliminating the
error in propagation delay estimation. We then run five connections, each starting 20 seconds after the
previous connection. That is, Host 1a starts sending at time 0, 2a starts at 20s, and so on. As shown in
Figure 5(a), the buffer occupancy increases linearly in the number of sources.
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Host la 2a 3a 4a 5a 6a
M S M S M S M S M S M S
baseRTT (ms) 75.51 | 75,51 | 80.51 | 80.51 | 15.34 | 15.34 | 60.34 | 60.34 | 20.34 | 20.34 | 100.69 | 100.69
RTT w/ queueing (ms) | 85.74 | 85.77 | 91.12 | 91.13| 16.4 | 16.44| 69.5 | 69.51 | 21.78 | 21.78 | 112.35| 112.36
Sending rate (KB/s) 1463 | 1443 | 1509 | 1512 | 2819 | 2821 | 1310 | 1306 | 2775 | 2760 | 1714 1703
Congestion window (pkts) 125.47 | 125.3 | 137.5| 139 | 46.24 | 46.65| 91.04 | 91.6 | 60.44 | 60.3 192.6 193
Buffer occupancy LA SF CH
(pkts) M S M S M S
6.39 6.38 54.96 55.3 8.65 8.64

Table 4: Multi-Link (WPF): comparison of theoretical and simulation results. M-Model and S-Simulation.

Buffer Usage at Routerl (alpha 2pkts/ms) Buffer Usage at Routerl (alpha 2pkts/ms)
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Figure 5: Persistent congestion: buffer occupancy at router

Next, we take propagation delay estimation error into account by letting the Vegas sources discover
the propagation delay for themselves. As shown in Figure 5(b), buffer occupancy grows much faster than
linearly in the number of sources. We have also applied Theorem 3 to calculate the equilibrium rates, queue
size, and estimated baseRTT. The predicted and measured numbers are shown in Tables 5 and 6. They match
very well, further verifying our model.

As the Table 5 shows, distortion in utility functions not only leads to excess backlog, it also strongly
favors new sources. Without estimation error, sources should equally share the bandwidth. With error, when
all five sources are active; : 20 : x3: x4 : 05 =1:1.4:23:4.5:11.6.

6.3 Vegas + REM

Finally, we implement REM at Routerl , which updates link price every 1ms according to (24). We adapt
Vegas to adjust its rate (congestion window) based on estimated path prices, as described in Section 5.
Vegas makes use of packet marking only in its congestion avoidance phrase; its slow—start behavior stays
unchanged.

We use the same network setup as in Section 6.2. The bottleneck link also has a bandwidth of 48Mbps.
Host-router links are 1600Mbps and is 2 pkts—per—ms for WPF. In order to verify our new mechanism

®During slow—start, Vegas keeps updating the variable fraatid(t), but does not use it in window adjustment.
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Time la (KB/s) 2a (KB/s) 3a (KB/s) 4a (KB/s) 5a (KB/s) Queue (pkts)
M S M S M S M S M S M S

0—-20s | 6000 | 5980 20 | 198
20—-40s | 2000 | 2050 | 4000 | 3920 60 59
40-60s | 940 | 960 | 1490 | 1460 | 3570 | 3540 127 127.3
60—-80s | 500 | 510 | 730 | 724 | 1350 | 1340 | 3390 | 3380 238 | 2375

80—-100s| 290 | 290 | 400 | 404 | 670 | 676 | 1300 | 1298 | 3340 | 3278 | 416 | 416.3

Table 5: Equilibrium rates and queue lengths with propagation delay error. M-Model, S-Simulation

baseRTT (ms)| Hostla| Host2a | Host3a | Host4a | Host5a
no error 10.18 | 10.18 | 10.18 | 10.18 | 10.18
w/ error (S) 10.18 | 13.36 | 20.17 31.5 49.86
w/ error (M) 10.18 | 13.51 | 20.18 31.2 49.80

Table 6: Error in propagation delay estimation under persistent congestion

in different situations, this time we let sources (Host1-5a) have a round trip latency of 10ms, 10ms, 20ms,
10ms, 30ms respectively. REM parameters are:1.1,; = 0.5, = 0.005.

We start 5 connections with an inter—start interval of 20s in order to test our claim that REM reduces
the estimation error in Vegas’ propagation delay. Figure 6 plots the congestion window size of the three
connections and buffer occupancy at Routerl. As expected, each of the five connections converges to its
appropriate bandwidth share. When the link is not congested, source rate oscillates more severely, as seen
from Hostla during time O - 20s. This is a consequence of the log utility function; see [4]. As more
sources become active (40 - 100s), oscillation becomes smaller and convergence faster. REM eliminates
the superlinear growth in queue length of Figure 5(b), as shown in Table 7, while maintaining high link
utilization (90% to 96%).

Host la 2a 3a 4a ba
M S M S M S M S M S
baseRTT (ms)| 10.18 | 10.18 | 10.18 | 10.18 | 20.18 | 20.18 | 10.18 | 10.18 | 30.18 | 30.19

Table 7: Comparison of baseRTT in Vegas+REM. M — Model, S — Simulation

6.4 Effect of buffer capacity

Our model and all previous simulations assume an “infinite” buffer capacity. The next simulation studies the
effect of buffer capacity on the performance of Vegas and Reno. It confirms our discussion in Section 3.3
and offers a plausible explanation for the intriguing observation that the congestion avoidance mechanism
of Vegas contributes little to its throughput and retransmission improvement over Reno.

In [11], TCP Vegas is decomposed into several individual mechanisms and the effect of each on per-
formance is assessed by taking the approachjffactorial design with replications. This work deploys
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Vegas+REM: Window sizes for Hostla (Weighted Proportionally Fair) Vegas+REM: Window sizes for Host2a (Weighted Proportionally Fair) Vegas+REM: Window sizes for Host3a (Weighted Proportionally Fair)
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Figure 6: Stability of Vegas+REM. Link utilization: 90%(0-20s), 96%(20-40s), 93%(40-60s), 91%(60-80s),
90%(80-100s)

a very useful methodology and gives us some insights into the relative importance of different algorithms
in Vegas. However, the final conclusion that Vegas’ more aggressive recovery mechanism has the largest
effect on performance, while its congestion avoidance mechanism contributes little, could be limited by the
fact that in that setup, the bottleneck router only has a 10 packet queue, which could be easily filled up by
background traffic. As a result, without enough buffer for its backlog, Vegas reverts to Reno and the changes
to its recovery mechanism then stand out as the largest contributor to performance. If buffer space is enough,
Vegas will maintain a steady sending rate withanyretransmission. To validate our claim, we simulate the
same topology as in [11], which is similar to Figure 1, but the bottleneck link has a capacity of 200 KB/sec
and a latency of 50ms, and host-router connections are 10Mbps Ethernet. To isolate the effect of buffer size
on the behavior of congestion avoidance mechanism, we omit the background traffic in our simulations and
only start three persistent FTP transfers from Hostla to Hostlb. We choose to use such long transfers to
minimize the effect of other mechanisms such as slow-start on the performance and our measurements are
based on the first 50 seconds of the transfer. Wexset 1 and3; = 3 pkts-per-round-trip respectively

for Vegas. Figure 7 shows the average throughput, retransmission and retransmission during congestion
avoidance of the three flows as a function of buffer size at Routerl. These plots confirms that Vegas has a
steady send rate and no retransmissions as long as the buffer sizes exceeds a threshold. The threshold is a bit
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Figure 7. Effect of buffer capacity on performance. All numbers are averaged on three long lasting flows
over a 50 second period. For Vegas= 1 § = 3 (packet per RTT)

larger than the total Vegas’ backlog (3—9 packets in this case) because of queue fluctuations during transient.
In contrast, increasing the buffer size continuously helps the performance of Reno though retransmission
remains significant even at large buffer size.

This simulation illustrates that TCP Vegas’ congestion avoidance mechanism will only get its full benefit
when the network has enough buffer space to hold Vegas’ backlog. In that case, Vegas will have a stable
send rate and no retransmission; and there’s still large performance advantage over Reno, although not as
pronouncing, which can mainly be ascribed to Vegas’ congestion avoidance mechanism. When buffer space
is small, Vegastwndlooks like Reno’s and that's why Vegas’ more aggressive recovery mechanism takes
most of the performance credit. We plot Vegas and Retwisdfor different buffer sizes (to save space, not
listed here), and find out when buffer capacity is below the threshold, during congestion avoidance, Vegas
behaves much like Reno; but when buffer size exceeds the threshold, \éegakoscillates around the
optimal value.

7 Conclusions

We have shown that TCP Vegas can be regarded as a distributed optimization algorithm to maximize ag-
gregate source utility over their transmission rates. The optimization model has four implications. First
it implies that Vegas measures the congestion in a pathnol-to—end queueingelay. A source extracts

this information from round trip time measurement and uses it to optimally set its rate. The equilibrium is
characterized by Little’s Law in queueing theory. Second, it implies that the equilibrium rates are weighted
proportionally fair. Third, it clarifies the mechanism, and consequence, of potential persistent congestion
due to error in the estimation of propagation delay. Finally, it suggests a way to eliminate persistent con-
gestion using REM that keeps buffer low while matching rate. We have presented simulation results that
validate our conclusions.
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