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Abstract

This paper presents a model of the TCP Vegas congestion control mechanism as a distributed
optimization algorithm. Doing so has three important benefits. First, it helps us gain a funda-
mental understanding of why TCP Vegas works, and an appreciation of its limitations. Second,
it allows us to prove that Vegas stabilizes at a weighted proportionally fair allocation of network
capacity when there is sufficient buffering in the network. Third, it suggests how we might use
explicit feedback to allow each Vegas source to determine the optimal sending rate when there
is insufficient buffering in the network. In addition to presenting the model and exploring these
three issues, the paper presents simulation results that validate our conclusions.

1 Introduction

TCP Vegas was introduced in 1994 as an alternative source-based congestion control mechanism for the

Internet [12]. In contrast to the TCP Reno algorithm, which induces congestion to learn the available

network capacity, a Vegas source anticipates the onset of congestion by monitoring the difference between

the rate it is expecting to see and the rate it is actually realizing. Vegas’ strategy is to adjust the source’s

sending rate (congestion window) in an attempt to keep a small number of packets buffered in the routers

along the transmission path.

Although experimental results presented in [7] and [2] show that TCP Vegas achieves better throughput

and fewer losses than TCP Reno under many scenarios, at least two concerns remained: is Vegas stable, and

if so, does it stabilize to a fair distribution of resources; and does Vegas result in persistent congestion. In

short, Vegas has lacked a theoretical explanation of why it works.

This paper addresses this shortcoming by presenting a model of Vegas as a distributed optimization

algorithm. Specifically, we show that the global objective of Vegas is to maximize the aggregate utility of all

∗The first author acknowledges the support of the Australian Research Council through grants S499705, A49930405 and
S4005343, and the second author acknowledges the support of NSF through Grant ANI-9906704.
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sources (subject to the capacity constraints of the network’s resources), and that the sources solve the dual

of this maximization problem by implementing an approximate gradient projection algorithm. This model

implies that Vegas stabilizes at a weighted proportionally fair allocation of network capacity when there is

sufficient buffering in the network, that is, when the network has enough buffers to accommodate the extra

packet(s) the algorithm strives to keep in the network. If sufficient buffers are not available, equilibrium

cannot be reached, and Vegas reverts to Reno.

Our analysis shows that Vegas does have the potential to induce persistent queues (up to the point that

Reno-like behavior kicks in), but that by augmenting Vegas with explicit feedback—for example, in the

form of the recently proposed ECN bit [25]—it is possible to avoid this problem. Explicit feedback serves

to decouple the buffer process from the feedback required by each Vegas source to determine its optimal

sending rate.

The paper concludes by presenting simulation results that both serve to validate the model and to illus-

trate the impact of this explicit feedback mechanism. Models of Vegas are also analyzed in [6, 22] using a

different framework.

2 A Model of Vegas

This section presents a model of Vegas and shows that 1) the objective of Vegas is to maximize aggregate

source utility subject to capacity constraints of network resources, and 2) the Vegas algorithm is a dual

method to solve the maximization problem. The primary goal of this effort is to better understand Vegas’

stability, loss and fairness properties, which we discuss in Section 3.

2.1 Preliminaries

A network of routers is modeled by a setL of unidirectional links of capacitycl, l ∈ L. It is shared by a set

S of sources. A sources traverses a subsetL(s) ⊆ L of links to the destination, and attains a utilityUs(xs)
when it transmits at ratexs (e.g., in packets per second). Letds be the round trip propagation delay for

sources. For each linkl let S(l) = {s ∈ S | l ∈ L(s)} be the set of sources that uses linkl. By definition

l ∈ L(s) if and only if s ∈ S(l).
According to one interpretation of Vegas, a source monitors the difference between its expected rate and

its actual rate, and increments or decrements its window by one in the next round trip time according to

whether the difference is less or greater than a parameterαs.1 If the difference is zero, the window size is

unchanged. We model this by a synchronous discrete time system. Letws(t) be the window of sources at

time t and letDs(t) be the associated round trip time (propagation plus queueing delay). Note thatDs(t)
depends not only on sources’s own windowws(t) but also on those of all other sources, possibly even

those sources that do not share a link withs. We model the change in window size by one packet per round

trip time in actual implementation, with a change of1/Ds(t) per discrete time. Thus, sources adjusts its

window according to:

1The actual algorithm in [7] tries to keep this difference betweenαs andβs, with αs < βs to reduce oscillation. Our model

assumesαs = βs. It is simpler and captures the essence of Vegas.
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Vegas Algorithm:

ws(t+ 1) =


ws(t) + 1

Ds(t)
if ws(t)

ds
− ws(t)

Ds(t)
< αs

ws(t)− 1
Ds(t)

if ws(t)
ds
− ws(t)

Ds(t)
> αs

ws(t) else

(1)

In the original paper [7],ws(t)/ds is referred to as theExpectedrate,ws(t)/Ds as theActual rate, and the

differencews(t)/ds−ws(t)/Ds(t) asDIFF. The actual implementation estimates the round trip propagation

delayds by the minimum round trip time observed so far. The unit ofαs is, say, KB/s. We will explain the

significance ofαs on fairness in Section 3.

When the algorithm converges the equilibrium windowsw∗ = (w∗s , s ∈ S) and the associated equilib-

rium round trip timesD∗ = (D∗s , s ∈ S) satisfy

w∗s
ds
− w∗s
D∗s

= αs for all s ∈ S (2)

Let xs(t) := Ws(t)/Ds(t) denote the bandwidth realized by sources at time t. The window size

ws(t) minus the bandwidth–delay productdsxs(t) equals the total backlog buffered in the path ofs. Hence,

multiplying the conditional in (1) byds, we see that a source increments or decrements its window according

to whether the total backlogws(t) − dsxs(t) is smaller or larger thanαsds. This is a second interpretation

of Vegas.

2.2 Objective of Vegas

We now show that Vegas sources have

Us(xs) = αsds log xs (3)

as their utility functions. Moreover the objective of Vegas is to choose source ratesx = (xs, s ∈ S) so as to

max
x≥0

∑
s

Us(xs) =
∑
s

αsds log xs (4)

subject to
∑
s∈S(l)

xs ≤ cl, l ∈ L (5)

Constraint (5) says that the aggregate source rate at any linkl does not exceed the capacity. We will refer to

(4–5) as the primal problem. A rate vectorx that satisfies the constraints is calledfeasibleand a feasiblex

that maximizes (4) is calledprimal optimal(or socially optimalor simplyoptimal). A unique optimal rate

vector exists since the objective function is strictly concave, and hence continuous, and the feasible solution

set is compact.

The following theorem clarifies the objective of Vegas. It was first proved in [23].

Theorem 1 Let w∗ = (w∗s , s ∈ S) be the equilibrium windows of Vegas andD∗ = (D∗s , s ∈ S) the

associated equilibrium round trip times. Then the equilibrium source ratesx∗ = (x∗s, s ∈ S) defined by

x∗s = w∗s/D
∗
s is the unique optimal solution of (4–5).
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Proof. By the Karush–Kuhn–Tucker theorem a feasible source rate vectorx∗ ≥ 0 is optimal if and only if

there exists a vectorp∗ = (p∗l , l ∈ L) ≥ 0 such that, for alls,

U ′s(x
∗
s) =

αsds
x∗s

=
∑
l∈L(s)

p∗l (6)

and, for alll, p∗l = 0 if the aggregate source rate at linkl is strictly less than the capacity
∑

s∈S(l) x
∗
s < cl

(complementary slackness). We now prove that the equilibrium backlog at the links provide such a vector

p∗, and hence the equilibrium rates are optimal.

Let b∗l be the equilibrium backlog at linkl. The fraction ofb∗l that belongs to sources under first–in–

first–out service discipline isx
∗
s
cl
b∗l wherecl is the link capacity. Hence sources maintains a backlog of∑

l∈L(s)
x∗s
cl
b∗l in its path in equilibrium. Since the window size equals the bandwidth–delay product plus the

total backlog in the path, we have

w∗s − x∗sds =
∑
l∈L(s)

x∗s
cl
b∗l (7)

Thus, from (2) we have in equilibrium (recallingx∗s = w∗s/D
∗
s )

αs =
w∗s
ds
− w∗s
D∗s

=
1
ds

(w∗s − x∗sds) =
1
ds

 ∑
l∈L(s)

x∗s
cl
b∗l


where the last equality follows from (7). This yields (6) upon identifying

p∗l =
b∗l
cl

and rearranging terms. Clearly,x∗ must be feasible since otherwise the backlog will grow without bound,

contradicting (7). Since the equilibrium backlogb∗l = 0 at a linkl if the aggregate source rate is strictly less

than the capacity, the complementary slackness condition is also satisfied.

2.3 Dual problem

Solving the primal problem (4–5) directly is impractical over a large network since it requires coordination

among all sources due to coupling through shared links. However, a distributed solution can be obtained

by appealing to duality theory, a standard technique in mathematical programming. In this subsection, we

briefly present the dual problem of (4–5), interpret it in the context of congestion control, and derive a scaled

gradient projection algorithm to solve it. A more detailed description can be found in [20] for general utility

functions. In the next subsection, we interpret the Vegas algorithm (1) as a smoothed version of the scaled

gradient projection algorithm.

Associated with each linkl is a dual variablepl. The dual problem of (4–5) is to choose the dual vector

p = (pl, l ∈ L) so as to [5, 20]:

min
p≥0

D(p) :=
∑
s

Bs(ps) +
∑
l

plcl (8)
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where

Bs(ps) = max
xs≥0

Us(xs)− xsps (9)

ps =
∑
l∈L(s)

pl (10)

If we interpret the dual variablepl as the price per unit bandwidth at linkl, thenps in (10) is the price

per unit bandwidth in the path ofs. Hencexsps in (9) represents the bandwidth cost to sources when it

transmits at ratexs, Us(xs) − xsps is the net benefit of transmitting at ratexs, andBs(ps) represents the

maximum benefits can achieve at the given (scalar) priceps. A vector p ≥ 0 that minimizes the dual

problem (8) is calleddual optimal. Given a vector pricep = (pl, l ∈ L) or a scalar priceps =
∑

l∈L(s) pl,

we will abuse notation and denote the unique maximizer in (9) byxs(p) or byxs(ps). A feasible rate vector

x(p) = (xs(p), s ∈ S) is calledindividually optimal(with respect top) when each individual ratexs(p)
minimizes (9). By duality theory, there exists a dual optimal pricep∗ ≥ 0 such that these individually

optimal ratesx∗ = (xs(p∗), s ∈ S) are also socially optimal, that is, solve (4–5) as well.

In the rest of the paper we will refer topl as link price,ps as path price (of sources), and the vector

p = (pl, l ∈ L) simply as price. In case of Vegas with its particular utility function, the link pricepl turns out

to be thequeueingdelay at linkl; see Section 3. Anoptimalp∗ is a shadow price (Lagrange multiplier) with

the interpretation thatp∗l is the marginal increment in aggregate utility
∑

s Us(xs) for a marginal increment

in link l’s capacitycl.

A scaled gradient projection algorithm to solve the dual problem takes the following form [20]. Let

xs(p(t)) denote the unique source rate that maximizes (9–10) withp replaced byp(t), andxl(p(t)) =∑
s∈S(l) xs(p(t)) denote the aggregate source rate at linkl. Then linkl computespl(t) according to:

pl(t+ 1) = [pl(t) + γθl(xl(p(t))− cl)]+ (11)

whereγ > 0 andθl > 0 are constants. Herexl(p(t)) represents the demand for bandwidth at linkl andcl
represents the supply. The price is adjusted according to the law of demand and supply: if demand exceeds

the supply, raise the price; otherwise reduce it.

Let ps(t) =
∑

l∈L(s) pl(t) denote the path price at timet. Then sources sets its rate to the unique

maximizer of (9–10) given by (setting the derivative ofUs(xs)− xsps(t) to zero):

xs(t) = xs(ps(t)) =
αsds
ps(t)

(12)

This is referred to as the demand function in economics: the higher the path priceps(t) (i.e., the more

congested the path), the lower the source rate.

The following result says that the scaled gradient projection algorithm defined by (11–12) converges

to yield the unique optimal source rates. It is a minor modification of Theorem 1 of [20]; indeed the

convergence proof in [3] for a (different) scaled gradient projection algorithm applies directly here.

Theorem 2 Provided that the step-sizeγ is sufficiently small, then starting from any initial ratesx(0) ≥ 0
and pricesp(0) ≥ 0, every limit point(x∗, p∗) of the sequence(x(t), p(t)) generated by algorithm (11—12)

is primal—dual optimal.
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2.4 Vegas Algorithm

We now interpret the Vegas algorithm as approximately carrying out the scaled gradient projection algorithm

(11–12).

The algorithm takes the familiar form of adaptive congestion control: the link algorithm (11) computes a

congestion measurepl(t), and the source algorithm (12) adapts the transmission rate to congestion feedback

ps(t). In order to execute this algorithm, Vegas, a source–based mechanism, must address two issues: how

to compute the link prices and how to feed back the path prices to individual sources for them to adjust their

rates. We will see that, first, the price computation (11) is performed by the buffer process at linkl. Indeed,

link price can be taken as the queueing delay ,pl(t) = bl(t)/cl, wherebl(t) denotes the buffer occupancy at

link l at timet. Second, the path prices areimplicitly fed back to sources through round trip times. Given

the path priceps(t), sources carries out asmoothedversion of (12).

Specifically, suppose the input rate at linkl from sources is xs(t) at timet.2 Then the aggregate input

rate at linkl is xl(t) =
∑

s∈S xs(t), and the buffer occupancybl(t) at link l evolves according to:

bl(t+ 1) =
[
bl(t) + xl(t)− cl

]+

Dividing both sides bycl we have

bl(t+ 1)
cl

=
[
bl(t)
cl

+
1
cl

(xl(t)− cl)
]+

(13)

Identifying pl(t) = bl(t)/cl, we see that (13) is the same as (11) with stepsizeγ = 1 and scaling factor

θl = 1/cl, except that the source ratesxs(t) in xl(t) are updated slightly differently from (12).

Recall from (1) that the Vegas algorithm updates the windowws(t) based on whether

ws(t)− xs(t)ds < αsds or ws(t)− xs(t)ds > αsds (14)

As for (7) this quantity is related to the backlog, and hence the prices, in the path:

ws(t)− xs(t)ds = xs(t)
∑
l∈L(s)

bl(t)
cl

= xs(t)
∑
l∈L(s)

pl(t) = xs(t) ps(t) (15)

Thus, the conditional in (14) becomes (cf. (12)):

xs(t) <
αsds
ps(t)

or xs(t) >
αsds
ps(t)

(16)

Hence, a Vegas source compares the current source ratexs(t) with the target rateαsds/ps(t). The window

is incremented or decremented by1/Ds(t) in the next period according as the current source ratexs(t) is

smaller or greater than the target rateαsds/ps(t). In contrast, the algorithm (12) sets the rate directly to the

target rate.

The sufficient condition in Theorem 2 requires that the stepsizeγ > 0 be sufficiently small to guarantee

convergence. The original Vegas algorithm however assumes thatγ = 1; see (13). We now describe a way

2This is an approximation which holds in equilibrium when buffer stabilizes; see [18] for a more accurate model of the buffer

process.
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to reintroduceγ into the Vegas algorithm which can then be adjusted to ensure convergence. Multiplying

both sides of (13) byγ > 0 and identifyingpl(t) = γ bl(t)
cl

, we obtain

pl(t+ 1) = [pl(t) + γ
1
cl

(xl(p(t))− cl)]+

that is, by usingweightedqueueing delays as prices, they are updated with a stepsizeγ that is not necessarily

one. Then (15) is modified to

γ(ws(t)− xs(t)ds) = xs(t)
∑
l∈L(s)

γ
bl(t)
cl

= xs(t) ps(t) (17)

Since the modification should not alter the utility functions nor the equilibrium rates,xs(t) should still be

adjusted according to (16) so that, in equilibrium,p∗s = αsds/x
∗
s. This together with (17) modifies the

Vegas algorithm from (14) to:

ws(t)− xs(t)ds <
αs
γ
ds or ws(t)− xs(t)ds >

αs
γ
ds

This amounts to using aαs that is1/γ times larger, i.e., use a unit of 10KBps (say) instead of KBps forαs.3

Note thatγ (or unit ofαs) should be the same at all sources.

Smallerγ ensures convergence of source rates, albeit slower, but it leads to a larger backlog since

bl(t) = clpl(t)/γ. This dilemma can be overcome by introducing marking to decouple the buffer process

from price computation; see Section 5.

3 Delay, Fairness and Loss

3.1 Delay

The previous section developed two equivalent interpretations of the Vegas algorithm. The first is that a

Vegas source adjusts its rate so as to maintain its actual rate to be betweenαs andβs KB/s lower than its

expected rate, whereαs (typically 1/ds) andβs (typically 3/ds) are parameters of the Vegas algorithm.

The expected rate is the maximum possible for the current window size, realized if and only if there is no

queueing in the path. The rationale is that a rate that is too close to the maximum underutilizes the network,

and one that is too far indicates congestion. The second interpretation is that a Vegas source adjusts its rate

so as to maintain betweenαsds (typically 1) andβsds (typically 3) number of packets buffered in its path,

so as to take advantage of extra capacity when it becomes available.

The optimization model suggests a third interpretation. The dynamics of the buffer process at linkl

implies the relation (comparing (11) and (13)):

pl(t) =
bl(t)
cl

It says that the link pricepl(t) is just the queueing delay at linkl faced by a packet arrival at timet. The

path priceps(t) =
∑

l∈L(s) pl(t) is thus theend–to–endqueueing delay (without propagation delay). It is

3Using a smaller link capacity, say, Mbps instead of 10Mbps, has the same effect.
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the congestion signal a source needs to adjust its rate, and the source computes it by taking the difference

between the round trip time and the (estimated) propagation delay. Then (12) implies that a Vegas source

sets its (target) rate to be proportional to the ratio of propagation to queueing delay, the proportionality

constant being betweenαs andβs. Hence the larger the queueing delay, the more severe the congestion and

the lower the rate.

It also follows from (12) that in equilibrium the bandwidth–queueing–delay product of a source is equal

to the extra packetsαsds buffered in its path:

x∗sp
∗s = αsds (18)

This is just Little’s Law in queueing theory when propagation delay is ignored. As the number of sources

increases, individual source rates necessarily decrease. The relation (18) then implies that queueing delay

ps(t) must increase with the number of sources. This is just a restatement that every source attempts to keep

some extra packets buffered in its path.

3.2 Fairness

Although we did not recognize it at the time, there are two equally valid implementations of Vegas, each

springing from a different interpretation of an ambiguity in the algorithm. The first, which corresponds to

the actual code, defines theαs andβs parameters in terms of bytes (packets) perround trip time, while the

second, which corresponds to the prose in [7], definesαs andβs in terms of bytes (or packets) persecond.

These two implementations have an obvious impact on fairness: the second favors sources with a large

propagation delay,

In terms of our model, Theorem 1 implies that the equilibrium ratesx∗ areweighted proportionally fair

[13, 15]: for any other feasible rate vectorx, we have∑
s

αsds
xs − x∗s
x∗

≤ 0

The first implementation hasαs = α/ds inversely proportional to the source’s propagation delay, and the

second has identicalαs = α for all sources.

These two implementations lead to different fairness in equilibrium. Whenαsds = α (in unit of packets)

are the same for all sources, the utility functionsUs(xs) = αsds log xs = α log xs are identical for all

sources, and the equilibrium rates areproportionally fair and are independent ofpropagationdelays. We

call this implementationproportionally fair (PF).

Whenαs = α are identical, sources have different utility functions, and the equilibrium rates are

weighted proportional fair, with weights proportional to sources’ propagation delays. (18) implies that if

two sourcesr ands face the same path price, e.g., in a network with a single congested link, then their

equilibrium rates are proportional to their propagation delays:

x∗r
dr

=
x∗s
ds

In a network with multiple congested links, weighting the utility by propagation delay has a balancing effect

to the discrimination against long connections, if the propagation delay is proportional to the number of

congested links in a source’s path. We call the second implementationweighted proportionally fair(WPF).
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This constrasts with TCP Reno which attempts to equalizewindow[14, 16, 19]:

x∗rD
∗
r = x∗sD

∗
s

and hence a source with twice the (round trip) delay receives half as much bandwidth. This discrimination

against connections with high propagation delay is well known in the literature, e.g., [8, 10, 17, 21, 6].

3.3 Loss

Provided that buffers at linksl are large enough to accommodate the equilibrium backlogb∗l = p∗l cl, a

Vegas source will not suffer any loss in equilibrium since the aggregate source rate
∑

s∈S(l) x
∗
s is no more

than the link capacitycl in the network (feasibility condition (5)). This is in contrast to TCP Reno which

constantly probes the network for spare capacity by linearly increasing its window until packets are lost,

upon which the window is multiplicatively decreased. Thus, by carefully extracting congestion information

from observed round trip time and intelligently reacting to it, Vegas avoids the perpetual cycle of sinking

into and recovering from congestion. This is confirmed by the experimental results of [7] and [2].

As observed in [7] and [6], if the buffers are not sufficiently large, equilibrium cannot be reached, loss

cannot be avoided, and Vegas reverts to Reno. This is because, in attempting to reach equilibrium, Vegas

sources all attempt to placeαsds number of packets in their paths, overflowing the buffers in the network.

This plausibly explains an intriguing observation in [11] where a detailed set of experiments are reported

that assess the relative contribution of various mechanisms in Vegas to its performance improvement over

Reno. The study observes that the loss recovery mechanism, not the congestion avoidance mechanism, of

Vegas makes the greatest contribution. This is exactly what should be expected if the buffers are so small

as to prevent Vegas from reaching an equilibrium. In [11], the router buffer size is 10 segments; with

background traffic, it can be easily filled up, leaving little space for Vegas’ backlog. The effect of buffer size

on the throughput and retransmission of Vegas is illustrated through simulations in Section 6.4 below.

4 Persistent Congestion

This section examines the phenomenon of persistent congestion, as a consequence of both Vegas’ exploita-

tion of buffer process for price computation and of its need to estimate propagation delay. The next section

explains how this can be overcome by Random Exponential Marking (REM) [4], in the form of the recently

proposed ECN bit [9, 25].

4.1 Coupling Backlog and Price

Vegas relies on the buffer process to compute its pricepl(t) = bl(t)/cl. The equilibrium prices depend

not on the congestion control algorithm butsolelyon the state of the network: topology, link capacities,

number of sources, and their utility functions. As the number of sources increases the equilibrium prices,

and hence the equilibrium backlog, increases (sinceb∗l = p∗l cl). This not only necessitates large buffers in

the network, but worse still, it leads to large feedback delay and possibly oscillation. Indeed, if every source
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keepsαsds = α packets buffered in the network, the equilibrium backlog will beαN packets, linear in the

numberN of sources.

4.2 Propagation Delay Estimation

We have been assuming in our model that a source knows its round trip propagation delayds. In practice

it sets this value to the minimum round trip time observed so far. Error may arise when there is route

change, or when a new connection starts [22]. First, when the route is changed to one that has a longer

propagation delay than the current route, the new propagation delay will be taken as increased round trip

time, an indication of congestion. The source then reduces its window, while it should have increased it.

Second, when a source starts, its observed round trip time includes queueing delay due to packets in its

path from existing sources. It hence overestimates its propagation delayds and attempts to put more than

αsds packets in its path, leading to persistent congestion.4 We now look at the effect of estimation error on

stability and fairness.

Suppose each sources uses an estimatêds(t) := (1 + εs)ds(t) of its round trip propagation delayds in

the Vegas algorithm (1), whereεs is the percentage error that can be different for different sources. Naturally

we assume−1 < εs ≤ Ds(t)/ds(t) − 1 for all t so that the estimate satisfies0 < d̂s(t) ≤ Ds(t). The next

result says that the estimation error effectively changes the utility function: sources appears to have a utility

(cf. (3))

Us(xs) = (1 + εs)αsds log xs + εsdsxs (19)

and the objective of the Vegas sources appears to

max
x≥0

∑
s

Us(xs) =
∑
s

(1 + εs)αsds log xs + εsdsxs (20)

subject to
∑
s∈S(l)

xs ≤ cl, l ∈ L (21)

Theorem 3 Let w∗ = (w∗s , s ∈ S) be the equilibrium windows of Vegas andD∗ = (D∗s , s ∈ S) the

associated equilibrium round trip times. Then the equilibrium source ratesx∗ = (x∗s, s ∈ S) defined by

x∗s = w∗s/D
∗
s is the unique optimal solution of (20–21).

Proof. The argument follows the proof of Theorem 1, except that (6) is replaced by

U ′s(x
∗
s) =

(1 + εs)αsds
x∗s

+ εsds =
∑
l∈L(s)

p∗l (22)

To show that the equilibrium backlog at the links provide such a vectorp∗, and hence the equilibrium rates

are optimal, substitute the estimated propagation delayd̂∗s = (1 + εs)d∗s for the true valued∗s in (2) to get

αs =
w∗s

(1 + εs)ds
− w∗s
D∗s

4A remedy is suggested for the first problem in [22] where a source keeps a record of the round trip times of the lastL · N
packets. When their minimum is much larger than the current estimate of propagation delay, this is taken as an indication of route

change, and the estimate is set to the minimum round trip time of the lastN packets. However, persistent congestion may interfere

with this scheme. The use of Random Exponential Marking (REM) eliminates persistent congestion and facilitates the proposed

modification.
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Usingw∗s − x∗sds = x∗s
∑

l∈L(s) b
∗
l /cl we thus have

(1 + εs)αsds = (w∗s − dsx∗s)− εsdsx∗s =

 ∑
l∈L(s)

b∗l
cl
− εsds

x∗s

This yields (22) upon identifyingp∗l = b∗l
cl

and rearranging terms. As in the proof of Theorem 1,x∗ must be

feasible and the complementary slackness condition must be satisfied. Hence the proof is complete.

The significance of Theorem 3 is twofold. First, it implies that incorrect propagation delay does not

upset the stability of Vegas algorithm— the rates simply converge to a different equilibrium that optimizes

(20–21). Second, it allows us to compute the new equilibrium rates, and hence assess the fairness, when we

know the relative error in propagation delay estimation. It provides a qualitative assessment of the effect of

estimation error when such knowledge is not available.

For example, suppose sourcesr ands see the same path price. If there is zero estimation error then their

equilibrium rates are proportional to their weights:

αrdr
x∗r

=
αsds
x∗s

With error, their rates are related by

(1 + εr)αrdr
x∗r

+ εrdr =
(1 + εs)αsds

x∗s
+ εsds (23)

Hence, a large positive error generally leads to a higher equilibrium rate to the detriment of other sources.

For PF implementation whereαrdr = αsds, if sources have identical absolute error,εrdr = εsds, then

source rates are proportional to1 + εs.

Although Vegas can be stable in the presence of error in propagation delay estimation, the error may

cause two problems. First, overestimation increases the equilibrium source rate. This pushes up prices and

hence buffer backlogs, leading to persistent congestion. Second, error distorts the utility function of the

sources, leading to an unfair network equilibrium in favor of newer sources.

4.3 Remarks

Note that we did not see persistent congestion in our original simulations of Vegas. This is most likely due to

three factors. One is that Vegas reverts to Reno-like behavior when there is insufficient buffer capacity in the

network. The second is that our simulations did not take the possibility of route changes into consideration,

but on the other hand, evidence suggests that route changes are not likely to be a problem in practice [24].

The third is that the situation of connections starting up serially is pathological. In practice, connections

continually come and go, meaning that all sources are likely to measure a baseRTT that represents the

propagation delay plus the average queuing delay.

5 Vegas with REM

As explained in the last section, excessive backlog may arise because 1) each source maintains some ex-

tra packets buffered in its path and hence backlog increases as the number of sources increases, and 2)
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overestimation of a source’s propagation delay distorts the utility, leading to larger equilibrium prices and

backlogs (as well as unfairness to older sources). Fundamentally, both are consequences of Vegas’ reliance

onqueueingdelay as a congestion measure, which makes backlog indispensible in conveying congestion to

the sources. This section demonstrates how REM (Random Exponential Marking) [4] can be used to correct

this situation.

REM is an active queue management scheme like RED [10] that feeds back congestion information

to sources by probabilistically dropping or marking packets. Unlike RED, REM attempts to match rate

and clear buffer, leading to high utilization with negligible delay or buffer overflow. With buffer cleared,

minimum round trip time would be an accurate approximation to propagation delay. Round trip times

however no longer convey price information to a source. The path price must be estimated by the source

from packet dropping or marking. We now summarize REM; see [4] for derivation, performance evaluation,

and parameter setting.

Each linkl updates a link pricepl(t) in periodt based on theaggregateinput ratexl(t) and the buffer

occupancybl(t) at link l:

pl(t+ 1) = [pl(t) + γ(µlbl(t) + xl(t)− cl)]+ (24)

whereγ > 0 is a small constant and0 < µl < 1. The parameterγ controls the rate of convergence

andµl trades off link utilization and average backlog. Hencepl(t) is increased when the weighted sum

of backlogbl(t) and mismatch in ratexl(t) − cl, weighted byµl, is positive, and is reduced otherwise.

Note that the algorithm does not require per–flow information. Moreover, the price adjustment (24) leads

to small backlog (b∗l ' 0) and high utilization (xl∗ ' cl) in equilibrium, regardless of the equilibrium price

p∗l . Hence high utilization is not achieved by maintaining a large backlog, but by feeding back accurate

congestion information for sources to set their rates. This is confirmed by simulation results in the next

section.

To convey prices to sources, linkl marks each packet arriving in periodt, that is not already marked at

an upstream link, with a probabilityml(t) that is exponentially increasing in the congestion measure:

ml(t) = 1− φ−pl(t) (25)

whereφ > 1 is a constant. Once a packet is marked, its mark is carried to the destination and then conveyed

back to the source via acknowledgement.

The exponential form is critical for multilink network, because theend–to–endprobability that a packet

of sources is marked after traversing a setL(s) of links is then

ms(t) = 1−
∏
l∈L(s)

(1−ml(t)) = 1− φ−ps(t) (26)

whereps(t) =
∑

l∈L(s) pl(t) is the path price. The end–to–end marking probability is high whenps(t) is

large.

Sources estimates this end–to–end marking probabilityms(t) by the fraction m̂s(t) of its packets

marked in periodt, and estimates the path priceps(t) by inverting (26):

p̂s(t) = − logφ(1− m̂s(t))

12



wherelogφ is logarithm to baseφ. It then adjusts its rate using marginal utility (cf. (12)):

xs(t) =
αsds
p̂s(t)

=
αsds

− logφ(1− m̂s(t))
(27)

In practice a source may adjust its rate more gradually by incrementing it slightly if the current rate is

less than the target (the right hand side of (27)), and decrementing it slightly otherwise, in the spirit of the

original Vegas algorithm (1):

Vegas with REM:

ws(t+ 1) =


ws(t) + 1

Ds(t) if − ws(t)
Ds(t) logφ (1− m̂s(t)) < αsds

ws(t)− 1
Ds(t) if − ws(t)

Ds(t) logφ (1− m̂s(t)) > αsds

ws(t) else

6 Evaluation

This section presents four sets of simulation results. The first set shows that source rate converges quickly

under Vegas to the theoretical equilibrium, thus validating our model. The second set illustrates the phe-

nomenon of persistent congestion discussed in Section 4. The third set shows that the source rates (windows)

under Vegas/REM behave similarly to those under plain Vegas, but the buffer stays low. The last set shows

that enough buffer space is necessary for Vegas to work properly.

We use thens-2network simulator [1] configured mostly with the topology shown in Figure 1. Each

host on the left runs an FTP application that transfers a large file to its counterpart on the right. We use a

packet size of 1KB. The various simulations presented in this section use different latency and bandwidth

parameters, as described below.

Router1 Router2

1a

2a

3a

4a

5a

1b

2b

3b

4b

5b

Figure 1: Network Topology

6.1 Equilibrium and Fairness

6.1.1 Single Link Case

We first run five connections across the network (i.e., between Host1a and Host1b, 2a and 2b etc.) to

understand how they compete for bandwidth. The round trip latency for the connections are 15ms, 15ms,

13
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Figure 2: Stability (PF): sending rate of five connections

20ms, 30ms and 40ms respectively. The shared link has a bandwidth of 48Mbps and all host–router links

have a bandwidth of 100Mbps. Routers maintain a FIFO queue with unlimited capacity.

As described in Section 3, there are two different implementations of Vegas with different fairness

properties. For proportional fairness, we setαs = 2 packetsper RTTand we letαs = βs in ns-2. The model

predicts that all connections receive an equal share (1200KBps) of the bottleneck link and the simulations

confirm this. This contrasts sharply with Reno which is well known to discriminate against connections

with large propagation delays. Figure 2 plots the sending rate against the predicted rates (straight lines): all

connections quickly converge to the predicted rate. Table 1 summarizes other performance values,5 which

further demonstrate how well the model predicts the simulation.

Host 1a 2a 3a 4a 5a

M S M S M S M S M S

baseRTT (ms) 15.34 15.34 15.34 15.34 20.34 20.34 30.34 30.34 40.34 40.34

RTT w/ queueing (ms) 17 17.1 17 17.1 22 21.9 32 31.9 42 41.9

Sending rate (KB/s) 1200 1205 1200 1183 1200 1228 1200 1247 1200 1161

Congestion window (pkts) 20.4 20.5 20.4 20.2 26.4 27 38.4 39.9 50.4 49.8

Buffer occupancy Model Simulation

at Router1 (pkts) 10 9.8

Table 1: Stability (PF): comparison of theoretical and simulation results. M stands for Model and S stands

for Simulation. All simulation numbers are averaged at the equilibrium point.

For weighted proportional fairness, we setαs to 2 packetsper 10ms, which means each source will

5The reported baseRTT includes both the round trip latency and transmit time.
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have a different number of extra packets in the pipe and the optimal sending rate will be proportional to

the propagation delay. The results for the two (of the five) connections are shown in Figure 3, except this

time we show the congestion windows instead of the sending rates. The other performance numbers are in

Table 2, which again show that the simulations closely follow the model’s predictions.
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Figure 3: Stability (WPF): congestion window size for two (of the five) connections

Host 1a 2a 3a 4a 5a

M S M S M S M S M S

baseRTT (ms) 15.34 15.34 15.34 15.34 20.34 20.34 30.34 30.34 40.34 40.34

RTT w/ queueing (ms) 19.4 19.55 19.4 19.58 24.4 24.4 34.4 34.3 44.4 44.3

Sending rate (KB/s) 756.3 781 756.3 774 1003 994 1496 1495 1990 1975

Congestion window (pkts) 14.7 15.1 14.7 14.9 24.5 24.6 51.5 51.7 88.4 88.6

Buffer occupancy Model Simulation

at Router1 (pkts) 24.34 24.24

Table 2: Stability (WPF): comparison of theoretical and simulation results. M-Model, S-Simulation.

Both the sending rates (Figure 2) and the congestion windows (Figure 3)oscillatearound the equilib-

rium. This is an artifact of settingαs = βs in our simulations, which we have assumed in the model for

simplicity. Vegas adjusts the congestion window by one packet in each round trip time. The adjustment

is large relative toαs = βs = 2 packets, rendering the window prone to oscillation. We have repeated the

simulation using anαs that is 10 times as large (corresponding to a stepsizeγ 10 times as small). This

smoothed out the curves.

6.1.2 Multi-link Case

We also simulated network topology with multiple links as shown in Figure 4. This topology is almost the

same as that used in [7], expect that to simplify computation, we set the bandwidth of the “backbone” to be

48Mbps and we now have six sources (HostXa) and six sinks (HostXb). Similar to previous simulations, an

FTP application on each “a” Host transfers a large file to its counterpart sink on the “b” Host using a packet

size of 1KB.
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Figure 4: Complex Network Topology

Host 1a 2a 3a 4a 5a 6a

M S M S M S M S M S M S

baseRTT (ms) 75.51 75.51 80.51 80.51 15.34 15.34 60.34 60.34 20.34 20.34 100.69 100.69

RTT w/ queueing (ms) 76.96 76.98 81.96 81.98 15.89 15.89 61.23 61.22 20.89 20.9 102.69 102.73

Sending rate (KB/s) 1382 1368 1382 1374 3618 3630 2236 2245 3618 3632 1000 980

Congestion window (pkts) 106.35 106.45 113.27 113.7 57.5 58.3 136.93 139 75.6 75.7 102.69 100.6

Buffer occupancy LA SF CH

(pkts) M S M S M S

3.32 3.5 5.37 5.51 3.32 3.31

Table 3: Multi-Link (PF): comparison of theoretical and simulation results. M-Model and S-Simulation.

We repeated simulations for Proportionally Fair and Weighed Proportionally Fair cases under this new

setup for 20 seconds. At the same time, we use our theory to predict the RTT (including queueing delay),

cwnd etc. of the sources and the queue size at the routers. Tables 3 and 4 summarize the results. Again, the

simulation measurements match our predictions very well.

6.2 Persistent Congestion

We next validate that Vegas leads to persistent congestion under pathological conditions. We set the round

trip latency to 10ms forall connections, the host–router links are all 1600 Mbps, and the bottleneck link

has a bandwidth of 48 Mbps. We setαs to 2 packets–per–ms and we assume the routers have infinite buffer

capacity. We pick such extreme numbers so as to make the result trend more obvious.

We first hard–code the round trip propagation delay to be 10 ms for each source, thus eliminating the

error in propagation delay estimation. We then run five connections, each starting 20 seconds after the

previous connection. That is, Host 1a starts sending at time 0, 2a starts at 20s, and so on. As shown in

Figure 5(a), the buffer occupancy increases linearly in the number of sources.
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Host 1a 2a 3a 4a 5a 6a

M S M S M S M S M S M S

baseRTT (ms) 75.51 75.51 80.51 80.51 15.34 15.34 60.34 60.34 20.34 20.34 100.69 100.69

RTT w/ queueing (ms) 85.74 85.77 91.12 91.13 16.4 16.44 69.5 69.51 21.78 21.78 112.35 112.36

Sending rate (KB/s) 1463 1443 1509 1512 2819 2821 1310 1306 2775 2760 1714 1703

Congestion window (pkts) 125.47 125.3 137.5 139 46.24 46.65 91.04 91.6 60.44 60.3 192.6 193

Buffer occupancy LA SF CH

(pkts) M S M S M S

6.39 6.38 54.96 55.3 8.65 8.64

Table 4: Multi-Link (WPF): comparison of theoretical and simulation results. M-Model and S-Simulation.
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Figure 5: Persistent congestion: buffer occupancy at router

Next, we take propagation delay estimation error into account by letting the Vegas sources discover

the propagation delay for themselves. As shown in Figure 5(b), buffer occupancy grows much faster than

linearly in the number of sources. We have also applied Theorem 3 to calculate the equilibrium rates, queue

size, and estimated baseRTT. The predicted and measured numbers are shown in Tables 5 and 6. They match

very well, further verifying our model.

As the Table 5 shows, distortion in utility functions not only leads to excess backlog, it also strongly

favors new sources. Without estimation error, sources should equally share the bandwidth. With error, when

all five sources are active,x1 : x2 : x3 : x4 : x5 = 1 : 1.4 : 2.3 : 4.5 : 11.6.

6.3 Vegas + REM

Finally, we implement REM at Router1 , which updates link price every 1ms according to (24). We adapt

Vegas to adjust its rate (congestion window) based on estimated path prices, as described in Section 5.

Vegas makes use of packet marking only in its congestion avoidance phrase; its slow–start behavior stays

unchanged.6

We use the same network setup as in Section 6.2. The bottleneck link also has a bandwidth of 48Mbps.

Host-router links are 1600Mbps andαs is 2 pkts–per–ms for WPF. In order to verify our new mechanism

6During slow–start, Vegas keeps updating the variable fractionm̂s(t), but does not use it in window adjustment.
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Time 1a (KB/s) 2a (KB/s) 3a (KB/s) 4a (KB/s) 5a (KB/s) Queue (pkts)

M S M S M S M S M S M S

0 – 20s 6000 5980 20 19.8

20 – 40s 2000 2050 4000 3920 60 59

40 – 60s 940 960 1490 1460 3570 3540 127 127.3

60 – 80s 500 510 730 724 1350 1340 3390 3380 238 237.5

80 – 100s 290 290 400 404 670 676 1300 1298 3340 3278 416 416.3

Table 5: Equilibrium rates and queue lengths with propagation delay error. M-Model, S-Simulation

baseRTT (ms) Host1a Host2a Host3a Host4a Host5a

no error 10.18 10.18 10.18 10.18 10.18

w/ error (S) 10.18 13.36 20.17 31.5 49.86

w/ error (M) 10.18 13.51 20.18 31.2 49.80

Table 6: Error in propagation delay estimation under persistent congestion

in different situations, this time we let sources (Host1-5a) have a round trip latency of 10ms, 10ms, 20ms,

10ms, 30ms respectively. REM parameters are:φ = 1.1,µl = 0.5,γ = 0.005.

We start 5 connections with an inter–start interval of 20s in order to test our claim that REM reduces

the estimation error in Vegas’ propagation delay. Figure 6 plots the congestion window size of the three

connections and buffer occupancy at Router1. As expected, each of the five connections converges to its

appropriate bandwidth share. When the link is not congested, source rate oscillates more severely, as seen

from Host1a during time 0 - 20s. This is a consequence of the log utility function; see [4]. As more

sources become active (40 - 100s), oscillation becomes smaller and convergence faster. REM eliminates

the superlinear growth in queue length of Figure 5(b), as shown in Table 7, while maintaining high link

utilization (90% to 96%).

Host 1a 2a 3a 4a 5a

M S M S M S M S M S

baseRTT (ms) 10.18 10.18 10.18 10.18 20.18 20.18 10.18 10.18 30.18 30.19

Table 7: Comparison of baseRTT in Vegas+REM. M – Model, S – Simulation

6.4 Effect of buffer capacity

Our model and all previous simulations assume an “infinite” buffer capacity. The next simulation studies the

effect of buffer capacity on the performance of Vegas and Reno. It confirms our discussion in Section 3.3

and offers a plausible explanation for the intriguing observation that the congestion avoidance mechanism

of Vegas contributes little to its throughput and retransmission improvement over Reno.

In [11], TCP Vegas is decomposed into several individual mechanisms and the effect of each on per-

formance is assessed by taking the approach of a2k factorial design with replications. This work deploys
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Figure 6: Stability of Vegas+REM. Link utilization: 90%(0-20s), 96%(20-40s), 93%(40-60s), 91%(60-80s),

90%(80-100s)

a very useful methodology and gives us some insights into the relative importance of different algorithms

in Vegas. However, the final conclusion that Vegas’ more aggressive recovery mechanism has the largest

effect on performance, while its congestion avoidance mechanism contributes little, could be limited by the

fact that in that setup, the bottleneck router only has a 10 packet queue, which could be easily filled up by

background traffic. As a result, without enough buffer for its backlog, Vegas reverts to Reno and the changes

to its recovery mechanism then stand out as the largest contributor to performance. If buffer space is enough,

Vegas will maintain a steady sending rate withoutanyretransmission. To validate our claim, we simulate the

same topology as in [11], which is similar to Figure 1, but the bottleneck link has a capacity of 200 KB/sec

and a latency of 50ms, and host-router connections are 10Mbps Ethernet. To isolate the effect of buffer size

on the behavior of congestion avoidance mechanism, we omit the background traffic in our simulations and

only start three persistent FTP transfers from Host1a to Host1b. We choose to use such long transfers to

minimize the effect of other mechanisms such as slow-start on the performance and our measurements are

based on the first 50 seconds of the transfer. We setαs = 1 andβs = 3 pkts-per-round-trip respectively

for Vegas. Figure 7 shows the average throughput, retransmission and retransmission during congestion

avoidance of the three flows as a function of buffer size at Router1. These plots confirms that Vegas has a

steady send rate and no retransmissions as long as the buffer sizes exceeds a threshold. The threshold is a bit
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Figure 7: Effect of buffer capacity on performance. All numbers are averaged on three long lasting flows

over a 50 second period. For Vegas,α = 1 β = 3 (packet per RTT)

larger than the total Vegas’ backlog (3–9 packets in this case) because of queue fluctuations during transient.

In contrast, increasing the buffer size continuously helps the performance of Reno though retransmission

remains significant even at large buffer size.

This simulation illustrates that TCP Vegas’ congestion avoidance mechanism will only get its full benefit

when the network has enough buffer space to hold Vegas’ backlog. In that case, Vegas will have a stable

send rate and no retransmission; and there’s still large performance advantage over Reno, although not as

pronouncing, which can mainly be ascribed to Vegas’ congestion avoidance mechanism. When buffer space

is small, Vegas’cwnd looks like Reno’s and that’s why Vegas’ more aggressive recovery mechanism takes

most of the performance credit. We plot Vegas and Reno’scwndfor different buffer sizes (to save space, not

listed here), and find out when buffer capacity is below the threshold, during congestion avoidance, Vegas

behaves much like Reno; but when buffer size exceeds the threshold, Vegas’cwnd oscillates around the

optimal value.

7 Conclusions

We have shown that TCP Vegas can be regarded as a distributed optimization algorithm to maximize ag-

gregate source utility over their transmission rates. The optimization model has four implications. First

it implies that Vegas measures the congestion in a path byend–to–end queueingdelay. A source extracts

this information from round trip time measurement and uses it to optimally set its rate. The equilibrium is

characterized by Little’s Law in queueing theory. Second, it implies that the equilibrium rates are weighted

proportionally fair. Third, it clarifies the mechanism, and consequence, of potential persistent congestion

due to error in the estimation of propagation delay. Finally, it suggests a way to eliminate persistent con-

gestion using REM that keeps buffer low while matching rate. We have presented simulation results that

validate our conclusions.
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