
Evaluating Network Processors in IP Forwarding

Tammo Spalink, Scott Karlin, Larry Peterson
ftspalink,scott,llp g@cs.princeton.edu

Department of Computer Science
Princeton University

Technical Report TR–626–00
November 15, 2000 (Updated January 31, 2001)

Abstract

This paper evaluates the performance of emerging net-
work processors—in particular, designs that employ
multiple hardware contexts to hide memory latency—
in constructing IP routers. Such processors are de-
signed to forward minimum-sized IP packets at line
speeds, with the advantage (over ASIC-based solu-
tions) of being programmable. However, program-
ming such network processors involves two chal-
lenges. The first is how to effectively employ the
multiple contexts in a way that fully utilizes the mem-
ory bandwidth. The second is how to allow the net-
work processor to be programmed dynamically (so it
can support new functionality) without violating the
processor’s tight timing constraints. This paper ad-
dresses both of these challenges on a prototype board
that uses the IXP1200 network processor. We demon-
strate that it is possible to support 8�100Mbps ports
with enough headroom to access up to 224 bytes of
state information for each minimum-sized IP packet.

1 Introduction

There is significant interest innetwork processors
that can handle packets arriving at multi-gigabit line
speeds, with several commercial products recently
coming onto the market [4, 11]. Designed primar-
ily to implement forwarding engines on IP routers,
these network processors offer one clear advantage
over ASIC-based solutions: they are programmable.
The performance requirements, however, are quite se-
vere. For example, a network processor assigned to
an OC–192 link has to be able to process up to 25M
minimum-sized packets-per-second (pps). Such rates
are outside the reach of existing products, however,
with current technology able to support line speeds
approaching OC–48 (6:1Mpps).

Network processors are typically memory-limited.
For example, copying an OC–48 bit stream into and
out of memory requires 2� 2:5Gbps= 5Gbps of
memory bandwidth. Sustaining this rate is not triv-
ial due to memory latency. Network processors com-
monly employ parallelism to hide this latency. For ex-
ample, the Intel IXP1200 includes six micro-Engines
(µEngines), each supporting four hardware contexts.
The IXP1200 automatically switches to a new con-
text when the current context stalls on a memory op-
eration. The Vitesse IQ2000 uses a similar design,
employing 16 hardware contexts implemented across
four processing elements. This approach is reminis-
cent of the memory latency-hiding strategy used in the
Tera multiprocessor [2].

Programming such a network processor involves
two challenges. First, assuming one can identify
a single function that the network processor has
to support—e.g., forwarding vanilla IP packets—
the parallel hardware contexts must be programmed
in a way that fully utilizes the available memory
bandwidth, and hence sustain the maximum required
packet rate.1 The second challenge is to allow the net-
work processor to be programmed more dynamically.
Instead of running a single fixed function, it should be
possible to load a new function—or perhaps an exten-
sion to the existing function—into the network pro-
cessor, ideally at runtime. The challenge is to struc-
ture the program in such a way that new code frag-
ments can be added without violating the processor’s
tight timing constraints.

This paper addresses both of these challenges on a
prototype board that uses the IXP1200 network pro-

1It is a market requirement that each line card in a router be
able to forward minimum-sized packets at line speed. One rea-
son is that not doing so makes the router susceptible to denial of
service attacks.

1



cessor. It makes two contributions. First, it de-
scribes how to program the IXP1200 architecture with
a static IP forwarding function (Section 2) and evalu-
ates the performance of this system (Section 3). Sec-
ond, it demonstrates how excess capacity can be used
to dynamically extend the functionality supported by
the IXP1200 without violating its ability to process
minimum-sized packets at line speed (Section 4).

2 Architecture

This section describes the prototype router we imple-
mented and evaluated. Our design focuses on the ma-
chinery needed to forward vanilla IP packets.

2.1 IXP1200 Hardware

The experiments reported in this paper were per-
formed on the IXP1200 evaluation system illustrated
in Figure 1. The board consists of a IXP1200 network
processor chip (shaded area), 32MB of DRAM, 2MB
of SRAM, a proprietary 64-bit, 66MHz IX bus, a set
of media access controller (MAC) chips implementing
ten Ethernet ports (8�100Mbps+2�1Gbps). Not
shown is a 32-bit, 33MHz PCI [6] bus interface.

The IXP1200 chip itself contains a general-purpose
StrongARM processor core and six special-purpose
micro-Engines running at 177MHz. Each of the six
µEngines supports four hardware contexts, for a to-
tal of 24 contexts. Not shown in the figure is a 4KB
instruction store associated with eachµEngine. The
StrongARM is responsible for loading theseµEngine
instruction stores; actual StrongARM instructions are
fetched from DRAM. A 4KB on-chip scratch mem-
ory is used for synchronization and control of the
µEngines.

The chip also has a pair of FIFOs used to
send/receive packets to/from the network ports on the
IX bus. These are not true hardware FIFOs in the
sense that each has a single input, a single output, and
no address lines; rather, each “FIFO” is anaddress-
able16slot�64byte register file. It is up to the pro-
grammer to use these register files so that they behave
as FIFOs.

Although not explicitly prescribed by the architec-
ture, the most natural use of the DRAM is to buffer
packets. This is a function of size (32MB), but
also of speed. The DRAM is connected to the pro-
cessor by a 64-bit� 88MHz data path, implying
a potential to move packets into and out of DRAM
at 5:6Gbps. In theory, this is sufficient to support

the 2� (8� 100Mbps+ 2� 1Gbps) = 5:6Gbps to-
tal send/receive bandwidth of the network ports avail-
able on the evaluation board, although this rate ex-
ceeds the 4Gbps peak capacity of the IX bus. Sim-
ilarly, SRAM is a natural place to store the routing
table, along with any necessary per-flow state. The
SRAM data path has a peak transfer rate of 32-bit�

88MHz = 2:8Gbps.
The common unit of data transferred among com-

ponents is a 64-byte MAC-Packet (MP), with the data
path traversed by a typical packet defined as follows.
As an incoming IP packet is received, the MAC breaks
the packet into separate MPs, tags the MP as being the
the first, an intermediate, the last, or the only MP of
the packet, and stores the MP in an input FIFO slot. A
µEngine context moves the MPs of each packet from
the input FIFO to a DRAM buffer. Later, after the
packet is ready to be forwarded, a (possibly different)
µEngine context reads the MPs of the packet from the
DRAM buffer, tags them with the output MAC name,
and stores each MP into an output FIFO slot. Finally,
the named MAC chip reads the MPs from the output
FIFO and transmits them.

The key to performance is the latency involved in
each MP transfer. Table 1 gives the measured latency
for each of sixµEngine transfer instructions related
to packet movement. The latency is given inµEngine
cycles, which are approximately 5:6ns. (Recall that
the processor runs at 177MHz.) Also note that each
transfer moves at most 32 bytes, meaning that moving
a minimum-sized Ethernet packet into DRAM takes
two FIFO-to-DRAM transfers, and moving the same
packet out of DRAM takes twoDRAM-to-FIFO in-
structions, for a total of four transfers to move a 64-
byte MP from the input FIFO to the output FIFO. For
completeness, the last four rows of Table 1 give the
latency for SRAM and scratch memory.

Thus, at a minimum, the four transfers into and out
of DRAM take 2�45+2�55= 200cycles= 1:12µs.
This corresponds to a forwarding rate of 893Kpps for
a single context. If we could effectively employ all
24 hardware contexts in this process, we could expect
to forward at most 21:4Mpps, but memory bandwidth
eventually becomes the bottleneck, limiting the packet
forwarding rate to a best case 5:6Gbps / 64 bytes-per-
packet / 2 = 5:45Mpps, considering that each packet
must (at a minimum) be copied both into and out
of DRAM.2 The remainder of this section discusses
some of the challenges and implementation details in

2This discussion ignores the limits of the IX bus and specific
MAC ports on the evaluation board.

2



IXP1200 Chip

FIFOs

M
A

C
 P

or
ts

IX
 B

us

SRAM

DRAM

StrongARM

Scratch
Engines
6 Micro-

Figure 1: Block Diagram of an IXP1200 Evaluation System

Instruction Cycles
FIFO-to-DRAM 45
DRAM-to-FIFO 55
FIFO-to-µEngine 30
µEngine-to-FIFO 40
DRAM-to-µEngine 40
µEngine-to-DRAM 50
SRAM-to-µEngine 30
µEngine-to-SRAM 30
Scratch-to-µEngine 25
µEngine-to-Scratch 25

Table 1: Cycle times to transfer 32 bytes of data be-
tween components

forwarding IP packets.

2.2 Software

There are two complications to programming the
IXP1200 to forward vanilla IP packets. The first chal-
lenge is managing two sets of parallel resources: a set
of 24 contexts, and a set of 32 FIFO slots (16 slots
in the input FIFO and 16 slots in the output FIFO).
The second complication is that port contention—two
or more incoming packets destined for the same out-
put port—makes it impractical for a single context to
forward a packet. Instead, one context must first read
the packet and queue it in DRAM, with a second con-
text later moving the packet from DRAM to an output
port.

The design space for programming the IXP1200 is
very rich. For example, work can be assigned to a
context dynamically, or each context can be statically
bound to a particular task. Similarly, FIFO slots can

be either dynamically or statically bound to ports. Our
approach was to statically allocate all resources.3 Do-
ing so obviously simplified the implementation, but
in retrospect, it was the right thing to do in terms
of yielding predictable performance numbers. Pre-
dictable performance, in turn, facilitates the extensi-
bility described in Section 4.

Figure 2 illustrates the key components of the im-
plementation; to make the discussion concrete, we fo-
cus on the version of the software designed to support
just the 8�100Mbps Ethernet ports. First, the 24 con-
texts are divided into two groups: 16 service the input
FIFO, and 8 service the output FIFO. This 2-to-1 al-
location is justified for three reasons: (1) there is an
integral number of contexts for each port, (2) there
is an integral number ofµEngines bound to input pro-
cessing and output processing, and (3) there is roughly
twice as much work to do on input as on output.

Second, we make a static assignment of ports to
FIFO slots toµEngine contexts. For both the input
and output paths, the 16 FIFO slots are partitioned into
8 slot-pairs. On the output side, each output context is
assigned to an output FIFO slot-pair which is assigned
to an output port. On the input side, each port is as-
signed to an input FIFO slot-pair which is assigned to
a pair of input contexts. (That is, each input process
services a specific input FIFO slot.)

Third, we implemented a shared buffer pool for
packet data in the DRAM. In the SRAM we imple-
mented 8 queues (one per port) of to-be-transmitted
packet addresses. These addresses point to packets in
the DRAM buffer pool. In addition, the SRAM also
holds the routing table; each entry in the table con-

3As opposed to the Intel reference software for the IXP1200,
which uses centralized dynamic schedulers.

3



SRAM

DRAM

Table
Routing

Queue 1

Queue 8

Queue 2

Buffer pool:
8,000 x 2KB buffers

Input

Input

Context 1
Input

Context 8
Output

Context 1
Output

Context 16

Context 2
.
.
.

.

.

.

.

.

.

16

16

. . .

. . .

Port 1

Port 2

Port 3

Port 5

Port 4

Port 6

Port 7

Port 8

SND_FIFO

RCV_FIFO

Figure 2: Major components involved in IP forwarding.

tains 16 bytes of information:SrcIPAddr (4 bytes),
DstIPAddr (4 bytes),DstEthAddr (6 bytes),Queue
(1 byte), andFunc (1 byte). TheFunc field selects
the function to be applied to the packet; for now, as-
sume all packets receive the same vanilla IP process-
ing. Finally, each hardware context includes a set of
registers, which we statically allocate to hold packet
headers (Reg Hdr) and an entry from the routing ta-
ble (Reg Entry).

Figure 3 gives pseudo-code for the loop exe-
cuted by each contextc assigned to input process-
ing (top) and output processing (bottom) on behalf
of port p. Each loop executes once per MP received
or sent. In the figure,Reg Entry.Queue denotes
the Queue field of the routing table entry stored in
the context registers allocated to routing table entries,
Reg Hdr.DstIPAddr denotes the destination address
of the IP header held in registers, and so on. Also,
DRAM[a] denotes memory addressa in DRAM.

We start by examining the input process. The
first instruction (until ready rcv) is the only step that
hides a significant amount of detail. In effect, it in-
volves a busy loop that queries a state machine (not
shown) to determine when data is available on portp,
and instructs the state machine to move the next MP
that arrives on that port to FIFO slotc. (Recall that
there is a 1-to-1 mapping between input contexts and
slots in the input FIFO.) The other detail we are ob-
scuring is where the input context decides to store the
incoming packet. We maintain a simple cyclic buffer
in DRAM, with the buffer for a given packet selected

input:
until ready rcv(p, c)
move IN FIFO[c] to DRAM[p buf + offset]
move DRAM[p buf] to Reg Hdr
h = hash(Reg Hdr.DstIPAddr)
move SRAM[h] to Reg Entry
Reg Entry.Func(Reg Hdr)
if End Of Packet

enqueue(p buf, Reg Entry.Queue)

output:
until ready snd(p, c)
if Start Of Packet

buf = dequeue(p)
move DRAM[buf + offset] to OUT FIFO[c]
start transfer(p, c)

Figure 3: Pseudo-code running in each context as-
signed to input and output processing.

as a function of the input portp, hence the address
p buf.

The move instructions transfer data between
µEngine registers, DRAM, SRAM, and FIFOs, as de-
scribed earlier in this section. Thehash function is
implemented in hardware, and so involves no mem-
ory accesses. Theenqueue operation inserts the ad-
dress of the buffer holding the received packet into the
output port’s packet queue.

The “function” Reg Entry.Func(), which is actu-
ally performed in-line, includes all protocol-specific

4



packet header or content modifications. In our ex-
periments this is the vanilla IP forwarding function:
decrement the time-to-live (TTL) field, recompute the
checksum, set the destination MAC address to the one
found in the routing table, set the source MAC address
to that of the output port, and write these changed val-
ues back to DRAM.

Note that these manipulations need to be performed
only once per packet although the function is called
once for every MP, and thus many times for large
packets. At first it may seem that loading the packet
header, performing a forwarding table lookup, and ex-
ecuting this function for each MP is wasteful—when
processing MPs that comprise the body of large pack-
ets, there is probably no need to have the packet head-
ers or forwarding table entry information on hand.
However, resources are allocated statically, so we
have enough resources to treat each MP as if it is a
minimum-sized packet. Performing these operations
even when they are not strictly necessary does not af-
fect other system components. The reason to structure
the code the way we do will become apparent in Sec-
tion 4.

Finally, the check forEnd Of Packet tells the con-
text that the whole packet has now been received,
and that the time has come to insert the packet in
the transmit queue. Note that the move from FIFO
to DRAM happens for all MPs; the conditional state-
ments happen only once per packet. The worst-case
scenario, therefore, is when each MP contains a com-
plete (minimum-sized) IP packet.

The output process is relatively straightforward.
Basically, the MPs which comprise a packet are
moved from DRAM to FIFO. When all of the MPs
have been moved, the address of the next outbound
packet is removed from the port’s queue.

This description has focused on how we pro-
grammed theµEngines to handle common-case traf-
fic. Exceptional packets, for example those that incur
a miss in the routing table or involve additional pro-
cessing (e.g., IP options) receive most, but not all, of
the same processing. They are placed in DRAM, but
responsibility for forwarding them is passed onto the
StrongARM processor. We return to the role played
by this processor, as well as a Pentium attached to the
IXP1200’s PCI bus, in Section 4.

3 Performance

This section presents a set of experiments designed
to understand the performance limits of the router as

it forwards vanilla IP packets. For the experiments
reported in this and the next section, we drive the
8� 100Mbps Ethernet ports on the IXP1200 board
with eight Kingston KNE100TX PCI Ethernet cards
based on the 21143 Tulip chipset. A pair of these
cards are plugged into each of four 450MHz Pen-
tium IIs running an IP packet generator. When con-
figured to generate minimum-sized IP packets, each
card produces 141Kpps, which is a bit less than the
theoretical maximum of 148Kpps.

Given this traffic source, the IXP1200-based router
is capable of sustaining line speed across all eight
ports, resulting in a forwarding rate of 1:128Mpps.
This is an expected result as the theoretical forward-
ing capacity of the processing and memory resources
in the IXP1200 is much greater than the 800Mbps of
testbed traffic.

3.1 Maximum Forwarding Rate

Calculating the maximum performance of the router,
independent of the MAC ports that populate the board,
is the more interesting question. To determine the
maximum possible forwarding rate, we modified the
input process to move only a single packet from a port
to each FIFO slot. Future iterations of the input pro-
cess see this same packet without any delay or port in-
teraction. This lets us measure the maximum system
performance from FIFO to FIFO, effectively emulat-
ing infinitely fast network ports. An alternative would
have been to use the 2� 1Gbps ports, but we were
unable to create stable packet sources for this config-
uration; we also do not believe that these ports would
have saturated the IXP1200, so we would still have to
perform the same experiment.

The first step is to measure how many packets a sin-
gle context can process using either the input or output
loops. Instrumenting the code to use the IXP1200’s
64-bit cycle counter, we measured these rates to be
375Kpps and 596Kpps, respectively. Of course we
cannot simply multiply these rates by the number of
available contexts, since the contexts will contend for
DRAM.

To determine the affects of parallel contexts on
DRAM, we increased the number of contexts running
the input loop to 4, 8, and 16, and similarly, we mea-
sured the impact of 4 and 8 contexts running the out-
put loop. These tests were run independently, so the
input and output loops do not affect each other. The
results are shown in Figure 4, where we see the rate
for the input loop dropping from 297Kpps per context
(4 contexts) to 237Kpps per context (16 contexts), and

5



the rate for the output loop dropping from 464Kpps
(4 contexts) to 427Kpps (8 contexts).

0 4 8 12 16 20 24

MicroEngine Contexts

0

100

200

300

400

500
F

or
w

ar
di

ng
 R

at
e 

pe
r 

C
on

te
xt

 (
K

pp
s)

input only
output only
combined

Figure 4: Per-context forwarding rates as the number
of parallel contexts increases.

When we combined 16 input contexts with 8 out-
put contexts, each input context was able to forward
168Kpps (shown by the single dot in Figure 4). The
output contexts were paced by the input contexts, and
so forwarded 336Kpps each. Thus, the IXP1200 is
able to forward minimum-sized IP packets at a rate
of 16�168Kpps= 2:69Mpps. This is roughly half
of the 5:45Mpps predicted by the 5:6Gbps DRAM
bandwidth, but is easily explained by the fact that ev-
ery IP packet header needs to be copied from DRAM
into theµEngine registers and then back to DRAM.

This data highlights the negative effects of memory
contention. If only input processing is performed, (us-
ing 16 contexts) a rate of 3:79Mpps is achived. Only
output (8 contexts) results in 3:41Mpps. The actual
forwarding rate of 2:69Mpps reflects running both to-
gether. The input and output processing occur on dif-
ferentµEngines. They are independent from one an-
other except for sharing memory. Without memory
contention (e.g. if the system had sufficiently fast and
wide DRAM) performance would be at least limited
by processor cycles at 3:41Mpps, a 26% improve-
ment.

3.2 Code Inspection

To better understand this 2:69Mpps limit, we exam-
ined the code run by each of the contexts. Figure 5
depicts the same input/output loops presented in Fig-
ure 3, but this time annotated with instruction counts.
In this figure, I denotes the count of actualµEngine

instructions executed at each step, while D, S, and L
denote the number of DRAM, SRAM, and scratch (lo-
cal) memory accesses, respectively.

Code I D S L
until ready rcv(p, c) 44 4
move IN FIFO[c] to

DRAM[p buf + offset] 24 2 3
move DRAM[p buf] to Reg Hdr 7 1
h = hash(Reg Hdr.DstIPAddr) 2 1
move SRAM[h] to Reg Entry 4 1
Reg Entry.Func(Reg Hdr) 32 2
if End Of Packet 2

enqueue(p buf, Reg Entry.Queue) 23 1 4

until ready snd(p, c) 7 1
if Start Of Packet 2

buf = dequeue(p) 38 1 2
move DRAM[buf + offset] to

OUT FIFO[c] 20 2
start transfer(p, c) 10 1
Total 215 7 3 16

Figure 5: The per-packet pseudo-code annotated with
the number of actual instructions (I), DRAM accesses
(D), SRAM accesses (S), and scratch (local) memory
accesses (L).

The main thing to note is that 7 DRAM accesses are
required for each 64-byte MP, not the best-case 4 ac-
cesses suggested in Section 2.1. This is because of
the additional processing done byReg Entry.Func().
For each packet, the header has to be brought into
µEngine registers, modified, and then copied back out
to DRAM. The asymmetry—one access to copy into
registers and two accesses to copy out—is caused by
the fact that the Ethernet + IP header at the front of
each packet is 34 bytes long and only 32 bytes worth
of registers are available for DRAM transfers. We do
not need to copy the Ethernet header into the registers
(hence one DRAM access), while we do need to copy
the Ethernet header out (hence two DRAM accesses)
since the Ethernet addresses in the packet need to be
modified.

We independently measured the achievable DRAM
bandwidth to be 5:01Gbps for 64-byte transfers, and
4:16Gbps for 32-byte transfers. We transfer 3�
64bytes= 1536bits at 5:01Gbps, and 1�32bytes=
256bits at 4:16Gbps, for a total expected forwarding
rate of 2:71Mpps. This is almost exactly the same as
the measured 2:69Mpps forwarding rate, convincing
us that DRAM is the bottleneck.

The 16 scratch memory accesses may come as
somewhat of a surprise. These implement either mu-
tex operations used to lock shared queues, or opera-
tions to get and set configuration registers that control

6



the state machine that moves data between the ports
and the FIFOs. Our implementation, in fact, is very
close to saturating the scratch memory. However, we
could easily move the mutex operations to SRAM,
where we have plenty of head room.

4 Computing on Packets

The previous section explored how all of the
IXP1200’s resources could be brought to bear on for-
warding vanilla IP packets. An equally viable al-
ternative is to assume packets arrive at less than the
maximum sustainable line speed, where excess com-
pute capacity is applied to running more sophisti-
cated forwarding functions. Considering this sce-
nario makes sense for two reasons. First, using a
programmable line card to implement vanilla IP for-
warding is not a cost-effective solution as there are
plenty of ASIC-based solutions available. Second,
there are a wealth of interesting computations that
routers are being asked to perform on packets. For ex-
ample, routers are programmed to filter packets, trans-
late addresses, make level-n routing decisions, bro-
ker quality of service (QoS) reservations, thin data
streams, run proxies, support computationally-weak
home electronic devices, serve as the front-end to
scalable clusters, and support application-specific vir-
tual networks [1, 3, 5, 7, 8, 10, 12].

The question, then, is how much computation can
we expect to perform on each packet, given some
fixed packet rate. This section considers this question
for the 8�100Mbps Ethernet ports on the evaluation
board.

4.1 Processor Hierarchy

In revisiting the block diagram for the IXP1200 pre-
sented in Figure 1, we observe that the architecture
can be viewed as a three-level processor hierarchy.
Packets follow switching paths that traverse different
levels of the hierarchy. As illustrated in Figure 6, one
switching path traverses just theµEngine, a second
traverses the StrongARM processor, and a third tra-
verses the Pentium processor. At each level of the hi-
erarchy, the packet has access to some number of cy-
cles, but there is overhead involved in reaching those
cycles. Higher levels (e.g., the Pentium) offer more
cycles, but packets consume resources at lower levels
of the hierarchy to access them.

It is also the case that the lowest level of the hier-
archy must be able to process packets at line speed;

StrongARM

Pentium

MicroEngines

Figure 6: Three switching paths through the IXP1200
processor hierarchy.

only “excess” capacity can be used to do additional
processing. In other words, the packet rate that must
be sustained is known in advance, so we can calculate
a fixed cycle budget for each packet. In contrast, the
higher levels of the hierarchy see a packet arrival rate
that is a function of the workload; e.g., a router can be
engineered to process IP options in at most 1% of the
packets it forwards. It is therefore possible to trade the
number of cycles available for each packet against the
rate at which packets are expected to arrive.

The rest of this section considers each of the three
processors in Figure 6 in more detail, starting at the
bottom of the hierarchy.

4.2 MicroEngines

Because theµEngines are committed to running at line
speeds, they are best viewed as being divided into two
components: (1) arouter infrastructure(RI) that is
able to forward minimum-sized vanilla packets at line
speed, and (2) avirtual router processor(VRP) that
runs additional code on behalf of each packet. In ef-
fect, Section 2 defines the RI, while this section de-
fines the VRP. In terms of the pseudo-code in Figure 3,
everything exceptReg Entry.Func(Reg Hdr) is part
of the RI.

The first question is how to characterize the ca-
pability of the VRP, so we can understand what
code it is allowed to run. Starting with just the RI,
we calculated what fraction of the available proces-
sor cycles and memory accesses arenot consumed
forwarding minimum-sized packets arriving on the
eight 100Mbit Ethernet ports. We then added the
extra instructions—no-ops, SRAM reads/writes, and
DRAM reads/writes—needed to consume this extra
capacity to the input loop, and verified that we could
still forward packets at line speed. Finally, we exper-
imented with various permutations of these instruc-

7



tions, that is, different mixes of register and memory
operations. In the end, we opted for a conservative
set of extra instructions that consumed roughly 65%
of the head room we predicted.

Although there is some head room available in the
output context, we elected not to exploit it, so as to
concentrate the additional processing steps to a single
control point.

Based on these experiments, and taking into con-
sideration the state of theµEngine context when the
packet-specific function is allowed to run, we charac-
terize the VRP as follows:

� The first 32 bytes of the IP header are available
in registers.

� The function has access to 8 general purpose 32-
bit registers. Values stored here do not last across
invocations of the VRP, thus should be used for
temporary state (e.g. intermediate computational
results, packet payload loaded from DRAM, or
state loaded from SRAM).

� The function can execute up to 400 cycles worth
of instructions.

� The function can perform up to 4 DRAM trans-
fers (reads or writes) of 32 bytes each (128
bytes), with each read costing 40 cycles and each
write costing 50 cycles against the 400 cycle to-
tal.

� The function can perform up to 7 SRAM trans-
fers (reads or writes) of 32 bytes each (224
bytes), with each read or write costing 30 cycles
against the 400 cycle total. Unlike DRAM, the
cost of SRAM access scales with transfer size,
allowing a greater number of smaller (4, 8, 16
byte) accesses if desired.

� The function can perform 3 hardware hashes.

Keep in mind that this budget is available for each 64-
byte MP processed by theµEngine.

We conclude that the DRAM budget is actually
sufficient to re-write the entire packet since we have
4 DRAM transfers available to process each 64-byte
MP: two to read the MP into theµEngine and two to
write it back to DRAM. Furthermore, there are suffi-
cient SRAM accesses to load and store up to 224 bytes
of state that persists across packets and packet flows.
This is important because the parallelism of multiple
µEngine contexts working together on a single input

port may prevent a specificµEngine from processing
all packets on a specific flow.

Beyond understanding the resource budget, there
are several additional issues that need attention. First,
we should revisit the issue of exactly what the RI pro-
vides at the expense of the VRP budget. For exam-
ple, we could maintain 32 bytes of state for each flow
rather than 16 bytes for each route. In this way the RI
would already be equipped to differentiate packets on
a flow basis rather than a route basis.

Second, we need a mechanism to extend the
µEngine program to include new per-flow functions.
This turns out to be easy. EachµEngine has its own
1024-instruction control store (ISTORE) that can be
programmed independently of the others. The store
can be modified at almost any time. At boot time, be-
fore theµEngines are enabled, the StrongARM initial-
ized this with 350 instructions of router infrastructure
code. This leaves a 650-instruction VRP store, which
can also be initialized at boot time by the StrongARM,
or modified later at runtime. To modify aµEngine
control store once the router is in operation, the spe-
cific µEngine is disabled by the StrongARM. Once
disabled, its control store can be read and written
with instruction level granularity. It takes two scratch
memory accesses to modify one instruction in the IS-
TORE. Finally, theµEngine is re-enabled with the
new VRP functionality. Modifying the store takes two
memory accesses for each instruction, meaning that
adding a 10-instruction function to the store takes 800
cycles (4.48µs).

Third, we need to allocate the 650 instruction slots
in the ISTORE among competing extensions. For ex-
ample, we may want to allow (1) many small func-
tions associated with equally many fine-grain packet
flows, (2) many small functions that affect all pack-
ets, (3) a single extension that uses most of the store
but benefits only a limited number of flows, and so on.
In general, we need a mechanism (and policy) for as-
signing “pages” of the ISTORE to different VRP pro-
grams.

Finally, we need to verify that a given extension ad-
heres to the VRP’s resource budget. This is easy if
we disallow loops, which is not unreasonable since all
operations are implicitly on 64-byte chunks of each
packet. That is, the loop has already been unrolled for
us.

4.3 StrongARM

The StrongARM is in a unique position. On the one
hand, it is able to directly access DRAM, so the packet

8



is available for it to compute on with minimal addi-
tional overhead. The only latency is the cost of a
µEngine signalling the StrongARM to inform it that
a packet is available. This can be implemented in two
different ways. One involves having aµEngine and
the StrongARM communicate via a shared memory
location. This can be done in two memory accesses—
one in each direction—meaning that control over a
packet can be passed to the StrongARM and back in
60 cycles if we use SRAM. Of course, we cannot
afford to have the StrongARM spinning on memory
shared with theµEngines, but the StrongARM could
poll this location at some coarser interval. The sec-
ond involves aµEngine delivering an interrupt to the
StrongARM when a packet is available for process-
ing, and the StrongARM writing to a memory location
when the packet is ready to be transmitted.

On the other hand, because the StrongARM shares
memory with theµEngines, any memory accesses it
performs steals accesses from theµEngines. Said an-
other way, the StrongARM must be viewed as a 7th
µEngine competing for a limited number of memory
accesses. If the StrongARM were to limit itself to only
register operations, it could perform approximately
100 such instructions for every one of the 1:128Mpps
arriving on the eight 100Mbps ports. This number
is calculated based on the inter-packet arrival time
of 8.86µs (based on the arrival) minus the signalling
overhead of 3.36µs = 5.5µs = 98 cycles. However,
the StrongARM must limit itself to the same mem-
ory budget as theµEngines: 4 DRAM accesses and
7 SRAM accesses per MP.

Considering that theµEngines are equally capable
of consuming the excess memory capacity, we envi-
sion the StrongARM playing three limited roles. First,
it manages theµEngines. This means updating the
routing table and loading new code into theµEngines.
We expect these to be relatively rare events, so it
seems possible to account for them by simply being
conservative in how close we come to fully utilizing
SRAM—even ten-thousand route updates per-second
consume less than 1% of the SRAM bandwidth.

Second, the StrongARM processes a limited num-
ber of exceptional packets, but ones for which the for-
warding function is knowna priori. For example, the
StrongARM has sufficient capacity to process pack-
ets containing IP options. However, the StrongARM
must be scheduled to perform this operation for a lim-
ited workload (e.g., 1% of the maximum arrival rate)
so as to not render theµEngines vulnerable to denial
of service attacks.

Third, the StrongARM serves as a go-between for
the Pentium and theµEngines. This involves fetch-
ing each MP-sized chunk of the packet from DRAM
and writing it to the PCI bus (two DRAM accesses)
and later reading each MP-sized chunk from the PCI
bus and storing it to DRAM (two DRAM accesses).
If we were to pass every packet to the Pentium then
these four DRAM transfers would consume the entire
DRAM budget, but as we will see in the next sub-
section (not surprisingly) the PCI bus cannot transfer
data at this rate. Whatever percentage of packets re-
quire processing on the Pentium, the StrongARM will
have consumed the DRAM budget for these packets.
This is not a problem because it makes no sense for
theµEngines to make additional DRAM accesses for
each packet, only to pass the packet off to the Pentium.

4.4 Pentium

At the next level of the processor hierarchy, a full Pen-
tium processor is available, connected to the rest of
the architecture by a PCI bus. There is clearly a non-
trivial overhead involved in getting packets into the
Pentium, but significant compute capacity is available
once they are there. Also, like the StrongARM but
unlike theµEngines, we have to make a judgment call
about the expected workload; i.e., how many packets
of various types we expect to see. The following dis-
cussion is limited to an evaluation of overhead and the
remaining capacity.

4.4.1 Experimental Setup

The system we are using is configured to treat the
IXP1200 evaluation board as the motherboard, mak-
ing it impossible to also plug a Pentium motherboard
in the PCI bus. This means we cannot directly mea-
sure the StrongARM-to-Pentium performance across
the PCI bus.4 Instead, we measure the Pentium/PCI
performance using another programmable line card:
the RAMiX PMC694 [9]. The RAMiX card interacts
with the PCI bus in a way that is functionally identi-
cal to the StrongARM on the IXP1200 card, and so it
gives us an accurate account of both how many pack-
ets per second we can push across the PCI bus, and
how much impact this has on the Pentium. This setup
cannot tell us what impact these transfers have on the
StrongARM, but to a first approximation we already
accounted for this overhead in the previous subsec-
tion.

4This is a limitation of the current system, not the IXP1200
architecture.

9



Figure 7 shows the experimental setup. We are us-
ing an Intel CA810E motherboard with a 733MHz
Pentium III CPU and a 133MHz system bus. The
RAMiX PMC694 card has a 266MHz PowerPC pro-
cessor. The primary PCI bus is isolated from the sec-
ondary PCI bus (local to the card) with an Intel 21554
non-transparent PCI-to-PCI bridge. Both the primary
PCI bus and the secondary PCI bus (on the RAMiX
card) run at 33MHz and are 32-bits wide. The Pen-
tium processor runs a Linux 2.2.16 kernel while the
PowerPC runs our “raw” code with no operating sys-
tem.

Filtering
Bridge plus Memory

PowerPC Core

MAC MAC

PCI BUS

PCI BUS

Pentium−III
Motherboard

RAMiX PMC694 NIC

Figure 7: Block Diagram of our Network Processor-
to-Pentium Testbed.

4.4.2 PCI Bandwidth

Before measuring packet turn-around time from the
card to the host and back, we made several raw band-
width measurements to determine the best method of
moving the data. Both the host processor and the card
processor can be the PCI bus master and initiate trans-
fers. Using read or write instructions a processor can
pull or push data across the bus. In addition, the card
has a direct memory access (DMA) engine that is op-
timized for moving data. (These same options are are
also available on the IXP1200.)

Table 2 summarizes the results of our experiments.
Under programmed I/O (PIO), we measured several
different data movement techniques. These differ
in the number of bits transferred per loop iteration
(Transfer Size). We measured transfer size of 64 bits
and 128 bits by unrolling the 32-bit loop two times
and four times, respectively. We obtained our best

times by using the ANSI C memcpy library routine
(from egcs-2.91.66) which uses tuned assembly rou-
tines. Our code was written in ANSI C.

4.4.3 Available Cycles

From Table 2, we see that the fastest way to move a
packet from the card to the host and back to the card
is for the card to push the packet to the host using
its DMA controller and then have the host push the
packet back to the card using memcpy-based PIO.

Table 3 shows the estimated maximum forwarding
rate and available per-packet processor cycles for 64-
byte and 1500-byte packets calculated from the best
“push” rates in Table 2. The round trip rate is calcu-
lated as one-half the harmonic mean of the memcpy-
based host push rate and the DMA-based card push
rate. We estimate the available Pentium III cycles as
the number of cycles that pass while the card is trans-
ferring the data to the host.

Packet Round Trip Available Pentium III
Bytes Kpps Cycles @ 733MHz

64 356.6 1372
1500 12.6 41700

Table 3: Estimated Maximum Forwarding Rate and
Available Per-Packet Processor Cycles.

Packet Round Trip Available Pentium III
Bytes Kpps Cycles @ 733MHz

64 183.3 2706
128 139.6 2975

1500 24.6 10637

Table 4: Measured Maximum Forwarding Rate and
Available Per-Packet Processor Cycles.

Table 4 shows the measured maximum forward-
ing rate and available per-packet processor cycles for
64-byte, 128-byte, and 1500-byte using the memcpy-
based host push and DMA-based card push methods.
Using this information, we can make predictions as to
the number of packets which can reach the Pentium
and the number of Pentium cycles available to those
packets. Of course, this will depend on the packet rate
as well as the packet-size mix.

Here we explore the boundaries for different work-
loads for the eight 100Mbps links. We vary the packet
size as well as themessage size. The message size is
the number of initial bytes of the packet which are sent

10



Bus Transfer 64-Byte Packets 1500-Byte Packets
Master Size Mode Direction Kpps MByte/sec Kpps MByte/sec
host 32 bits PIO push 919.9 58.88 39.37 59.06
host 64 bits PIO push 975.0 62.40 41.58 62.37
host 128 bits PIO push 962.4 61.60 41.53 62.30
host (memcpy) PIO push 1073.4 68.70 44.29 66.44
host 32 bits PIO pull 61.1 3.91 2.61 3.91
host 64 bits PIO pull 61.8 3.95 2.63 3.95
host 128 bits PIO pull 61.9 3.96 2.64 3.95
host (memcpy) PIO pull 62.2 3.98 2.66 3.99
card 32 bits PIO push 365.5 23.39 14.84 22.26
card 64 bits PIO push 363.4 23.26 14.81 22.21
card 128 bits PIO push 363.9 23.29 14.81 22.21
card — DMA push 534.2 34.19 17.57 26.35
card 32 bits PIO pull 53.7 3.44 2.29 3.43
card 64 bits PIO pull 53.8 3.44 2.28 3.41
card 128 bits PIO pull 53.8 3.44 2.28 3.41
card — DMA pull 354.1 22.66 15.74 23.61

Table 2: Raw PCI Transfer Rates

to the Pentium and back for processing. For our exper-
iment, we used packet sizes of 64, 128, and 1500 bytes
and message sizes of either the packet size or 64 bytes.
(The 64-byte case is interesting because most router
functions only require reading and/or modifying the
first 64 bytes of the packet.) We used the measured
1:128Mpps rate for the 64-byte packet case. From this
we calculated a 564Kpps rate for the 128-byte case
and a 48:1Kpps rate for the 1500-byte case. (This cal-
culation is slightly conservative as the relative size of
the Ethernet preamble is smaller for the larger pack-
ets.) Table 5 summarizes the results. The “Pentium
Reach” column is the fraction of packets which could
be sent to the Pentium (from Table 4) out of the packet
rate given in Table 5. The “Pentium Cycles” column is
the maximum number of processing cycles available
for each of the messages which reach the Pentium.
The values in the first four rows of the this column are
from Table 4. The value in the last row is calculated
as follows: From Table 4, we determine that the to-
tal time for one 64-byte packet is 1pkt=183:3Kpps=
5:46µs. From the same table, we see that the Pentium
was idle for 2706cyc=733Mcps= 3:69µs. There-
fore, the Pentium was busy for 5:46µs� 3:69µs =
1:77µs for that 64-byte packet. If we assume that
the Pentium will be busy for the same amount of
time in our third scenario, we calculate the idle time
as 1pkt=48:1Kpps�1:77µs= 19:0µs. At 733MHz,
this corresponds to 13900 cycles. Of course, if fewer
packets are handled by the Pentium, more cycles are

available to the remainder. For example, in the case of
64-byte packets, if the Pentium only needs to process
10.3% of the 1:128Mpps stream, then there are 5000
cycles available per packet.

Packet Packet Msg Pentium III
Size Rate Size Reach Cycles
Bytes Kpps Bytes % @733MHz

64 1128. 64 16.3 2706
128 564. 128 24.8 2975
128 564. 64 32.5 2706

1500 48.1 1500 51.1 10637
1500 48.1 64 100.0 13900

Table 5: Available Per-Packet Cycles Under Various
Scenarios. Message size indicates how many bytes
from the packet are sent through (round-trip) the Pen-
tium for processing.

In [7] the authors report forwarding rates on a
450MHz Pentium II for a TCP proxy as 85:5Kpps
(11:7µs per packet). If we subtract the measured
3:1µs non-proxy overhead, we see that the per-packet
cycle costs for the core TCP proxy code is 3900 cy-
cles on the 450MHz Pentium II. On a 733MHz
Pentium III, this corresponds to between 3900 and
6300 cycles (depending on architectural differences
between the two machines). Given that Table 5 shows
that we have between 2706 and 13900 cycles avail-
able, we conclude that there are practical router ap-

11



plications which could take advantage of the Pentium
processing cycles.

5 Conclusions

We have evaluated the performance of the IXP1200
network processor, which uses parallel computing
contexts to hide memory latency. We implemented
a prototype IP router on this processor, and demon-
strated that it can easily sustain line speeds for 8�

100Mbps Ethernet ports. Moreover, by emulating in-
finitely fast network ports, we show that the IXP1200
is capable of forwarding minimum-sized Ethernet
packets at a rate of 2:69Mpps. Our experiments in-
dicate that DRAM is the bottleneck. There is suffi-
cient processing capacity available to get at least 26%
improvement with faster memory.

Static allocation of resources plays a key role in
our router design. The IXP1200 has seven process-
ing units which run concurrently but share many re-
sources. Dynamically scheduling and synchronizing
different tasks in such systems is notoriously difficult
to get right. By assigning all resources a fixed sched-
ule, we made the system very predictable, and thereby
easy to debug, measure, and optimize.

Rather than focus solely on maximizing packet
rates, we also evaluate how such a system might
be used to perform additional computation on each
packet. This is an important consideration since
routers are being programmed to provide increas-
ingly sophisticated services. We demonstrate that at
a 1:128Mpps packet arrival rate (corresponding to
8�100Mbps Ethernet ports), the IXP1200 has con-
siderable head room. Static scheduling results in a
fixed resource budget being available for processing
each packet. These resources can be viewed as a
virtual router processor (VRP) that, given a conser-
vative measurement of our head room, can perform
up to 4 DRAM accesses, 7 SRAM accesses, and
400 register instructions for each 64-byte chunk of
a packet. Higher levels of the processor hierarchy—
StrongARM and Pentium—can apply additional cy-
cles to each packet.

While we have demonstrated that it is possible to
apply non-trivial computational resources to packets,
much work remains in specifying how new code is
added to the forwarding path. This includes care-
ful thought about where to draw the line between the
fixed forwarding infrastructure and the variable VRP,
verifying that extensions live within the VRP’s re-
source constraints, and allocating chucks of the in-

struction space to different programs. We also hope
that by precisely defining a “form factor” for such ex-
tensions, we will be able to squeeze more resources
out of theµEngines; we currently use only 65% of the
available spare capacity. These questions are all a fo-
cus of current research.

References

[1] D. S. Alexander, M. Shaw, S. M. Nettles, and J. M.
Smith. Active Bridging. InProceedings of the ACM
SIGCOMM ’97 Conference, pages 101–111, Septem-
ber 1997.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Poterfield, and B. Smith. The Tera Computer Sys-
tem. In Proceedings of 1990 International Confer-
ence on Supercomputing, pages 1–6, June 1990.

[3] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner.
Router Plugins: A Software Architecture for Next
Generation Routers. InProceedings of the ACM SIG-
COMM ’98 Conference, pages 229–240, September
1998.

[4] Intel Corporation. IXP1200 Network Processor
Datasheet, September 2000.

[5] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek.
The Click Modular Router. InProceedings of the 17th
ACM Symposium on Operating Systems Principles,
pages 217–231, December 1999.

[6] PCI Special Interest Group, Hillsboro, Oregon.PCI
Local Bus Specification, Revision 2.2, December
1998.

[7] L. Peterson, Y. Gottlieb, S. Schwab, S. Rho, M. Hi-
bler, P. Tullmann, J. Lepreau, and J. Hartman. An
OS Interface for Active Routers.IEEE Journal on
Selected Areas in Communications, 2001. To appear.

[8] L. L. Peterson, S. C. Karlin, and K. Li. OS Support
for General-Purpose Routers. InProceedings of the
7th Workshop on Hot Topics in Operating Systems
(HotOS–VII), March 1999.

[9] RAMiX Incorporated, Ventura, California.
PMC/CompactPCI Ethernet Controllers Product
Family Data Sheet, 1999.

[10] J. M. Smith, K. L. Calvert, S. L. Murphy, H. K. Or-
man, and L. L. Peterson. Activating Networks: A
Progress Report.IEEE Computer, 32(4):32–41, April
1999.

[11] Vitesse Semiconductor Corporation, Longmont, Col-
orado. IQ2000 Network Processor Product Brief,
2000.

[12] D. Wetherall. Active network vision and reality:
lessons from a capsule-based system. InProceedings
of the 17th ACM Symposium on Operating Systems
Principles, pages 64–79, December 1999.

12


