RESULTS ON APPROXIMATION
ALGORITHMS

George Karakostas

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

November 2000

© Copyright 2000 by George Karakostas.

All rights reserved.

Abstract

This thesis presents approximation algorithms for three problems: the Minimum Latency
Tour problem, the k-Minimum Spanning Tree problem on graphs and the implementation
of the Perfect-LFU (Least Frequently Used) policy for Web caching.

The Minimum Latency Tour problem, also known as the traveling repairman problem,
is a variant of the Traveling Salesman Problem. We are given a graph with non-negative
edge weights and a starting node and the goal is to compute a tour on the graph that visits
all the nodes and minimizes the sum of the arrival times at the other nodes. The first part
of this thesis presents a quasipolynomial-time approzimation scheme for this problem when
the instance is a weighted tree and when the the nodes lie in the d-dimensional Euclidean
space for some fixed d. Our ideas extend to other norms as well as to the case of planar
graphs. We also present a polynomial time constant factor approximation algorithm for the
general metric case, which achieves a slightly worse approximation factor than the currently
best known (due to M.Goemans and J.Kleinberg), but is simpler. Finally we extend the
definition of the problem to a more general weighted version and show how to apply our
ideas in this more general setting.

In the second part we present an approximation algorithm for the problem of finding a
minimum tree spanning any k vertices in a graph (k-MST) that achieves an approximation
factor of 2 + €, for any arbitrary constant ¢ > 0 and runs in time n°(/9_ improving
a 3-approximation algorithm by N.Garg. As in Garg’s case, the algorithm extends to a
(2+€)-approximation algorithm for the minimum tour that visits any k vertices, provided
the edge costs satisfy the triangle inequality.

The last part presents a modification of the Perfect-LFU replacement policy for Web
caching called Window-LFU. Unlike Perfect-LFU, our policy can be implemented in prac-
tice, and under certain assumptions we can prove that it can approximate the hit rate of

Perfect-LFU within a factor of 1 — ¢, using space polynomial on the cache size instead of

iii

polynomial on the total number of pages in the Web (which is the case for Perfect-LFU). In
addition to providing analytical bounds for this new policy, we provide experimental results
which show that in practice our policy performs better than expected from its analytical
study. This leads to a revision of our initial assumptions about the Web. More specifically,
our assumption of statistical independence among the requests in a request stream does not
seem to hold. Instead, there are dependencies due to locality and our policy takes advantage

of them.

iv

Acknowledgements

The past five years have been the most exciting period for me. I had to move to a different
country, to a different way of life, to a different academic experience than the one I had in
Greece. In short, my life has completely changed for the last five years. But all this change
alone is not that much exciting in itself. What made it really worthy were the people I met
along the way. Without them, this thesis wouldn’t exist, so this is the right place for me
to say ‘thank you’. However, this presents me with a challenge far greater than the issues
tackled in the pages that follow: I will have to fit my gratitude in a few lines of text! This
is certainly a lost cause to fight, so all I can do is to ask for the understanding of those who
are not mentioned here, although they should.

This thesis would not exist without the continuous help and encouragement of my ad-
viser Sanjeev Arora. Usually a graduate student looks for three qualities in an adviser: a
respected researcher, a motivating teacher and a good friend. I believe that a graduate
student would agree with me if I’d say that an exceptional adviser has any two of these
qualities. So I think I am justified to feel extremely lucky to have been associated with
someone who has all three of them. Sanjeev has set the mark against which I will measure
myself and the others in the future. I really doubt whether an adviser can do anything
more for his student.

During my studies at Princeton I benefited from being the student of some of the greatest
computer scientists. But I would like to especially thank Dick Lipton. Dick has been a great
teacher and a continuous source for inspiration.

Finally, I would like to thank all those people that made life at Princeton so enjoyable.
And T will start with those who made it much easier: Sandy, Melissa, Trish, Ginny thanks
for everything! Also I would like to thank all my friends and fellow graduate students in
the CS Department, and especially Tasos and Kostas. Among other achievements, together

we helped Starbucks to open a few new branches. The Greek community of Princeton

University helped me to keep in touch with the tiny place I come from. Thanks to Dimitris,
Aggelos, Evi, Andromache, Kuriakos, Christos and the rest of the ‘old guard’ for five years
of fine dinning and movie going experiences. Also many thanks to the newer members of
the Greek community. I will not refer to them individually (they know who they are, after
all), but I expect them to mention me when they finish their thesis. And of course many
thanks to Dimitris and Andreas for sharing with me their wit and experience, just as any
good (former) soldier would.

It is customary for the author of a thesis to dedicate it to his/her parents. I am not
going to do so, though. Everything I did, I do or I will ever do are due to my father and
mother. A simple dedication does not come even close to a ‘thank you for everything’
Funding acknowledgement: The research this thesis is based on was supported by San-
jeev Arora’s NSF CAREER award NSF-CCR. 9502747, an Alfred Sloan Fellowship, and a
Packard Fellowship.

vi

Contents

Abstract

1 Introduction

1.1
1.2

Approximation algorithms L oL oo oL

Outline e e e

2 The Minimum Latency Tour problem

2.1
2.2
2.3

Comparison with the TSP o o 0 o oo
History o

Search ratio of graphs.o Lo

3 The main idea: Local structure does not matter

3.1
3.2

The main idea i e e e e e

Reduction from Minimum Latency to Weighted Vehicle Routing

4 Approximation algorithms for the MLT

4.1

4.2

The Tree Case o o o i i it i e e e
4.1.1 The Structure theorem for trees.
4.1.2 The algorithm for trees
The Euclidean Space e
4.2.1 The partition oL
4.2.2 The Structure theorem for the Euclidean plane
4.2.3 The algorithm for theplane,
4.2.4 FEuclidean spaces of higher dimension.

4.2.5 Extension to other norms

vii

iii

10

13
14
15

4.3 Planargraphso e 33

4.4 General metrics oL oL e e e 34
Extending the MLT problem 38
5.1 Extending the mainidea L. 39
5.1.1 Relation to weighted Vehicle Routing 41
5.1.2 Approximation algorithms for the Weighted MLT 41
51.3 Thetreecase i e e 42
5.1.4 Euclidean spaceso e 42
51.5 Planargraphs. 42
The k-Minimum Spanning Tree problem 43
6.1 Definition of the &-MST problem 43
6.1.1 Previouswork. 44
6.1.2 Mainresult L L 45
6.1.3 Connection to MLT 46
The approximation algorithms for k.-MST and k-TSP 47
7.1 Preliminaries Lo e e e 47
7.1.1 Special verticeso 48
7.1.2 The LP formulation 0. 49
7.2 Thealgorithm oo 54
7.2.1 Preprocessingo 54
7.2.2 Using the Primal-Dual method 56
7.2.3 Producing a tree that spans exactly k vertices. 70
7.3 The metric k-TSP problem o0 82
Approximation of the LFU policy for Web Caching 84
8.1 Webandcaching e 84
8.2 Zipf’s distribution and the network model o000 85
8.3 Consequences of the statistical independence assumption 89
8.3.1 Determining the Zipf distribution of the request stream 89

viii

8.3.2 Practical LFU implementation for Web caching 93

Bibliography 103

ix

List of Figures

21
4.1
7.1
7.2
7.3
7.4

7.5
7.6
7.7

7.8
7.9

8.1
8.2

A weighted tree Lo 8

A dissection (a), the corresponding quadtree (b), and its shift by (a,b) (¢). 25

Preprocessing L 56
The graph G with root vertex r and W = {v,u}. 62
The components grow and edge e becomes tight. 63

Components continue to grow. Solid lines denote tight edges. Tight edges in

each component form a tree.. 64
The end of the grow phase of the algorithm. 65
The trees T, T+ 73

(a) The new vertices component is a leaf component in 7. (b) In tree T
the new vertices component replaces an edge (dotted line) in connecting a
component of old vertices to the root. Notice that some of the old vertices
that belong to T_ (gray areas) may not belong to 7', because by replacing the
edge with the new component, they become inactive leqves and are deleted
during the Delete phase. oL 74
Producing a tree spanning exactly k vertices. 76

(a) C is an inactive leaf of T. (b) M is formed by components Ci,Cy that

are not inactive leaves of T' at the current iteration of the algorithm. 7
A simple caching environment oL Lo oL L 86
Zipf’s functiono e 87

8.3 Cache hit rate for variable window sizes (long trace)

8.4 Cache hit rate for variable window sizes (short traces)

xi

Chapter 1

Introduction

1.1 Approximation algorithms

One of the central questions in Computational Complexity is whether P L NP. Although
great effort has been put into tackling this question for decades, we are still far from an-
swering it. In the meanwhile an ever increasing list of problems have been proven to be
NP-hard. The existence of a polynomial time algorithm for any of these problems would
immediately imply P = NP. Given our inability to prove the latter, it is highly unlikely
that such algorithms will appear in the near future (if they exist, of course). So researchers
have turned their attention into devising approximation instead of ezact algorithms. These
are algorithms that produce a solution guaranteed to be within a factor from the optimal
solution efficiently (i.e. more efficiently than the (usually exponential) time needed to solve
the problem exactly). The measure of the quality of an approximation algorithm is the
quality of the approximation (i.e. the approximation achieved) and its running time (al-
though usually when one refers to approximation algorithms he or she refers to a polynomial
time algorithm, and hence running time usually is not a criterion for the quality of the al-
gorithm). To make the lines above more precise we give the definition of an approximation

algorithm:

Definition 1: An approxzimation algorithm for a minimization problem achieves an approz-
imation factor § iff for any instance T of the problem, the following holds for the optimal
solution OPT(Z) and the solution SOL(Z) produced by the algorithm:

SOL(Z) < § x OPT(Z)

Obviously, in this case § > 1. For a maximization problem achieving an approzimation

factor of § the following must hold:
SOL(T) > § x OPT(I)

and 6 < 1.

An algorithm achieving an approximation factor of ¢ is called a §-approzimation algorithm.
The better (i.e. closer to 1) the § of an algorithm is, the better the quality of the algorithm
is. The best one can hope for is an approximation factor of 1 + e (for a minimization
problem) or 1 — ¢ (for a maximization problem), for any constant 0 < ¢ < 1'. Then the
algorithm is called an approzimation scheme. Of course the running time of the algorithm
will depend on ¢, so there is a trade-off between the quality of the solution and the efficiency

of the algorithm. This trade-off is refined further in the following definitions:

Definition 2: A family of approzimation algorithms for a problem P, {Ac}, is called a
polynomial time approximation scheme (PTAS) if algorithm Ae is an (14 €)-approzimation

algorithm and runs in time polynomial in the size of the input for a fized €.

In this thesis we present approximation schemes for the Minimum Latency Tour problem
(defined later) that run in quasi-polynomial time (instead of polynomial). In this case we

talk about quasi-polynomial time approzimation schemes (QPTAS):

Definition 3: A family of approzimation algorithms for a problem P, {A.}, is called a

LOf course for an exact algorithm § = 1.

quasi-polynomial time approximation scheme (QPTAS) if algorithm Ac is an (1 + ¢€)-
approzimation algorithm and runs in time quasi-polynomial in the size of the input for

a fized €.

Often it is possible to prove that a problem cannot have approximation schemes unless a
Computational Complexity hypothesis holds (e.g. P = N'P). The area of inapproximability
is another area that has flourished during the last decade due to a wealth of breakthrough
results like those in [11]. A class of problems that do not have PTAS’s unless P = NP is
the class MAX-SNP. The definition of this class and the notion of L-reductions (used to
define completeness for it) can be found in [37].

For an introduction to the field of approximation algorithms the reader is referred to
the textbook by C. Papadimitriou [36] and the excellent collection of surveys edited by D.
Hochbaum [28]. More on hardness of approximation results can be found in [32] and the

references in it.

1.2 Outline

This thesis presents approximation algorithms for two NP-hard problems: the MINIMUM
LATENCY TOUR (MLT) and the k-MINIMUM SPANNING TREE (k-MST). In the first part
we describe quasi-polynomial approximation schemes for some cases (e.g. trees or planar
graphs) of the MLT and some of its extensions. In the second part we describe an approx-
imation algorithm for the k-MST that achieves an approximation factor of 2 + € for any
€ > 0 and runs in polynomial time for fized e. Most of the material in the first two parts is
based on [9] and [10].

In the third part of this thesis we study the approximation of the Least Frequently Used
(LFU) replacement policy for Web caching. Under certain assumptions we prove that the
hit rate of Perfect-LFU can be approximated to within any constant ¢ > 0 using space

polynomial on the size of the cache instead of polynomial on the size of Web sites. Our

experiments show that (a) certain of our assumptions do not seem to hold and (b) our
proposed Web caching policy takes advantage of the fact that these assumptions do not
hold and performs better than the theoretical analysis indicates. The material in this part

is based on [41] and [29].

Chapter 2

The Minimum Latency Tour

problem

The minimum latency problem, also known as traveling repairman problem [1], is a variant
of the Traveling Salesman Problem (TSP) in which the starting node of the tour is given
and the goal is to minimize the sum of the arrival times or latencies at the other nodes.
(The latency of a node is the distance covered before reaching that node.) This natural
combinatorial problem arises in many day-to-day situations, whenever a server (e.g. a
repairman or a disk head) has to accommodate a set of requests (each represented by a
point) so as to minimize their total (or average) waiting time. The tour that achieves this
goal will henceforth be call the minimum latency tour (MLT for short).

More formally, the problem is defined as follows:

MINIMUM LATENCY TOUR

Input : A set of n points (one of them designated as the starting point

p1), a symmetric distance matrix [d;;]

Output : A tour p; — ps — ... — p, that visits all points and
minimizes the total latency

n i—1

Z Z dpj Pj+1 (2-1)

i=2 j=1

By rearrangement, the objective function (2.1) can be rewritten as a weighted sum:
n—1
Z(n - i)dpi,pi+1 (2.2)
=1

Here we study the restriction of the problem to distance matrices that satisfy the fol-

lowing conditions:
diy =0 Vi
dij = dj; Vi, j (2.3)
dij < dip, +dy; Vi, 5,k

i.e. the distances define a metric.

2.1 Comparison with the TSP

From the objective function formulation (2.2) it becomes apparent that the MLT problem
is a weighted variation of the TSP (where the objective function to be minimized by the
tour is E?:_ll dp; pi+,) - However, it has a reputation for being much harder than the TSP.

For example, the MLT does not possess the locality property of the TSP for local changes
in the structure of a metric space. Even a very small local change of a tour can affect the

arrival time of all the points visited by the tour afterwards, and it may change dramatically

the value of (2.2). On the other hand, local changes affect the length of the tour only
locally. This lack of locality is conceivably prohibitive for the design of algorithms that
‘divide and conquer’ in order to solve the MLT problem: each one of the subproblems is
profoundly related to the other subproblems and their optimal solution does not imply an
optimal overall solution. This is not the case, for example, for the Euclidean TSP where
resent ‘divide and conquer’ algorithms by Arora [7] (and, independently, Mitchell [34]) solve
the problem almost optimally.

It is also easy to prove (Blum et al. [16]) that calculating the MLT is at least as hard
as calculating the TSP: Given an instance of the TSP, create an instance for the MLT by
adding m new points (for a large m) at infinity (i.e. far enough away from the points of
the TSP instance) as in Fig. 1. Then the MLT on the augmented set of points will have to
follow the TSP tour on the original points before visiting the new ones.

This reduction proves the NP-hardness of the MLT for all the metric spaces where TSP
is NP-hard. But even for metrics where the TSP is solvable trivially, the computation and
the structure of the MLT seems to be much more complex. The case of weighted trees
is an illustrative example. A tree with non-negative weights on its edges defines a metric
very simply as follows: the points are the vertices of the tree and the distance between
any two points is the total weight of the unique path that connects these points. Such a
tree is shown in Figure 2.1. In any tree, the TSP has a very simple structure; it is just a
depth-first walk on the tree. For example, a TSP tour on the tree of Figure 2.1 is the walk
1-2—-23—-+4—-5—-6—>7—8—9 — 1. But the MLT for this tree is much more
complicated: 1 -2 >3 >4 —->7—->8—>5—9— 6 — 1. In the case of points on the
Euclidean plane, there is always a TSP tour that is not self-crossing, while the MLT may

cross itself many times.

6

Figure 2.1: A weighted tree

2.2 History

The MLT problem has appeared in the literature under the names of the deliveryman or
traveling repairman problem [33, 31, 15]. [1] gives a simple dynamic programming algorithm
that solves the problem when the points are on a line in polynomial time. [33, 16] prove
that in the case of unweighted trees (trees whose edges have unit length), any depth-first
walk on the tree is an optimal MLT. [33] gives also an exponential time algorithm that
solves the problem exactly for any weighted tree. For general metric spaces, [15, 31] give
exponential time algorithms that find a MLT.

The apparent difficulty of the MLT problem even for simple cases like trees has driven
the research towards approximation algorithms. The general metric case of the latency
problem is MAX-SNP-hard (this follows from the reduction that proves the MAX-SNP-

hardness of TSP with distances either 1 or 2 [38]) and therefore the results of Arora et

al. [11] imply that unless P = NP, a polynomial time approximation scheme (PTAS) is
unlikely to exist. Blum, Chalasani, Coppersmith, Pulleyblank, Raghavan and Sudan gave a
144-approximation algorithm for the metric case and a 8-approximation for weighted trees.
Goemans and Kleinberg [25] then gave a 21.55-approximation in the metric case. The
Goemans-Kleinberg algorithm requires as a subroutine a good approximation algorithm
for the k-TSP problem (“given n nodes and a number k, find the shortest salesman tour
containing k nodes”). Their algorithm achieves a 3.59 approximation ratio for the tree
case and a 3.59 x (appr. ratio for k-MST) approximation ratio for general metric spaces.
Currently the best approximation ratio for the general metric k-MST is 2+¢ for any constant
€ > 0 due to Arora and Karakostas ([10] and also Chapters 6, 7 of this thesis) and 1+ € for
any € > 0 for constant-dimensional Euclidean spaces due to Arora [7] (for planar instances,
see also Mitchell [34]). These can be used to improve the approximation ratio achieved
by the Goemans-Kleinberg algorithm in these cases, achieving a 7.18-approximation in the
metric case and 3.59-approximation in the Euclidean case.

This thesis presents a new and very simple technique that leads to approzximation
schemes for minimum latency for all weighted trees and constant-dimensional Euclidean

spaces. To compute a (1 + €)-approximation for the problem on n nodes, the algorithm re-

O(logn/e) O(lognloglogn/e?)

quires n time on weighted trees and n time in R2. We also present
a 17.24-approximation in the metric case. Though this approximation ratio is worse than
that of the algorithm in [25], our algorithm seems simpler.

Previous papers have taken the approach of computing solutions to a sequence of k-TSP
instances, for £ = 1,2,... ,n, and concatenating some of these tours to get the final tour.
The main intuition in these algorithms may be described as: visit the nodes closest to the
start node as soon as possible. The main idea in our algorithm is easier to state. The
algorithm finds the tour as a union of O(logn/€) tours, containing ni,ng,... nodes. The

important difference is that the choice of nq,n9,..., does not depend on the instance; it

depends only on n,e. (Thus, as noted in Section 3.2, our algorithm can be viewed as an

approximation-preserving reduction to a version of vehicle routing.) In fact, in the metric
case, the first salesman tour contains more than n/2 nodes. This seems to go against the
received intuition of “visit the nodes closest to the start node first.” Conceivably, our
technique could be combined with that intuition to get better algorithms, but we do not

currently know how.

2.3 Search ratio of graphs.

Koutsoupias, Papadimitriou, and Yannakakis[30] consider a graph exploration problem, in
which an explorer is presented with a weighted graph on n nodes. One of the nodes contains
a treasure, which the explorer will recognize only when he sees it. The goal is to design
a walk on the graph such that the explorer arrives at the treasure as quickly as possible.
The search ratio of the graph is the worst-case ratio of the arrival time and the distance of
the treasure to the start node. The randomized search ratio is defined similarly, except the
walk may be randomized and so we need the expected arrival time at the treasure.

More formally, the two problems are defined as follows:

SEARCH RATIO

Input : A Graph G with distances on edges, and a root vertex r.

Output :

s dﬂ(ra U)
o(G,r) = R ee d(r,v)’

where d(r,v) denotes the distance from r to v and d(r,v) denotes

the distance from r to v in the walk .

10

RANDOMIZED SEARCH RATIO
Input : A Graph G with distances on edges, and a root vertex r.

Output :

o Ealdx(r,v)]
plGr) = TANEG d(r,v)

7
where A ranges over distributions of walks and Ea [d(r,v)] denotes
the ezpected distance from r to v in the walk 7, when 7 is drawn

randomly according to distribution A.

As shown in [30], computing the search ratio and the randomized search ratio of a
graph G with respect to a root node r is NP-complete and MAXSNP-hard. They also show
that the minimum latency problem is the polyhedral separation problem of the dual of the

randomized search ratio problem. Indeed, the randomized search ratio can be expressed as

the solution of the following (n + 1) x n! linear program:

min p s.t.
S walk x Trdx(r,0) < p-d(r,v), YweV

> walk Tr =1
Ty >0

Its dual is

to decide whether min, Y dr(r,v)y,

min Zru d(T’, U)yv — 2z s.t.
E'u dﬁ(ra U)yv —22>0, Vwalkrw

Yp >0

To solve the dual by using the ellipsoid algorithm using the general framework of [27],
we should be able to check whether a given point (i, z) € R*™! lies is a feasible solution

or not. In case it is not feasible, we need a violated inequality, i.e. we should be able

11

< 2. [30] observe that this decision problem is

polynomially equivalent to the MLT problem, under some very mild restrictions that do not
affect approximability.

Using the general framework for convex optimization in Groétschel, Lovasz, and Schri-
jver [27], E. Tardos has observed [30] that if the minimum latency problem has a polynomial
time approximation scheme for a certain class of metrics, then the randomized search ratio
problem has an approximation scheme for that same class of metrics. Thus our algorithm
implies the existence of a quasipolynomial time approximation scheme for the randomized
search ratio for trees and Euclidean spaces. We do not know of a previous use of the

framework in [27] to design an approximation scheme.

12

Chapter 3

The main idea: Local structure

does not matter

It is well-known that minimizing the total tour length may give a tour of very high latency.
In this chapter we show that the strategy of minimizing tour lengths works so long as it
is done in a local fashion. Namely, to find a (1 + €)-approximate minimum latency tour,
it suffices to find the tour as a union of O(logn/e) segments, where the number of nodes
in successive segments decreases geometrically. Within each segment the order of visits to
the nodes does not matter, as long as the total length is close to minimum. Of course, we
have not specified thus far how to partition nodes into the segments in the correct way. In
the Euclidean and tree-metric cases, we can do this with a simple dynamic programming.
In the metric case, we recourse to a greedy strategy that introduces another source of
suboptimality.

We note that the idea of finding a low latency tour as a union of salesman tours/paths
is present in all earlier papers [16, 25, 30]. However, those earlier strategies decided in an
adaptive fashion which salesman tours to combine. In contrast, our algorithm can decide

at the very start how many nodes must be present in each salesman path.

13

3.1 The main idea

We prove that we can break an MLT tour into segments so that local changes within a
segment doesn’t affect the total latency by much, and then replace each segment by an
optimum salesman path, so that the new tour is still near optimal.

Let 7 be an optimal tour with total latency OPT. Let ¢ > 0 be any parameter. Break

this tour into k segments, so that in segment 7 we visit n; nodes, where

n;g = [(1+6)k_1_i-| fori=1...k—1

n, = [1/€].

To simplify the calculations we will assume that ceilings are not needed in the expressions

above. This assumption will not affect our results. Let the length of the i** segment be

T;. If we let n~; denote the total number of nodes visited in segments numbered i + 1 and

later, then a simple calculation shows that (and this was the reason for our choice of 7;’s)

= < = 1. k— :

N>i]Z;in] <o forevery i=1...k—1 (3.1)

Now imagine doing the following in each segment except the last one: replace that

segment by the minimum-cost traveling salesman path on the same subset of nodes, while

maintaining the starting and ending points. We claim that the new latency is at most

(1 + ¢)OPT. First, note that Z;”:_ll T} is a lower bound on the latency of any node in the
m'" segment. Adding over all segments, we get the following lower bound on OPT:

k
OPT > ns-Ti. (3.2)
=1

Consider the effect of replacing the ¢th segment with the shortest salesman path on that
subset of nodes. The length of the segment cannot increase, and so neither can the latency

of nodes in later segments. The latency of nodes within the segment can only rise by n;7;.

14

Thus the new latency is at most the lower bound in (3.2) plus

k—1

> ni- T (3.3)

i=1
Now condition (3.1) implies that the new latency is at most (1 + €)OPT, as claimed, and

the proof of the main idea is complete:

Theorem 1: Let OPT be the total latency of the MLT. There exists a tour that is a concate-

nation of O(k’%) optimal salesman paths, and whose total latency is at most (1 + €)OPT.

The importance of this structure theorem for the design of approximation schemes is
apparent for cases where the TSP is efficiently solvable (e.g. weighted trees). All one has to
do is to decide which node goes into which segment and then calculate the optimal salesman
path for each segment. Even if, instead of the optimum salesman path in each segment,
we use a (1 + v)-approximate salesman path, then the latency of the tour of Theorem 1 is
(14+~-e+v+¢€)OPT. This is the case, for example, for Euclidean spaces of fixed dimension,
where there are approximation schemes for the TSP (cf. [7]). For these cases the difficulty
lies in the placement of nodes into the appropriate segments. This has the flavor of a vehicle

routing problem, and this will become more precise in the following section.

3.2 Reduction from Minimum Latency to Weighted Vehicle

Routing
The purpose of this section is to note that our technique described above implies a
quasipolynomial-time approximation-preserving reduction from Minimum Latency to a ver-

sion of Weighted Vehicle Routing with per-mile costs. We do not know of a prior result

along these lines.

15

WEIGHTED VEHICLE ROUTING WITH PER-MILE
COSTS

Input : A set of n clients, who have to be visited by a fleet of m
vehicles. Vehicle 7 has a designated depot s; to start from and
another depot ¢; to finish at. It also has a capacity (which is the

number of clients it can visit) ¢; and a per-mile cost d.

Output : Assign clients to vehicles so as to respect the capacity con-
straints and minimize the total cost, which is the sum of distances

covered by the vehicles, weighted by the per-mile cost

m
Z d;T;
i=1

where T; is the distance traveled by vehicle 1.

Suppose we are given an oracle for this version of vehicle routing. We can use this oracle
to solve the MLT problem. Given a set of n nodes, the reduction proceeds as follows, where
k,n;,n~; have the same meaning as in section 3.1: “Let py denote the starting node of
the minimum latency tour. For every sequence of k& nodes p1,po,... ,pr, use the Vehicle
Routing Oracle to construct a solution to the instance in which there are k£ vehicles, and
the capacity of the ith vehicle is n;, its per-mile cost is n~;, and its starting and end depots
are p; and p; ;1 respectively. At the end, output the lowest cost solution found (over the
choice of all sequences of k points).”

Clearly, if the vehicle routing oracle computes a p-approximation in polynomial time,
our reduction will lead to a p(1 + €)-approximate solution for MLT in n?(°87/¢) time. This
follows from Theorem 1, since it suffices to go over all possible sequences p1,ps,... ,pk, and

logn
this increases the running time by a factor of at most O(nF) = nO(7¢"),

16

Chapter 4

Approximation algorithms for the

MLT

The essence of Theorem 1 is that there is a near optimal latency tour of a potentially simpler
structure, since it is the collection of just a few optimal salesman paths. We take advantage
of this simpler structure in order to compute a near optimal tour for the cases of trees,
Euclidean (and other norm) spaces, and planar graphs. The algorithms for these cases are
quasi-polynomial time approzimation schemes. We also give a constant factor polynomial
time approximation algorithm for the general metric case as an immediate result of Theorem
1. Although its approximation factor is somewhat worse than the approximation factor

achieved in [25], it seems simpler.

4.1 The Tree Case

The optimum salesman tour on a tree may in general need to visit a node unbounded
number of times. For example in a star graph, it must visit the center node n — 1 times.
However, the tour never needs to visit an edge more than twice, as is easily checked. Thus
the optimum tour has very simple structure and can be found by depth-first search.

A minimum latency tour, on the other hand, could have a very complicated structure.

17

Consider for example a complete binary tree in which all edges have zero weight except
those attached to leaves. The minimum latency tour will first visit all the internal nodes in
some arbitrary order, and then all the leaf nodes in sorted order by weight, thus crossing
the root node n/2 times.

However, our technique from Chapter 3 allows us to view a near-optimum latency tour
as a union of O(logn/e) salesman paths. By observing that within each salesman path an
edge is only visited twice, we can then ensure that each edge is only visited O(logn/e) times
overall. This idea underlies the proof of our Structure Theorem below and the approximation

scheme for trees.

4.1.1 The Structure theorem for trees

In this subsection we prove that there is a tour on a weighted tree whose latency is near
optimal but crosses each node of the tree only a few times.
Before we define what we mean by ‘crossing’, we define the notion of an ‘« : S-partition’

of a tree.

Definition 4: An « : B-partition of a tree T with n nodes is the recursive partition of T

into two subtrees with a common root, so that for each subtree
a n < (size of subtree) < 8 n.

Since the partition is recursive, every node of the tree is going to become a separator at
some level of the recursion.

It is not obvious that we can recursively partition any tree in this fashion for any pair
a, 8 (actually we can’t!). But it turns out that for any tree we can find a % : %—partition.

In other words, we can easily prove the following:

Lemma 1: In any tree we can always find a node with the following property: Let m > 2

denote its degree and f1,... , fm, denote the sizes of the subtrees attached to the node. There

18

exists a subset S C {1,...,m} such that

n 2n

5] <D H<T50

3 ; 3

€S

Proof: Start by picking a node of the tree. If there is a subtree with more than [%"]
nodes pick the root of this subtree and continue. If there is a subtree with number of
nodes between | 2] and [2] then the current node satisfies the lemma requirements. If all
subtrees have less than |5 | nodes (obviously m > 3 in this case) it is easy to see that the
lemma holds for the current node.

a

We designate this node as a separator node and the |S| components as the left of the
tree and the other m — |S| as the right of the tree. (The node itself is copied twice and
appears in both sides.) Then we recur on the two sides. This gives a recursive partition of
the tree. We say that a tour crosses the separator node if it goes from the left side to the
right. Notice that a node may be visited many times before it is crossed.

It is obvious that since a minimum salesman tour is obtained by depth-first-search, it
needs to cross each separator node only twice. The next theorem says that there is a tour
whose latency is within a factor (1 + €) of the minimum latency and needs to cross each

separator only O(logn/e) times, for any € > 0.

Theorem 2: (Structure theorem for Weighted Trees) The following is true for every
integer n > 0 and every € > 0: For every weighted tree on n nodes with a node-separator
based partition as defined above, a tour exists with latency at most (1+¢€) OPT, that crosses

each separator node only O(logn/e€) times.

Proof: Let 7 be the optimum tour. Divide it into O(logn/e€) segments as in Chapter 3 and
replace each segment by the optimum salesman path. Now use the fact that a minimum
salesman path does not cross a separator node going from the left side to the right (or vice

versa) of the partition at that node more than twice. |

19

4.1.2 The algorithm for trees

A simple dynamic programming approach that relies on the structure Theorem 2 can now

be used to compute a (1 + €)-approximate latency tour for general weighted trees.

ALGORITHM 1

1. Identify a recursive % : %—partition of the tree.

Do the following in a “bottom-up” fashion starting from the bottom level of the

partition:
2. Identify a separator at the current level of the partition.

3. “Guess” the number of times the tour crosses this node, and for each crossing, the

length of the tour portion after it and the number of nodes on that portion.

4. Search the dynamic programming look-up table for subtours consistent with the

“guesses”.

5. Combine the subtours found to create a new bigger subtour. Store this new subtour

in the look-up table and go to step 2.

a

Of course, by “guessing” in Step 3 we refer to exhaustive enumeration of all possible
values for the triple (# of crossings, length, # of nodes). In the end of the enumeration, the
algorithm will have created a collection of candidate solutions (one for each set of values
for our “guesses”). Its output will be the tour with the minimum total latency. One of
these tours calculated by the algorithm must be the near optimal tour guaranteed by the
Structure theorem 2, since the algorithm is bound to encounter the specific set of “guesses”

defined by it due to exhaustive enumeration. Hence the tour it produces is at least as

20

good as this tour and the algorithm is indeed an approzimation scheme. The only thing
remaining to prove is that it is a quasi-polynomial approximation scheme.

The running time of the algorithm is obviously dominated by the number of possible
“guesses”. The number of crossings through a node is at most O(logn/e) (Theorem 2) and
the number of nodes visited between two crossings cannot be greater than n. But notice
that the length of the tour between two crossings can be exponential on the size of the input.
This is the case when an edge has weight exponential on the size of the input. Then the
number of guesses is also exponential and the algorithm runs in exponential time, instead
of quasi-polynomial. In order to get around this problem, we round the given instance by

running the following rounding procedure:

1. Let L be the length of the longest path in the tree and § > 0 any constant smaller
than e. Merge (by contracting edges) all pairs of nodes with internode distance at

most dL/n?.
2. Round each edge weight to its closest multiple of §L/n?.

3. Divide all edge weights by §L/n?.

After solving the problem on the rounded instance, we reinstate the merged edges to output

the tour computed on the original instance.

Lemma 2: Let OPT be the length of the MLT in the given instance and L,§ are as in
the above procedure. Then the MLT on the rounded instance and OPT differ by at most

O(6 OPT). Moreover, its mazimum internode distance is at most O(n?/8) = O(n?/e).

Proof: The second part of the lemma is obvious. Also, it is easy to see that the latency of
each node in the original MLT has not changed by more than O(§L/n), for a total change of

O(0L) = O(60OPT). Notice that when we reinstate the merged edges, the latency increase

21

cannot be more that O(SOPT). This means that we need to compute an (1 + € — J)-
approximation tour on the rounded instance instead of a (1 + €)-approximation. But we
certainly can do that since § is an arbitrary constant.

a

Thus if we run Algorithm 1 on the new rounded instance, the running time is quasi-

polynomial:

Theorem 3: Algorithm 1 runs in time n®1°87/€) gnd computes a tour whose latency is at

most (14 ¢€) OPT.

Proof: If ¢ is the constant in the rounding procedure then we apply Theorem 2 so that
the approximation factor for the rounded instance is 1 + ¢ — §. Because of Lemma 2 the
approximation factor for the tour we compute in the original instance will be (1 + €).

The dynamic programming algorithm builds a look-up table in a bottom-up fashion
(starting from the bottom level of the 3 : Z-partition of the tree towards the top). For
each separator considered by the algorithm, we guess the number of crossings and for each

crossing the length and the number of vertices visited. So the total number of guesses

logn |
€

for each crossing is O("—G2 ‘n) = O(@) (because of Lemma 2), for a total of O(

(n_3

.)Ollogn/e)y = pO(logn/e) gyesses for a node. The costs of subtours consistent with each

one of these guesses are already in the look-up table, so we can look them up in constant
time. So the overall running time of Algorithm 1 when run on a rounded instance is
O(n - nO(logn/e)) — pnO(ogn/e)

The reader probably notices that the look-up table stores costs instead of subtours, so
at the end the algorithm has computed the cost of a near-optimal tour and not the tour
itself. But it is easy to reconstruct this tour from the look-up table and the decision made

at each step of the dynamic programming.

22

4.2 The Euclidean Space

In Chapter 3, we reduced the minimum latency problem to the problem of finding a covering
of the n nodes using O(logn/e) salesman paths. Now we use a simple modification of
Arora’s [7] ideas for the Euclidean TSP to show that this set of O(logn/¢) salesman paths
together have a very simple structure. Thus they can be computed by dynamic programming
in quasi-polynomial time in a way similar to the tree case. We will start by describing the
algorithm for the Fuclidean plane. The generalization to spaces of higher dimension will

follow. Our exposition follows the exposition in [7].

4.2.1 The partition

In order to apply dynamic programming techniques we need to recursively partition the
instance into smaller subinstances. We managed to do this in the tree case by exploiting
the existence of an % : %—partition. Here we describe a very simple geometric partition
based on the well known quadtree. In what follows we assume that all coordinates of the
given points are integral. Later we will show how to “perturb” the instance so that this
assumption is fulfilled without increasing the cost of our solution by too much.

Suppose that the given instance is bounded by a square and let L be the size of the
smallest axis-aligned bounding square. Then the dissection of the bounding square is its
recursive partition into smaller squares in the obvious way: break the bounding square into
4 equal squares, then break each smaller square into 4 equal squares and so on until the
smallest squares have side size < 1 (and thus cannot contain more than 1 point). This
partition defines a tree: the root is the bounding square and the nodes of the tree at each
level are the squares created at the same level of the dissection. Each square has 4 children.
Obviously the tree has O(L?) nodes and its depth is O(log L). If we stop partitioning a

square as soon as it contains at most one node, then this truncated version of the dissection

tree is called a quadtree. Examples of a dissection and a quadtree are shown in Figure 4.1.

23

The partition we are going to use is a randomized version of the quadtree. Imagine that
we pick randomly two integers a,b in [0, L) and then we shift the dissection defined above

along the z— and y—axis by a and b respectively. At the same time we *

‘wrap-around” this
shifted dissection as in Figure 4.1(c). Thus every horizontal line with initial y-coordinate
y1 will now have a new y-coordinate (y1 + b) mod L and every vertical line with initial
z-coordinate z1 will now have a new z-coordinate (z1 + a) mod L. We call this dissection
a randomly shifted dissection and the corresponding quadtree (i.e. the quadtree resulting
by cutting of the partitioning at squares that contain at most 1 point) is called a randomly
shifted quadtree. The random (a, b)-shift is crucial for the algorithm, but since we still treat
each “wrapped-around” square as a single region the reader can think of the quadtree as
the unshifted one in much of what follows below.

The geometric partition we just defined resembles in many ways the recursive partition
in the tree case. But while a tour on a tree could cross partition boundaries only through a
tree node, the boundaries of the quadtree partition are lines that can be crossed at any of
an infinite number of points. In what follows we will prove that there is a near optimal tour
that not only crosses the boundary of each square in the quadtree only a few times, but
also that these crossings happen at a small set of prespecified points called portals. Each
square has 4 portals on its corners and m other equally-spaced portals on each side, where
m is a power of 2. A portal of a square is a portal in every descendent of the square in the

quadtree.

Definition 5: Let m,k be positive integers. An (m,k)-light tour is one that crosses each

quadtree boundary at most k times, and always at one of its m portals.

In what follows we prove the existence of an (m, k)-light tour (for appropriate values
of m,k) that has near-optimal latency. Then we will describe a dynamic programming

algorithm that can compute such a tour in quasi-polynomial time.

24

(9) (o)

O
—

1=

()

Figure 4.1: A dissection (a), the corresponding quadtree (b), and its shift by (a,b) (c).

25

4.2.2 The Structure theorem for the Euclidean plane

In section 4.2.1 we assumed that the given points have integral coordinates. We will also
demand that all internode distances are between 1 and O(n?). Such an instance is called
well-rounded. Obviously the given instance need not be well-rounded, but by adding a
rounding step similar to the one used in the tree case the algorithm can transform the given
instance into a well-rounded one without increasing the MLT by too much. We prove the

following structure theorem for the Euclidean plane:

Theorem 4: (Structure theorem for Euclidean plane) There exist constants ¢, f such
that the following is true for every integer n > 0 and every € > 0: For every well-rounded
Euclidean instance with n nodes, a randomly-shifted dissection has with probability at least
1/2 an associated tour that is (clogn/e, f logn/e)-light, and whose latency is at most (1 +
€)OPT, where OPT denotes the latency of the minimum latency tour. The tour crosses

each portal at most O(logn/e) times.

Proof: The main ideas are the same as in Arora’s proof [7] after we break up the minimum
latency tour into O(logn/e) salesman paths. Another further observation is that Arora’s
proof relies on an expectation calculation, and we will use linearity of expectations.

Let 7 be the optimum tour. As described in Chapter 3, we break it up into k =
O(logn/J) segments, where the ith segment has n; nodes. We replace each segment by the
optimum salesman path for that segment to get a new tour of total latency within a factor
(14 0) of the optimum. Now we use Arora’s proof of his structure theorem. He shows how
a salesman tour/path can be modified so that it crosses the boundary of each dissection
square at most O(1/v) times, and always at one of the m portals. First he shows how to
replace all the crossings through line segments of the randomly shifted quadtree by just two

crossings in such a way that the following patching lemma (Lemma 3 in [7]) holds:

Lemma 3 (Patching lemma): Let S be any line segment of length | and w be a path that

26

crosses S at least thrice. Then there exist line segments on S whose total length is 3l and

whose addition to m changes it into a path 7' that crosses S at most twice.

(For the exact way of performing this transformation the reader is referred to [7]).

Then he proceeds into describing how to apply this local transformation to the whole
path in a structured way so that not to increase the length of the salesman path by too
much, and so that the resulting path is (m,r)-light, for m = O(logn/e) and r = O(1/7).

Arora’s main result is to show that this can be done so that the expected increase in

the length of the path is

6 OPT
E, plincrease of path cost] < (4.1)
T
where OPT is the cost of the optimal salesman path.
We apply his method simultaneously to our k& = O(logn/d) salesman paths

T1,Ts,... Ty, thus ending up with a collection of paths which cross each portal at most 2k
times (since a path never needs to cross a portal more than twice), and cross the boundary
of each quadtree square at most O(kr) = O(k/~) times. For the effect on the latency, note
that we are interested in a weighted sum of path lengths, where the weight assigned to the
ith salesman path is n; + n~; (these are the vertices whose latency is affected by the change
in length of T;). Arora’s main result (4.1) implies that the expected latency increase due

to the length increase of path Tj is

(=2}

E, p[total latency increase due to T;] < —(n; + n~;)OPT;
(3.1)
Y 6(1+0)

<3

(4.2)
n>iOPT;

where OPT; is the length of the optimum (i.e. shortest) 7;. By linearity of expectation,
the total expected latency increase is
. 6(1+0)
E, p[total latency increase due to T1,... ,T;] < ——— Z n~;OPT;
T
i=1

6(1+9)

r

IA

27

because of lower bound (3.2) in Chapter 3.
By picking the appropriate constants 7y, § we conclude that with probability at least 1/2,
the increase in latency is a factor at most (1 + €) and the new tour satisfies the theorem

requirements. O

Thus in this section we proved that there is a tour with latency within a factor 1 + € of
the optimal, that crosses each square boundary in the quadtree only a few times and always
through a portal. In the next section we show how to use dynamic programming in order

to compute this tour.

4.2.3 The algorithm for the plane

In this section we describe our QPTAS for the Euclidean plane.

Till now we assumed that the given instance is well-rounded. Namely it satisfies two
conditions: (i) all nodes have integral coordinates, and (ii) all internode distances are be-
tween 1 and O(n?/e). This assumption is easily met if the first step of the algorithm is a

rounding procedure very similar to the rounding procedure used in the tree case:

1. Let L be the length of the side of the bounding box. Place a grid of granularity

g = O(6L/n?) where § is a constant (0 < 6 <).
2. Move each point to its nearest gridpoint.

3. Divide all edge weights by g.

By an analysis similar to that in the proof of Lemma 2 we get

Lemma 4: The procedure above transforms a given instance of the MLT into a well
rounded-instance. Moreover the MLT in the rounded instance and the original instance

differ by at most O(6 OPT) = O(e OPT).

28

The well-rounded instance has one more property that we will use in the analysis of the
algorithm. Namely, the set of possible lengths for parts of the tour is discrete with at most
n91) elements and can be generated quite easily in polynomial time. Hence when we refer
to “guesses” for subtour lengths we will refer to values from this polynomially large set.

The algorithm takes a well-rounded instance as its input, and is very similar to Algorithm

ALGORITHM 2

1. Build a randomly shifted quadtree for the given instance. Since L = O(n) the
quadtree depth is O(logn) and the number of its nodes is O(nlogn) since it has only

n leaves.

Do the following in a “bottom-up” fashion starting from the leaves of the quadtree:
2. Identify a node (i.e. square) at the current level of the quadtree.

3. “Guess” how many times the tour enters the square, and for each of these times, the
portals it crosses to enter and leave the square, what is the length of the tour portion

after each crossing, and how many points are on that tour portion.

4. Search the dynamic programming look-up table for subtours consistent with the

“guesses”.

5. Combine the subtours found to create a new bigger subtour. If the new subtour is
consistent with the fact that we are looking for a (clogn/e, f logn/e)-light tour, store

this new subtour in the look-up table and go to step 2.
a

Again, by “guessing” we refer to exhaustive enumeration of all possible values of the

guessed quantities. This enumeration will produce possibly more than one candidate tours.

29

We pick the tour with the minimum total latency as our solution, and this will be the
output of Algorithm 2.

At a first glance the algorithm seems to miss a key ingredient for the calculation of a
tour from its subtours: the order in which the portals are visited in each square. In fact
this piece of information is implicit, since the guessed number of nodes visited after each
portal crossing also tells us the order in which they occur in the tour (the first portal visited
is the one with the longest subsequent tour length guessed, the second is the one with the
second longest subsequent tour length and so on). Now it is easy to see that at every step of
the algorithm we have the information necessary to reconstruct a bigger subtour from the
subtours already calculated. Like in the tree case, the exhaustive enumeration guarantees
that one of the tours constructed is the tour of Structure theorem 4, so Algorithm 2 is
indeed an approximation scheme.

It remains to prove that Algorithm 2 is a QPTAS.

Theorem 5: Algorithm 2 runs in time no(lifﬁ) and computes a tour whose latency is at

most (14 ¢€) OPT.

Proof: If ¢ is the constant in the rounding procedure then we apply Theorem 4 so that
the approximation factor for the rounded instance is 1 + ¢ — §. Because of Lemma 4 the
approximation factor for the tour we compute in the original instance will be (1 + €).

The running time of the algorithm is dominated by the size of the dynamic programming
look-up table. We prove the time bound by induction on the depth of the quadtree. The first
level (leaves) contains squares with at most one point in them. The tour we are computing
is (clogn/e, f logn/eps)-light (with ¢, f being the constants in Theorem 4), so a leaf square
is entered and left by the tour O(logn/e) times through a pair of portals. This involves
enumerating all choices for (a) a multiset of O(logn/e) portals on the four sides of the
square and (b) the order in which the portals in (a) are crossed by the (m,r)-light tour. It

is easy to see that the number of choices in (a) is at most mO) = O(logn/e)°1°8™/€) and

30

the number of choices in (b) is 79" = O(logn/e)?(8™/¢) for a total of 20(lognloglogn/e)
choices. In addition we need to “guess” the length of the tour portion after each crossing
(O(n°M /¢) possibilities since all distances between points form a set of polynomially many
values), and how many points are on that tour portion (n possibilities) for each one of the
O(logn/e) possible crossings of the tour through the square boundaries. Notice that since
we guessed the number of nodes visited after each portal crossing, we know exactly the tour
portion that contains the point in the current square. The total number of guesses is thus

no more than

portal arrangements x (length x # points)# Crossings

N o) o(n)
o)« (022 x0)
€

1
= no(%)

The analysis is the same for the inductive step. Assume that we have calculated all
possible subtours for all squares in depth > 7. Let S be a square at depth ¢ and S1, S2, S3, 54
be its four children in the quadtree. We guess the same numbers as before for each S;, j =
1,...,4 (no(lﬂf_n) choices) and we look them up in the look-up table constructed thus far.
If the choices we find there are consistent with our current guess, we store this guess in
the look-up table and continue. Otherwise the algorithm will reject it and will go on to

the next possible guess. So the total extra amount of work for each square in the quadtree

o(o(een) _ ol

is n°C%™) and the total running time of the algorithm is O(nlogn) x n €
(recall that the quadtree contains only O(nlogn) nodes).

a

Derandomization: The algorithm described is a randomized one. But it can be easily
derandomized: random shifts a and b take discrete values between 1 and L. By trying

all possible O(n?) values for the pair (a,b) and running the algorithm for each one, we

31

are bound to try one of the “good” values (i.e. one that will give the tour guaranteed by

Theorem 4). This procedure will increase the running time by a factor O(n?).

4.2.4 Euclidean spaces of higher dimension

Since the results in [7] generalize to Euclidean spaces of any constant dimension d in a
straight-forward manner, the plane algorithm for the MLT generalizes to higher dimensions
as well. We will give just the changes needed in order for the proofs in the plane case to go
through here.

The grid we place in the d-dimensional cube of side length L that surrounds the instance
to transform it into a well-rounded one has granularity ©(eL/(n?v/d)). Then all internode
distances are bound by O(v/dn?/e).

Instead of randomly shifted quadtrees we use an obvious extension, the 2%-ary trees.
Instead of squares, we are dealing with d-dimensional cubes, so their boundaries are (d —1)-
dimensional cubes. The m portals placed on these cubes form an orthogonal lattice with
granularity W/ md%l, where W is the side length of the cube we place the portals on. The

Structure theorem now becomes

Theorem 6: (Structure theorem for Euclidean space of dimension d) There ex-
ist constants c, f such that the following is true for every integer n > 0 and every
€ > 0. For every well-rounded instance in Euclidean space of dimension d with n nodes,
a randomly-shifted dissection has with probability at least 1/2 an associated tour that is
(c- (O(Wdlogn/e))?, f - (O(Vd]e))? logn)-light, and whose latency is at most (1 + €) OPT,
where OPT denotes the latency of the minimum latency tour. The tour crosses each portal

at most O(logn/e) times.

The dynamic programming algorithm will run in time O((k’%)(‘/a/ 6)O(d))no(lﬁfﬂ).

32

4.2.5 Extension to other norms

Like Arora’s algorithm for the Euclidean TSP, our algorithm for the MLT generalizes to any

Minkowski norm in R?. Any symmetric body C that is symmetric around the origin can

el

be used to define a Minkowski norm: the length of z € R? is defined to be TPIEE where vy is

the intersection of the surface of C' with the line connecting x to the origin. This definition
generalizes the I, norm for p > 1 (in the case of I, norm C is the [,-unit ball centered at
the origin).

Distances in any Minkowski norm are within a constant factor of the distances under
the l2 norm. Hence the algorithm described for the Euclidean case works for any Minkowski
norm as well (with the necessary adjustments of the constants in the Structure theorem 6

and the running time calculations).

4.3 Planar graphs

Our techniques apply also to the MLT problem on weighted planar graphs (planar graphs
with nonnegative edge lengths). The distance between two nodes is defined as the length
of the shortest path in the graph that connects them.

Arora et al. [8] have extended the ideas from [7] to devise a PTAS for the TSP on planar
graphs. The first step in their algorithm is the extraction of a spanner of the input graph.
Informally, a spanner is subgraph of the input graph that approximates within a factor
1 + € the distances in the original graph but with a total edge length that is much smaller
(just O(1/¢€) times the cost of the minimum spanning tree in the input graph). They use a
construction by Althofer et al. [6] that runs in polynomial time.

Let G be the input graph and G’ its spanner. In order to apply dynamic programming
we need the notion of a separator (like the % : %-partition in the tree case or the quadtree in
the Euclidean case) and a hierarchical decomposition of the instance. The separator in this

case is a Jordan curve that cuts a “hole” in the graph, thus separating it into an exterior

33

(i.e. the hole) and an exterior. By defining the weight of a planar graph in an appropriate
way, Arora et al. show that in polynomial time they can compute such a curve with two
essential properties: (a) the interior and exterior weights are a constant fraction of the total
weight, and (b) the interior is connected to the exterior only via a set of k = O(logn/¢?)
vertices.

After defining the hierarchical decomposition of the graph, they proceed to the proof of
a patching lemma similar to lemma 3, i.e. they prove that there is a near optimal tour that
crosses the connecting vertices at most a constant number of times.

Now it becomes apparent that a QPTAS similar to the Euclidean one works for the
planar graph, too. The role of the square boundaries is played by the Jordan curves and
the role of portals is played by the k£ connecting vertices. Our “guesses” are exactly the

same as in the Kuclidean case, so we are able to prove the following

log

Theorem 7: The algorithm for weighted planar graphs runs in time n e and computes a

tour whose latency is at most (1 +¢€) OPT.

Proof: Same as the proof of Theorem 5. O

For a complete description of the planar graph TSP PTAS the reader is referred to [8].

4.4 General metrics

In this section we will use our main idea to derive an algorithm for the MLT for general
metrics. The only requirement for the distances between points in the given instance is to
satisfy the metric conditions (2.3). For this general case we give a simple polynomial time
11.656-approximation algorithm that uses an approximation algorithm for the k-Minimum
Spanning Tree (k-MST) as a subroutine. The k-MST problem is defined as the problem of
finding the minimum cost tree that spans ezxactly k vertices of a given weighted graph. In

the second part of this thesis we give the formal definition of this problem and we describe

34

a polynomial time algorithm that achieves an approximation factor of 24§ for any constant
0> 0.

Our algorithm has the same flavor as the approximation algorithms in [16, 25]. We
note that [25] give an improved 7.18-approximation algorithm, which is more complicated.

The general approach is motivated by the observation in Chapter 3, and we use the
numbers n{,no, ... ,ny defined there, where k = O(logn/¢). We will choose € = /2.

The algorithm is as follows. Assume for simplicity that we know the last segment in the
tour, which contains [1/4/2] = 2 vertices (i.e., 1 edge). Compute the rest of the tour as
follows. Let P be the starting node. For 1 = 1,... ,k, find, using the algorithm for k-MST,
a tour L; that starts at P and visits n; nodes that are not visited by Li,...,L;—1. Of
the two possible directions of each tour, pick the one that minimizes the latency. Output
the concatenation of these tours (using shortcuts to avoid multiple visits to already visited

points).

Theorem 8: The algorithm just described runs in polynomial time and achieves an ap-

prozimation factor of 11.656.

Proof: We analyze this algorithm as follows. Let 7 be the optimum tour. Denote by T;
the length of the i-th segment of 7 (which contains n; nodes). Then, as in (3.2), a lower
bound on OPT, the latency of the optimum tour, is

k

OPT > nsi-Ti, (4.3)

i=1
where n~; = njy1 + Njt2 + -+ + ng is the number of nodes appearing in the last k — ¢
segments.

Let d; be the length of the tour L; computed by our algorithm. We claim that

Claim 1:

di <248 x2T+...4T,) fori=1,2,... k-1 (4.4)

35

Proof: (of Claim 1) The reason for the “(2 4 §)” is that it is the approximation ratio
of k-MST algorithm. From now on we will treat this factor as equal to 2 (by making §
very small, e.g. § = 1075). The rest of the expression is explained as follows. Consider the
closed tour starting from P, including the first ¢ segments of 7, and returning to P. Its
length is at most 2(Th + T + - - - + T;), and it includes at least (n1 + no + ... + n;) nodes.
At least n; of these nodes are not in T1,... ,T;_1 (since these first i — 1 segments contain
in total only ny 4+ ng + - -+ + n;_1 nodes). Thus 2(T} +T% + --- + T;) is an upper bound on
the length of shortest tour that starts and finishes at P and includes at least n; nodes not

on T1,...,T;_1. This finishes the justification for claim 1. O

Now notice that the latency of the n; new nodes visited during tour L; is upper bounded
by %nidi + n; Z;;% d;. The second term is an upper bound for the total latency incurred
due to the i — 1 segments of 7 preceding the i-th segment. The first term is an upper bound
for the latency due to the i-th segment itself, since the latency in the forward direction
plus the latency in the backward direction is equal to n;d;, and we traverse tour L; in the
direction that minimizes the latency of the n; new points visited. So the total latency of

our solution —ignoring the last segment — is upper bounded by

i=1 =1
1 k—1 k—1i—1
- S S
=1 =1 1=1
1 k—1 k—1
< 5 - n;d; + Zl din>z
1= 1=

From Chapter 3, n; < (1 + €)n;1 and ns; < %%, so

36

k-1 k-1
1+e¢ 1+e¢
A < 5 E Niy1d; + E niy1d;

€
i=1 i=1

k1
1+¢€)(2+€
= %Znﬁ—ldi
i=1

Observing that nv; = E;C:z 41 71; and ignoring the last segment (which was computed
optimally) we also have
k-1 k-1 l
(4.4)
anﬂdz < 4an+1 ZTZ
=1 =1 i=1
k—1
= 42 n>i1;
=1

< 4xOPT

and thus

146)(2+¢)

AL 2(OPT.

€

The factor w is minimized for ¢ = /2 and its value is 3 + 2¢/2 = 5.828. Thus
A <11.565 OPT. a

37

Chapter 5

Extending the MLT problem

It turns out that our main idea from Chapter 3 is general enough to apply to a broader

category of problems. In this chapter we deal with the following weighted version of MLT:

WEIGHTED MINIMUM LATENCY TOUR (WMLT)

Input : A set of n points (one of them designated as the starting
point p1), a symmetric distance matrix [d;;] and an integral weight

w; > 0 for each node 7 =1,2,... ,n.

Output : A tour p; — ps — ... = p, that visits all points and
minimizes the total weighted latency
n

1—1
Z Wp; dej;pj+1 (5.1)
j=1

=2

Obviously this is an extension to the MLT problem: the contribution of each node to
the objective function is the length of the tour from the start to the first visit at the node,
weighted by the weight of the node w;. When w; = 1, Vi we get the MLT problem as defined

in Chapter 2. Notice that again we can express the objective function in a form similar to

38

formula (2.2), namely

n—1 n
Z Z Wp; | dp; i (5.2)
i=1 |j=it1

Again we are going to study instances where d defines a metric (i.e. it satisfies conditions
(2.3)). In this case whenever a weight w; is 0, point 7 can be moved to the end of a tour
without increase to the value of the objective function, and it is enough to solve the problem
for the subset of points with non-zero weights. Hence from now on the w;’s will be integers

greater than 0.

5.1 Extending the main idea

The difference between objective function 5.2 and the MLT objective function 2.2 is that in
the latter point ¢ contributes a unit weight while in the former it contributes with weight
w;. Thus our main idea extends in many cases naturally to the more general setting of
WMLT.

Let T=p1 — p2 — ... = p, be an optimal tour with total weighted latency OPT. Let
W = >, wp, be the total point weight and € > 0 any parameter. We will assume that

the following is true for this instance of WMLT:

Assumption 1: T can be broken into k segments, so that in segment i it visits n; points

with total weight W; given by the following expressions:

= |

w (5.3)
W; = [“1, i=2,3,....k

1+e¢€

Obviously k& = O(M). To simplify the calculations we will assume that ceilings are not
needed in the expressions above. This assumption will not affect our results. Let the length

of the i segment be Tj. If we let Ws; denote the total weight of nodes visited in segments

39

numbered 7 + 1 and later, then a simple calculation shows that (and this was the reason for

our choice of W;’s)

W; .
W>i=ZWj§7Z, forevery i=1...k—1 (5.4)
J>i
As in the case of the MLT, we are going to show that if one replaces each segment by
the minimum-cost traveling salesman path on the same subset of nodes, while maintaining

the starting and ending points, the new total weighted latency is at most (1 + ¢)OPT. The

lower bound on the OPT is similar to the lower bound in the MLT case:

m—1
OPT > > Ws;-T; (5.5)
7j=1

By replacing each segment 7; with the optimum salesman path 77 we increase the weighted
latency of points within the segment by at most W;T;. Hence the total weighted latency of

the new tour 7' can be upper bounded as follows:

k k
cost(7") < Z WiT! + Z Wi T}
i=1 i=1
k k
< G'ZWMTi‘f‘ZWm’Ti
i=1 i=1

(5.5)
< (1+¢) OPT

Thus we have shown that under Assumption 1, the analogue of Theorem 1 can be proven:

Theorem 9: Let OPT be the total latency of the WMLT under Assumption 1. There exists
a tour that is a concatenation of O(lﬁgfﬂ) optimal salesman paths, and whose total weighted

latency is at most (1 + €)OPT.

Even if, instead of the optimum salesman path in each segment, we use a (1++y)-approximate

salesman path, then the latency of the tour of Theorem 9 is (1 +y-¢e+ v+ €)OPT.

40

5.1.1 Relation to weighted Vehicle Routing

The approximation-preserving reduction from the MLT to the Weighted Vehicle Routing
with per-mile costs works for the WMLT, too. For completeness, we give the reduction that
uses an oracle for the routing problem in order to solve the WMLT (k, W, W;, W~,; have the
same meaning as in the previous section): “Let py denote the starting node of the WMLT.
For every sequence of kK = O(log W/e¢) nodes p1,pa, - .. , Pk, use the Vehicle Routing Oracle
to construct a solution to the instance in which there are k vehicles, and the capacity of
the ith vehicle is W;, its per-mile cost is W-,;, and its starting and end depots are p; and
pi+1 respectively. At the end, output the lowest cost solution found (over the choice of all
sequences of k points).”

Clearly, if the vehicle routing oracle computes a p-approximation in polynomial time,
our reduction will lead to a p(1 + €)-approximate solution for WMLT in n©(08W/e) time,
This follows from Theorem 9, since it suffices to go over all possible sequences p1,p2, ... , Pk,

log W
and this increases the running time by a factor of at most O(n¥) = n?(c),

5.1.2 Approximation algorithms for the Weighted MLT

First we point out the differences between our rounding procedures for the MLT and the
rounding for the weighted MLT. In this case it suffices to assume wlog that the minimum
nonzero internode distance is 1 and maximum internode distance is O(n - W/e), where
W =37, w; and € > 0 any parameter. The reason is that if L denotes the diameter of the
space, then L is a lower bound on the weighted minimum latency. Again we merge all pairs

neﬁ, This affects the latency of the optimum tour

of nodes with internode distance at most
by at most €L < ¢OPT. Furthermore, the ratio of the maximum internode distance and
the minimum nonzero internode distance is O(nW/e). Since e is constant, we will often
think of the maximum internode distance as O(nW). Note that in the weighted case the

internode distance (and therefore the running time of our algorithms) depend directly on

41

W. If W is, for example, exponential on the size of the input, our algorithms will run in
exponential time. We give the running times of algorithms described for the MLT, when
they are applied in the case of WMLT. Their correctness is ensured by the extension of our

main ideas in Section 5.1.

5.1.3 The tree case

O(log W/e)

Theorem 10: Algorithm 1 runs in time (nW) and computes a tour whose

weighted latency is at most (1 +¢) OPT.

Proof: The proof is the same as for Theorem 3 and uses Theorem 9. O

5.1.4 Euclidean spaces

Theorem 11: The algorithm for the MLT in Euclidean spaces of constant dimension d
Tuns in time O((@)(‘/&/E)O(d))(nW)o(lﬁeﬂ) and computes a tour whose weighted latency
is at most (1 +¢€) OPT.

Proof: See Section 4.2.4 and adapt Structure theorem 6 to work with Theorem 9. O

This result extends also to any Minkowski norm (cf. Section 4.2.5).

5.1.5 Planar graphs

log W
€

Theorem 12: The algorithm for weighted planar graphs runs in time (nW) and com-
putes a tour whose weighted latency is at most (1 +¢) OPT.
Proof: See Section 4.3. O

42

Chapter 6

The k-Minimum Spanning Tree

problem

In Section 4.4 it was pointed out that the currently best polynomial time approximation
algorithm for the general metric MLT due to Goemans & Kleinberg [25] uses an algorithm
that calculates a k-Minimum Spanning Tree (k-MST) as a subroutine. In the second part of
this thesis we study the k-MST problem. In particular, we give an improved approximation
algorithm for this problem that achieves an approximation factor of 2 + ¢ for any constant

6> 0.

6.1 Definition of the k-MST problem

One of the most well studied problems in the area of algorithms is to find a Minimum
Spanning Tree (MST) of a (weighted) graph. Its definition is simple: we are given a graph
G (with edge weights in the weighted case) and we want to find a subgraph that is a tree of
minimum total edge weight and spans all n vertices of G (i.e. a minimum spanning tree).
The k-MST is a natural generalization of the MST: it is a subtree of G with minimum total
edge weight that spans ezactly k vertices of G. Notice that the number & is a new parameter

of the problem that is given as an input. Obviously for k¥ = n the k-MST is a MST for G.

43

E-MINIMUM SPANNING TREE (k-MST)

Input : An undirected graph G = (V, E) with non-negative edge costs

and an integer k.

Output : A tree in G of minimum total edge cost that spans exactly

k vertices of G.

A problem similar to the k-MST is k-TSP: find a tour of minimum cost that visits

exactly k vertices; we call such a tour a k-tour.

k-TRAVELING SALESMAN PROBLEM (k-TSP)

Input : An undirected graph G = (V, E) with non-negative edge costs

and an integer k.

Output : A tour in G of minimum total edge cost that visits exactly

k vertices of G.

6.1.1 Previous work

The problem is known to be NP-complete [40, 22, 44]. A sequence of results reduced
the approximation factor for this problem from an initial O(vk) [40] to O(log? k) [13] and
O(logk) [39] to constant factor [17]. A better constant approximation factor of 3 was
achieved by Garg [23], and a modification of this algorithm in [12] achieved the best known
factor of 2.5. For the special case of finding the k-MST of points on the Euclidean plane, a
PTAS is known to exist ([7] and independently, [34]).

Since the traveling salesman problem (TSP) reduces to k-TSP, we do not expect to have
a bounded approximation guarantee for general instances of k-TSP. However, if the edge
costs satisfy the triangle inequality, Garg’s ideas also give a 3-approximation algorithm for

the k-TSP.

44

6.1.2 Main result

This thesis presents, for any € > 0, an n©(1/)

time algorithm that computes a 2+ € approx-
imation to the k-MST problem. We use a simple modification to Garg’s 3-approximation
algorithm, which uses (as does the earlier [17]) an LP relaxation and the primal-dual frame-
work.

To explain our improvement, we first recall how Garg obtained an approximation ratio of
3. He uses the obvious LP relaxation for the problem. The integrality gap for this relaxation
(i.e., the worst-case ratio of the integer optimum and the fractional optimum) is unbounded.
However, he uses an additional lowerbound for the optimum cost (in addition to the LP
value), the diameter D of the optimum k-tree. (The diameter can be easily “guessed” by the
algorithm by trying all possible (g) internode distances.) Another source of improvement
in Garg’s paper as compared to the earlier [17] is a modification of the ‘traditional’ primal-
dual schema (as described in [26]) to incorporate a final phase of ‘potential’ reduction
that allows him to prove tighter upper and lower bounds. Roughly speaking, the factor 3
ultimately derives from two sources: a (familiar) factor 2 due to the traditional primal-dual
analysis, and a factor 1 from the diameter lowerbound.

Our improvement derives from changing the contribution of the diameter lowerbound
from OPT to e:OPT (OPT is the length of a minimum k-tree). We achieve this by allowing
the algorithm to “guess” not just 2 vertices in the optimum k-tree (which are needed to
guess the diameter), but as many as O(%) vertices. This set of vertices have the property

that every vertex in the optimum tree has distance at most € - OPT to this set. Note that

n

the n2(1/¢) running time is due to the necessity of having to try all (0(1 /e

)) choices for this

set of vertices.

45

6.1.3 Connection to MLT

We note that the improved 2 + ¢ approximation factor has immediate implications for the
problem of finding the minimum latency tour in a metric space. The first constant factor
approximation algorithm for this problem was given in [16], while [25] give the currently best
factor of 3.59 x «, where « is the approximation factor for the minimum k-tour. Therefore
our result improves the approximation factor for the minimum latency problem from 10.77

to 7.18, albeit with a higher running time.

46

Chapter 7

The approximation algorithms for

E-MST and k-TSP

Our algorithm is a modification of Garg’s algorithm [23] that achieved an approximation
factor of 3. It is based on the primal-dual method which has seen a wide variety of applica-
tions in the area of approximation algorithms since its introduction in the field by [2]. The
reader can find excellent surveys on this method by M.Goemans and D.Williamson in [28]

and by V.V.Vazirani [43].

7.1 Preliminaries

Like Garg [23], we are going to deal with the rooted version of the k-MST problem. Namely,
in addition to graph G, the weights of the edges and k, we are also given a vertex r € V to be
included in the solution. Notice that the general problem reduces to this problem by simply
solving the rooted version of the problem for all |V| possible roots r and choosing the solution
with the minimum cost. Obviously this increases the running time by a factor of O(|V]).
Unlike Garg though, we are going to assume that we have some more information about the
optimal solution besides its root. As with the root, this information is not available to us,

so we will have to enumerate all possibilities and pick the best of the solutions produced.

47

Hence our improvement is based again on “limited guessing”, a theme we encountered in the
MLT problem. The k-MST algorithm will guess a set of O(1/¢) vertices from the optimum
k-tree that, in a way, are going to indicate how “spread” this tree is in G. If |V| = n,
it is apparent that the possibilities for these ‘special’ vertices are at most n?(1/¢) and the

running time of the algorithm will increase by the same factor.

7.1.1 Special vertices

We are motivated into “guessing” O(1/e€) special vertices of the optimum k-tree by the

following simple lemma:

Lemma 5: For every € > 0 the following is true in any weighted tree of total edge length
L: There is a set of O(1/¢€) vertices such that all other vertices in the tree are at distance

at most O(eL) from one of the vertices in the set.

Proof: First find all edges that are longer than eL. There are at most % such edges. The
O(1/e€) vertices incident to these edges are included in the set. Now pick the rest of the
vertices as follows:

First label all unpicked vertices in the tree as unmarked. Repeat the following procedure

until all vertices in the tree are either picked or marked:

1. Label as marked all unmarked vertices that are at a distance at most eL from some

picked vertex.

2. If there is no unmarked vertex left, then terminate. Otherwise, pick an unmarked
vertex whose distance from one of the picked vertices is between eL and 2eL (there is
at least one such vertex, since we have already picked the vertices adjacent to edges

of length at least eL). Mark this vertex and go to the previous step.
It is obvious that the vertices picked by the procedure above satisfy the lemma requirements.

48

a

Lemma 5 will hold also for the optimum k-tree of total edge length OPT. Let W C V
be such a set of special vertices for the k-MST guaranteed by the lemma. Our algorithm
will “guess” W. By “guessing” we mean that the algorithm tries all possibilities (in nO1/e)
time) and runs the primal-dual procedure described below for each of them. It is guaranteed
to ultimately guess the correct W (in which case the primal-dual procedure will return a

tree of cost (2 + €) OPT, as we shall see).

7.1.2 The LP formulation

The constant factor approximation algorithms of [17], 23] are based on the relaxation of an
integer program for the rooted k-MST . Let r be the root of the k-tree and let 4(.S) denote
the set of edges with one end-point in S C V and the other outside S. We associate a binary
variable z, with the edge e € F: z. = 1 implies that edge e belongs to the k-tree, otherwise
z. = 0. We also associate a variable x, with the vertex v € V and z, = 1 implies that the

k-tree spans v, otherwise z, = 0. Thus an obvious constraint is) T, = k. Another

veV
obvious set of constraints that should be included are those ensuring that all picked vertices
(i.e. v’s with z, = 1) are connected to the root. In other words, for every set S CV —r
that does not contain the root r, the number of edges with z, = 1 that have exactly one
end-point in S must be at least as large as z, for any v € S. Thus for each set SCV —r
and vertex v € S constraint) . 5(S) Te > x, must hold. Given a cost ¢, for each edge e, we
seek to minimize the total cost of the picked edges, i.e. we want to minimize) ceTe-

Hence the integer program for the rooted k-MST used by previous researchers will be the

following:

49

minimize Y eci TeCe subject to

Dees(s)Te = To (V(v,S):veSCV —r)
Ywev Ty = k 0
z, € {0,1} (Vv e V)
. € {0,1} (Ve € E)

To simplify notation, from now on whenever we refer to a set S it is understood that S does
not contain the root r.

As mentioned, our algorithm will “guess” a set W C V of O(1/¢) vertices and require
that the solution should pick them. This means that z, = 1 for all v € W in the above LP.

Let w = |W|. Our new integer program takes W into account:

minimize Y ecr TeCe subject to
Doeci(s) Te = To (V(v,8):v e V\W,veS)
Zeea(s) e > 1 (V(v,S) :v e SNW)
ZvEV\W Ty = k—w
z, € {0,1} (Vo e V\W)
z, € {0,1} (Ve € E)

Note that the variables z, for all v € W do not participate in this new integer program,
which we call TP. Since the k-MST problem is N P-complete, there is not much hope
that we can solve this integer program. Instead, we will work with its linear relaxation.
Specifically, we will relax variables z,,z,. to be real numbers between 0 and 1. So the 0/1
constraints on these variables are replaced by 0 < z.,z, < 1. In fact if we impose that
Zy < 1 there cannot be edges with z, > 1 in an optimum solution, because then we could
reduce them to z, = 1 and obtain another feasible solution with smaller cost. Thus we will
use the following fractional relaxation for the k-MST problem in which the guessed set of

vertices W has to be included in the solution:

50

minimize Y ecp TeCe subject to

Deci(s) Te = To (V(v,8) :v e V\W,veS)
Decs(s)Te = 1 (V(v,S):v e SNW)
Yweviw Ty = k—w ()
zy, < 1 (Vv e V\W)
& > 0 (Yo € V\ W)
ze > 0 (Ve € E)

We will call this linear program LP. Its dual has a variable y, ¢ for all pairs (v, S) such
that v € S C V —r (notice that v can be any vertex, even a vertex in W), a non-negative

variable p, for vertex v € V '\ W and a free variable p:

maximize (k— w)p — Z Py + E Z Yv,5 subject to
veEV\W veW SweS

Yswesus+o = p (WweV\W)
Yoseco(s) wves Y5 < ce (Ve € E)
pp > 0 (VweV\W)
Yos > 0 (Vu,5:v€S)
p free

We will call this linear program DU AL.
For notational ease we introduce some new (dummy) variables: «,, for each vertex v and
zg for each subset S. These are shorthands for the following quantities:

a, = Z Yu,s (7.1)

SweS

zs = Zyv,s (7.2)

veS

51

That is, o, is equal to the sum of dual variables y, s vertex v “feels” because of the sets S
that contain it, and zg is the sum of all dual variables ¥, s for vertices v that are contained
in set S.

The following lemma is a simple modification of Claim 2.1 in [23]:

Lemma 6: In the optimum solution to the dual, p has a value between the (k — w)th and
the (k —w + l)th smallest values of oy, for v € V.\ W. The optimum value of the dual
program is the sum of the k —w smallest a,’s for v € V\ W and the oy, ’s of the vertices in

w.

Proof: We will deal with the a,’s of vertices v € V' \ W. Notice that if o, > p then p, =0
else p, = p — a,. If p is greater than the (k — w + 1)** «, then we can decrease p and
all positive p,’s by some small €, thus increasing the objective function by at least € and
contradicting the optimality of the solution. On the other hand if p is strictly smaller than
the (k — w)™ smallest a,’s then for at most k¥ — w — 1 vertices p — a, > 0; for the rest
p—a, < 0. Hence there is some € > 0 such that € < min,.p_q, <o{|p —a,|}. But then we can
increase p and the k —w — 1 p,’s that correspond to v’s with p — a, > 0 by € without losing
feasibility for the new solution. The change of the objective function will be an increase of
(k — w)e due to the increase of p by € and a decrease of at most (kK — w — 1)e because at
most K —w — 1 p,’s were increased, so there is a net increase of the solution by e. This
contradicts the optimality of the solution.

Thus p has a value between the (k — w)" and (k — w 4 1)** smallest a,’s. In this case
only the vertices with the k — w smallest a,,’s have a positive value for p,. For these vertices
ay = p — Py, while for the other vertices in V'\ W p, = 0. Now it is obvious that the
optimum value is the sum of the k — w smallest a,’s for v € V' \ W plus the a,’s of the

vertices in W. O

Definition 6: A potential assignment is any function w : V. — RT such that n(r) = 0,

where T is the (given) root of the k-tree.

52

That is, a potential assignment is just the assignment of positive real values to the vertices
in V' with the root r taking the value 0. In what follows, we are going to use a special class

of such assignments called feasible potential assignments.

Definition 7: A potential assignment 7 is feasible if there exists an assignment of non-

negative values to y, s for allv,S : v € S such that for any vertezv € V, m(v) < > 6. cq Yo,8

and for any edge e € F, 25:665(5) Y ves Yu,5 < Ce.

Note that the values a, that follow from any solution of the dual program define a
feasible potential assignment: 7(v) := a, and 7(r) := 0. Hence the dual program can now
be interpreted as finding a feasible potential assignment that maximizes the sum of the a,’s
for v € W plus the k — w smallest a,’s of the other vertices.

Any feasible potential assignment gives a lower bound for the cost of any tree rooted at

Lemma 7: Let w be a feasible potential assignment and T be any tree that is rooted at r.

Then T has cost at least), .p 7(v).

Proof: Let [y, s]y,s be the nonnegative vector that witnesses the feasibility of 7. Then we

have
YieeTCe = Deer ZS:eed(S) 2 oves Yo,s
> DeeT 2usiecs(S) 2oveTns Yv,S
= ZUET 25911 EeETOJ(S) Yu,S
> ZUET ZSB'U Yu,8

Z ET)ET 71-(IU)

where the first inequality is due to feasibility, the second follows from dropping some terms,
the third from some rearrangement and the penultimate line follows from the observation

that any set S that intersects the tree must have a tree edge leaving it. O

53

7.2 The algorithm

Our algorithm can be broken down into three parts:

1. Preprocessing.
2. Application of the primal-dual method.

3. Modification of the tree produced in Part 2 to produce a tree with ezactly k vertices.

The last two parts are almost identical with the corresponding parts in Garg’s algorithm.
But in our case the algorithm is helped by the preprocessing stage in order to achieve a

better approximation factor.

7.2.1 Preprocessing

The algorithm we describe needs some more information than that given by the original
instance of the k-MST problem we are trying to solve. Namely, it is going to need the

following;:

e the root r of the k-MST
e the cost OPT of the k-MST

e the set W of special vertices that is guaranteed to exist by Lemma 5

Since this information is not available the algorithm needs to “guess” it. By “guess” we
mean exhaustive enumeration of all possibilities, solving the problem (if it is solvable) for
each one of them, and finally picking the cheapest solution as the algorithm output. In order
to estimate the running time of our algorithm we need to calculate how many possibilities
there are for this extra information. Obviously there are |V'| = n possibilities for 7. For OPT
we will need to round the instance as we did, for example, in the MLT case for trees in order
to avoid superpolynomial (on the size of the input) edge costs. A rounding procedure

similar to the one described in Section 4.1.2 will work:

54

1. Let 6 > 0 be any constant. Guess the length of the longest path (diameter) D in the

k-MST .
2. Merge (by contracting edges) all pairs of nodes with internode distance at most § D /k.
3. Round each edge weight to its closest multiple of 4D /k.

4. Divide all edge weights by 6D /k.

Note that for Step 1 we need another piece of information not given to us: the diameter of
the optimal solution D. So the algorithm will try all n possibilities for the vertex that is

the farthest from r. In exactly the same way as in Lemma 2 we can prove

Lemma 8: Let OPT be the cost of the k-MST in the given instance and D,§ are as in
the above procedure. Then the k-MST on the rounded instance and OPT differ by at most

O(6 OPT). Moreover, each internode distance is between 1 and O(k/d) = O(n).

Proof: Steps 2 and 3 can affect the cost of the optimal k-tree by at most k x ‘STD < JOPT,
and the ratio of maximum to minimum internode distance is at most % = O(n) since J is a

constant. By rescaling we get an instance of internode distances between 1 and O(n). O

Thus, after the rounding, OPT lies between 1 and O(kn). Finally, there are (0(711) 6)) =

nO() possibilities for W. Overall, the running time of the algorithm will increase by a
factor of n°C) due to “guessing”.

The preprocessing part of the algorithm is given in Figure 7.1.

55

Input : Graph G = (V, E), integer k.
1. Guess the root r and the diameter D of the k-MST.
2. Round the instance. Let G' = (V', E') be the graph of the new instance.
3. Guess the cost OPT of the k-MST in G’ and the set of special vertices W.

4. Remove from G’ all the vertices (and the incident edges) whose distance from
all vertices in W is greater than € - OPT (these vertices cannot be spanned by
the k-MST due to the special property of W). Let G" = (V", E") be the new

(pruned) graph.

Output : Graph G”, root r, set W, OPT.

Figure 7.1: Preprocessing

7.2.2 Using the Primal-Dual method

In the heart of our algorithm (as in Garg’s algorithm [23] and the first constant approx-
imation factor algorithm by Blum et al. [17]) there is an application of the Primal-Dual
method. Hence, before we proceed into giving the details of the algorithm, it is instructive
to give an overview of this method.

Linear programs LP and DUAL are bound together by the duality properties of linear
programming. It is well known that the optimal solution of a linear program has the
same value as the optimal solution of its dual. These two optimal solutions must obey
the complementary slackness conditions. If (z,,z.) is the optimal solution of LP
and (yy,5,Pv,p) is the dual optimal solution of DUAL then the complementary slackness

conditions translate into the following:

56

Primal complementary slackness conditions
e For each v € V' \ W: either 2, =0 or Y ¢, . ¥u,5 + Py = P
e For each e € E: either z, = 0 or 25:865(5) Y ves Yu,5 = Ce.
Dual complementary slackness conditions
e For each (v,S) withv € V'\ W,v € S: either y, g =0 or ZeEJ(S) Te = Ty
e For each (v,S) with v € SNW: either y,, =0 or }_ 55 Te = 1.
e For each v € V' \ W: either p, =0 or z, = 1.

The relation between optimality of the solutions and the complementary slackness conditions
goes also the other way: if one finds a pair of (primal, dual) feasible solutions that satisfy
the complementary slackness conditions, then these solutions are optimal.

Unfortunately solving LP (or its dual DUAL) produces fractional (i.e. non-integral)
solutions (as expected, since the k-MST problem is NP-complete and an integral optimal
solution to LP would imply P=NP). The main idea behind the Primal-Dual method is
to relax the dual complementary slackness conditions and then try to construct a pair of
feasible (primal, dual) solutions, that satisfy the original primal conditions and the relaxed
dual conditions, and the primal solution is an integral one. The relaxed dual slackness
conditions will guarantee that although the integral primal solution we constructed is not
necessarily optimal (since it may not satisfy the original dual complementary slackness
conditions), it is guaranteed to be within a factor away from the optimal. As an example,
let’s assume that the dual slackness conditions for the k-MST defined above are relaxed (by

modifying the second condition) as follows:

Relaxed dual complementary slackness conditions

o7

e For each (v, S) withv € V' \ W,v € S: either y, s =0 or ZeEJ(S) Te = Ty.
e For each (v, S) with v € SNW: either y, s =0 or ZeEJ(S) T, < 2.
e For each v € V' \ W: either p, =0 or z,, = 1.

If we can construct a pair (z*,y*) of an integral feasible primal solution z* = (z},z}) and
a dual feasible solution y* = (y;j, g, Py, P*) that satisfy the primal slackness conditions and
the relaxed dual slackness conditions, then it is easy to see that this primal solution cannot

be more than 2 times the value of the optimal solution of LP OPTyp:

docerr=3 | D D vis |z

eckE ecE \ S:e€d(S)veS

= Z Z Zfﬂz yi,s*‘zz sz Y.S

vEV\W S3v \e€d(S) veW S3v \ e€d(S)

= > Y aus+ DD | D w | vis

vEV\W S3v vEW S3v \ecd(S)

Z Zy;,SJFQ'ZZy:,S

veV\WAz}>0 Sov vEW S3v

<2 | (k—wp™— D P+ YD uns

veV\W vEW S3v

IA

=2-0OPTpyar, =2-0OPTp

Unfortunately we cannot construct such a pair (z*,3*) that will satisfy these relaxed
complementary slackness conditions. But we can construct a pair that satisfies them “on
average” where the exact definition of “on average” will become apparent later.

The construction of such a pair is iterative. The algorithm starts with an infeasible pri-
mal solution and a feasible dual solution; these are the trivial solutions where all primal and
dual variables are 0. These initial solutions satisfy the complementary slackness conditions
(relaxed or otherwise) trivially. The infeasibility of the primal solution leads to a new dual

feasible solution with better (i.e. increased) objective value. In its turn, this better dual

58

solution leads to a new integral primal solution with fewer unsatisfied constraints. This
“game” between the infeasible primal solution and the feasible dual will continue in the
same fashion until the primal solution becomes feasible: the current primal solution is used
to determine an improved dual, and the improved dual will determine a “less infeasible” pri-
mal. Throughout the running of this procedure two invariants are maintained: the primal
solution is always integral and the relaxed complementary slackness conditions will hold.
This phase of the algorithm will be called the grow phase (because during this phase we
“grow” a primal solution).

The integral solution produced by the grow phase of the algorithm is a feasible one, but
it may not be a solution to the original problem or it may be pruned down into a cheaper
solution for the problem. For example, the problem at hand may ask for a tree as a solution,
while the grow phase returns a forest. So the algorithm must go through a delete phase
that finally produces a solution to the original solution. Note that the delete phase must be
designed so that the approximation factor guarantee that worked for the solution produced
by the grow phase works also for the final solution.

As in Garg’s algorithm, we will use the procedure TREEGROW below for progressively
larger values of C' (C is a parameter we will define shortly that takes values from 1 to
OPT) until the returned tree has at least k nodes (note that the Primal-Dual method we
implement does not guarantee that the tree it returns has ezactly k vertices). Thus the tree
needs to be pruned to contain exactly k nodes. The pruning procedure is another source
of suboptimality and the reason for using the set of special vertices W. It is described in

Section 7.2.3.

Procedure TREEGROW

This procedure is given a number C € R™ and the output of the Preprocessing part of the
algorithm: a rounded graph G, a root r, a set of special vertices W and the value OPT of

the optimal k-MST in G. It generates a tree T rooted at r that contains W and possibly

59

some other nodes. (The number of nodes is determined by C, as will become clear.) The
procedure also generates a feasible potential assignment 7o (for the purposes of our analysis,
and not as an output).

Following the general framework of the Primal-Dual method, the algorithm will run
in two phases. During the grow phase the algorithm grows clusters of vertices while
simultaneously it builds a tree for each cluster. Since the first phase may produce a forest
instead of a single tree, we need a delete phase during which extra edges are pruned.

Grow phase: Initially, we assign each vertex v € V'\ W a credit C. The root gets 0
credit. Vertices in W have infinite credit (or credit at least OPT 4 1). At any moment the
algorithm maintains a set of clusters, which we will call components. The vertices in each
component are connected by a subtree of G, and altogether they form a forest F. At each
step the components are either active or inactive depending on whether they can grow any
further or not. The component that contains the root is always inactive.

First we give an informal description of the grow phase. As an example we will use
the graph in Figure 7.2. To simplify the exposition we will assume for the moment that
the algorithm runs in continuous, rather than discrete time. Initially the forest consists of
singletons. The vertices will use their credit to grow a spherical component around them in
an effort to reach r. A sphere of radius ¢ will cost § amount of credit to the vertex. This
growth of components starts simultaneously for all vertices (except for r), it is continuous,
and the growth rate is the same for all components (Figure 7.3). As the algorithm proceeds,
two components may grow enough to meet each other; for example, the first such meeting
will happen when the components growing from the two nearest neighbors in G at the
middle of the edge connecting them (if more than one pair of components meet at the same
moment, we break ties arbitrarily.) When this happen the two vertices act together: they
stop growing their previous components and use their remaining credit to grow a common
component around the old ones. Again, in order to grow this component by a “width” of

d, one of the vertices in this component must expend a § amount of its credit. Every time

60

two components meet, they meet along an edge. Then this edge will be added to the set of
picked edges to connect the two trees of picked edges in these components into a tree that
spans the vertices in the new component. So it is obvious that the set of picked (or tight as
we will call them) edges is the set of edges in forest F' maintained by the algorithm (Figure
7.4). At some point a component grows enough to meet the root component (that is always
inactive and doesn’t grow). Then the vertices in this component are connected with 7 in a
tree and do not need to spend any more of their credit for growth. Another event that may
take place is that the vertices in a component spend all their credit while growing it. Then
this component cannot grow any more and becomes inactive. Hence a component is active
iff throughout its growing phase it always contains a vertex with positive credit. The grow
phase of the algorithm ends when all components become inactive, i.e. when all vertices are
either connected to the root tree or have no more credit. Note that at the end all vertices
in W are connected to the root component, because they always have enough credit to pay
until their component is connected to the root component. In our example, there are three
inactive components, one of them being the root component (Figure 7.5).

Formally, at each step, the algorithm picks, for every active component S in the current
forest, one vertex, say v, whose credit is positive. This selects a dual variable y, s for
S. Having selected a dual variable for each component, the algorithm raises all of them
simultaneously and at the same rate, and decreases the credit of the picked vertices at the
same rate. (Thus the credit of the vertices pays for the dual increases.) Initially all dual
variables are equal to 0. The algorithm starts by raising dual variables y, (., for all v # 7.
At some point two components meet along an edge e. Then this edge becomes tight (i.e.
constraint Y g..cs05) Xpes Yv,s < Ce in DUAL becomes an equality) and we pick it (i.e. we
make z, = 1 in LP). Whenever two components S1, Sz meet, the algorithm stops raising
the variables v, s, , Yu,,5, for vi € S1,v9 € Sy. Instead it picks a vertex vz € S1 U Sy with
positive credit and starts raising variable y,, s,us, using v3’s credit to pay for the raise. If

v3’s credit is exhausted, the algorithm finds another vertex v4 with positive credit, stops

61

Figure 7.2: The graph G with root vertex r and W = {v,u}.

62

Figure 7.3: The components grow and edge e becomes tight.

®terrcscccscccnses

Figure 7.4: Components continue to grow. Solid lines denote tight edges. Tight edges in
each component form a tree.

64

Root component

<4 |INACTIVE

Figure 7.5: The end of the grow phase of the algorithm.

65

raising 4., 5,us,, and starts raising variable y,, s,us,. If it cannot find any vertex with
positive credit in the component, the component becomes inactive.

The dual increase rule can be also viewed as increasing zg at a uniform rate for all active
components. (See (7.2) for definition of zg.) This is because the algorithm increases y, s
for only one vertex v € S at any step. During this process, primal variables z, and dual
variables p, p, can be set so that the second (relaxed) complementary slackness conditions
holds “on average” (as explained later in the analysis). Also notice that although our
description was based on continuous time, the algorithm can be easily run in discrete steps,
where each step is an ‘event’ (two components meet, or a component becomes inactive) and
the time until the next event (i.e. by how much the components will have to grow) can be
calculated in polynomial time. Since the number of events is linear in n = |V/|, this phase
of TREEGROW will run in polynomial time.

Delete Phase: At the end, we delete all inactive components that are not on a path
from an active component to the root (i.e. inactive components that are leaf subtrees of the
root component). This process is done in a bottom-up fashion: first we prune all the leaf
inactive components (except the root component, if it is a leaf), then we are left with a new
(pruned) tree, we again prune the inactive leaves and so on, until we are left with a tree
where all leaves are active components with the possible exception of the root component.
The exact reasons for the delete rules will become apparent in the analysis of the algorithm,
but the intuition is the following: An inactive leaf component is connected to the root
component via an active component that has grown enough to touch it. But then the credit
in the active component has been used not only to connect this component to the root,
but to connect the inactive leaf component to the root as well. This turns out to be an
overkill because the same credit has paid for (potentially many) more tight edges than its
worth. By deleting the inactive leaf components we will be able later to argue that there is

an equivalence between the credit spent and the cost of the tree.

66

Output of TREEGROW The procedure will output the tree T of the (pruned) compo-
nent containing the root.

It is not necessary that T will span exactly k vertices. It is obvious that the bigger the
initial credit C is, the bigger the root component will be. In the third part of the algorithm

we will compute a tree that spans ezactly k vertices.

Constructing a feasible potential assignment

TREEGROW outputs tree T. As an aside we can use it to construct a potential assignment
mc whose feasibility is witnessed by the dual values y, g constructed by the algorithm.
Although this assignment is not required as an output, it will help in the analysis of the
algorithm. For each vertex v whose final credit is 0 (note: v ¢ W), wc(v) is C. This
implies that vertices in inactive components (other than the root component) will get a
potential assignment C. Note that any vertex whose final credit is positive (the vertices in
W included) must be in the root component, and before it joined the root component it was
always in an active component. For such vertices we do the following: We start decreasing
the initial credit of all such vertices uniformly and run TREEGROW with the new initial
credit. We continue the decrease until we notice that one of these vertices, say u, would
now finish the algorithm with zero final credit. Then 7 (u) is set to the (new) initial credit
of u and we don’t decrease its initial credit anymore. We continue in this manner until we
ensure that all vertices finish the algorithm with zero final credit.

By construction, if the algorithm is started with initial credits given by mw¢, then its
behavior is the same as when all the vertices not in W got an initial credit C. Moreover,
when TREEGROW ends, all vertices not in inactive components will have zero final credit.

Thus we have the following lemma:

Lemma 9: The potential assignment wo is feasible.

Proof: The proof follows from two observations. First, the potential assignment (i.e., initial

67

credit values) are being used to exactly pay for the increase of the dual variables v, g, so
7c(v) = D giwes Yu,5- Second, the edges are added to the forest as soon as they become
tight, so during the run of TREEGROW we always maintain) g, 5(8) Y ves Yu,s < ce for all

e € E. Hence ¢ complies with Definition 6. O
Let k¢ = |T¢|- The next lemma follows from the construction of 7¢:

Lemma 10: W C T¢ and T¢ contains the ko — |W| vertices in V. \ W with the smallest

potentials. All vertices outside T have potential C'.

Proof: The vertices that did not get included in T were among the ones who expended
all their credit C' on growing their dual values before the end of the algorithm. Hence their
initial credit was not changed at the end, so their potential is C. Vertices in T¢ \ W have

potential at most C, so they are the vertices with the k¢ — |W| smallest potentials. O

Lower & upper bounds

Before we continue with the third (and last) part of the algorithm, we relate the cost of
Tc produced by TREEGROW with OPT. Since 7¢ is feasible, Lemma 7 implies that OPT
is lower bounded by the sum of potentials of the nodes in W plus the k — |IW| smallest

potentials in any feasible potential assignment. Hence we have the following;:

Corollary 1: If W is contained in the optimum k-tree, then OPT is at least the sum of
the potentials of vertices in W and the sum of the k — w smallest potentials in V \ W, for

any feasible potential assignment.

Corollary 1 can be combined with Lemma 10 to prove

Lemma 11:

Z wc(v) < OPT.

veTo

68

For an upper bound we follow the standard techniques of upper bounds in primal-dual

schemes (cf. [26], [17]):

Lemma 12:

Z Ce <2 Z o (v).

ecTo veETo

Proof: By the way the potentials were defined, we have

Z mc(v) = Z Zyv,s = Z zs

veTe SCTe ves SCTe

where S in the above expressions denotes components formed during the running of the

algorithm. We wish to upperbound

EeeTC Ce = EeeTC ES:eeé(s) ZS
= Yscr #s/Te N 6(9)|
So the Lemma will be proved if we could show
Y zg|Tené(S) <2x > 25 (7.3)
SCT¢ SCTc

We prove (7.3) by induction for every step of the algorithm. Initially this is true since
all the zg’s are zero.

At any stage of the algorithm, let H be a tree whose vertices are the components formed
till this stage, and whose edges are the edges of T that are missing from these components
(i.e. edges that have not become tight yet but will connect them at the end). Let N,, N;
denote the sets of active and inactive components at this stage respectively. Recall that
the algorithm raises all zg’s for current S’s at the same rate. When each zg for the active
components rises by €, the algorithm increases the LHS of (7.3) by €>_ .y deg, and the
RHS by 2¢|N,| (deg, is the degree of component v in H). It suffices to show that the average
degree of the components in N, is at most 2.

Owing to the Delete phase, the leaves in H cannot be inactive components, except

possibly the component containing r. Thus all components S € N; except possibly one

69

have degree at least 2, and so the sum of the degrees of components in N; is at least
2|N;| — 1. The sum of the degrees of components in tree H is 2|H| — 2, so the sum of the
degrees of components in N, is at most 2|H| — 2|N;| — 1 = 2|N,| — 1. Hence the average
degree of components in N, is at most 2 (and the relaxed dual complementary slackness
condition holds “on average”).

a

All the above hold for any value of C. We will run TREEGROW for C ranging from 0 to
OPT. The increase step will depend on the ‘tightest’ edge of those that are not tight with
the current value of C. That is, we increase C' by the minimum amount that will make
one more edge tight. There is some value Cy that is a threshold in the following sense: if
we give initial credit Cp — ¢ (where 0 is infinitesimally small), the tree T,—s has k1 < k
vertices, but if we give initial credit Cp, the tree T, has k2 > k vertices'. These two trees
will be the output of the second part of the algorithm, together with the feasible potential
assignments described above. The third (and last) part will use these two trees to output

a tree with exactly k vertices.

7.2.3 Producing a tree that spans exactly k£ vertices

In the second part of the algorithm we call procedure TREEGROW for increasing values of
initial credit C, ranging from 0 to OPT, where the increase step is determined as explained
above0. From the description of the Grow phase it is apparent that the tree in the root
component will be bigger for greater values of C'. Obviously, for some initial credit Cy, trees

Tco—s,Tc, (i-e. the trees produced when the initial credit is Cy — d and Cj respectively, for

1Tt may be the case that for C = 0 the tree produced by TREEGROW has more than k vertices. In this
case it is obvious that all the leaves are vertices in W (because any other vertex would become inactive as
soon as the grow phase starts, and would be pruned in the delete phase if it were a leaf). But then there
would be another set W that instead of one of these leaf vertices it contains its closest ancestor not in W,
and produces the same tree with one vertex less. If we continue in this fashion we will eventually find a W
for which the tree produced when C' = 0 has ezactly k vertices. Then the rest of our analysis applies.

70

infitesimally small §2), are such that |T¢, | = k1 and |T¢,| = ke, with k1 < k < ko. The
third part of the algorithm will append some of the extra vertices in T, to T¢,—s in order
to produce a tree that spans exactly k vertices. Since it is the almost the same as Garg’s
algorithm [23] we will follow his exposition before pointing out where our improvement
occurs.

Let Tco_(;, TCO be the root component trees for these initial credit values. Then we can

prove that Tco,g and TCO have similar structure.

Lemma 13: Let S be a set of vertices such that zg > 0 when we run the algorithm with
initial credit Cy. Then either all the vertices of S do not belong in the final root component

or they occur contiguously in both root component trees Tco_5 and TCO.

Proof: Initial credits Cy — 9§, Cy differ only by J. Since § is infinitesimally small, either S
is a subcomponent of active components throughout the running of the algorithm for both
initial credit values (and therefore it is connected to the root component), or it will become
part of an inactive component not connected to the root component for both values. In the
first case the vertices in S occur contiguously in Tco,g and Tco because S was a component
at some point during the algorithm, and its vertices were connected by a subtree of the final

root component. O

We will concentrate our attention to those S that participate in TCO_[; and TCO. Let S
be such a set. Then the vertices of S appear contiguously in TCO_(; and TCO. Hence we can
replace the edges induced by S in TCO_J with the edges induced by this set in T(;O without
increasing the cost of the tree (because the difference between the initial credit values was
infinitesimal the only possibility for the algorithm to pick different edges in the two cases
is the case of a tie, i.e. when two or more edges between two subcomponents of S become

tight simultaneously). Hence if we start from Tco,g and apply the above modification on

2 Although we assume that § is infinitesimally small, our analysis will hold for § equal to the difference
between Co and the previous value of initial credit used to run TREEGROW.

71

active components S in the order they were created by the algorithm, we will eventually
get TCO. In this way we have created a sequence of trees, and each element of this sequence
differs from the next by a pair of edges (short inductive proof: The difference between two
consecutive elements of the sequence is due to the modification of an active component
S. But this component was created when two other components Si, Sy were connected.
These two are earlier components, so they have already been modified. Hence the only
difference between the two consecutive trees is the edge that connects S; and S to create
S.) Note that all the above hold for the root component trees created by the Grow phase
in TREEGROW. Since |T¢,—s| < k and |T¢,| > k, there must be two trees in the sequence
T_, T+ that differ only by an edge, and after the Delete phase the new trees T_, T span
|T_| < k and |T| > k vertices respectively.

In what follows we are going to work with T_ and T+. Let e_ € T, et € T+ be the pair
of edges that trees 7", T+ differ in and let S1,.S9 be the two components of S between which
these edges run with S; being the component closer to the root. Figure 7.6 summarizes the
structure of 7_ and 7'. Also let ki = |T_|, ks = |T;| and k1 < k < ko. We call the extra
vertices of T, that do not belong to T new vertices. The remaining vertices of T, (which
also belong to T") will be the old vertices. Let s be the number of new vertices, where
s > ko — k1. The similarity between the root component trees T°_, T+ implies the following

lemma:

Lemma 14: In the tree T all new vertices occur contiguously while the old vertices form

at most two contiguous sets.

Proof: The new vertices belong to a component that has enough initial credit in it to
attach itself to the root component when the initial credit is Cy, but it was an inactive leaf
that was deleted in the Delete phase when the initial credit was Cy — d. So the new vertices
occur contiguously. There are two possible ways for the new vertices component to attach

itself to Ty and they are both depicted in Figure 7.7.

72

Figure 7.6: The trees CZAL,T+.

a

All new vertices belong to component S, since the component that contains them also
contains edge ey. If X7, Xy are the two contiguous sets of old vertices in 7%, with r € X7,
then the two subcomponents S1, Sy of S contain all the new vertices and S; is contiguous
with X7 and S5 is contiguous with X5. Notice that X9 may be empty (case (a) in Figure
7.7). This is a case covered by our analysis, so we will assume that Xy # (). Also note that
W C X1 U Xs. Since | X1 U Xo| = k2 — s all we have to do is to pick k — ka + s of the new

vertices. First we pick new vertices from S;. If they are not enough we will continue picking

73

old old

(a) (b)

Figure 7.7: (a) The new vertices component is a leaf component in 7%.. (b) In tree 7'y the
new vertices component replaces an edge (dotted line) in connecting a component of old
vertices to the root. Notice that some of the old vertices that belong to 7_ (gray areas)
may not belong to 7', because by replacing the edge with the new component, they become
inactive leaves and are deleted during the Delete phase.

74

new vertices from Sy. Wlog we will assume that we pick all new vertices in S7 and the rest
are picked from S3. The vertices in X; U S occur contiguously in 7. Let 77 be the tree
induced over these vertices by T'y. The new vertices from Sy will be picked so that they
occur contiguously with Xo in 7', . Let 75 be the tree induced over these vertices by 1. The
solution produced by the algorithm is the trees 77,75 connected by the edge of minimum
cost that connects them. We will prove that one can pick the new vertices so that the cost
of T1, T is at most twice the sum of the potentials given to their vertices by the potential
assignment 7, defined in the previous section. We will prove that 77,75 also contain the
vertices with the k — |W| smallest potentials given by 7¢,, so the sum of potentials is also
a lower bound of the optimal solution, by Corollary 1. Thus cost(7}) + cost(T3) < 2- OPT.
Because of the special properties of W the edge we will use to connect T} to T5 cannot cost
more that € - OPT. This is exactly the point of our improvement over Garg’s algorithm.
The overall approximation factor of the algorithm is 2 + €.

Now we describe the algorithm for picking the new vertices. We would like to pick a
certain number of new vertices from S;. Recall that the new vertices of S; have already
been picked3. Let T be the tree induced by Ty on the vertices in Xy U Sy, and M the set
So. The new vertices are going to be picked from M. At each step of the algorithm, M
or T will shrink until 7" contains exactly the number of new vertices needed. The iterative
algorithm is outlined in Figure 7.8. The algorithm uses the notion of inactive leaves to
refer to inactive components created during TREEGROW that are (either as a whole or a
contiguous part of them) leaf components of 7.

The algorithm can be shown to maintain four invariants that are essential for its cor-

rectness and its cost analysis.
Invariant 1: All vertices in T picked by the algorithm occur contiguously.

Proof: It suffices to prove that every time M is pruned, the pruned (and thus unpicked)

3If S; contains more that enough new vertices, then what we say for S» apply to S;.

75

Input : Tree 77. Sets Xs, Ss.
1. Let T := T+ N {X2 U 52} and M = SQ.
2. While T doesn’t contain the number of vertices needed do:

e If C is an inactive leaf component of 7" with C C M (Figure 7.9(a))
then

— If M\C contains enough new vertices then move to next iteration
with T:=T\C,M := M\ C

— If M\ C doesn’t contain enough new vertices then move to next
iteration with 7":= T, M := C.

e If T doesn’t have an inactive leaf in M, let C7, Cy be the two compo-
nents forming M, with Cy being the component connected to 7'\ M
(Figure 7.9 (b)).

— If C] contains enough new vertices then move to next iteration
with T:=T\ Cy, M := C}.
— If C; doesn’t contain enough new vertices then move to next
iteration with T := T, M := ().
3. Connect T = T;, to T} with the cheapest edge. Let T be the resulting
tree spanning exactly k vertices.

Output : Tree T.

Figure 7.8: Producing a tree spanning exactly k vertices

vertices are always a leaf subtree of 7. This is clearly the case when T' does not have

an

inactive leaf that is a subset of M; in this case the only vertices that may be pruned are the

vertices of component Cy, which is clearly a leaf subtree of the current 7' (Figure 7.9 (b)).

In case T has an inactive leaf C' with C C M, the only vertices that may be pruned

thus 7" wouldn’t contain any old vertices, a contradiction).

76

are the vertices of C'. The only complication arises when T'\ M = () and C contains all old
vertices of T. Then it may be the case that the extra vertices picked from M \ C are not
contiguous with the old vertices in C. But C cannot contain all old vertices of T' because

it is an inactive leaf and it would have been deleted from 7 during the Delete phase (and

a

(@) (b)

Figure 7.9: (a) C is an inactive leaf of T. (b) M is formed by components Cy, Co that are
not inactive leaves of T' at the current iteration of the algorithm.

Invariant 1 ensures the correctness of the algorithm. The second invariant ensures that
M is always a component of T" in the following sense: M is either a component as defined

in the previous section, or it is the intersection of such a component with 7'.
Invariant 2: Set M is a component.

Proof: The proof is inductive. Initially M = S5, so the invariant holds. If T' does not
contain an inactive leaf C' C M, the new M is going to be either C; or Cy which are
components. If T' contains an inactive leaf C C M, then the new M is either C' (which is a

component) or M \ C, which is the intersection of component M with the new tree T'\ C

7

(and therefore a component, according to the new definition). O

As defined in the previous paragraph, the components of T" at any stage of the algorithm
are either original components formed by TREEGROW or the intersection of such components
with 7. We would like to use the same line of analysis we used in Section 7.2.2 to prove that
T continues to have bounded cost, just like tree T_. To this end, we define an extension of

the active components in TREEGROW for the new notion of a component:

Definition 8: A component C of T pays for itself if Y gD cs Yo,5 < D pec TCo(V)-
Invariant 3: The components that cannot pay for themselves are supersets of M.

Proof: Again the proof is inductive. Notice that all original components that intersect
Xy were active (or their intersection would had been deleted from X, during the Delete
phase), so they can pay for themselves. The rest of the components have to intersect Sp. If
someone of them was active throughout the run of the algorithm it can pay for itself. If it
was inactive, then it has to contain the whole Sy, otherwise its intersection with Sy would
had been deleted during the delete phase and it wouldn’t be a part of 7';. Hence initially
the components that cannot pay for themselves contain M = Ss.

For the inductive step, notice that at every step the same vertices are pruned from
both M and the components that couldn’t pay for themselves, so the restriction of the
components that couldn’t pay for themselves to the new T still contain the new M. The
only case where a new component that cannot pay for itself is created by the algorithm is
when the new T is T \ Cy and the new M is C;. Then component C; may not be able to

pay for itself anymore, but in this case C is itself the new M and the invariant holds.

The fourth (and last) invariant we maintain is the following:

Invariant 4: At every step every inactive leaf of T intersects both the current M and all

the other inactive leaves of T

78

Proof: Initially every inactive leaf of T' has to contain the vertex incident to ey, otherwise
it would had been deleted during the Delete phase. This vertex also belongs to M = S5, so
the invariant holds.

When T is modified to T'\ C or T'\ Cq, the rest of M (that is M \ C, C; respectively)
may become a new inactive leaf or part of new inactive leaves. All of these have to contain
vertex v in Figure 7.9 (otherwise they would had been deleted), and all of the older inactive
leaves that are still present have to contain v (for the same reason). Since v also belongs to
the new M in both cases the invariant holds.

The pruning of M can also result into new inactive leafs for T. If M was contained in
an inactive leaf before the pruning, it it still contained in the new (pruned) inactive leaf
since we prune the same vertices from both of them. The other case that may arise is the
case of M containing an inactive leaf before the pruning, and this leaf is disjoint from the
new (pruned) M. This may happen either when the new M is C, for some inactive leaf C,
or when the new M is Cy. In the first case the inactive leaf has to be a leaf in M \ C for
the unpruned M. But, from the inductive step, this inactive leaf was an inactive leaf in
the previous step of the algorithm, together with C, so they had to intersect each other, a
contradiction. In the second case the inactive leaf has to be a subset of C;. This leads to a
contradiction, because in this case we have assumed that there are not inactive leaves that

are subsets of the unpruned M.

Upper & lower bounds for the final solution

Let T'=T» and M be the final tree and set produced by the algorithm. We want to prove

an analog of Lemma 12 for the trees 17,75 we produced.

Lemma 15: The total cost of T1,T> is at most the sum of the potentials of their vertices

as given by mc,.

79

Proof: The proof is essentially the same as the proof of Lemma 12. Tt is inductive on
the steps of TREEGROW and it distinguishes two cases: the steps before component S was
formed by the merge of S1,.S9, and the steps after S was formed.

The complication in the first case is the new notion of component; recall that T is always
a collection of components in the original sense or intersections of original components with
its vertices. Note that if all active components of T' can pay for themselves and 7' has only
one inactive leaf, then the proof of Lemma 12 carries through. But indeed T" has only one
inactive leaf, because all its inactive leaves would have to intersect each other, by invariant 4.
Also any active component that cannot pay for itself contains M, by invariant 3. M is itself
a component, by invariant 2, so during the Grow phase of TREEGROW can be contained
only in one active component. Therefore there is only one active component that cannot
pay for itself. Moreover, T' cannot have both such an active component and an inactive leaf
because they will intersect (the active component would contain M, by invariant 3, and the
inactive leaf would have to intersect M, by invariant 4). So T' = T, contains either at most
one active component that cannot pay for itself or at most one inactive leaf. On the other
hand, T} has at most two inactive leaves: the root component and (possibly) the component
that contains the endpoint of e;. Hence in the current step of TREEGROW T UT5 has either
at most three inactive leaves or at most two inactive leaves and an active component that
cannot pay for its growth. The result in both cases is the same: the analysis of Lemma 12
still carries through because 77 UT5 induces a forest of two trees on the current components.

In the second case, S has been formed and 77 U T5 together with e} induce a tree on
the current components. This tree has at most one inactive leaf (the root component) and
the analysis is exactly the same as in Lemma 12 (note that the only subcomponents of S
that do not participate in the analysis for 77 UT5 are inactive leaves that didn’t participate

in the analysis for the whole 7'y in Lemma 12 as well).

80

Lemma 15 didn’t account for the cost of the edge we use to connect T3 to T;. The
crucial observation is that W is always either a subset of the old vertices of 77 or e_ has
length less than € - OPT. Thus the cheapest edge that connects T to T} cannot be more

costly than e - OPT. Hence we have proven

Lemma 16: The tree T produced by the algorithm spans exactly k vertices and its cost is

upper-bounded by

cost(T) < 2- Z ey (V) + € OPT (7.4)

Also the tree the algorithm produced contains all the old vertices of T, so it contains
all vertices with potential assignment less than Cj, together with all the vertices in W.
The rest of the vertices have a potential assignment of Cy by n¢c,. Hence T contains W
together with the vertices that have the k — |W| smallest potentials under feasible potential

assignment m¢,. Corollary 1 implies
Lemma 17:) +7g,(v) < OPT.
Lemmata 16 and 17 are enough to show the main result of this chapter:

Theorem 13: The algorithm described above produces a tree T that spans exactly k vertices

of graph G, its cost is

~

cost(T) < (2+¢€)- OPT
and its running time 1is nOe).

Proof: Note that all the steps of the algorithm after the guessing can be implemented in

polynomial time. Guessing multiplies this running time by a factor no(%), as explained in

Section 7.2.1. O

81

7.3 The metric k-TSP problem

The metric k-TSP problem was defined in Section 6.1 as follows: given a graph G = (V, E)
with non-negative edge costs that satisfy the triangle inequality, we wish to find a cycle of
minimum cost that visits exactly k vertices; we call such a cycle a k-tour. Again wlog we
will consider the rooted version of this problem.

For the case of k-MST we used the fact that the final potential assignment mc, was
feasible, namely any tree T rooted at r and including the preselected vertices in W, had
cost at least as much as the sum of the potentials of its vertices. This means that the sum of
the k — |W| smallest potentials plus the potentials of the vertices in W were a lower bound
for the cost of the edges in the optimal k-tree. For tours, any feasible assignment has an

even stronger property:

Lemma 18: For any tour P and any feasible potential assignment, the cost of P is at least

twice the sum of the potentials of the vertices in P.

Proof: Notice that for a cycle, every component we grow pays for two edges of the cycle
(since a component that is entered by the cycle must be left by it as well).

a

Hence, if T' denotes the k-tree constructed by the algorithm, OPTiq,,; the cost of the
minimum k-tour and OPTiee the cost of the minimum k-tree, we have:
2 me(v) < OPTigyy (7.5)
veT
since T' contains the vertices with the k — |W| smallest potentials together with the vertices
of W.
Now we construct a tour out of T', by duplicating its edges and short-circuiting an Eule-

rian walk on it, incurring an approximation factor of 2. Hence, if C is the tour constructed

82

in this way, we have
cost(C) < 2 - cost(T)

<2- (2 Z 7rCO(’U) +€- OPTtree)
veT

<2 (OPTioyr +€- OPTioyy)
= (2+¢€) - OPToyy

for any €’ > 0. The running time is essentially the running time of the algorithm for k-MST

o)

,l.e. n

83

Chapter 8

Approximation of the LFU policy
for Web Caching

The last part of this thesis is dedicated to the study of the Least Frequently Used (LFU)
replacement policy for Web caching. Under certain assumptions we will give both theoretical
bounds on various parameters for this policy, as well as practical implementations of LFU
that achieve almost as good (and in some cases even better) results as the theoretical

bounds.

8.1 Web and caching

The past decade has witnessed a tremendous progress of the Internet, a global network
that connects millions of users around the globe. This World Wide Web (WWW) provides
not only the means for communication between people but the deployment of a wide range
of services to end-users as well. Services from distant learning to advertising to electronic
commerce (e-commerce) have become part of everyday life. The huge amount of data
that need to be transmitted through the Internet together with the exponential growth
of Web users (clients) lead to significant congestion in the network, leading to long access

delays, absence of Quality-of-Service (QoS), and low penetration of services to the electronic

84

customer base. The problems of congestion in the backbone network has elevated the
bandwidth available for data transfer to a critical commodity in short supply.

One of the methods used to avoid congestion in the network and decrease the access
latency experienced by the users is caching. Caching has been used for a long time in all
computing systems. In processors caches store data that are being accessed repeatedly due
to temporal locality phenomena as well as neighboring data to exploit spatial locality. A
similar locality phenomenon has also been observed in the accesses of groups of users over
the Internet [20] [14]. It has been observed that objects (sites) on the Web are been accessed
in a non-uniform uniform fashion; more precisely, it seems that accesses over the Web can
be modeled using a Zipf or Zipf-like distribution [20] [18]. Thus the potential and improved
performance of Web caching has led to the development and deployment of systems that
implement caching mechanisms [3] [19].

Given a calculation or estimation of the probabilities of access for Web objects (sites
or pages), one can view the Web as a system composed of servers, clients and the Internet
which is the network interconnecting them. This environment is a dynamic system where
clients inject requests to the servers and receive responses. In order to develop caching
strategies, i.e. location and sizing of the caches as well as caching policies, we need to

analyze the behavior of the system.

8.2 Zipf’s distribution and the network model

We analyze a simple environment, as the one shown in Figure 8.1. In this environment,
an enterprise network (or LAN) is connected to the Internet through a gateway, which also
serves as a cache (for example, in a typical environment, the gateway could be a firewall).
Users (clients) connect to Web servers through the gateway. So, user requests arrive to the
gateway-cache and they are either forwarded to the Internet, or served through the cache,

if the data are already cache-resident.

85

SERVER

Client

WEB
CACHE
Client
SERVER _
Client
Figure 8.1: A simple caching environment
We assume that the set of all available objects, denoted O = {O1, 05, ..., Oy}, has size
|O] = N. Also, we assume that client requests follow Zipf’s distribution. Specifically, we

assume that the stream of client requests, R, is a series of independent trials drawn from a
Zipf distribution over the set of N possible objects (e.g., web pages or sites). This means

that the next request in R will be for the i-th most popular of the N items with probability

. Q
Py (i) =~ (8.1)
where
1 1
V= — =~ ——
Hy InN

Hy is the N-th harmonic number, which we approximate with In N. Zipf’s function for
N = 10%, where 2 < i < 5 is shown in Figure 8.2. Breslau et al. [18] studied the hypothesis
of Zipf’s law for web requests suggested by [20] and also [24] [4]. Their experimental results,
based on actual Web traffic traces, indicated that web requests follow a Zipf-like distribution
given by

) Q
PN(Z):i—a

86

15

N(i)

Figure 8.2: Zipf’s function

where

N -1

a- (4]~

i=1
The parameter a depends on the trace source but always 0 < a < 1 (notice that for « =1
we get the true Zipf’s distribution described above). In order to simplify the exposition
and the calculations we will assume that o = 1. The modifications for a # 1 will be
obvious. Furthermore, we assume that the system is closed, i.e., that N, the total number
of objects, and their nature do not change (no objects “die” and no new ones are “born”).
This assumption is realistic for time intervals of the order of weeks or months, when we

observe no dramatic changes in the population of requested objects.

87

As in [42], one can calculate the number of accesses of the k most popular objects
01, Oy, ..., O as follows. If a number of accesses N4 is directed to the set of the N
objects and N4 is large enough, then, in general, object O;, 1 < i < N, will be accessed
P; x N4 times, based on Zipf’s law. So, the total number of accesses to the k& most popular

objects is:

k

k
Hy,
ZZ:;NAXH:NAX;PZ':NAXH—N (8.2)

This implies that, if we have a “hot” cache that serves the requests, which stores only the
k most popular objects, then the cache hit rate is:
N Ag_,’i, Hy,

h = = .
N Ty (8.3)

Based on the above, we can calculate k, the number of objects in the cache, which can

achieve a given hit-ratio h, from (8.3):
Hy=hxHy=>Ink=hx Hy = k=" (8.4)

The calculations indicate that the given cache hit ratio & will be observed (measured) under

the following two conditions:
1. Zipf’s law holds for the set of accesses and objects measured;

2. the time interval during which measurements are made is large enough.

Note that, one can certainly develop scenarios where the accesses are in such an order that
the cache hit rate becomes significantly lower than the expected h for short time intervals
(e.g., when many consecutive accesses are targeted to the least popular objects). However,
the cache hit ratio is the expected h for long enough intervals, i.e. long enough request
streams. In what follows, we calculate an upper bound for the minimum length of the
request stream, so that the measured object order according to their observed popularities
is reliable (with high confidence) and the Zipf distribution estimated up at that point

converges to the final one.

88

All the above calculations and the calculations in other works (e.g. [18]) assume that
the request stream R is a stream of independent trials from Zipf’s distribution. In this work
we study this particular assumption of statistical independence in two directions: first we

examine its impact on caching policy design and then we test its validity.

8.3 Consequences of the statistical independence assumption

8.3.1 Determining the Zipf distribution of the request stream

The statistical independence assumption we (among others) have made is very strong. In
fact it is strong enough to allow us to give exact theoretical bounds for several parameters
of the system. The question we answer in this section is the following: assuming that the
request stream follows the same Zipf’s distribution for a long enough time, how far in the
past (in terms of past requests) do we need to look in order to determine this distribution
with a very high probability (over the possible request streams)? It turns out that we need
to look only on a polynomial (over the set of sites/pages) number of past requests. While
this is a theoretical bound and it is still too large for all practical purposes, it points towards
a new direction on implementing the LFU caching policy. We will study the LFU policy in
detail in the next section.

Considering that the request stream R is a series of independent trials drawn from a Zipf
distribution over the set S of N possible objects, at any point in R, the next request will
be the i-th most popular of the N objects with probability P(i) = ¢, where a = ﬁ ~ ﬁ
For the purposes of our analysis, we consider the environment closed, i.e. that the set S of
the N objects does not change (none of the objects “dies” or changes, and no new objects
are born).

In order to perform our analysis, we introduce the concept of a past, P, of a stream

request R: P is a prefix of R. We define as np(i) the number of appearances in P of the

89

i-th most popular object (in R). It follows that the expected value of np(7) is:

Binp (i) = A0 (85)

where |P| is the length of P. For simplicity, we denote this value as E(i) in the following.

Given the concept of a past in a request stream, the problem we solve is the following:
given a random R, how long should the past P be, so that the access frequencies in P render
reliable measurements of object popularities that reflect exactly the distribution of the N
objects for the entire R with very high probability?

The answer to this question provides information about the convergence of P to the
real (final) Zipf distribution. We can provide theoretical upper bounds by taking advantage
of the knowledge of the distribution in R and the assumption of independence between the
requests in R.

In order to quantify the concept of confidence described above, we introduce the metric
of difference, D(3), for every object O;:

1P|

D(i) = E() — E(i +1) &Y D

(8.6)
Using D(i), we characterize a past P as a good past, as follows.

Definition 9 (Good past): A past P of a random stream of requests R is a good past

of R if the following condition is met:

np(i), the number of appearances of O; in P, is within distance D2(i) of its expected

value, i.e. the following holds:

Inp(i) — E(3)] < i=1,2,...,N (8.7)

If condition (8.7) holds for all objects, then the objects have exactly the same popularity

ordering in P as they have in R. This can be easily deduced:

IA

=
-=5 < E(’i+1)—np(’i+1)

=
=
A

90

D(i) +D(i +1) o)

= np(i) —np(i+1) > D(i) - 2

for all 4.

Effectively, the definitions of difference and good past allow us to specify a confidence
radius around the expected value of each O; in such a way so that, if the number of ap-
pearances falls into their confidence intervals, the objects retain their ordering in R (which
is the same as the ordering of the E(%)’s), because the confidence intervals do not intersect.
Based on the above, our problem becomes: how long should P be, so that it is a good past

with very high probability?

Theorem 14: For any € > 0, a past P of R of length 2N%(N + 1)21n2N1n% is a good

past with probability at least 1 — e.

Proof: In our analysis we use the following Chernoff bound [5]:

Lemma 19: Let X1, Xo,..., X, be mutually independent random variables such that

PriX;=1]=p

PriX;=0=1-p
for some p € [0,1]. Let X = X1+ Xo+ ...+ X, and E[X]| = pn. Then
_20%
Pr(|X —pn|>0] <2 (8.8)
for any 6 > 0.

We define the following sequence of random variables for each O;:

1, if j-th request of R is O; _
w;(1) = ,j=1... W

0, otherwise

91

Then given that w;(i)’s are mutually independent for all j, nw (i) = ZJVL w;(i) and

Prlw;(i) = 1] ® -7+, due to Zipf’s function. Thus, we can apply Lemma 8.8 with p = “I}N

~ ilnN>

and 0 = %, obtaining

Priing (i) ~ B)| > 23] < 2" wwwbms
(8.9)

p
< 2¢ 2NZ(N+1)2In2 N
Note that

Pr[P is not good past] = Pr[(8.7) not true for Oy
VvV (8.7) not true for Oy V...]

< N Pr[(8.7) not true for O]

(8.9) _ P
< INe N+ 2N (8.10)

If our ‘confidence’ parameter is € with 0 < € < 1, then it must be true that
Pr[P is not a good past] < €

But then from (8.10) we get that we must pick P so that

P >2N?%*(N + 1)2ln2N1ny
€

a

Notice that this bound is relatively large in terms of N, especially under the assumption
that during this period the system is closed. The size of the bound is due to the very strong
condition we want to satisfy (condition (8.7)) in order to obtain a good past.

The case of Zipf-like distributions: The above calculations can be easily modified
for the case of a Zipf-like distribution with @ < 1. Then the upper bound of Theorem 14

becomes O(N® 2« In 2X).

92

8.3.2 Practical LFU implementation for Web caching

The LFU (for Least Frequently Used) replacement policy for Web caches has been shown to
perform optimally both theoretically [42] and experimentally [18] for large enough caches.
The LFU (or Perfect-LFU) policy replaces the least frequently used item in the cache with
the new item requested by the user(s), when the new item is not already cached. The ‘least
frequently used’ refers to all past requests, from the beginning of caching'. Obviously the
Perfect-LFU policy is not practical. In order to implement it, one needs to keep statistics for
all web sites accessed during the whole past and then use them to determine their popularity.
Here we show that under the statistical independence assumption we can approximate the
hit rate of Perfect-LFU by using much fewer resources. Instead of examining all past
requests in order to determine the popularity of each object, we take into account only the
latest few requests to determine the ordering of the objects according to their popularity.
Specifically, we introduce the concept of a time window, W, a time interval of the recent
past, and implement an LFU policy, called Window-LFU, which replaces objects based on
access measurements only in the window W. We prove analytically that, under certain
assumptions, in order to achieve the same cache hit rate as Perfect-LFU, we need to pick
a window size that depends polynomially on the cache size but only sublinearly (or even
logarithmically in the case of & = 1) on the number of available objects on the Web.
Considering that the number of objects on which we need to keep statistics cannot be
larger than the window size, it becomes clear that a small window size leads to a small
number of objects on which statistics are collected. In this fashion, we overcome the most
significant obstacle to the implementation of LFU policies: the impractically large amount
of resources necessary for the calculation and storage of statistics on accessed objects.

In any caching scheme, a cache stores the items that have been accessed in some recent

past, which we refer to as time window W (or simply window). We denote as |W| the length

!The architecture community when referring to LFU usually refers to replacing the least frequently used
item in the future, whereas in our case we are looking at the past requests.

93

of the window, measured in number of requests. The window W always contains the last

|W| requests, which are denoted as W1, Wa, ..., Wy; for example, in Figure 8.1, window
W contains requests (W1, Wa, ..., W) = (Rg, ---, Rg_jw|+1). The existent analytical
results have been drawn for |W| = |R|, where R contains all requests received by the cache

since the beginning of its operation [42].

Considering the definition of W, as the |IW| most recent requests in R, we define nyy (i) as
the number of appearances of the i-th most popular object, object O;, in W; the definition
of the i-th most popular object is based on the number of requests in R. As before, the

expected value of nyy (7) is easily calculated:

Again, we denote this value as F(7).

The goal of our analysis is to estimate the length of W, so that, if the cache measures
access frequencies using the information in the last || accesses, then the achieved cache
hit rate approximates the one achieved with Perfect-LFU. We formalize this, through the

following definition:

Definition 10 (Good estimator): Let C be the number of objects that are kept in the
cache. Then the window W will be a good estimator of the C most popular objects in R,

if two conditions are met:
e the number of appearances of the C most popular objects is greater than E(C + 1);

e the number of appearances of the remaining N — C objects is smaller than E(C + 1),
i.e. the remaining objects do not interfere with the ordering of the C most popular

ones.

The definition indicates that, while we ensure a separation between the C most popular

objects and the (N — C) less frequent, the conditions of the definition are too weak to ensure

94

the correct ordering of the objects according to their access frequencies in the complete
history?. However, the critical observation is that for the implementation of Perfect-LFU,
it is sufficient to have the C' most popular objects in the cache, without a need for knowledge
of the specific order of their frequencies (popularities) in the window. The weakness of the
conditions in the definition are the key of the improvements we achieve.

If both of the conditions are met, then we designate the window as good. In this case,
our replacement algorithm, Window-LFU, will provide exactly the same performance (hit
rate) as Perfect-LFU. So, the goal of our analysis is to choose W in such a way, so that it
will ensure the “goodness” of the window with very high probability. Then our hit-rate will
be very close to the one achieved with Perfect-LFU.

In the analysis, we use the following Chernoff bounds from [5]:
Lemma 20: Let X1, Xo,..., X, be mutually independent random variables such that

PriX;=1]=p

PriX;=0=1-p

for some p € [0,1].
Let X = X1+ X9+ ...+ X, and E[X]| =pn. Then

2

Pr(X > (14 0)pn] < e~ 57" (8.11)

PriX —pn < —a] < e o/ (8.12)

Pr[X —pn > f] < e 2P/ (8.13)

PriX —pn > 4] < 7~ (rtpn)In(i+7/pn) (8.14)

where 0 <6 <1, >0, 8> 2pn/3 and v > 0.

We use these bounds, because they describe quantitatively the following simple fact: a series

of independent trials is concentrated very heavily around its expected value. We use this

2This is a much weaker condition than condition (8.7), and this results to much better bounds.

95

fact to prove that, one does not need many trials, i.e. past requests, in order to get a very

good estimate of the expected value, i.e. the frequency.

Theorem 15: Let € > 0 be any parameter, and C the cache size. Under the assumptions

of statistical independence and Zipf’s distribution for the requests

Hy.Lpy(C) 2 (1 —¢) - Hp_1py(C)
where Hyy_1 pyy(C) is the hit rate of Window-LFU with window size

[W| = max{©(C*InCInNIn %), O(CIn® Nln 1)}

€

and Hp_1,pry(C) is the hit rate of Perfect-LFU.

Proof: Assume that the N objects are ordered according to their popularity in R (O is
the most popular, O, the second most popular, etc.). We define the following sequence of
random variables for each O;:

1, if W; (the j-th request in W) is for O;

w;(i) =
0, otherwise

for all j = 1,2,...,|W|. Then, by hypothesis, the w;(i)’s are mutually independent,
nw (i) = Z'jﬂ w;(i) and Pr[w;(i) = 1] & ;725 from Zipf’s distribution.
We distinguish the following cases:
Case 1: 1<i<(C+1)
From inequality (8.12) with a = E(i) — E(C + 1) we obtain:
Priny(i) < E(C+1)] =
= Prny,(i) — E(1) < —(E(i) — E(C +1))]

_w|(c+1-i)?
2(C+1)2In N

(8.15)
<e

_ 1w
< e 2CInN

96

Case 2: C+1<i<2(C+1)

From inequality (8.11) with 8 = Z_Cijl we obtain:

_(@-c-1)2 |w]|

Pring(i) > E(C +1)] < e 3(C+)? imN

_ W]
< e 3C(C+1)2InN

Case 3: 2(C+1) <i<3(C+1)

From inequality (8.13) with 8 = E(C + 1) — E(i) we obtain:
Pring(i) > E(C +1)] < e 7y

_ 144
< e 405(CH1)InN

Case 4: 3(C+1)<i<N

From inequality (8.14) with v = E(C + 1) — E(i) we obtain:

Prny(i) > B(C +1)] < BCFI-B@-B(C+)n

___2w]
< e BCHInN

The probability that a window is not a good estimator is evaluated as:

Prthe window is not a good estimator] =

i

1

= Pr[Case 1 holds V...V Case 4 holds, for some 1]

hd - w
< Ce 20N 4 Ce 3C(C+1)2mN L

(W]

If we choose

2|W|

+(C + 2)e” OFCHITN 4 (N — 3(C 4 1))e 5@V

1
|W| = max{©(C*InCln N In 1), O(Chn?> NIn-)}
€ €

(8.16)

(8.17)

(8.18)

(8.19)

then we can force the probability in Equation (8.19) to be smaller than any constant e > 0.

If we denote with Hyy_1py(C, W) and Hp_1,py(C) the cache hit rates for the Window-

LFU and Perfect-LFU cases, respectively (with the window size |W| as specified above),

the following relations hold:

(8.20)

Hyyy_ 1,7y (C, W) = Pr[next requested item r is in cache]
C

> Z Prr =1i|W is good estimator| x Pr[W is good estimator]
=1

c
1
= z:; oy (1 — Pr[W is not a good estimator]) (8.21)

(8.19) o1
> —
> (192

i=1

= (1 —e)Hp_ry(C)

where € > 0 is the accuracy constant we have chosen. O

The case of Zipf-like distributions: The proof is essentially the same when the
distribution is Zipf-like (for example the distributions described in [18]). In this case the
bound of Theorem 15 is |[W| = max{®(N'~*C?*InC1In 1), 0(N*2*CIni)}. In practice o

is a number between 0.6 and 0.9 (cf. [18]), so the window size depends sublinearly on N.

The importance of the theoretical results

From the analysis, it becomes clear that the required window size has a limited dependence
on the total number of objects IV that can be accessed. Thus, we succeed to reduce the effect
of parameter N on our cache replacement policy, which is an advantage because N is not
a parameter of the cache system itself, and we cannot control it. As the number of objects
for which one keeps statistics cannot be larger than the window size, a smaller time window
results in a smaller set of such objects. Unfortunately, Case 2 shows a dependency on the
cache size C, which is impractical for big enough caches. However, the result is very strong
(approximation of Perfect-LFU performance within any constant factor), which means that,
in practice, smaller window sizes should perform quite well, e.g., |W| = O(CInN) or
O(C?InN). This is supported by the results of simulations with traces of real traffic, as

described below.

98

07 T T T T T T T
Cache Size= 100 -—
Cache Size= 1000 -+---
Cache Size= 10000 -&--
0.6 - Cache Size= 25000 -»-
Cache Size= 50000 -4~
Cache Size= 100000 -*--
05 - 5
K- o *
o * I ——— e
T 04 F aarm—=77 7 - E
« e % X
T B8
[} [P
£ | T E B |
8 0.3 : B
I
*‘\
o e
; L; 77777777777777777777777777 |
0.1 - 5
1 1 1 1 1 1 1
0 200000 400000 600000 800000 le+06 1.2e+06 1.4e+06 1.6e+06

Window Size (in Requests)

Figure 8.3: Cache hit rate for variable window sizes (long trace)

Simulation Results

We have performed several simulations of a cache employing the Window-LFU policy using
traces from actual traffic patterns. Specifically, we have used four traces from NLANR [35].
The first three traces are short (they include the object requests of one day each) while the
last one is longer, including the requests of a week. The traces are continuously updated;
the latest of those we used are from the first week of June 2000.

Our simulator simulates a cache that uses Window-LFU replacement policy for variable
window sizes W. When a replacement of an object is due, the object with the smallest
frequency is replaced. If more than one objects in the cache have the same (smallest)
frequency, then we replace the one which was used least recently; i.e., we use an LRU (Least
Recently Used) rule in order to “break ties” among the least popular window objects.

Figure 8.4 shows the results of the simulations on short (daily) traces. The first was

recorded the last week of January 2000 and contains 600, 000 requests for a total of 375,000

99

different pages (objects). The other two traces were recorded during the first week of June
2000, with 800,000 requests for 424,000 objects and 462,000 requests for 260,000 objects
respectively. Figure 8.3 shows the results of the simulations, using the long trace with a
total of 751,000 objects and 1.5 million requests. As the results show, the behavior of the
cache is similar to the shorter traces.

The plots show the cache hit rate of a cache with Window-LFU as a function of the size
of window W, and for various cache sizes C' (measured in objects). As the results indicate,
for all cache sizes, the effect of the window size is insignificant after a “threshold” value.
This verifies our first result that, a small window size is sufficient to achieve the highest
possible cache hit rate (per cache size). Interestingly, with small cache sizes and small
window lengths, it appears that the cache hit rate improves. This seemingly surprising
result can be explained easily: the source is the dependency among successive requests.
In our analyses, we have assumed that the object requests Ri, Ro, ..., are independent.
However, in real traces there is a dependency among them, which actually leads to higher

locality, and thus improves the hit rate. As the length of the window increases, the cache

hit rate, which is h = %“u"xf; ooff CI%Z’;Z e’;iis, decreases, because the “longer” history (due to
the longer window size) tends to influence the replacement decision using popularities from
a distant past, which do not apply to the recent past (due to the dependency of requests).
In simpler terms, this means that, if an object was accessed heavily in the distant past, but
is not accessed any more, Perfect-LFU will not replace this object from the cache, unless
a new object is accessed at least as many times as the previous one; in the (possibly very
long) meantime, the object will reside in the cache, although it is not accessed at all. So,
with the longer window size, it takes longer for the cache to store the more recently accessed
objects, which are more likely to be accessed in the near future due to the aforementioned
locality. On the other hand, a small window will not allow accesses made in the distant

past to be counted against the calculation of object frequencies. Thus, considering locality,

the cache will store objects more likely to be accessed in the future.

100

To summarize, the simulations indicate that Window-LFU performs better than ex-
pected from the analytical results. This phenomenon is due to that, the assumption of
request independence made for the analysis does not hold; there are dependencies in a real
trace of requests, which actually render the Window-LFU more effective than the analysis

indicates.

101

0.7

T
Cache Size= 100 <—
Cache Size= 1000 —+--
Cache Size= 10000 -&--
0.6 Cache Size= 25000 -x--
Cache Size= 50000 -+~
Cache Size= 100000 -*---
05 4
o
bS] 04 4
o
I
@
=
S
@
O
e
A R A S
0.1 [, 4
0 I I I I I
0 100000 200000 300000 400000 500000 600000
Window Size (in Requests)
0.7 T T T T T
Cache Size= 100 +—
Cache Size= 1000 —+--
Cache Size= 10000 -&--
0.6 Cache Size= 25000 -~ |
Cache Size= 50000 -&-
Cache Size= 100000 ---
05 4
o
T 04
24
I
o
<
3 0.3 (&
[§)
0.1 J
0 I I I I I I I
0 100000 200000 300000 400000 500000 600000 700000 800000
Window Size (in Requests)
0.7 T T T T T
Cache Size= 100 +—
Cache Size= 1000 —+--
Cache Size= 10000 -&--
0.6 Cache Size= 25000 -~ |
Cache Size= 50000 -4~
Cache Size= 100000 ---
05 4
o
hot 04
24
I
2
x
? 03 |
[§) oo
02 ey 4
0.1 Fﬁ\e‘e; i
0 I I I I I I I I I
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Window Size (in Requests)

Figure 8.4: Cache hit rate for variable window sizes (short traces)

102

Bibliography

[1]

F. Afrati, S. Cosmadakis, C. Papadimitriou, G. Papageorgiou, and N. Papakostanti-
nou. The complexity of the traveling repairman problem. Informatique Theorique et

Applications, 20(1):79-87, 1986.

A. Agrawal, P. Klein and R. Ravi. When trees collide: An approximation algorithm
for the generalized Steiner problem on networks. SIAM Journal on Computing, 24, pp
440-456, 1995.

Akamai Technologies, Inc. http://www.akamai.com.

V. Almeida, A. Bestavros, M. Crovella and A. de Oliveira. Characterizing reference
locality in the WWW. IEEE International Conference on Parallel and Distributed

Information Systems, Miami Beach, Florida, December 1996

N. Alon, J.H. Spencer, and P. Erdos. The Probabilistic Method. John Wiley and Sons,
1992.

I. Althofer, G. Das, D. Dobkin, D. Joseph, L. Soares. On sparse spanners of weighted

graphs. Discrete Computational Geometry, 9:1, 1993.

S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other geo-
metric problems. Journal of the ACM 45(5) pp 1-30, Sep. 1998. Preliminary version
in Proceedings of 37th IEEE Symp. on Foundations of Computer Science(FOCS), pp
2-12, 1996.

103

8]

[10]

[11]

[12]

[13]

[14]

[15]

S. Arora, M. Grigni, D. Karger, P. Klein, A. Woloszyn. A Polynomial-Time Ap-
proximation Scheme for Weighted Planar Graph TSP. Proceedings of the 9* Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp 33-41, 1998.

S. Arora and G. Karakostas. Approximation Schemes for Minimum Latency Problems.
Proceedings of 31st Annual ACM Symposium on Theory of Computing (STOC), pp
688693, 1999.

S. Arora and G. Karakostas. A 2+ ¢ approximation algorithm for the k-MST problem.
Proceedings of 11th Annual ACM-SIAM Symposium on Discrete Algorithms(SODA),

pp 754-759, 2000.

S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy. Proof Verification and the
Hardness of Approximation for Problems. Journal of the ACM 45(3) pp 501-555, May
1998.

S. Arya, H. Ramesh. 2.5-factor approximation algorithm for the £-MST problem. In

Information Processing Letters, 65(3), pp. 117-118, 1998.

B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guarantees
for minimum weight k-trees and prize-collecting salesmen. In Proceedings,27th ACM

Symp. on Theory of Computing, pp 277-283, 1995.

M. Baentsch, L. Baum, G. Molter, S. Rothkugel and P. Sturm. Enhancing the Web’s
infrastructure: From Caching to Replication. IEEE Internet Computing, pp. 18-27,
March/April 1997.

L. Bianco, A. Mingossi and S. Ricciardelli. The traveling salesman problem with

comulative costs. Networks, vol. 23, no. 2, pp 81-91, Mar. 1993.

104

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan and M. Su-
dan. The minimum latency problem. Proceedings of 26th ACM Symp. on Theory Of
Computing(STOC), pp 163-171, 1994.

A. Blum, R. Ravi, and S. Vempala. A constant factor approximation for the k-MST
problem. In Proceedings,28th ACM Symp. on Theory of Computing, pp 442-448, 1996.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and Zipf-like

Distributions: Evidence and Implications. In Proceedings of Infocom’99, 1999.
CacheFlow, Inc. http://www.cacheflow.com.

C.R. Cunha, A. Bestavros, and M.E. Crovella. Characteristics of WWW Client-based
Traces. Technical Report BU-CS-95-010, Computer Science Department, Boston Uni-

versity, July 1995.

X. Deng and C. Papadimitriou. Exploring an unknown graph. Proc. 31st IEEE Symp.

on Foundations of Computer Science(FOCS), pp. 355-361, 1990.

M. Fischetti, H.W. Hamacher, K. Jornsten, F. Maffioli Weighted k-cardinality trees:

complexity and polyhedral structure. In Networks, 24, pp. 11-21, 1994.

N. Garg. A 3-approximation for the minimum tree spanning k vertices. Proc. 37th

IEEE Symp. on Foundations of Computer Science(FOCS), pp.302-309, 1996.

S. Glassman. A caching relay for the World Wide Web. First International Conference
on the World Wide Web, CERN, Geneva, Switzerland, May 1994.

M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum
latency problem. Proc. 7th ACM-SIAM Symposium on Discrete Algorithms(SODA),
pp 152-158, 1996.

105

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

M. Goemans and D. Williamson. A general approximation technique for constrained

forest problems. In STAM J. Comput., 24:296-317, 1995.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial

Optimization. Springer Verlag, Berlin 1988.

D. Hockbaum. Approzimation Algorithms for N'P-hard Problems. PWS Publishing

Company, 1997.

G. Karakostas and D. Serpanos Practical LFU implementation for Web Caching.

Princeton University Technical Report TR-622-00, 2000.

E. Koutsoupias, C. Papadimitriou and M. Yannakakis. Searching a fixed graph. Lecture
Notes in Computer Science(LNCS) 1099, pp.280-289, Springer Verlag, 1996.

A. Lucena. Time-dependent traveling salesman problem - the deliveryman case. Net-

works, vol. 20, no. 6, pp 753-763, Oct. 1990.

E. Mayer, H. Promel and A. Steger (Eds.). Lectures on Proof Verification and Approx-

imation Algorithms. Lecture Notes in Computer Science 1367, Springer, 1998.

E. Minieka. The delivery man problem on a tree network. Annals of Operations

Research, Vol. 18, no. 1-4, pp 261-266, Feb. 1989.

J.S.B. Mitchell. Guillotine Subdivisions Approximate Polygonal Subdivisions: A Sim-
ple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related
Problems. STAM Journal on Computing:28, 1999.

National Laboratory for Applied Network Research. http://www.nlanr.net (traces at:

ftp://ircache.nlanr.net /traces/.

C. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.

106

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity

classes. Journal of Computer and Systems Sciences, 43:425-440, 1991.

C. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances

one and two. Mathematics of Operations Research, 18(1):1-11, Feb. 1993.

S. Rajagopalan and V.V. Vazirani. Logarithmic approximation of minimum weight

k-trees. Unpublished manuscript, 1995.

R. Ravi, R. Sundaram, M. Marathe, D. Rosenkrantz, and S. Ravi. Spanning trees
short and small. In Proceedings, 5th ACM-SIAM Symp. on Discrete Algorithms, pp
546-555, 1994.

D.N. Serpanos, G. Karakostas, and W.H. Wolf. Effective Caching of Web Objects
Using Zipf’s Law. In Proceedings of IEEE International Conference on Multimedia
and Ezxpo (ICME 2000), page (To appear), July, 30 - August, 2 2000.

D.N. Serpanos and W.H. Wolf. Caching Web Objects Using Zipf’s Law. In Proceedings
of SPIE, Vol. 3527, Photonics East, Technical Conference 3527: Multimedia Storage
and Archiving Systems III, Boston, MA, USA, November 2-4, 1998, pp. (not available
yet). Available at hitp://www.spie.org/web/meetings/programs/ pe98/confs/3527. himl,
1998.

V.V. Vazirani Approzimation algorithms, manuscript

A. Zelikovsky and D. Lozevanu. Minimal and bounded trees. In Tezele Cong. XVIII

Acad. Romano-Americane, Kishinev, pp. 25-26, 1993.

107

