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Abstract

By combining existing type systems with standard type-based compilation tech-
niques, we describe how to write strongly typed programs that include a function that
acts as a tracing garbage collector for the program. Since the garbage collector is an
explicit function, we do not need to provide a trusted garbage collector as a runtime
service to manage memory.

Since our language is strongly typed, the standard type soundness guarantee “Well
typed programs do not go wrong” is extended to include the collector. Our type safety
guarantee is non-trivial since not only does it guarantee the type safety of the garbage
collector, but it guarantees that the collector preservers the type safety of the program
being garbage collected. We describe the technique in detail and report performance
measurements for a few microbenchmarks. We also include a formal semantics for a
novel region calculus that supports early deallocation, and prove the type soundness
of the system.

1 Introduction

We outline an approach, based on ideas from existing type systems, to build a type-preserving
garbage collector. We can guarantee that the collector preserves the types of the mutator’s
data-structures. Traditionally a collector is primitive runtime service outside the model of the
programming language, the type safety of running programs depends on the assumption that
the collector does not violate any typing invariants. However, no realistic system provides
a proof of this assumption. Our primary contribution is to demonstrate how to construct
tracing garbage collectors so that one can formally and mechanically verify, through static
type checking, that the collector does not violate any typing invariants of the mutator.

Our approach is simple: make the collector a well typed function written in the same
typed intermediate language used by the compiler of the mutator’s source language. Garbage
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Figure 1: Reduced Trusted Computing Base

collection is no longer a primitive runtime service, uses no unsafe primitives, and is part of
our model of the programming language. Since the collector and mutator are both well
typed, we appeal to the fact that “Well typed programs do not go wrong.” Our language
uses a region based type system [28] for safe primitive memory management. The collector
is built on top of these safe region primitives. Regions are used to implement the semi-spaces
of a traditional copying collector. The region type system allows us to verify that it is safe
for the collector to deallocate a semi-space that contains only garbage.

Comparison to region inference. Our collector dynamically traces values at runtime,
allowing for more fine-grain and efficient memory management than systems that use region
inference, which may take asymptotically more space than a simple tracing garbage collector.
From a different perspective, our collector is merely a particular way of writing programs
in a language that uses regions as the primary memory management mechanism; with this
perspective our work is simply a more efficient way of utilizing existing safe region-based
memory management primitives, similar to the “double copying” technique used to make
certain region programs more efficient [27]. Our approach suggests how to cleanly integrate
compile-time memory management techniques with traditional runtime techniques to gain
the benefits of both approaches. We consider this to be an important secondary contribution.

Comparison to proof-carrying code. Safety architectures such as Java byte-code ver-
ification and proof-carrying code statically verify safety properties of code provided by an
untrusted code producer [23, 15]. These systems rely on a trusted garbage collector to safely
handle memory deallocation. Our approach allows us to verify the safety of the mutator
and collector, placing the collector outside of the trusted computing base (TCB). Our type-
preserving collector relies on a few new low-level runtime primitives, but the total size of the
TCB is smaller1 (see Figure 1). Since our TCB is smaller we are able to provide a stronger
guarantee of safety. Although we verify programs through static type checking, existing
proof-carrying code systems can adapt our techniques to reduce the TCB in the same way.

1The primitives in our prototype system are implemented in approximately 200 lines of C code while a
realistic garbage collector is in the range of 3000 lines of C.
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fun gc(from, k, roots) =

if(need_gc(from)) then
let to = new_space() in
let roots’ = copy(from, to, roots)

in free_space(from) ; k(to, roots’)

else k(from, roots)

from to

initial

copy

flip

Figure 2: Traditional Garbage Collector

Even if we are willing to trust that a particular garbage collector is correctly implemented,
formalizing the invariants needed to properly interface a mutator with the collector will
complicate the safety policy in a proof-carrying code system. Also we must trust that
the more complex safety policy is sufficient to guarantee safety. Even conservative garbage
collectors, which have simpler interfaces by conservatively inferring needed type information
at runtime, require the compiler to preserve subtle invariants [8].

Formal treatment of collector interfaces. Another important contribution of our work
is the ability to think about garbage collector interfaces in a statically checkable way. We can
check that the mutator uses the interface properly, and more importantly that the interface
is sufficient for the collector to preserve the type safety of the mutator. Many of the bit-
level details of garbage collector interfaces can be described in a high-level and type-safe
way, using simple and standard typing constructs. In particular we describe one way to
implement “stack walking” [13] without an explicit table that maps the return address of a
function to a stack frame layout. We are able to do this by encoding the table implicitly and
in a checkable way.

Statically catching these bugs makes the system more secure, easier to debug, more
flexible, and potentially more efficient. We can catch interface bugs, such as the failure to
include a live value in the root set or providing incorrect type information, at compile time.
Since the collector is not a fixed trusted piece of the system, individual programs can provide
a specialized collector which may improve program performance.

A traditional copying collector. Figure 2 illustrates a simple two-space stop-and-copy
collector. When the collector is invoked it is passed three variables from, k, and roots,
which are the current allocation space, the current continuation, and the set of live roots
respectively. Heap values are allocated in the current allocation space. The current contin-
uation represents the “rest of the program” and takes as arguments an allocation space and
the live roots which point to all the currently reachable heap data the program may wish to
use. All the data reachable from the live roots is allocated in the current allocation space.

The collector uses some heuristic to determine whether a garbage collection should occur.
If so, the collector creates a fresh allocation space (to) then makes a deep copy of the live
roots into the to-space. All the data reachable from the new roots (roots’) should live in
the to-space. The collector can now safely free the old from-space and resume the program
with the new allocation space and new live roots. Traditionally this operation is called a
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“flip” because once the from-space is deallocated its storage can immediately be reused as
the next to-space, so the roles of the from-space and to-space are reversed.

In order to guarantee that the from-space can be safely deallocated, we must be certain
that “the rest of the program” never accesses values allocated in the from-space. If our
program is written in continuation passing style, we can easily enforce this invariant by
assigning a static type to k so that it cannot access values in the from-space. We can easily
formalize this intuition into a relatively simple type system.

Technical challenges. Building a type-preserving collector does not rely on a single key
technical advance, but results from the combination of several advances in typed compilation.
The key issues that need to be addressed are:

1. Copying

2. Source language abstractions

3. Deallocation

4. Pointer sharing

If the static type of every object is known at compile time, it is easy to write a well typed
function that produces a copy of the object with the same type. However, when the type is
not known at compile time, because of polymorphism or issues of separate compilation, this
task becomes more challenging. Fortunately work in the area of intensional type analysis [16,
12] and other forms of ad-hoc polymorphism that use dictionary passing [31] provide clean
solutions to this problem.

Traditional collectors violate data-abstraction guarantees that are present in the source
language. The “private” fields of an object in Java or “private” environment of a closure in
ML cannot remain private to the garbage collector. We must decided if we wish to preserve
these abstraction guarantees or violate data-abstraction when performing garbage collection.

For example there are several well known techniques for type-preserving closure conver-
sion. [18, 22, 29] Many of the schemes provide strong guarantees that they preserve source
level abstractions. In practice many compilers still must provide extra type information that
describes the layout of “abstract” objects for the garbage collector, so claims of abstraction
preservation break down at the level of the garbage collector. Other closure conversion tech-
niques for first-order target languages [29] provide much weaker abstraction-preservation
guarantees and make the layout of closures explicit during translation. Intensional type
analysis formalizes the passing of extra type information (typically provided by the compiler
for the garbage collector) in a fully type-safe way [12]. We touch on some of the tradeoffs of
these approaches in Section 2.

Collectors must use some primitive memory management service to allocate and deallo-
cate the from-space and the to-space. We must verify that the service used by the collector
is safe. The work on type and effect systems done by Tofte and Talpin and refined by oth-
ers, provides type-safe explicit memory management [28, 1, 11, 7]. We can use the memory
management primitives provided by a region system to guarantee that it is safe to deallocate
the from-space after the garbage collector has copied all the live data into the to-space.
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Pointer sharing is preserved by the use of forwarding pointers which provide an efficient
way to implement a map from pointers in the from-space to pointers in the to-space. This
map is needed to copy an arbitrary graph of heap objects from one space to the other.
Any map, such as a hash table, can be used in place of forwarding pointers. Dealing with
forwarding pointers complicates reasoning about safety, but we outline one approach for
dealing with forwarding pointers in a safe way. Or approach requires some inelegant ad-hoc
reasoning, but our technique is as efficient as current unsafe techniques and can be formally
proven sound.

In Section 2 we formally describe a core language that we will use to build our type-
preserving collector. In Section 3 we demonstrate our technique applied on a simple program.
In Section 4 we discuss how to provide forwarding pointers in a type-safe way. Finally we
present some preliminary performance numbers for a few microbenchmarks in Section 5.

2 A Region Calculus that Support Early Deallocation

Since the original Tofte-Talpin calculus there have been many different formulations of var-
ious region calculi [1, 11, 7]. For our purposes the region system need not be particularly
advanced. We do not need to separate read and write effects, support effect polymorphism,
or allow for dangling pointers. All of these features are included in the original Tofte-Talpin
region calculus [28]. With the exception of [11] most of the various region calculi are formu-
lated as type-and-effect systems. In these calculi every expression has associated with it an
inferred set of effects which represents and estimate of the set of regions an expression may
access. Rather than infer a set of effects [11] presents a region calculus where an expression
is typed with respect to a “capability context” which explicitly restricts the set of regions a
given expression may access. The primary difference between these two approaches is that
the former is primarily concerned with finding efficient and precise effect annotations which
lead to more memory efficient programs that do not require a garbage collector. Capability
systems are designed to verify that effects inferred by such systems are correct. We take the
capability view of regions since we are primarily interested in validating that a particular
effect assignment is valid.

The original Tofte-Talpin calculus required that regions be allocated and deallocated in a
strict LIFO fashion. That is the most recently allocated region must be the first region that
is deallocated. The Aiken, Fähndrich, and Levien [1] present a static analyses that allows for
early deallocation2 which allows for more flexible non-LIFO region allocation policies. The
capability calculus of [11] also supports early deallocation. For our type-preserving garbage
collector early deallocation is critically important. However, rather than simply using the
capability calculus of [11] we derive a simpler and in some respects more expressive calculus
that relies on dynamic checking to handle certain aliasing issues that the capability calculus
deals with in a purely static way. We will discuss the aliasing issue later when we discuss
our static semantics.

2Early in the sense of sooner than what a strict LIFO policy would allow.
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types τ ::= unit

| τ1
∆→ τ2 function type with effect

| ∀ρ.τ region polymorphic type
| (τ at ρ) region annotated type
| Ans

terms e ::= x
| 〈〉
| (λx :τ.e)∆ effect annotated function
| (e1 e2)
| (Λρ.e) region abstraction
| (e[ρ]) region application
| letr ρ in e allocate new region
| put[ρ](e) put value in region
| get[ρ](e) get value from region
| only ∆ in e deallocate regions early
| (fixf :τ.v)
| haltτ

values v ::= 〈〉 | (λx :τ.e)∆ | (Λρ.e) | put[ρ](v)
region contexts ∆ ::= {} | {ρ1, . . . , ρn}

Figure 3: Abstract Syntax

2.1 Syntax

Figure 3 describes the abstract syntax of a capability style region calculus. Previous region
calculi explicitly annotate every type and term with a region annotation to precisely reflect
a particular set of implementation details, such as the fact that most objects do not fit in
machine registers and must have auxiliary storage allocated for them. Rather than “baking
in” such a decision and cluttering our syntax we introduce two term-level operators and a
new type constructor. One term-level operator is put[ρ](e), which evaluates it argument e
and stores the resulting value into region ρ. If the type of the argument e is of type τ the
type of the resulting value is (τ at ρ). The type constructor at describes objects of some
type τ allocated in region ρ. The operator get[ρ](e′) expects that it’s argument e′ evaluates
to a value of type (τ at ρ). It then fetches the value from region ρ and returns a value
of type τ . The terms put[ρ](e) and get[ρ](e) are inspired by the translation of [7], which
translates a simplified effect based region calculus into a novel typed lambda calculus. In
the translations the effects of the original region calculi are encoded as term level objects
in the target lambda calculus. A value allocated in region ρ is represented by the syntactic
term put[ρ](v). We treat region contexts ∆ as sets of region variables.

When the body of function (λx :τ.e)∆ captures values in its closure we we must account
for any regions needed to access those values by annotating the function with the set of region
variables needed to access those values. Function types are annotated with a corresponding
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set of region variables needed to evaluated the body of the function. Since we have an
explicit region abstraction term (Λρ.e) and a separate fix point term in our language we
support polymorphic recursion over region variables. The term only ∆ in e is our construct
to support early deallocation. Our type-preserving garbage collector will contain a mix of
“direct style” and CPS converted expressions, for that reason we include a the type Ans
which is the return type for continuations, so that we can distinguish between continuations
and normal functions.

2.2 Dynamic Semantics

Figure 4 describes the dynamic semantics of our calculus in the style of Felleisen and Wright
[34]. We assume that all bound region variables are unique and that substitution alpha
renames variables to preserve this property. We introduce the notion of a region stack,
ranged over by R, which are a sequence of nested letr expressions ending in a hole ([ ]). The
notation R[e] represents a region stack with the hole of the stack replaced by e. E ranges
over control contexts. The notation E[e] represents a control context with the hole of the
control context replaced by e. Program consists of a series of letr bindings establishing an
initial region stack surrounding an expression to evaluate. Answers are a subset of program
expressions, which consists either of a single haltτ expression or a region stack enclosing a
value.

We define two one step reduction relations. The relation 7→e performs local reductions on
expressions, while the relation 7→P performs global reductions on whole programs. The 7→e

relation is the standard one step reduction relation for a pure call-by-value lambda calculus.
This local reduction relation is used in the definition of the global program reductions by
the rule rdspure. The global program reduction rule rdsletr hoists an inner letr binding to
the top-level region stack. Since we assume all bound variables are unique, the region in the
letr binding is guaranteed to be a fresh variable. The rdsget rule converts a value allocated
in region ρ to a pure value, if the region ρ is currently bound by the enclosing region stack.
The rdsonly rule throws away the surrounding control context and continues evaluating its
body in a new region stack defined by the only expression. The notation R∆ is the smallest
region stack binding the variables in ∆.

The rdshalt rule immediately throws away any non-trivial surrounding control context
and region stack and reduces to an answer. The rdsfree rule is a non-deterministic rule that
removes unneeded region bindings from the region stack. A region binding is unneeded if
removing the binding does not prevent rest of the program from remaining well typed. The
relation 7→∗

P is the reflexive transitive closure of our single step program reduction relation.
Notice rdsfree implicitly allows for non-LIFO allocation policy, already providing support for
early deallocation, which make make the rdsonly rule seem redundant. However, if we did
not include the rdsonly rule we could not immediately reclaim regions that are bound in the
useless surrounding control context of an expression for which we know will not return.
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programs P ::= R[e]
answers A ::= R[v] | haltτ

control contexts E ::= [ ]
| (E e) | (v E)
| (E[ρ])
| put[ρ](E) | get[ρ](E)

region stacks R ::= [ ] | letr ρ in R

Expression Reductions

rdsbetav ((λx :τ.e)∆ v) 7→e e[v/x]
rdstapp ((Λρ.e)[ρ′]) 7→e e[ρ′/ρ]

rdsfix (fixf :τ.v) 7→e v[(fixf :τ.v)/f ]

Program Reductions

rdspure R[E[e1]] 7→P R[E[e2]] where e1 7→e e2

rdsletr R[E[letr ρ in e]] 7→P R[letr ρ in E[e]]
rdsget R[letr ρ in R′[E[get[ρ](put[ρ](v))]]] 7→P R[letr ρ in R′[E[v]]]

rdsonly R[E[only ∆ in e]] 7→P R′∆[e]

rdshalt R[E[haltτ
′
]] 7→P haltτ where E 6= [ ]

rdsfreer R[letr ρ in R′[e]] 7→P R[R′[e]] where ` R[R′[e]] wt

[ ]∆
def
= [ ]

(letr ρ in R)∆]{ρ} def
= (letr ρ in R∆]{ρ})

(letr ρ in R)∆ def
= R∆ where ρ 6∈ ∆

Multi-step Reduction

mstprefl
P 7→∗

P P

P1 7→∗
P P2 P2 7→∗

P P3
mstptrans

P1 7→∗
P P3

P1 7→P P2
mstprds

P1 7→∗
P P2

Figure 4: Dynamic Semantics
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value environment Γ ::= {} | {x1 :τ1, . . . , xn :τn}

Judgement Meaning
` P wt P is a well typed program.
∆; Γ ` e :τ e has type τ under ∆; Γ. We always implicitly require ∆ ` Γ wfenv
∆ ` τ wf τ is a well formed type with respect to ∆.
∆ ` Γ wfenv Γ is a well formed value environment with respect to ∆.

Figure 5: Summary of Typing Judgements

2.3 Static Semantics

Figure 5 summarizes the main typing judgments for our static semantics. Figure 6 contains
the inference rules for the main typing judgments while Figure 7 defines some auxiliary well
formedness conditions. We use the notation of ∆]∆′ to represent the union of two disjoint
set of region variables, and the notation Γ ] {x : τ} to be the extension of an environment
mapping the variable x to the type τ where x does not occur already bound in Γ.

The judgment ` P wt simply asserts that the closed program P has some valid type. It
holds only if the program P is well typed under an empty typing environment. The judgment
∆; Γ ` e :τ asserts that the expression e has type τ under the value environment Γ and the
region context ∆. The judgment ∆ ` τ wf asserts that all the free region variables in τ
occur in ∆. The judgment ∆ ` Γ wfenv generalizes this notion for value environments.

In Figure 6, to simplify our presentation of the rules for the judgment ∆; Γ ` e : τ , we
implicitly assume that region variables free in Γ occur in the region context ∆. That is we
omit the explicit constraint that ∆ ` Γ wfenv for many of the rules. For the non-trivial
rules such htonly and htabs we make the ∆ ` Γ wfenv constraints explicit for clarity. The
explicit constraints also guarantee that our typing rules are deterministic by splitting the
value environments and region contexts in a unique way.

The typing rules in Figure 6 closely resemble the typing rules for a polymorphic simply-
typed lambda calculi, where type polymorphism has been replaced with region polymor-
phism. The rules htabs differs for the standard rule in that we check the body of the function
in a value environment that contains a subset of the enclosing value environment. We check
the body of a value environment consisting of those bindings whose free region variables are
mentioned in the effect annotation for the function. A similar restriction is placed on the
htonly rule. A simple inductive argument will establish the fact that any closed program of
type Ans which evaluates to an answer must evaluate to the answer haltAns. So informally
speaking the requirement that the body of the only ∆ in e expression be of type Ans means
the body does not return. Our dynamic semantics takes advantage of this fact by throwing
away the unneeded control context and region stack.

Because the typing rules htonly and htabs check subexpressions in a non-standard way
the standard substitution lemma for terms does not hold. A more restrictive substitution for
values and fix expressions does hold. Since our calculus is call-by-value the more restrictive
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` P wt

{}; {} ` P :τ
wte` P wt

∆; Γ ` e :τ

htvar
∆; Γ ] {x :τ} ` x :τ

htunit
∆; Γ ` 〈〉 :unit

∆ ` Γ wfenv ∆′ ` τ1 wf ∆′; Γ′ ] {x :τ1} ` e :τ2
htabs

∆ ]∆′; Γ ] Γ′ ` (λx :τ1.e)
∆′

:τ1
∆′→ τ2

∆ ]∆′; Γ ` e1 :τ1
∆′→ τ2 ∆ ]∆′; Γ ` e2 :τ1

htapp
∆ ]∆′; Γ ` (e1 e2) :τ2

∆ ] {ρ}; Γ ` e :τ
httabs

∆; Γ ` (Λρ.e) :∀ρ.τ

∆ ] {ρ′}; Γ ` e :∀ρ.τ
httapp

∆ ] {ρ′}; Γ ` (e[ρ′]) :τ [ρ′/ρ]

∆ ` τ wf ∆ ] {ρ}; Γ ` e :τ
htletr

∆; Γ ` (letr ρ in e) :τ

∆ ] {ρ}; Γ ` e :τ
htput

∆ ] {ρ}; Γ ` put[ρ](e) : (τ at ρ)

∆ ] {ρ}; Γ ` e : (τ at ρ)
htget

∆ ] {ρ}; Γ ` get[ρ](e) :τ

∆ ` Γ wfenv ∆′; Γ′ ` e :Ans
htonly

∆ ]∆′; Γ ] Γ′ ` (only ∆′ in e) :Ans

∆ ` τ wf ∆; Γ ] {f :τ} ` v :τ
htfix

∆; Γ ` (fixf :τ.v) :τ

∆ ` τ wf
hthalt

∆; Γ ` haltτ :τ

Figure 6: Main Typing Judgement
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∆ ` τ wf

wfunit
∆ ` unit wf

∆ ` τ1 wf ∆ ` τ2 wf
wfarrow

∆ ` τ1
∆→ τ2 wf

∆ ] {ρ} ` τ wf
wfall

∆ ` ∀ρ.τ wf

∆ ] {ρ} ` τ wf
wfat

∆ ] {ρ} ` (τ at ρ) wf

wfAns
∆ ` Ans wf

∆ ` Γ wfenv

wfenvempty
∆ ` {} wfenv

∆ ` Γ wfenv ∆ ` τ wf
wfenvbv

∆ ` Γ ] {x :τ} wfenv

Figure 7: Auxiliary Typing Judgements
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lemma is sufficient to prove type soundness for our calculus.

2.4 Early Deallocation

A realistic implementation of our abstract semantics must adopt adopt a “region passing”
semantics, where region variables are bound to dynamic values at runtime, and therefore
region abstractions can not be erased. The only expression takes an arbitrary set of region
variables. At runtime we simply note what regions are dynamically bound to the region
variables passed to the only expression and safely deallocate any other regions, since they are
not needed to evaluate the rest of the program. This dynamic approach to early deallocation
of regions is a novel approach, which is simpler than current static approaches to early
deallocation and more expressive. The cost of the deallocation operation is at worst linearly
related to the number of live regions. Region deallocation primitives in other system are
constant time operations. So our more flexible dynamic approach is not without its cost.
Though for our type-preserving garbage collector this extra cost is negligible, since we can
bound the number of live regions to a small constant.

Consider the function

fun f[ρa, ρb](x:int at ρb):Ans =

free region ρa in (get[ρb](x) ; halt())

which uses a new free region operator, which deallocates ρa before evaluating its body. At
first glance it would seem that region ρa is not used in the body of f so this early deallocation
of ρa is safe. However, consider the following calling context for f

letr ρ1, ρ2 in
if e then f[ρ1, ρ2](put[ρ1](1))

else f[ρ1, ρ1](put[ρ1](1))

The expression put[ρ](1) stores the integer into the region ρ1 and returns a reference to the
integer. Notice that if we executes the first branch of the conditional then f behaves as
expected. However, if we execute the second branch then at runtime the region variables ρa

and ρb are both bound to the same region and the program will attempt to access a region
which we have erroneously deallocated. To handle this situation correctly we can simply
prevent programs deallocating region variables which maybe aliased through various typing
disciplines [11]. The static approaches do not incur any runtime overhead, but are relatively
complex systems and would disallow us from writing the program above.

Using our dynamic approach we write f as

fun f[ρa, ρb](x:int at ρb):Ans =

only ρb in (get[ρb](x) ; halt())

At runtime we determine what region is actually bound to ρb, and deallocate the region
bound to ρa if it is distinct from ρb. If ρa and ρb are bound to distinct regions then we know
that it is safe to deallocate the region associated with ρa since we do not need it to evaluate
the rest of the computation. It is not hard to implement such a system in practice. In our
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prototype system all of the region primitives are less than 200 lines of C. We simply reserver
a “live-bit” for each region and mark all regions bound in the context of the only expression
as live. All other unmarked regions can be reclaimed. This particular approach takes time
proportional to the number of total regions allocated regions in order to reclaim all the live
regions. An alternative implementation that uses doubly-linked lists, of free and allocated
regions can be implemented whose runtime is proportional to the number of live regions.

This dynamic approach to region deallocation is similar to the work of Aiken and Gay [14].
However, they use a relatively weak region type system and a more expensive reference count-
ing approach that requires updating a reference count for each interregion store. Because
our type system provides more guarantees we can safely deallocate regions without needing
to maintain any reference counts.

2.5 Safety Properties

The safety properties of our language are standard. We include the full proofs of all the
theorems and lemmas in Appendix A. Here we only describe the main theorem and associated
lemmas. We begin with the definition of stuck programs

Definition 1 (Stuck Program) The evaluation of a program P1 is stuck if P1 is not an
answer and there is no P2 such that P1 7→P P2.

The main safety theorem is as follows

Theorem 1 (Type Soundness) If ` P1 wt then, there is no stuck P2 such that P1 7→∗
P P2.

The proof of our main theorem follows directly with a slightly stronger induction hypothesis
over the 7→∗

P relation and the application of Lemma 1.1 and Lemma 1.2.

Lemma 1.1 (Type Preservation of Programs) If ` P1 wt and P1 7→P P2, then ` P2 wt.

Lemma 1.2 (Progress) If ` P1 wt then, there exists P2 such that P1 7→P P2 or P2 is an
answer. i.e. P1 is not stuck.

We do not have a general substitution lemma for terms but a restricted form which only
holds for values and fix expressions

Lemma 1.3 (Typing Under Term Substitution) If ∆; Γ ` e :τ and ∆; Γ]{x :τ} ` e′ :τ ′

then ∆; Γ ` e′[e/x] :τ ′, where e = v or e = (fixf :τ ′′.v).

The following lemma allows us to throw away unneeded bindings and region variables from
our value environment and region context by inspecting the type of values and fix expressions
it is need in our proof of the substitution lemma for the htabs case.

Lemma 1.4 (Region Context Strengthening) If ∆′ ` τ wf, ∆ ` Γ wfenv, ∆′ `
Γ′ wfenv, and ∆ ]∆′; Γ ] Γ′ ` e :τ where e = v or e = (fixf :τ.v) then ∆′; Γ′ ` e :τ

The remaining lemmas are used in the proof of the previous lemmas and are included for
completeness, but are not technically interesting
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Lemma 1.5 (Type Preservation of Expression) If ∆; {} ` e1 : τ and e1 7→e e2, then
∆; {} ` e2 :τ .

Lemma 1.6 (Redux Decomposition) If ∆; {} ` e :τ then e is a value or e = E[r] where
r is a redux. A redux is any of the following forms:

1. ((λx :τ ′.e′)∆′′
v) where ∆ = ∆′ ]∆′′

2. ((Λρ.e′)[τ ′])

3. (fixf :τ ′.v)

4. letr ρ in e′

5. get[ρ](put[ρ](e′))

6. only ∆′ in e′

7. haltτ
′

Lemma 1.7 (Cannonical Forms) If ∆; Γ ` v :τ then one of the following must be true.

1. τ = unit iff v = 〈〉

2. τ = τ1
∆′′→ τ2 iff v = (λx :τ1.e)

∆′′
and ∆ = ∆′ ]∆′′

3. τ = ∀ρ.τ ′ iff v = (Λρ.e)

4. τ = (τ ′ at ρ) iff v = put[ρ](v′) and ∆ = ∆′ ] {ρ}

Lemma 1.8 (Typing Relation Preservers Well Formedness) If ∆; Γ ` e : τ then
∆ ` τ wf.

Lemma 1.9 (Typing Under Region Variable Substitution) If ∆]{ρ′}] {ρ}; Γ ` e :τ
then ∆ ] {ρ′}; Γ[ρ′/ρ] ` e[ρ′/ρ] :τ [ρ′/ρ].

Lemma 1.10 (Control Context Independence) If ∆; Γ ` E[e] :τ then ∆; Γ ` e :τ ′.

Lemma 1.11 (Control Context Replacement) If ∆; Γ ` e1 : τ , ∆; Γ ` e2 : τ , and
∆; Γ ` E[e1] :τ

′ then ∆; Γ ` E[e2] :τ
′.

Lemma 1.12 (Region Stack Independence) If ∆; Γ ` R[e] :τ then there exists ∆′ such
that ∆ ]∆′; Γ ` e :τ .

Lemma 1.13 (Region Stack Replacement) There exists ∆′ such that if ∆]∆′; Γ ` e1 :τ ,
∆ ]∆′; Γ ` e2 :τ , and ∆; Γ ` R[e1] :τ then ∆; Γ ` R[e2] :τ .
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type lst = Nil | Cons (int, lst)

fun itrev(l:lst, acc:lst):lst =

case l of Nil ⇒ acc

| Cons(hd,tl) ⇒
let acc’ = Cons(hd, acc)

in itrev(tl, Cons(hd, acc’)

let l = Cons(1, Cons(2, ... )) in
let rl = itrev(l, Nil) (* non-tail call *)

in rl

1 2 3 4

1 2 3 4

1

1 2 3 4

2 1

l

acc

l

l
acc

acc

Figure 8: Iterative List Reverse

2.6 An Extended First-Order Variant

We can easily extend our core calculus to a include sums, products, and recursive types. Our
core calculus is higher-order but as we will see the higher-order features of our calculus are not
strictly needed in order to implement a type-preserving garbage collector, and in fact make
writing such a collector impossible since the garbage collector cannont copy values captured
by the closure of a higer-order function. However, the safety of our higher-order calculus
immediately implies the safety of a first-order variant, and the proof techniques for the
higher-order calculus are simpler because there are fewer syntactic categories. The higher-
order calculus is also interesting by itself and has applications beyond our type-preserving
garbage collector. In the next section we will use a first-order variant extended into a full
ML like language, and we will adopt more traditional ML syntax in our discussion.

3 Example: itrev

Source program. Figure 8 contains a program that reverses a list of integers. The function
itrev takes two arguments l and acc both of type lst and returns a value of type lst.
The argument l holds the list to be reversed while acc holds the intermediate results. The
recursive call to itrev is a tail call, so we do not need to allocate a new stack frame for this
call. Note when the program first calls itrev the call is not a tail call, so we must allocate a
trivial stack frame for this call. As the function recursively descends l the previous list cells,
contained in the dotted box in the figure, are garbage and can be reclaimed. The function
therefore, need only retain a constant amount of live data in addition to the list itself. This
simple reasoning cannot be applied in systems that use region inference to manage memory.

Region inference would not allow us to immediately free each list cell in l after we have
traversed it. A region system would force us to hold onto all the cells of l until the function
returns acc. Type systems based on linear logic may give us more fine-grain control over
allocation and deallocation and allow us to capture our reasoning for this particular instance,
but they are fragile in the presence of aliasing [4, 6, 25, 32].

We will convert the program in Figure 8 into an equivalent program that includes a
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Higher-Order First-Order

let y = 1 in
let f = if e then (λx:int.x)

else (λx:int.x + y)

in f 1

type clos = C1 | C2(int)
fun apply (f, x) =

case f of C1 ⇒ x

| C2(y) ⇒ x + y

let y = 1 in
let f = if e then C1

else C2(y)

in apply (f, 1)

Figure 9: First-order Closure Conversion

function to garbage-collect dead values and is still well typed. We will need to perform
CPS and closure conversion to the program, to make our informal reasoning about the stack
and live values explicit. Afterwards, we perform a simple region annotation to the resulting
program to make precise what values live on the heap and when they are allocated. Finally,
with this CPS-converted, closure-converted, region-explicit program we can synthesize a
function that acts as a garbage collector for the program.

CPS and closure conversion. If we CPS convert our source program, reasoning about
the control flow of the program becomes easier. However, since our language is first-order
we cannot use a standard CPS conversion algorithm, which requires higher-order functions.
Instead we adapt a first-order closure conversion technique outlined by Tolmach with a stan-
dard CPS conversion. Figure 9 illustrates Tolmach’s closure conversion technique. Notice
that the types of any free variables are captured in the type of the closure [29].

Figure 10 is the result of applying both the CPS and closure conversion transformations
on our example. Notice the new type cont which is the type of return continuations for the
function itrev. This type contains one data constructor Ret rl which is needed for our one
non-tail call in the original program. In general each call site of itrev will require one new
data constructor to represent each distinct return continuation. All functions have a return
type of Ans, which means they do not return. Also note that we implicitly assume we have
access to the whole program at this point.

Tagless garbage collection algorithms examine the return address of a function stored in
the stack frame in order to determine the layout of the stack frames [13]. The transformation
we have performed allows us to perform a similar operation. The tag of each data-constructor
acts as the return address, the type of the data-constructor describes the stack layout, which
is empty in this case. So we can replace a low-level table of bitmaps with a set of high-level
type declarations.

The chief disadvantage of first-order closure conversion is that it makes separate compi-
lation more difficult.3 However, providing true separate compilation using standard higher-
order techniques that preserve abstraction and have better separate compilations properties

3Tolmach outlines a separate compilation technique that requires special support from the linker.
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type lst = Nil | Cons(int, lst)

type cont = Ret_rl

fun itrev(k:cont, l:lst, acc:lst):Ans = (* B *)

case l of Nil ⇒ apply(k, acc) (* B1 *)

| Cons(hd, tl) ⇒ (* B2 *)

let acc’ = Cons(hd, acc)

in itrev(k, tl, acc’)

and apply(k:cont, v:lst):Ans = (* C *)

case k of Ret_rl ⇒ (* C1 *)

let rl = v (* bind return value rl *)

in rl ; halt() (* exit program *)

let l = Cons(1, ...) in (* A *)

let k = Ret_rl

in itrev(k, l, Nil)

B

B1 B2

A

C

C1

Figure 10: CPS-Converted and Closure-Converted Program

is not as simple as it may seem. Even these techniques must have a method of merging
type information at link time or force all objects to be uniformly tagged, which is often
undesirable.

Region annotated. We have been informally arguing about where and when objects are
allocated. Figure 11 shows our program with explicit region annotations. Notice that the
type lst in figure 10 becomes a type constructor lst[ρ] parameterized by a region in which
the list lives. Since we can represent both the empty list and return continuation as single
machine words we do not need to allocate space for them. We need to allocate space only
when constructing list cells with the Cons data-constructor; this is reflected in the type
Cons(int, lst[ρ]) at ρ.

Both the itrev and apply functions each take a single region parameter (ρalloc), which
corresponds to the allocation pointer in a normal untyped system. When we allocate a new
list cell we use the notation lst[ρheap].Cons(1,...) which instantiate the region parameter
(ρ) of the type constructor lst to ρheap and indicates that the new list cell will be allocated
in the region ρheap. We have assigned regions to types so that values are allocated in one
global region, which acts like a traditional heap. When we call itrev we instantiate its
region parameter ρalloc to ρheap. We could apply a more refined local region analysis to avoid
heap-allocating an object when the lifetime of the object is locally obvious.

If the return continuation captured some live variables we would heap-allocate the con-
tinuation. This approach simplifies the compilation of advanced control features such as
exceptions and first class continuations as well as simplifying the reasoning of safety. How-
ever, heap-allocating return continuations could impact performance in an undesirable way.
A system extended with linear types, along with a set of simple syntactic restriction would
allow us to stack allocate return continuations.

17



type lst[ρ] = Nil (* unboxed *)

| Cons(int, lst[ρ]) at ρ (* boxed *)

type cont[ρ] = Ret_rl (* unboxed *)

fun itrev[ρalloc](k:cont[ρalloc], l:lst[ρalloc], acc:lst[ρalloc]):Ans =

case l of Nil ⇒ apply(k, acc)

| Cons(hd, tl) ⇒
let acc’ = lst[ρalloc].Cons(hd, acc)

in itrev(k, tl, acc’)

and apply[ρalloc](k:cont[ρalloc], v:lst[ρalloc]):Ans = ...

letr ρheap in (* initial program heap *)

let l = lst[ρheap].Cons(1, ...) in (* heap allocate list *)

let k = cont[ρheap].Ret_rl (* create return continuation *)

in itrev[ρheap](k, l, lst[ρheap].Nil)

Figure 11: Program itrev after Region Annotation

GC safe points. Part of the interface between a garbage collector and the compiler is
a description of “safe points”. These are locations during the execution of the mutator
where it is safe to invoke the garbage collector. At these safe points the compiler usually
emits type information describing which values are live at the safe point. Compilers that do
optimizations must also be careful not to perform certain optimizations across safe points. It
is complicated to characterize precisely which optimizations are and are not allowed [13]. It
requires that the compiler understand the special semantics of what happens at a garbage-
collection safe point.

In our framework all these issues are handled straightforwardly: since the garbage collec-
tor is just a normal function, the compiler does not need to be modified to be aware of any
special semantics. A garbage collector is just a function that takes some data value. Figure
12 shows such a “safe point” in our program. Depending on some heuristic the code either
continues executing or packages the set of current live roots into a return continuation for
the garbage collector, described by the type gc cont.

With region types we are able to statically verify that the data value is actually the set
of live roots for the entire program. If a buggy compiler or optimizer did not include all
possible roots we would catch this error at compile time, since not including a root would
result in a scoping error or a violation of the region type system. More importantly, we would
be able to easily identify where the error was by examining the code statically. Debugging
these sorts of problems in a traditional unsafe system is considerably more difficult, because
being able to isolate a bug of this sort in a large program is a serious challenge.

A Safe Flip. Figure 13 contains the code for the garbage collector. It copies the roots
into a new region (ρto) then it implicitly deallocates the old region (ρfrom) and resumes the
program with the new roots and new region. The term only ρto in ... requires that the body
of the expression does not return, i.e. has type Ans, and can be safely evaluated using only
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type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl

type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](k:cont[ρalloc], l:lst[ρalloc], acc:lst[ρalloc]):Ans =

if need_gc[ρalloc]() then (*** safe point ***)

let roots = gc_cont[ρalloc].Ret_itrev(k, l, acc)

in gc[ρalloc](roots)

else ... (* body of original itrev *)

and apply[ρalloc](k:cont[ρalloc], v:lst[ρalloc]):Ans = ...

and gc[ρfrom](roots:gc_cont[ρfrom]):Ans = ...

...

Figure 12: Program itrev with Safe Point Inserted

type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl

type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](...):Ans = ... and apply[ρalloc](...):Ans = ...

and gc[ρfrom](roots:gc_cont[ρfrom]):Ans =

letr ρto in
let roots’ = copy_gc_cont[ρfrom][ρto](roots) in
only ρto in (* deallocate ρfrom *)

case roots’ of
Ret_itrev(k, l, acc) ⇒ itrev[ρto](k, l, acc)

and copy_gc_cont[ρfrom, ρto](x:gc_cont[ρfrom]):gc_cont[ρto] = ...

...

Figure 13: “Flipping” from and to space
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type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl

type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](...):Ans = ... and apply[ρalloc](...):Ans = ...

and gc[ρfrom](...):Ans = ...

and copy_gc_cont[ρfrom, ρto](x:gc_cont[ρfrom]):gc_cont[ρto] =

case x of Ret_itrev(k, l, acc) ⇒
let k’ = copy_cont[ρfrom, ρto](k) in (* walk the "stack" *)

let l’ = copy_lst[ρfrom, ρto](l) in
let acc’ = copy_lst[ρfrom, ρto](acc)

in gc_cont[ρto].Ret_itrev(k’, l’, acc’)

and copy_lst[ρfrom, ρto](x:lst[ρfrom):lst[ρto] = ...

and copy_cont[ρfrom, ρto](x:cont[ρfrom]):cont[ρto] = ...

...

Figure 14: Copying roots

the region dynamically bound to ρto.
In this case it is obvious that ρto is distinct from ρfrom as it is a new fresh region. A static

type system that tracks the uniqueness of regions such as [11] would be sufficient, and our
dynamic apporach is not strictly necessary in this case. However, since the extra runtime
overhead is negligible, we prefer our simpler dynamic approach to the more complicated
static system. We believe that we can integrate the explicit deallocation techniques that use
static typing to prevent region aliasing with our implicit approach to give us the benefits of
both approaches, so that we resort to this dynamic approach when we are unable statically
determine aliasing relationships.

GC copy function. Figure 14 sketches the code for a naive copy function. The type of the
copy function guarantees that the function performs a deep copy. The copy function is not
written in continuation-passing style so it uses a stack while traversing the list. We could
write the copy function in continuation-passing style and heap-allocate all its temporary
space in a third region which we could reclaim after we are done. Alternatively if we extend
our type system with enough technical machinery so that we can recycle the space used
by the continuations we could implement what would amount to the Deutsch-Schorr-Waite
pointer reversal algorithm [24, 30, 26, 32]. Note that the function copy cont performs an
operation equivalent to “walking the stack”. Since we have CPS converted our program the
continuation, k, represents the current stack frame. It may be the case that we can adapt the
higher-order techniques to provide true abstraction and separate compilation in the presence
of a garbage collector by requiring each abstract object to provide a method4 to copy or
trace the object. It is not clear what the software engineering and performance issues are for
this technique so we consider it to be future work. A more serious problem with our copy
function is that it does not preserve pointer sharing.

4A closure can be thought of a an object with a single “apply” method.
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Shared Unshared

Figure 15: Shared vs. Unshared values

Preserving Sharing. Consider the datastructure in the first half of Figure 15. If we were
to apply our garbage collection technique with a naive copy function it would convert the
originally shared list of lists into an unshared version which uses more space. In the presence
of cyclic data structures our naive copy function would not terminate. Traditional garbage
collectors use forwarding pointers to preserve sharing. However, forwarding pointers are not
the only mechanism by which to do this.

Figure 16 outlines a copy function that uses an auxiliary hash table augmented with one
primitive to return the unique pointer address of an object. This approach, while inefficient,
demonstrates that the underlying algorithm needed to preserve sharing is not inherently
difficult to type. In the next section we will outline how to encode forwarding pointers in a
safe way.

4 Forwarding Pointers

The easiest way to understand how to encode forwarding pointers is to start by encoding
as many of the garbage collector invariants as possible within the type system. We will
discover that the type system outlined so far can capture many important invariants, but is
not sufficiently expressive to capture them all precisely. However, if we examine our partial
solution we will gain enough insight to come up with a full solution by extending our system
with a single primitive.

Figure 17 sketches one approach to forwarding pointers. Some garbage collectors may
overwrite a field of the object, but to simplify our presentation we assume every heap al-
located object contains an extra word to hold a forwarding pointer which is either NULL or
a pointer to an object of the appropriate type in the to-space. Notice that we have two
different list types. The gc lst type describes the garbage collector’s view of lists. From
the garbage collector’s standpoint, lists are allocated in a from-space containing forwarding
pointers into objects in a to-space. It must be the case that that lists allocated in the to-
space have forwarding pointers which are always set to NULL. The lst type describes lists
that the mutator operates on, and maintains the invariant that the forwarding pointer is set
to NULL. The fact that the forwarding pointer is a mutable field which the garbage collector
will mutate is captured by the use of the ref constructor.
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prim objId : [α] α → int
tycon tbl :: Rgn → Typ → Typ → Typ = ...

fun newTbl[ρtbl, α, β](sz:int):tbl[ρtbl, α, β] = ...

fun inTbl[ρtbl, α, β](t:tbl[ρtbl, α, β], key:α):bool = ...

fun getTbl[ρtbl, α, β](t:tbl[ρtbl, α, β], key:α):β = ...

fun addTbl[ρtbl, α, β](t:tbl[ρtbl, α, β], key:α, val:β):unit = ...

type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl

type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](...):Ans = ...

...

and share_copy_lst[ρtbl, ρfrom, ρto]

(t:tbl[ρtbl, lst[ρfrom], lst[ρto]],x:lst[ρfrom]):lst[ρto] =

case x of Nil ⇒ lst[ρto].Nil

| Cons(hd, tl) ⇒
if inTbl[ρtbl, lst[ρfrom], lst[ρto]](x) then (* is forwarded? *)

getTbl[ρtbl, lst[ρfrom], lst[ρto]](x)

else let hd’ = hd in
let tl’ = share_copy_lst[ρtbl, ρfrom, ρto](t,tl) in
let x’ = lst[ρto].Cons(hd’,tl’)

in addTbl[ρtbl, lst[ρfrom], lst[ρto]](x,x’) ; (* set forwaded *)

x’

...

Figure 16: Preserving Sharing with a Hash-Table
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tycon ref :: Rgn → Typ → Typ
type gc_lst[ρfrom, ρto] = Nil

| Cons(ref[ρfrom,fwd_ptr[ρto]], int, gc_lst[ρfrom, ρto]) at ρfrom

and fwd_ptr[ρto] = NULL | PTR(lst[ρto])

and lst[ρto] = Nil

| Cons(ref[ρto, fwd_null], int, lst[ρto]) at ρto

and fwd_null = NULL

fun itrev[ρalloc](...):Ans = ...

...

and share_copy_lst[ρfrom, ρto](x:gc_lst[ρfrom, ρto]):lst[ρto] =

case x of Nil ⇒ lst[ρto].Nil

| Cons(f, hd, tl) ⇒
(case deref[ρfrom](f) of NULL ⇒

let hd’ = hd in
let tl’ = share_copy_lst[ρfrom, ρto] in
let l = lst[ρto].Cons(mkref[ρto](fwd_null.NULL), hd’ , tl’)

in f := l; l

PTR(l) ⇒ l)

Figure 17: Encoding Forwading Pointers

The function share copy lst takes objects of type gc lst and makes a copy of type lst
which preserves the underlying pointer sharing in the original gc lst. This code handles
only acyclic lists but can be extended to handle the cyclic case. At first glance this would
seem to be a complete solution; unfortunately there is one thorny problem. If the mutator
operates on objects of type lst how did we get an object of type gc lst in the first place?

Ideally, we would like to argue that there is a natural subtyping relationship that allows
us to coerce objects of type lst into objects of type gc lst. For this to work we need the ref
constructor to be covariant. However, it is well known that covariant references are unsound.
However, Java adopts this rule for arrays5 and achieves safety by requiring an extra runtime
check for every array update. We cannot adopt the approach used by Java. This runtime
check would prevent our garbage collector from setting any forwarding pointer to a non-null
value.

However, rather than disallowing unsafe updates to an object we can disallow unsafe
dereferences, more importantly we can disallow unsafe dereferences in a way that does not
require a runtime check for every access. Given a value of type lst, if after casting it to a
value of type gc lst our program never accesses any value of type lst this cast is safe.

If our program is written in continuation-passing style, we can enforce this guarantee by
making sure that after casting the value of type lst to a value of type gc lst we pass the
newly cast value immediately to a continuation that never accesses any value of type lst.
One way to guarantee this condition statically is to type the continuation that receives the
cast value in a typing context where the type lst is not bound.

Denying access to values of type lst after the program has performed a cast, is too

5A ref cell can be thought of as a one element array.
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restrictive to be useful. However, since both the lst and gc lst are region annotated types,
we can achieve a similar sort of guarantee and still write useful programs by revoking the
right to the access the region where the type lst is allocated, using a similar scoping trick.
We can do this because after our garbage collector casts a lst value to a gc lst value it
never needs to examine the original value as a value of type lst. After our garbage collector
runs, the original lst value is garbage, so the mutator never needs to access the region where
the lst value was allocated. However, if we deny access to the type lst by denying access
to the region it lives in, where is the value of type gc lst allocated? We solve this problem
by introducing a new “fake” region which is equivalent for the purposes of subtyping to the
region we denied access to but for all practical purposes appears to be a distinct fresh region.

To do this we must introduce a nonstandard and ad-hoc form of subtyping on references.
This allows for safe covariant references by using region variables to control access to poten-
tially unsafe pointer aliases. Given two types A and B where A is a subtype of B and a region
ρ the type ref[ρ, A] is a subtype of ref[ρ′, B] (where ρ′ is a new “fake” region variable)
provided that the rest of the program does not access any values in region ρ. This rule is
admittedly ad-hoc, but it is the only ad-hoc rule in our entire system. Our approach is based
on the observation of Crary, Walker, et al [11] that region variables act like “capabilities”.
We use this observation to revoke all old references to the object and allow access to the
object only through references of the object’s supertype. See Appendix B which sketches the
soundness of the approach for a simpler core calculus. It is important to note that we still
must at run time check that ρ is not aliased by any other region variable, so that the new
region variable ρ′ refers to a unique region. This extra alias check is need for this approach
to be completely sound, but all our alias checks would be unnecessary in the system of Crary,
Walker, et al.

5 Preliminary Performance Evaluation

The approach we have outlined is asymptotically competitive with existing garbage collection
algorithms. However we cannot neglect constant factors and other important pragmatic
issues, if we wish to build a practical system. One issue is code size. Since we are generating
a new copy function for every unique type, code explosion is a serious concern. We can adapt
the δ−main encoding technique [13] and other approaches to encourage sharing in our copy
function to mitigate the code explosion problem. In order to address this issue we intend to
do a detailed study of the number of unique copy functions needed for real programs. If these
techniques are not sufficient we can adopt the techniques such as intensional type analysis [16]
to avoid having a distinct copy function for every unique type. For our preliminary evaluation
we will ignore the issues of code size and just examine efficiency of the currently described
system.

Input programs. For comparison we have chosen several programs seen in the previous
literature on region based memory management. They are as follows:

itrev Iterative list reverse (n = 10,000)
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appel1 Program designed to demonstrate issues of space complexity (n = 1000) [28]

inline Inline variant of appel1 (n = 1000) [28]

appel2 Program designed to demonstrate issues of space complexity (n = 1000) [28]

ackermann Ackermann’s function evaluated (n = 3, m = 6) [28]

fib Recursive Fibonacci (n = 33)

hsum Sum the value in a heap allocated list (n = 1000) [28]

quicksort Quicksort randomly generated list (n = 1000) [28]

share-copy Reverse shared list of list (n = 10,000)

sum Recursive sum of the first n integers (n = 1000) [28]

These programs are not a representative workload. However, they are sufficient for a
preliminary evaluation. It is important to note that our safe collector for appel1, appel2,
and inline uses asymptotically less space than a region-based approach. Our safe collector
is also more robust in that both appel1 and inline have similar space characteristics which
is not the case in the original Tofte-Talpin system.

Compiler. We have modified the back end of the MLton [19] to accept source programs
that include a safe garbage collector. The MLton compiler emits C code that is then processed
by the system C compiler to produce a runnable program. MLton has a straightforward un-
safe depth-first-search two-space precise copying collector. The compiler also stack-allocates
activation records.

For each source programs we collect data for the following variants:

orig Original program passed directly to MLton

cps Program run through CPS transform and first-order closure conversion, run with MLton’s
unsafe collector

gc-fwd Same as cps using safe collector and forwarding pointers which require an extra
word of space for each object

gc-tbl Same as cps using safe collector with hash table to preserve sharing

To better understand the impact of CPS conversion, we measure the runtime of programs
using the unsafe collector before (orig) and after CPS conversion (cps). We finally measure
the performance of two different safe collectors, which differ only in their approach to sharing
preservation; one uses forwarding pointers (gc-fwd), the other a hash-table (gc-tbl).

In a production system we would synthesize a safe collector after high-level optimiza-
tions, but because of the structure of MLton it was more convenient to synthesize a collector
before many high-level optimizations. However, this experimental artifact demonstrates that
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Figure 18: Relative Runtime Performance
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Figure 19: Relative Number of Words Allocated

compiler backends can safely optimize our program after a garbage collector has been syn-
thesized without understanding any special semantics. In this case there are two different
optimizing compilers: MLton, which is performing high-level optimizations such as inlining,
record flattening, and unboxing; and the system C compiler (gcc).

Effect of CPS Conversion. Figure 18 shows the total wall-clock run time for each pro-
gram and variant normalized by the performance of the optimized CPS-converted program.
Immediately, one can see that the CPS conversion can cause more than a factor of two
performance degradation when compared to the original program, which is stack allocating
activation records. We are using a simple flat-closure representation; more advanced closure
representation techniques can significantly reduce the amount of allocation.[2, 3] Figure 19
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Figure 20: Relative Number of Words Garbage Collected

shows that our CPS converted programs are allocating significantly more heap data6, which
accounts for the performance difference. Also note that programs using a safe collector with
a hash table are allocating less data than programs using a safe collector with forwarding
pointers. This is because although our safe collectors are tagless, we are reserving an extra
word to store a forwarding pointer for each object. The unsafe collectors are paying a similar
overhead for an extra tag word. The collector using a hash table is not incurring this ex-
tra space overhead for tagging or forwarding, but uses more auxiliary space during garbage
collection.7

Unfortunately, synthesizing a garbage collector before optimizing prevents certain space-
saving optimizations, but this is simply an artifact of our current experimental setup. After
we region-annotate our program, we make our allocation semantics explicit. MLton will not
unbox objects which we have decided to box. This artifact most notably shows up in the
increased allocation of share-copy.

If we compare the performance of programs using our safe collector with the those us-
ing the standard unsafe collector, we see that in some instances programs using our safe
collector seem to outperform the same programs using an unsafe collector even when the
unsafe version of the program is stack-allocating activation records. This naive comparison
is misleading, because the various programs allocate different amounts of data at different
times. Because each program’s allocation behavior is different, the number of words actually
garbage-collected varies. Figure 20 shows the relative amount of data actually garbage-
collected for each program.

This explains why in the case of itrev our safe collector, which uses a more costly
hash table to preserve sharing, seems to outperform both the safe collector using forwarding
pointers and the unsafe collector. Since each heap object is smaller when we are using a
hash table to preserve sharing, our collector will be invoked less frequently.8 In this case

6Notice that some programs did not allocate any heap data originally.
7The extra auxiliary space need for garbage collection is not accounted for in the figure.
8In the case of share-copy, which is allocating more data, because of our dynamic heap resizing policy
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Figure 21: Per-word and per-object cycle costs

the program using the safe collector with a hash table seems faster because it is just doing
less work. We could perform an experiment where we control for this and force collections
to occur at precisely the same time for identical programs, but this would obscure the fact
that a garbage collection scheme which may be less efficient when comparing performance in
terms of strict copying costs may in practice be more efficient because of secondary effects,
such as reducing the object size overheads for the mutator.

Quantitative Measurements. With the caveat that raw copying performance is not an
accurate measure of the performance impact of a garbage collection scheme, we report the
raw copying performance of our collector, by assuming the following:

gc time = c1 · objects collected + c2 · words collected

This assumes that total garbage collection time is simply the sum of time spent collecting
each object and that the time spent collecting each object is simply some constant factor plus
the cost collecting each word of the object. We have estimated the per-word and per-object
costs by artificially varying both the object size and number of objects collected for our set
of programs and then performing a least squares fit over the data. Figure 21 summarizes
our results in terms of absolute machine cycles. We omit numbers for the orig case since it
is using exactly the same unsafe collector as cps. Since the unsafe collector is interpreting
type tags at runtime it has a significantly higher per-object cost. However, it is using a
system-optimized memcpy which allows it to have a much smaller per-word cost. Our tagless
scheme allows us to avoid any tag-interpretation overhead. Our safe collector is copying
objects with a series of naive loads and stores. For small objects, however, our safe collector
using forwarding pointers is significantly more efficient than the unsafe collector. We must
add a caveat that with such small programs we are ignoring important caching effects in our
analysis.

it is being invoked at different times when there is less live data to be collected.
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Our experiments suggest that if we modify our framework so that we can stack allocate
return continuations, and if caching-related effects can be addressed our safe collector should
be competitive with traditional unsafe techniques.

6 Conclusions and Future Work

Although our approach as presented is not practical for general-purpose systems, we believe
practical systems can be built by extending our current work. The most important insights
are that a general-purpose collector can be built on top of a set of much simpler primitives,
and that when standard type systems are too weak, we can rely on runtime checking or
simply add “the right lemma” and encode what amounts to a small proof sublanguage to
establish important preconditions needed for any ad-hoc reasoning that does not fit into a
standard framework.

At a high-level, garbage collection algorithms move objects from one abstract set to
another. Particular garbage collection algorithms differ in how these abstract sets of objects
are implemented. In our type-preserving collector each abstract set of objects corresponds
to a region. Our technique is not dependent on any particular implementation of the region
primitives.

In the past region have been implemented as contiguous allocation arenas. If we imple-
ment regions as doubly-linked list of objects rather than contiguous allocation arenas, we can
build a “fake copying” collector [33]. The “fake copying” scheme forms the basis for incre-
mental techniques such as Bakers’s Treadmill [5]. We maybe be able to use this observation
as the basis for building safe incremental collectors. The mark bits used in mark-sweep and
mark-compact collectors can also be seen as a simple set membership bit. We believe that
with an appropriate implementation of the underlying region primitives, mark-sweep and
mark-compact collection schemes could be implemented.

We would like to investigate how to integrate purely static memory management tech-
niques [25, 32] with our system. [20] takes our basic approach and extends it to use the more
sophisticated techniques of intensional type analysis, and outlines an approach for encoding
a generational collector as well as presenting an alternative approach to forwading pointers.

Garbage collectors are typically written in low-level unsafe languages such as C. Most
garbage collector algorithms discuss details in terms of low-level bit and pointer manipulation
operations. Morrisett, Felleisen et al [21] present a high-level semantics for garbage collection
algorithms, and prove the correctness of various well known algorithms. However, in their
semantics garbage collection is still viewed as an abstract operation that lies outside of the
underlying language being garbage collected. This approach allows them to discuss the purely
algorithmic issues without revealing the underlying implementation details. Our semantics is
sufficiently detailed that one can use it as guide to directly implement a reasonably efficient
garbage collector on realistic hardware. It also has the property that we establish the safety
of our garbage collection algorithm by simply relying on type soundness.

Ideally we would like to have a spectrum of static and dynamic memory management
techniques so one can mix techniques in a clean, efficient, and safe way. We would like to
investigate in more detail the abstraction related issues we have mentioned. Although our
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technique is type-preserving it is still not abstraction-preserving. We believe research in this
direction may lead to more modular memory management techniques.
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A Proof of Safety Properties

Theorem 1 (Type Soundness) If ` P1 wt then, there is no stuck P2 such that P1 7→∗
P P2.

Proof. By structural induction on derivations of P 7→∗
P P ′ and Lemma 1.1 (Type Preser-

vation of Programs) and Lemma 1.2 (Progress)

Induction Hypothesis: We need the following stronger induction hypothesis: If ` P1 wt and
P1 7→∗

P P2 then P2 is not stuck and ` P2 wt.

case mstprefl
P 7→∗

P P By assumption ` P wt and by Lemma 1.2 P is not stuck.

case
P1 7→∗

P P2 P2 7→∗
P P3

mstptrans
P1 7→∗

P P3

1. ` P1 wt By assumption

2. P1 7→∗
P P2 By assumption

3. P2 7→∗
P P3 By assumption

4. ` P2 wt By IH with (1) and (2)

It follows that ` P3 wt and P3 is not stuck By IH with (4) and (3)

case
P1 7→P P2

mstprds
P1 7→∗

P P2

1. ` P1 wt By assumption

2. P1 7→P P2 By assumption

3. ` P2 wt By Lemma 1.1 with (1) and (2)

4. P2 is not stuck By Lemma 1.2 and (3)

It follows that ` P2 wt and P2 is not stuck By (3) and (4)

Lemma 1.1 (Type Preservation of Programs) If ` P1 wt and P1 7→P P2, then `
P2 wt.

Proof. By case analysis of P1 7→P P2

Consdier the cases of P1 7→P P2

case rdspure R[E[e1]] 7→P R[E[e2]] where e1 7→e e2

1. ` R[E[e1]] wt By assumption

2. e1 7→e e2 By assumption

3. {}; {} ` R[E[e1]] :τ By (1) and inversion of wte
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4. {} ]∆′; {} ` E[e1] :τ By Lemma 1.12 and (3)

5. {} ]∆′; {} ` e1 :τ ′ By Lemma 1.10 and (5)

6. {} ]∆′; {} ` e2 :τ ′ By Lemma 1.5 with (5) and (2)

7. {} ]∆′; {} ` E[e2] :τ By Lemma 1.11 with (5), (6), and (4)

8. {}; {} ` R[E[e2]] :τ By Lemma 1.13 with (4), (7), and (3)

Therefore ` R[E[e2]] wt By wte and (8)

case rdsletr R[E[letr ρ in e]] 7→P R[letr ρ in E[e]]

1. ` R[E[letr ρ in e]] wt By assumption

2. {}; {} ` R[E[letr ρ in e]] :τ By (1) and inversion of wte

3. {} ]∆′; {} ` E[letr ρ in e] :τ By Lemma 1.12 and (2)

4. {} ]∆′; {} ` letr ρ in e :τ ′ By Lemma 1.10 and (3)

5. {} ]∆′ ] {ρ}; {} ` e :τ ′ By (4) and inversion of htletr

6. {} ]∆′ ] {ρ}; {} ` letr ρ in e :τ ′ By (4) and weakening

7. {} ]∆′ ] {ρ}; {} ` E[letr ρ in e] :τ By (3) and weakening

8. {} ]∆′ ] {ρ}; {} ` E[e] :τ By Lemma 1.11 with (6), (5), and (7)

9. {} ]∆′ ` τ wf By (3) and Lemma 1.8

10. {} ]∆′; {} ` letr ρ in E[e] :τ By htletr with (9) and (8)

11. {}; {} ` R[letr ρ in E[e]] :τ By Lemma 1.13 with (3), (10), and (2)

Therefore ` R[letr ρ in E[e]] wt By wte and (11)

case rdsget R[letr ρ in R′[E[get[ρ](put[ρ](v))]]] 7→P R[letr ρ in R′[E[v]]]

1. ` R[letr ρ in R′[E[get[ρ](put[ρ](v))]]] wt By assumption

2. {}; {} ` R[letr ρ in R′[E[get[ρ](put[ρ](v))]]] :τ By (1) and inversion of wte

3. {} ]∆′; {} ` E[get[ρ](put[ρ](v))] :τ By Lemma 1.12 and (2)

4. {} ]∆′; {} ` get[ρ](put[ρ](v)) :τ ′ By Lemma 1.10 and (3)

5. {} ]∆′; {} ` put[ρ](v) : (τ ′ at ρ) By (4) and inversion of htget

6. {} ]∆′; {} ` v :τ ′ By (5) and inversion of htput

7. {} ]∆′; {} ` E[v] :τ By Lemma 1.11 with (4), (6), and (3)

8. {}; {} ` R[letr ρ in R′[E[v]]] :τ By Lemma 1.13 with (3), (7), and (2)

Therefore ` R[letr ρ in R′[E[v]]] wt By wte and (8)

case rdsonly R[E[only ∆′′ in e]] 7→P R′∆′′
[e]

1. ` R[E[only ∆′′ in e]] wt By assumption
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2. {}; {} ` R[E[only ∆′′ in e]] :τ By (1) and inversion of wte

3. {} ]∆; {} ` E[only ∆′′ in e] :τ By Lemma 1.12 with (2)

4. {} ]∆; {} ` only ∆′′ in e :τ ′ By Lemma 1.10 with (3)

5. {} ]∆′ ]∆′′; {} ` only ∆′′ in e :Ans
Because by inspection of htonly ∆ =
∆′ ]∆′′

6. ∆′′; {} ` e :Ans By (5) inversion of htonly

7. {}; {} ` R∆′′
[e] :Ans By definition of R′∆′′

Therefore ` R∆′′
[e] wt By wte with (7)

case rdshalt R[E[haltτ
′
]] 7→P haltτ where E 6= [ ]

1. ` R[E[haltτ
′
]] wt By assumption

2. {}; {} ` R[E[haltτ
′
]] :τ By (1) and inversion of wte

3. {} ` τ wf By Lemma 1.8 with (2)

4. {}; {} ` haltτ :τ By hthalt with (3)

Therefore ` haltτ wt By wte with (4)

case rdsfreer R[letr ρ in R′[e]] 7→P R[R′[e]] where ` R[R′[e]] wt Trivial since by as-

sumption ` R[R′[e]] wt

Lemma 1.2 (Progress) If ` P1 wt then, there exists P2 such that P1 7→P P2 or P2 is an
answer. i.e. P1 is not stuck.

Proof. Because ` P1 wt impiles {}; {} ` R[e] : τ . By Lemma 1.12 ∆; {} ` e : τ so by case
analysis on the conclusions of Lemma 1.6

Consdier the cases of Lemma 1.6

case e = v If e is a value than P1 is an answer.

case e = E[r] where r = ((λx :τ ′.e′)∆′
v) P1 reduces to P2 using rdspure with rdsbetav.

case e = E[r] where r = ((Λρ.e′)[ρ′]) P1 reduces to P2 using rdspure with rdstapp.

case e = E[r] where r = (fixf :τ ′.v′) P1 reduces to P2 using rdspure with rdsfix.

case e = E[r] where r = letr ρ in e′ P1 reduces to P2 using rdsletr.

case e = E[r] where r = get[ρ](put[ρ](v)) P1 reduces to P2 using rdsget.

case e = E[r] where r = only ∆′ in e′ P1 reduces to P2 using rdsonly.
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case e = E[r] where r = haltτ
′

If E 6= [ ] then P1 reduces to P2 using rdshalt with rdsfix. If

E = [ ] then P1 is an answer.

Lemma 1.3 (Typing Under Term Subsitution) If ∆; Γ ` e :τ and ∆; Γ]{x :τ} ` e′ :τ ′

then ∆; Γ ` e′[e/x] :τ ′, where e = v or e = (fixf :τ ′′.v).

Proof. By structural induction on the derivations of ∆; Γ ] {x :τ} ` e′ :τ ′.

Induction Hypothesis: If ∆; Γ ` e : τ and ∆; Γ ] {x : τ} ` e′ : τ ′ then ∆; Γ ` e′[e/x] :τ ′, where
e = v or e = (fixf :τ ′′.v).

case htvar
∆; Γ ] {x :τ} ` x :τ Because e′ = x, τ ′ = τ and x[e/x] = e therefore ∆; Γ ` e :τ

by assumption

case htvar
∆; Γ ] {x :τ} ] {y :τ ′} ` y :τ ′ Because e′ = y, y[e/x] = y therefore ∆; Γ ] {y :

τ ′} ` y :τ ′ by htvar

case htunit
∆; Γ ] {x :τ} ` 〈〉 :unit Because e′ = 〈〉 , τ ′ = unit, and 〈〉[e/x] = 〈〉 therefore

∆; Γ ` 〈〉 :unit by htunit

case
∆′ ` (Γ′ ] {x :τ}) wfenv ∆′′ ` τ1 wf ∆′′; Γ′′ ] {y :τ1} ` e′′ :τ2

htabs
∆′ ]∆′′; (Γ′ ] {x :τ}) ] Γ′′ ` (λy :τ1.e

′′)∆′′
:τ1

∆′′→ τ2

Because Γ =

Γ′ ] Γ′′, ∆ = ∆′ ] ∆′′, e′ = (λy : τ1.e
′′)∆′′

, τ ′ = τ1
∆′′→ τ2, and (λy : τ1.e

′′)∆′′
[e/x] =

(λy :τ1.e
′′[e/x])∆′′

1. ∆′′; Γ′′ ] {y :τ1}τ ` e′′ :τ2 By assumption

2. e′′[e/x] = e′′ Because (1) implies that x is not free in e′′

Therefore ∆′ ]∆′′; Γ′ ] Γ′′ ` (λy :τ1.e
′′)∆′′

:τ1
∆′′→ τ2 By assumption

case
∆′ ` Γ′ wfenv ∆′′ ` τ1 wf ∆′′; (Γ′′ ] {x :τ}) ] {y :τ1} ` e′′ :τ2

htabs
∆′ ]∆′′; Γ′ ] (Γ′′ ] {x :τ}) ` (λy :τ1.e

′′)∆′′
:τ1

∆′′→ τ2

Because Γ =

Γ′ ] Γ′′, ∆ = ∆′ ] ∆′′, e′ = (λy : τ1.e
′′)∆′′

, τ ′ = τ1
∆′′→ τ2, and (λy : τ1.e

′′)∆′′
[e/x] =

(λy :τ1.e
′′[e/x])∆′′

1. ∆′ ]∆′′; Γ′ ] Γ′′ ` e :τ By assumption

2. ∆′ ` Γ′ wfenv By assumption

3. ∆′′ ` τ1 wf By assumption

4. ∆′′; Γ′′ ] {y :τ1} ] {x :τ} ` e′′ :τ2 By assumption and exchange

5. ∆′′ ` Γ′′ wfenv By assumption implicit in (4)
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6. ∆′′; Γ′′ ` e :τ By Lemma 1.4 with (3), (2), (5), and
(1) N.B. here is where we use the fact
that e = v or e = (fixf :τ ′.v′)

7. ∆′′; Γ′′ ] {y :τ1} ` e′′[e/x] :τ2 By IH with (6) and (4)

Therefore ∆′ ]∆′′; Γ′ ] Γ′′ ` (λy :τ1.e
′′[e/x])∆′′

:τ1
∆′′→ τ2 By htabs with (2), (3)

and (7)

case
∆′ ]∆′′; Γ ] {x :τ} ` e1 :τ1

∆′′→ τ2 ∆′ ]∆′′; Γ ] {x :τ} ` e2 :τ1
htapp

∆′ ]∆′′; Γ ] {x :τ} ` (e1 e2) :τ2

Because ∆ =

∆′ ]∆′′, e′ = (e1 e2), τ ′ = τ2, and (e1 e2)[e/x] = (e1[e/x] e2[e/x])

1. ∆′ ]∆′′; Γ ` e :τ By assumption

2. ∆′ ]∆′′; Γ ] {x :τ} ` e1 :τ1
∆′′→ τ2 By assumption

3. ∆′ ]∆′′; Γ ] {x :τ} ` e2 :τ1 By assumption

4. ∆′ ]∆′′; Γ ` e1[e/x] :τ1
∆′′→ τ2 By IH with (1) and (2)

5. ∆′ ]∆′′; Γ ` e2[e/x] :τ1 By IH with (1) and (3)

Therefore ∆′ ]∆′′; Γ ` (e1[e/x] e2[e/x]) :τ2 By htapp with (4) and (5)

case
∆ ] {ρ}; Γ ] {x :τ} ` e′′ :τ ′′

httabs
∆; Γ ] {x :τ} ` (Λρ.e′′) :∀ρ.τ ′′

Because e′ = (Λρ.e′′), τ ′ = ∀ρ.τ ′′, and

(Λρ.e′′)[e/x] = (Λρ.e′′[e/x])

1. ∆; Γ ` e :τ By assumption

2. ∆ ] {ρ}; Γ ] {x :τ} ` e′′ :τ ′′ By assumption

3. ∆ ] {ρ}; Γ ` e′′[e/x] :τ ′′ By IH with (1) and (2)

Therefore ∆; Γ ` (Λρ.e′′[e/x]) :∀ρ.τ ′′ By httabs and (3)

case
∆ ] {ρ′}; Γ ] {x :τ} ` e′′ :∀ρ.τ ′′

httapp
∆ ] {ρ′}; Γ ] {x :τ} ` (e′′[ρ′]) :τ ′′[ρ′/ρ]

Because e′ = (e′′[ρ′]), τ ′ = τ ′′[ρ′/ρ],

and (e′′[ρ′])[e/x] = (e′′[e/x] ρ′)

1. ∆; Γ ` e :τ By assumption

2. ∆ ` ρ′ wf By assumption

3. ∆; Γ ] {x :τ} ` e′′ :∀ρ.τ ′′ By assumption

4. ∆; Γ ` e′′[e/x] :∀ρ.τ ′′ By IH with (1) and (3)

Therefore ∆; Γ ` (e′′[e/x][ρ′]) :τ ′′[ρ′/ρ] By httapp with (2) and (4)

case
∆ ` τ ′ wf ∆ ] {ρ}; Γ ] {x :τ} ` e′′ :τ ′

htletr
∆; Γ ] {x :τ} ` (letr ρ in e′′) :τ ′

Because e′ = letr ρ in e′′ and

letr ρ in e′′[e/x] = letr ρ in e′′[e/x]
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1. ∆; Γ ` e :τ By assumption

2. ∆ ` τ ′ wf By assumption

3. ∆ ] {ρ}; Γ ] {x :τ} ` e′′ :τ ′ By assumption

4. ∆ ] {ρ}; Γ ` e′′[e/x] :τ ′ By IH with (1) and (3)

Therefore ∆; Γ ` letr ρ in e′′[e/x] :τ ′ By letr with (2) and (4)

case
∆′ ] {ρ}; Γ ] {x :τ} ` e′′ :τ ′′

htput
∆′ ] {ρ}; Γ ] {x :τ} ` put[ρ](e′′) : (τ ′′ at ρ)

Because ∆ = ∆′ ] {ρ}, e′ =

put[ρ](e′′), τ ′ = (τ ′′ at ρ), and put[ρ](e′′)[e/x] = put[ρ](e′′[e/x])

1. ∆′ ] {ρ}; Γ ` e :τ By assumption

2. ∆′ ] {ρ}; Γ ] {x :τ} ` e′′ :τ ′′ By assumption

3. ∆′ ] {ρ}; Γ ` e′′[e/x] :τ ′′ By IH with (1) and (2)

Therefore ∆′ ] {ρ}; Γ ` put[ρ](e′′[e/x]) : (ρ at τ ′′) By htput with (3)

case
∆′ ] {ρ}; Γ ] {x :τ} ` e′′ : (τ ′ at ρ)

htget
∆′ ] {ρ}; Γ ] {x :τ} ` get[ρ](e′′) :τ ′

Because ∆ = ∆′ ] {ρ}, e′ = get[ρ](e′′),

get[ρ](e′′)[e/x] = get[ρ](e′′[e/x])

1. ∆′ ] {ρ}; Γ ` e :τ By assumption

2. ∆′ ] {ρ}; Γ ] {x :τ} ` e′′ : (ρ at τ ′) By assumption

3. ∆′ ] {ρ}; Γ ` e′′[e/x] : (ρ at τ ′) By IH with (1) and (2)

Therefore ∆′ ] {ρ}; Γ ` get[ρ](e′′[e/x]) :τ ′ By htget with (3)

case
∆′ ` Γ′ ] {x :τ} wfenv ∆′′; Γ′′ ` e′′ :Ans

htonly
∆′ ]∆′′; Γ′ ] {x :τ} ] Γ′′ ` (only ∆′′ in e′′) :Ans

Because ∆ = ∆′ ]∆′′, Γ = Γ′ ] Γ′′, e′ = only ∆′′ in e′′ and τ ′ = Ans

1. ∆′′; Γ′′ ` e′′ :Ans By assumption

2. e′′[e/x] = e” Because (1) implies x is not free in e′′

Therefore ∆′ ]∆′′; Γ′ ] Γ′′ ` only ∆′′ in e′′ :Ans By assumption

case
∆′ ` Γ′ wfenv ∆′′; Γ′′ ] {x :τ} ` e′′ :Ans

htonly
∆′ ]∆′′; Γ′ ] Γ′′ ] {x :τ} ` (only ∆′′ in e′′) :Ans

Because ∆ = ∆′ ] ∆′′, Γ = Γ′ ] Γ′′, e′ = only ∆′′ in e′′, only ∆′′ in e′′[e/x] =
only ∆′′ in e′′[e/x], and τ ′ = Ans

1. ∆′ ]∆′′; Γ′ ] Γ′′ ` e :τ By assumption

2. ∆′′; Γ′′ ] {x :τ} ` e′′ :Ans By assumption
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3. ∆′ ` Γ′ wfenv By assumption

4. ∆′′ ` Γ′′ ] {x :τ} wfenv By implicit assumption

5. ∆′′ ` τ wfenv By (4) and inversion of wfenvbv

6. ∆′′; Γ′′ ` e :τ By Lemma 1.4 with (5), (3), (4), and (1)

7. ∆′′; Γ′′ ` e′′[e/x] :Ans By IH with (6) and (2)

Therefore ∆′ ]∆′′; Γ′ ] Γ′′ ` only ∆′′ in e′′[e/x] :Ans By htonly with (3) and (7)

case
∆ ` τ ′ wf ∆; Γ ] {τ :x} ] {f :τ ′} ` v :τ ′

htfix
∆; Γ ] {τ :x} ` (fixf :τ ′.v) :τ ′

Because e′ = (fixf : τ ′.v) and (fixf :

τ ′.v)[e/x] = (fixf :τ ′.v[e/x])

1. ∆; Γ ` e :τ By assumption

2. ∆ ` τ ′ wf By assumption

3. ∆; Γ ] {f :τ ′} ] {x :τ} ` v :τ ′ By assumption of htfix

4. ∆; Γ ] {f :τ ′} ` v[e/x] :τ ′ By IH with (1) and (3)

Therefore ∆; Γ ` (fixf :τ ′.v[e/x]) :τ ′ By htfix with (2) and (4)

case
∆ ` τ ′ wf

hthalt
∆; Γ ] {x :τ} ` haltτ

′
:τ ′

Because e′ = haltτ
′
and haltτ

′
[e/x] = haltτ

′
by assump-

tion ∆ ` τ ′ wf therefore ∆; Γ ` haltτ
′
:τ ′ by hthalt

Lemma 1.4 (Region Context Strengthening) If ∆′ ` τ wf, ∆ ` Γ wfenv, ∆′ `
Γ′ wfenv, and ∆ ]∆′; Γ ] Γ′ ` e :τ where e = v or e = (fixf :τ.v) then ∆′; Γ′ ` e :τ

Proof. By induction on derivations of ∆ ]∆′; Γ ] Γ′ ` e :τ .

Induction Hypothesis: If ∆′ ` τ wf, ∆ ` Γ wfenv, ∆′ ` Γ′ wfenv, and ∆ ]∆′; Γ ] Γ′ ` e : τ
where e = v or e = (fixf :τ.v) then ∆′; Γ′ ` e :τ

case htunit
∆ ]∆′; Γ ] Γ′ ` 〈〉 :unit Trivial since ∆′ ` Γ′ wfenv therefore ∆′; Γ′ ` 〈〉 : unit

by htunit

case
∆ ` Γ′ wfenv ∆′ ` τ1 wf ∆′; Γ ] {x :τ1} ` e′ :τ2

htabs
∆ ]∆′; Γ′ ] Γ ` (λx :τ1.e

′)∆′
:τ1

∆′→ τ2

Because τ = τ1
∆′→ τ2,

1. ∆′ ` τ1 wf By assumption

2. ∆′; Γ′ ] {x :τ1} ` e′ :τ2 By assumption

3. {} ` {} wfenv By wfenvenpty

Therefore {} ]∆′; {} ] Γ′ ` (λx :τ1.e
′)∆′

:τ1
∆′→ τ2 By htabs with (3), (1), and (2)
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case
∆ ]∆′ ] {ρ}; Γ ] Γ′ ` e′ :τ ′

httabs
∆ ]∆′; Γ ] Γ′ ` (Λρ.e′) :∀ρ.τ ′

1. ∆′ ` ∀ρ.τ ′ wf By assumption

2. ∆ ` Γ wfenv By assumption

3. ∆′ ` Γ′ wfenv By assumption

4. ∆ ]∆′ ] {ρ}; Γ ] Γ′ ` e′ :τ ′ By assumption

5. ∆′ ] {ρ} ` τ ′ wf By (1) and inversion of wfall

6. ∆′ ] {ρ} ` Γ′ wfenv By (3) and weakening

7. ∆′ ] {ρ}; Γ′ ` e′ :τ ′ By IH with (5), (2), (6), and (4)

Therefore ∆′; Γ′ ` (Λρ.e′) :∀ρ.τ ′ By httabs with (7)

case
∆ ]∆′′ ] {ρ}; Γ ] Γ′ ` v′′ :τ ′

htput
∆ ]∆′′ ] {ρ}; Γ ] Γ′ ` put[ρ](v′′) : (τ ′ at ρ)

Because ∆′ = ∆′′ ] {ρ} and τ =

(τ ′ at ρ)

1. ∆′′ ] {ρ} ` (τ ′ at ρ) wf By assumption

2. ∆ ` Γ wfenv By assumption

3. ∆′′ ] {ρ} ` Γ′ wfenv By assumption

4. ∆ ]∆′′ ] {ρ}; Γ ] Γ′ ` v′ :τ ′ By assumption

5. ∆′′ ] {ρ} ` τ ′ wf By (1) and inversion of wfat

6. ∆′′ ] {ρ}; Γ′ ` v′ :τ ′ By IH with (5), (3), (2), and (4)

Therefore ∆′′ ] {ρ}; Γ′ ` put[ρ](v′) : (τ ′ at ρ) By htput with (6)

case
∆ ]∆′ ` τ wf ∆ ]∆′; Γ ] Γ′ ] {f :τ} ` v′ :τ

htfix
∆ ]∆′; Γ ] Γ′ ` (fixf :τ.v′) :τ

1. ∆′ ` τ wf By assumption

2. ∆ ` Γ wfenv By assumption

3. ∆′ ` Γ′ wfenv By assumption

4. ∆′ ` Γ′ ] {f :τ} wfenv By wfenvbv with (3) and (1)

5. ∆ ]∆′; Γ ] Γ′ ] {f :τ} ` v′ :τ By assumption

6. ∆′; Γ′ ] {f :τ} ` v′ :τ By IH with (1), (2), (4) and (5)

Therefore ∆′; Γ′ ` (fixf :τ.v′) :τ By htfix with (1) and (6)

Lemma 1.5 (Type Preservation of Expression) If ∆; {} ` e1 : τ and e1 7→e e2, then
∆; {} ` e2 :τ .
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Proof. By case analysis of e1 7→e e2

Consdier the cases of e1 7→e e2

case rdsbetav ((λx :τ1.e)
∆′′

v) 7→e e[v/x] Because ∆ = ∆′ ]∆′′ and {} = {} ] {}

1. ∆′ ]∆′′; {} ] {} ` ((λx :τ1.e)
∆′′

v) :τ2 By assumption

2. ∆′ ]∆′′; {} ] {} ` (λx :τ1.e)
∆′′

:τ1
∆′′→ τ2 By (1) and inversion of htapp

3. ∆′ ]∆′′; {} ] {} ` v :τ1 By (1) and inversion of htapp

4. ∆′′; {} ] {x :τ1} ` e :τ2 By (2) and inversion of htabs

5. ∆′ ]∆′′; {} ] {} ] {x :τ1} ` e :τ2 By (4) and weakening

It follows that ∆′ ]∆′′; {} ] {} ` e[v/x] :τ2 By Lemma 1.3 with (3) and (5)

case rdstapp ((Λρ.e)[ρ′]) 7→e e[ρ′/ρ] Because ∆ = ∆′ ] {ρ′}

1. ∆′ ] {ρ′}; {} ` ((Λρ.e)[ρ′]) :τ ′[ρ′/ρ] By assumption

2. ∆′ ] {ρ′}; {} ` (Λρ.e) :∀ρ.τ ′ By (1) and inversion of httapp

3. ∆′ ] {ρ′} ] {ρ}; {} ` e :τ ′ By (2) and inversion of httabs

4. ∆′ ] {ρ′}; {}[ρ′/ρ] ` e[ρ′/ρ] :τ ′[ρ′/ρ] By Lemma 1.9 with (2)

It follows that ∆′ ] {ρ′}; {} ` e[ρ′/ρ] :τ ′[ρ′/ρ] Because {}[ρ′/ρ] = {}

case rdsfix (fixf :τ.v) 7→e v[(fixf :τ.v)/f ]

1. ∆; {} ` (fixf :τ.v) :τ By assumption

2. ∆; {} ] {f :τ} ` v :τ By (1) and inversion of htfix

It follows that ∆; {} ` v[(fixf :τ.v)/f ] :τ By Lemma 1.3 with (1) and (2)

Lemma 1.6 (Redux Decomposition) If ∆; {} ` e :τ then e is a value or e = E[r] where
r is a redux. A redux is any of the following forms:

1. ((λx :τ ′.e′)∆′′
v) where ∆ = ∆′ ]∆′′

2. ((Λρ.e′)[τ ′])

3. (fixf :τ ′.v)

4. letr ρ in e′

5. get[ρ](put[ρ](e′))

6. only ∆′ in e′

7. haltτ
′
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Proof. By structural induction on well typed closed e

Induction Hypothesis: If ∆; {} ` e :τ then e is a value or e = E[r] where r is a redux.

case e = 〈〉 e is a value

case e = (λx :τ ′.e′)∆′′
where ∆ = ∆′ ]∆′′ e is a value

case e = (Λρ.e′) e is a value

case e = put[ρ](v) e is a value

case e = (v1 v2) Since e is well typed by inversion of htapp v1 has type τ1
∆′′→ τ2 where

∆ = ∆′ ]∆′′. From Lemma 1.7 we conclude that v1 = (λx :τ ′.e′)∆′′
. Therefore E = [ ]

and r = ((λx :τ ′.e′)∆′′
v2).

case e = (v e′) By IH e′ = E ′[r′]. Therefore E = (v E ′) and r = r′

case e = (e′ e′′) By IH e′ = E ′[r′]. Therefore E = (E ′ e′′) and r = r′

case e = (v[τ ′]) Since e is well typed by inversion of httapp v has type ∀ρ.τ ′. From Lemma

1.7 we conclude that v = (Λρ.e′). Therefore E = [ ] and r = ((Λρ.e′)[τ ′])

case e = (e[τ ′]) By IH e = E ′[r′]. Therefore E = (E[τ ′]) and r = r′

case e = letr ρ in e′ Let E = [ ] and r = letr ρ in e′

case e = put[ρ](e′) By IH e′ = E ′[r′]. Therefore E = put[ρ](E ′) and r = r′

case e = get[ρ](v) Since e is well typed by inversion of htget v has type (τ ′ at ρ) From 1.7

we conclude that v = put[ρ](v′). Therefore E = [ ] and r = get[ρ](put[ρ](v′))

case e = get[ρ](e′) By IH e′ = E ′[r′]. Therefore E = get[ρ](E ′) and r = r′

case e = only ∆′ in e′ Let E = [ ] and r = only ∆′ in e′

case e = (fixf :τ ′.v′) Let E = [ ] and r = (fixf :τ ′.v′)

case e = haltτ Let E = [ ] and r = haltτ

Lemma 1.7 (Canonical Forms) If ∆; Γ ` v :τ then one of the following must be true.

1. τ = unit iff v = 〈〉
2. τ = τ1

∆′′→ τ2 iff v = (λx :τ1.e)
∆′′

and ∆ = ∆′ ]∆′′

3. τ = ∀ρ.τ ′ iff v = (Λρ.e)

4. τ = (τ ′ at ρ) iff v = put[ρ](v′) and ∆ = ∆′ ] {ρ}
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Proof. By inspection of the typing judgments for τ

case τ= unit Follows from inversion of htunit

case τ= τ1
∆′′→ τ2 Follows from inversion of htabs

case τ = ∀ρ.τ ′ Follows from inversion of httabs

case τ = (τ ′ at ρ) Follows from inversion of htput

Lemma 1.8 (Typing Relation Preservers Well Formedness) If ∆; Γ ` e :τ then ∆ `
τ wf.

Proof. By structural induction on derivations of ∆; Γ ` e :τ .

Induction Hypothesis: If ∆; Γ ` e :τ then ∆ ` τ wf.

case htvar
∆; Γ ] {x :τ} ` x :τ ∆ ` Γ ] {x : τ} wf by implicit assumption. Therefore

∆ ` τ wf by ∆ ` Γ ] {x :τ} wf and inversion of wfenvbv

case htunit
∆; Γ ` 〈〉 :unit ∆ ` unit wf by wfunit

case
∆′ ` Γ′ wfenv ∆′′ ` τ1 wf ∆′′; Γ′′ ] {x :τ1} ` e′ :τ2

htabs
∆′ ]∆′′; Γ′ ] Γ′′ ` (λx :τ1.e

′)∆′′
:τ1

∆′′→ τ2

Because ∆ = ∆′]∆′′ and

Γ = Γ′ ] Γ′′

1. ∆′′ ` τ1 wf By assumption

2. ∆′′; Γ′′ ] {x :τ1} ` e′ :τ2 By assumption

3. ∆′′ ` τ2 wf By IH with (2)

4. ∆′′ ` τ1
∆′′→ τ2 wf By wfarrow with (1) and (3)

Therefore ∆′ ]∆′′ ` τ1
∆′′→ τ2 wf By weakening

case
∆′ ]∆′′; Γ ` e1 :τ1

∆′′→ τ2 ∆′ ]∆′′; Γ ` e2 :τ1
htapp

∆′ ]∆′′; Γ ` (e1 e2) :τ2

Because ∆ = ∆′ ] ∆′′ and Γ =

Γ′ ] Γ′′

1. ∆′ ]∆′′; Γ′ ] Γ′′ ` e1 :τ1
∆′→ τ2 By assumption

2. ∆′ ]∆′′ ` τ1
∆′′→ τ2 wf By IH with (1)

Therefore ∆′ ]∆′′ ` τ2 wf By (2) and inversion of wfarrow
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case
∆ ] {ρ}; Γ ` e′ :τ ′

httabs
∆; Γ ` (Λρ.e′) :∀ρ.τ ′

1. ∆ ] {ρ}; Γ ` e′ :τ ′ By assumption

2. ∆ ] {ρ} ` τ ′ wf By IH with (1)

Therefore ∆ ` ∀ρ.τ ′ wf By wfall with (2)

case
∆′ ] {ρ}; Γ ` ρ′ :∀e′.τ ′

httapp
∆′ ] {ρ}; Γ ` (ρ′[ρ]) :τ ′[ρ/e′]

Because ∆ = ∆′ ] {ρ′}

1. ∆′ ] {ρ′}; Γ ` e′ :∀ρ.τ ′ By assumption

2. ∆′ ] {ρ′} ` ∀ρ.τ ′ wf By IH with (1)

3. ∆′ ] {ρ′} ] {ρ} ` τ ′ wf By (2) and inversion of wfall

Therefore ∆′ ] {ρ′} ` τ ′[ρ′/ρ] wf By induction on the derivations of
∆′ ] {ρ′} ] {ρ} ` τ ′ wf and (3)

case
∆ ` τ wf ∆ ] {ρ}; Γ ` e′ :τ

htletr
∆; Γ ` (letr ρ in e′) :τ

∆ ` τ wf by assumption

case
∆′ ] {ρ}; Γ ` e′ :τ ′

htput
∆′ ] {ρ}; Γ ` put[ρ](e′) : (τ ′ at ρ)

Because ∆ = ∆′ ] {ρ}

1. ∆′ ] {ρ} ` e′ :τ ′ By assumption

2. ∆′ ] {ρ} ` τ ′ wf By IH with (1)

Therefore ∆′ ] {ρ} ` (τ ′ at ρ) wf By wfat with (2)

case
∆′ ] {ρ}; Γ ` e′ : (τ ′ at ρ)

htget
∆′ ] {ρ}; Γ ` get[ρ](e′) :τ ′

Because ∆ = ∆′ ] {ρ}

1. ∆′ ] {ρ} ` e′ : (τ ′ at ρ) By assumption

2. ∆′ ] {ρ} ` (τ ′ at ρ) wf By IH with (1)

Therefore ∆′ ] {ρ} ` τ ′ wf By (2) and inversion of wfat

case
∆′ ` Γ′ wfenv ∆′′; Γ′′ ` e′ :Ans

htonly
∆′ ]∆′′; Γ′ ] Γ′′ ` (only ∆′′ in e′) :Ans

Because ∆ = ∆′ ]∆′′, ∆′ ]∆′′ ` Ans wf

by wfAns

case
∆ ` τ wf ∆; Γ ] {f :τ} ` v :τ

htfix
∆; Γ ` (fixf :τ.v) :τ

∆ ` τ wf by assumption

44



case
∆ ` τ wf

hthalt
∆; Γ ` haltτ :τ

∆ ` τ wf by assumption

Lemma 1.9 (Typing Under Region Variable Subsitution) If ∆] {ρ′} ] {ρ}; Γ ` e :τ
then ∆ ] {ρ′}; Γ[ρ′/ρ] ` e[ρ′/ρ] :τ [ρ′/ρ].

Proof. By structural induction on the derivations of ∆ ] {ρ′} ] {ρ}; Γ ` e :τ .

Induction Hypothesis: If ∆ ] {ρ′} ] {ρ}; Γ ` e :τ then ∆ ] {ρ′}; Γ[ρ′/ρ] ` e[ρ′/ρ] :τ [ρ′/ρ].

Lemma 1.10 (Control Context Independence) If ∆; Γ ` E[e] :τ then ∆; Γ ` e :τ ′.

Proof. By induction on the structure of E

Induction Hypothesis: If ∆; Γ ` E[e] :τ then ∆; Γ ` e :τ ′.

case E = [ ] Because E[e] = e and τ = τ ′ therefore ∆; Γ ` e :τ by assumption

case E = (E ′ e′) Because E[e] = (E ′[e] e′) and ∆ = ∆′ ]∆′′

1. ∆′ ]∆′′; Γ ` (E ′[e] e′) :τ By assumption

2. ∆′ ]∆′′; Γ ` E ′[e] :τ1
∆′′→ τ By (1) and inversion of htapp

Therefore ∆′ ]∆′′; Γ ` e :τ ′ By IH and (2)

case E = (v E ′) Because E[e] = (v E ′[e]) and ∆ = ∆′ ]∆′′

1. ∆′ ]∆′′; Γ ` (v E ′[e]) :τ By assumption

2. ∆′ ]∆′′; Γ ` E ′[e] :τ1 By (1) and inversion of htapp

Therefore ∆′ ]∆′′; Γ ` e :τ ′ By IH and (2)

case E = (E ′[ρ′]) Because E[e] = (E ′[e][ρ′])

1. ∆; Γ ` (E ′[e][ρ′]) :τ By assumption

2. ∆; Γ ` E ′[e] :∀ρ.τ ′′ By (1) and inversion of httapp

Therefore ∆; Γ ` e :τ ′ By IH and (2)

case E = put[ρ](E ′) Because E[e] = (ρ E ′[e]) and ∆ = ∆′ ] {ρ}

1. ∆′ ] {ρ}; Γ ` put[ρ](E ′[e]) :τ By assumption

2. ∆′ ] {ρ}; Γ ` E ′[e] :τ ′′ By (1) and inversion of htput

Therefore ∆′ ] {ρ}; Γ ` e :τ ′ By IH and (2)

case E = get[ρ](E ′) Because E[e] = (ρ E ′[e]) and ∆ = ∆′ ] {ρ}
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1. ∆′ ] {ρ}; Γ ` get[ρ](E ′[e]) :τ By assumption

2. ∆′ ] {ρ}; Γ ` E ′[e] :τ ′′ By (1) and inversion of htget

Therefore ∆′ ] {ρ}; Γ ` e :τ ′ By IH and (2)

Lemma 1.11 (Control Context Replacement) If ∆; Γ ` e1 :τ , ∆; Γ ` e2 :τ , and ∆; Γ `
E[e1] :τ

′ then ∆; Γ ` E[e2] :τ
′.

Proof. By induction on the structure of E

Induction Hypothesis: If ∆; Γ ` e1 :τ , ∆; Γ ` e2 :τ , and ∆; Γ ` E[e1] :τ
′ then ∆; Γ ` E[e2] :τ

′.

case E = [ ] Because E[e2] = e2 and τ = τ ′ therefore ∆; Γ ` e2 :τ by assumption

case E = (E ′ e′) Because E[e1] = (E ′[e1] e′) and ∆ = ∆′ ]∆′′

1. ∆′ ]∆′′; Γ ` e1 :τ By assumption

2. ∆′ ]∆′′; Γ ` e2 :τ By assumption

3. ∆′ ]∆′′; Γ ` (E ′[e1] e′) :τ ′ By assumption

4. ∆′ ]∆′′; Γ ` E ′[e1] :τ1
∆′′→ τ ′ By (3) and inversion of htapp

5. ∆′ ]∆′′; Γ ` e′ :τ1 By (3) and inversion of htapp

6. ∆′ ]∆′′; Γ ` E ′[e2] :τ1
∆′′→ τ ′ By IH with (1), (2), and (4)

Therefore ∆′ ]∆′′; Γ ` (E ′[e2] e′) :τ ′ By htapp with (6) and (5)

case E = (v E ′) Because E[e1] = (v E ′[e1]) and and ∆ = ∆′ ]∆′′

1. ∆′ ]∆′′; Γ ` e1 :τ By assumption

2. ∆′ ]∆′′; Γ ` e2 :τ By assumption

3. ∆′ ]∆′′; Γ ` (v E ′[e1]) :τ ′ By assumption

4. ∆′ ]∆′′; Γ ` v :τ1
∆′′→ τ ′ By (3) and inversion of htapp

5. ∆′ ]∆′′; Γ ` E ′[e1] :τ1 By (3) and inversion of htapp

6. ∆′ ]∆′′; Γ ` E ′[e2] :τ
′ By IH with (1), (2), and (5)

Therefore ∆′ ]∆′′; Γ ` (v E ′[e2]) :τ ′ By htapp with (4) and (6)

case E = (E ′[ρ′]) Because E[e1] = (E ′[e1][ρ
′]) and ∆ = ∆′ ] {ρ′}

1. ∆′ ] {ρ′}; Γ ` e1 :τ By assumption

2. ∆′ ] {ρ′}; Γ ` e2 :τ By assumption

3. ∆′ ] {ρ′}; Γ ` (E ′[e1][ρ
′]) :τ ′ By assumption

4. ∆′ ] {ρ′}; Γ ` E ′[e1] :∀ρ.τ ′′ By (3) and inversion of httapp
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5. ∆′ ] {ρ′}; Γ ` E ′[e2] :∀ρ.τ ′′ By IH with (1), (2), and (4)

Therefore ∆′ ] {ρ′}; Γ ` (E ′[e2][ρ
′]) :τ ′ By httapp with (5)

case E = put[ρ](E ′) Because E[e1] = put[ρ](E ′[e1]) and ∆ = ∆′ ] {ρ}

1. ∆′ ] {ρ}; Γ ` e1 :τ By assumption

2. ∆′ ] {ρ}; Γ ` e2 :τ By assumption

3. ∆′ ] {ρ}; Γ ` put[ρ](E ′[e1]) :τ ′ By assumption

4. ∆′ ] {ρ}; Γ ` E ′[e1] :τ
′′ By (3) and inversion of of htput

5. ∆′ ] {ρ}; Γ ` E ′[e2] :τ
′′ By IH with (1), (2), and (4)

Therefore ∆′ ] {ρ}; Γ ` put[ρ](E ′[e2]) :τ ′ By htput with (5)

case E = get[ρ](E ′) E[e1] = get[ρ](E ′[e1]) and ∆ = ∆′ ] {ρ}

1. ∆′ ] {ρ}; Γ ` e1 :τ By assumption

2. ∆′ ] {ρ}; Γ ` e2 :τ By assumption

3. ∆′ ] {ρ}; Γ ` get[ρ](E ′[e1]) :τ ′ By assumption

4. ∆′ ] {ρ}; Γ ` E ′[e1] :τ
′′ By (3) and inversion of of htget

5. ∆′ ] {ρ}; Γ ` E ′[e2] :τ
′′ By IH with (1), (2), and (4)

Therefore ∆′ ] {ρ}; Γ ` get[ρ](E ′[e2]) :τ ′ By htget with (5)

Lemma 1.12 (Region Stack Independence) If ∆; Γ ` R[e] :τ then there exists ∆′ such
that ∆ ]∆′; Γ ` e :τ .

Proof. By induction on the structure of R

Induction Hypothesis: If ∆; Γ ` R[e] :τ then there exists ∆′ such that ∆ ]∆′; Γ ` e :τ .

case R = [ ] Because R[e] = e and ∆ = ∆ ] {} therefore ∆; Γ ` e :τ by assumption

case R = letr ρ in R′ Because R[e] = letr ρ in R′[e]

1. ∆; Γ ` letr ρ in R′[e] :τ By assumption

2. ∆ ] {ρ}; Γ ` R′[e] :τ By (1) and inversion of htletr

3. ∆ ] {ρ} ]∆′′; Γ ` e :τ By IH with (2)

Therefore ∆ ]∆′; Γ ` e :τ By (3) where ∆′ = {ρ} ]∆′′

Lemma 1.13 (Region Stack Replacement) There exists ∆′ such that if ∆]∆′; Γ ` e1 :
τ , ∆ ]∆′; Γ ` e2 :τ , and ∆; Γ ` R[e1] :τ then ∆; Γ ` R[e2] :τ .
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Proof. By induction on the structure of R

Induction Hypothesis: There exists ∆′ such that if ∆ ]∆′; Γ ` e1 : τ , ∆ ]∆′; Γ ` e2 : τ , and
∆; Γ ` R[e1] :τ then ∆; Γ ` R[e2] :τ .

case R = [ ] When ∆′ = {} because R[e2] = e2 and ∆ ]∆′ = ∆ therefore ∆; Γ ` e2 : τ by
assumption

case R = letr ρ in R′ When ∆′ = {ρ} because R[e1] = letr ρ in R′[e1]

1. ∆ ] {ρ}; Γ ` e1 :τ By assumption

2. ∆ ] {ρ}; Γ ` e2 :τ By assumption

3. ∆; Γ ` letr ρ in R′[e1] :τ By assumption

4. ∆ ` τ wf By (3) and inversion of htletr

5. ∆ ] {ρ}; Γ ` R′[e1] :τ By (3) and inversion of htletr

6. ∆ ] {ρ} ]∆′′; Γ ` e1 :τ By Lemma 1.12 with (1)

7. ∆ ] {ρ} ]∆′′; Γ ` e2 :τ By Lemma 1.12 with (2)

8. ∆ ] {ρ}; Γ ` R′[e2] :τ By IH with (6), (7), and (3)

Therefore ∆; Γ ` letr ρ in R′[e2] :τ By htletr with (4) and (8)
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Syntax

types τ ::= . . . | bool(b) | bool
terms e ::= . . . | b | isabool(e) | (if e1 e2 e3)
values v ::= . . . | b | isabool(b)

booleans b ::= true | false
control contexts E ::= . . . | isabool(E) | (if E e1 e2)

Expression Reductions

rdsiftrue (if isabool(true) e1 e2) 7→e e1

rdsiffalse (if isabool(false) e1 e2) 7→e e2

Figure 22: Booleans with subtyping

B Semantics for Forwading Pointers

In this section we formally describe our approach to forwarding pointers by exhibiting a
“simple” language that provides safe covariant references. To make any formal safety claims
we first must describe a language that has subtyping and region allocated mutable references.
Doing this is best done in stages. We will first describe a system with a trivial subtyping
relationship on boolean values, as an extension to our original region calculus. Then we
will extend our language to include region allocated mutable references. Finally, we will
describe how to provide safe covariant references by the addition of one new operator. The
language we describe here is quite small and impractical for use in a real system. However,
the language highlights the key ideas need to extend the system to include more non-trivial
features.

B.1 Subtyping on Booleans

Figure 22 describes the syntax and dynamic semantics needed to provide a very simple
form of subtyping over boolean values. We add two new type constructors booland bool(b)
the intuitive subtyping relationship is

bool

bool(false)

≤??????

bool(true)

≤ ÄÄÄÄÄÄ

Figure 23 describes the needed extensions to our typing relations. Rather than adding
a subsumption rule to our typing relation we introduce a coercion term isabool(e) which
promotes an expression of type bool(b) into an expression of type bool. Note that the values
of type bool are of the form isabool(b) while a value of type bool(b) is of the form b. The if
expression is defined over values of type bool.
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∆; Γ ` e :τ

. . .

htbool
∆; Γ ` b :bool(b)

∆; Γ ` e :bool(b)
htisabool

∆; Γ ` isabool(e) :bool

∆; Γ ` e1 :bool ∆; Γ ` e2 :τ ∆; Γ ` e3 :τ
htif

∆; Γ ` (if e1 e2 e3) :τ

∆ ` τ wf

. . .

wfbool
∆ ` bool wf

wfibool
∆ ` bool(b) wf

Figure 23: Typing Judgements for Booleans with subtyping
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This coercive interpretation of subtyping can be extended to include all the standard
subtyping relationships as done by [9, 10]. Relying on explicit coercions rather than sub-
sumption gives us control over what contexts subtyping can be used. We will see later that
covariant references are only safe in a particular context.

B.2 Region Allocated References

Figure 24 describes the extensions to our semantics for region allocated references. A
(τ ref ρ) describes a mutable reference to a value of type τ allocated in region ρ. Rather than
introducing a new syntactic category for locations, we simply use variables bound by a new
expression letl. Our semantics does not support mutual recursion, but by using letl bound
variables to encode locations we avoid the need to add a type for heaps to our typing relation,
which allows us to reuse many of our previous results unchanged in proving soundness for this
extended calculus. The expression deref dereferences location into a value. The expression
update[ρ] e1 := e2; e3 evaluates e1 to a location allocated in region ρ. It then updates location
with to value of e2 and continues by evaluating e3. Since locations are first class values we
add them to the set of values also.

In our previous semantics region stacks were simply a set of nested letr bindings. To model
references we extend region stacks so that between letr bindings there exists a possibly empty
sequence of nested letl bindings which encodes a mapping between locations and values.
We redefine the meaning of R∆ appropriately. We also introduce the notation Rρ,H,x,τ,v,H′

which represents a region stack containing a bound region, ρ, which contains a heap, H,
that includes a location, x, bound to some value, v, of type τand some arbitrary subheap
H ′. This definition will be useful when defining our dynamic semantics. The rule rdsderef
dereferences locations. The rule rdsletupd updates and existing binding. The rule rdsletl lifts’
letl bindings up to the appropriate heap.

Figure 25 contains the straightforward typing rules for our new constructs. Notice that
by using variables bound by letl to encode locations we avoid the need for a separate heap
type, and can type locations using the standard htvar rule.

B.3 Covariant References

Now that we have a calculus with a very basic form of subtyping and mutable references,
we can introduce a new term to our language that allows for safe covariant references. Figure
26 describes the needed extensions. The term gclemma evaluates an expression e1 to a value
of type (bool(b) ref ρ1) it then coerces that value into a value of type (bool ref ρ2) where ρ2

is a new freshly bound region variable. It then binds this value to the some variable, x, and
evaluates the body, e2, in a restricted region environment ∆. The reduction rule rdsgclemma
is safe if and only if x′ does not occur in the body of e. We can be assured of this fact when
ρ1 is not in ∆. If x′ did occur in e and ρ1 is not in ∆ this would violate the assumption that e
is well typed. Figure 27 describes the typing rule needed as a precondition for safety. Notice
that we statically require that ρ1 statically not be a member of ∆2 ] {ρ2}, however this is
a necessary but not sufficient restriction to guarantee safety, because of region aliasing. We
must check at runtime that aliasing has not violated this constraint. If it has we must abort
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Syntax

types τ ::= . . . | (τ ref ρ) region annotated reference
terms e ::= . . .

| letl x : (τ ref ρ) = e1 in e2 bind new location
| deref[ρ](e) dereference location
| update[ρ] e1 := e2; e3 update location and continue

values v ::= . . . | x
control contexts E ::= . . .

| letl x : (τ ref ρ) = E in e
| deref[ρ](E)
| update[ρ] E := e1; e2 | update[ρ] v := E; e

region stacks R ::= [ ] | letr ρ in H
heaps H ::= R | letl x : (τ ref ρ) = v in H

Program Reductions

[ ]∆
def
= [ ]

(letr ρ in H)∆]{ρ} def
= (letr ρ in H∆]{ρ})

(letr ρ in H)∆ def
= H∆ where ρ 6∈ ∆

(letl x : (τ ref ρ) = H in )∆]{ρ} def
= (letl x : (ρ ref τ) = H∆]{ρ} in )

(letl x : (τ ref ρ) = H in )∆ def
= H∆ where ρ 6∈ ∆

Rρ,H,x,τ,v,H′ def
= R[letr ρ in H[letl x : (τ ref ρ) = v in H ′]]

rdsderef Rρ,H,x,τ,v,H′
[E[deref[ρ](x)]] 7→P Rρ,H,x,τ,v,H′

[E[x]]
rdsletupd Rρ,H,x,τ,v,H′

[E[update[ρ] x := v′; e]] 7→P Rρ,H,x,τ,v′,H′
[E[e]]

rdsletl R[letr ρ in H[R′[E[letl x : (ρ ref τ) = v in e]]]] 7→P Rρ,H,x,τ,v,R′
[E[e]]

Figure 24: Regions and References
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∆; Γ ` e :τ

. . .

∆ ` (τ1 ref ρ) wf ∆; Γ ] {x : (τ1 ref ρ)} ` e1 :τ1 ∆; Γ ] {x : (τ1 ref ρ)} ` e2 :τ2
htletl

∆; Γ ` (letl x : (τ1 ref ρ) = e1 in e2) :τ2

∆ ] {ρ}; Γ ` e : (τ ref ρ)
htderef

∆ ] {ρ}; Γ ` deref[ρ](e) :τ

∆ ] {ρ}; Γ ` e1 : (τ1 ref ρ) ∆ ] {ρ}; Γ ` e2 :τ1 ∆ ] {ρ}; Γ ` e3 :τ2
htletupd

∆ ] {ρ}; Γ ` (update[ρ] e1 := e2; e3) :τ2

∆ ` τ wf

. . .

∆ ] {ρ} ` τ wf
wfref

∆ ] {ρ} ` (τ ref ρ) wf

Figure 25: Typing Judgements for Regions and References
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Syntax

terms e ::= . . .
| gclemma

assume (bool(b) ref ρ1) isa (bool ref ρ2) in
let x = e1 in
only ∆ in e2

control contexts E ::= . . .
| gclemma

assume (bool(b) ref ρ1) isa (bool ref ρ2) in
let x = E in
only ∆ in e

rdsgclemma Rρ1,H,x′,bool(b),b,H′
[E[gclemma

assume (bool(b) ref ρ1) isa (bool ref ρ2) in
let x = x′ in
only ∆ in e]] 7→P R′[E[only ∆ in e[x′/x]]]

where R′ = Rρ1,H,x′,bool,isabool(b),H′
[ρ2/ρ1] and ρ1 6∈ ∆

rdsgclemmaerr R[E[gclemma
assume (bool(b) ref ρ1) isa (bool ref ρ2) in
let x = v in
only ∆ ] {ρ1} in e]] 7→P haltAns

Figure 26: Covariant References

∆; Γ ` e :τ

. . .

∆1 ] {ρ1} ` Γ1 wfenv

∆1 ] {ρ1} ]∆2; Γ1 ] Γ2 ` e1 : (bool(b) ref ρ1)

∆2 ] {ρ2}; Γ2 ] {x : (bool ref ρ2)} ` e2 :Ans
htgclemma

∆1 ] {ρ1} ]∆2; Γ1 ] Γ2 ` (gclemma
assume (bool(b) ref ρ1) isa (bool ref ρ2) in
let x = e1 in
only ∆2 ] {ρ2} in e2) :Ans

Figure 27: Typing Judgements for Covariant References
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our computation using the rdsgclemmaerr rule.
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