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ABSTRACT

Numerousin vivo and in vitro studies have eucidated the basic molecular mechanisms that
underlie the germina center reaction. However, it is till not well understood how these
mechanisms fit together. Mathematical models can play an important role in solving this puzzle.
Unfortunatdly, existing studies have ether used models to explain quditative, high-leve
behavior without comparing smulated dynamics with quantitative experimental data, or have
presented vdidated models that do not smulate the underlying mechanism of selection, thus
neglecting important congraints on germind center dynamics. To truly understand the
mechanisms and ther interactions, as well as the validity of the hypothesesincorporated in
models, comprehensive models must be vaidated by comparison with specific experimenta

data.

We examine whether a specific mathematica modd of germina center dynamics, proposed by
Oprea and Perelson, can reproduce experimental data from the primary response to the hapten 2-
phenyl-5-oxazolone. We develop a set of formulas for estimating response- specific modd
parameters, as well as a discrete/stochastic implementation of the Oprea and Perelson modd that
enables comparison with data on individua germind centers. Based on the available data, we
conclude that while the mode can reproduce the average dynamics of splenic germina centers,
the mode is a best incomplete and does not reproduce the distribution of individua germing
center behaviors. Thus, better understanding and improved models are needed. In addition to
suggesting a possible extension to the modd, we make a number of specific predictions that can

be tested by in vivo experiments to obtain further ingghts and vaidation.



INTRODUCTION

Germind centers play an important role in the immune response. They are the Stes of affinity
meaturation where high-affinity B cells, formed through somatic mutation, are preferentiadly

selected to proliferate. Numerousin vivo and in vitro studies have ducidated the basic molecular
mechanisms that underlie the germina center reaction. However, it is till not well understood
how these mechanismsfit together. Mathematica models can play an important role in solving

this puzzle and potentidly in guiding experiments and making predictions

A number of mathematical models have been developed to study affinity maturation (1-6). These
can be roughly divided into two categories. In the first category fdl those modelswhich

explicitly smulate the underlying mechanism of sdlection (eg., B cdlsbinding FDCsand/or T
cdls)? (1-4). These models make the important contribution of presenting high-level condusions
about the environment necessary for affinity maturation to occur; however, while the parameters
of these models are often derived from or compared to experimentd data, their emergent
dynamics have not yet been carefully vdidated by comparing with experimental data. Models in
the second category have been compared with experimental data (5, 6). However, these models
neglect an important condraint on germind center dynamics by amply assuming that higher-
affinity cdlls are selected for a some pre-specified rate without Smulating the underlying
mechanism of this sdlection. Thus, existing studies either present mode s that have not been
vaidated by comparing with experimenta data, or vaidated models that do not smulate

mechanism. To truly understand the mechanisms underlying the germina center reaction and



thelr interactions, as well as the validity of the hypotheses incorporated in models,

comprehensive models must be vaidated by comparison with specific experimental data.

For example, Oprea and Perelson have recently proposed a modd of germind center dynamics
and efinity maturation (4). In thismodd dividing centroblasts undergo periodic rounds of
afinity-based selection as non-dividing centrocytes. Significantly, Oprea and Perelson clearly
represent the mechanism of salection: centrocytes die by gpoptosis unless they can out-compete
other cdlls and quickly bind to antigen held on FDCs. Using adifferentid equation-based
smulation, Oprea and Perelson have shown that their model can achieve efficient affinity
maturation if centrocytes recycle back to centroblasts. However, their model was not intended to
reproduce the dynamics of any specific experimenta system, but to describe the dynamics of a
‘typical’ immune response. It remains uncertain whether the results of the modd can be applied

to any particular red experimental system. In this sudy we atempt to vdidate the model by
comparing its dynamics with data from the primary response to the hapten 2- phenyl-5-oxazolone
(phOx). We choose this hapten because it evokes ardatively smple immune response and

because alot of experimentd datais available for it.

In order to use the Oprea and Perelson (OP) model to smulate the phOx response, we must first
provide estimates for the models parameters. One problem is that the affinity- class framework,
used in the mode to keep track of B cdl affinities, is difficult to parameterize with experimentd
vaues since there is not a direct correspondence between framework parameters and
experimentally measured vaues. We overcome this obstacle by providing formulas that

explicitly convert experimentd vaues to the parameters of the framework. It is aso necessary to



choose one or more metrics that can be used to compare the dynamics of Smulaion versus
experiment. For one, we propose ameasure of the efficiency of affinity maturation among
splenic germind center B cdls. This measure alows detailed quantitative comparison with
sequence data collected from in vivo experiments. Additiondly, we would like to utilize new
data from studies that look &t individual germina centersin the spleen. Asthe differentia
equation-based smulation used in the Oprea and Perelson study deds only with bulk averages
and is therefore unable to predict ether individua germind center behavior or the didtribution of
germind center behaviors, we have devel oped a new discrete/stochagtic implementation of the
OP model®. Together, these tools allow us to ask precise questions about how well the model

explains experimental observations.

The result of this validation process is a better understanding of the strengths and weaknesses of
the OP model and where mechanisms or interactions must be better understood. In addition, we
are able to make a number of specific predictions that can be tested by in vivo experiments to

obtain further ingghts and vaidation.

EXPERIMENTAL SYSTEM & METHODS

The Oprea and Perelson model

The OP model describes the dynamics of the various germina center cell populations induding:
B cdl blagts, centroblasts, centrocytes, FDCs, centrocyte-FDC complexes and memory cdlls. Itis

defined by the following set of differentid equations (4):
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and t (i,j) isthe probability that a centroblast in affinity-classi will move to afinity-classj upon
divison which includes mutation. The equations defining t (i,j) are not shown here, but can be
foundin (4). A description of the variablesis presented in Table | and the default parameter
vaues can befound in Tablell. Inlight of recent experimentd studies (7), it isimportant to note
that the mode does not necessarily make any assumptions about germina center architecture,

However, the default values for some parameters (eg., ms and ng) are based on the underlying



assumption that centroblasts are associated with the dark-zone and centrocytes with the light-

Zone.

Starting from the origind OP mode and its differentid equation implementation, there are four
chalenges we need to overcome: (i) creating a discrete/stochastic Smulation so that we can
compare results with data collected from individua germina centers, (i) relaing the parameters
of the modd to experimentally caculated vaues, (jii) deding with affinities quantitatively, and
(iv) metrics for validating the success of the modd. In the following sections we ded with each

of thesein turn.

Creating the discrete/stochastic simulation

We have devel oped a discrete/stochastic implementation of the OP modd in order to compare
the dynamics with data collected from individua germina centers. Thisimplementation usesa
fixed-increment time advance framework (8). Each smulation step updates the system dynamics
through afixed amount of time, Dt. To 'trandate the differentid equation implementation into

this discrete/stochagtic framework, we firgt group reated terms in the differentid equationsinto
independent processes (e.g., proliferation, desth, binding, etc.). In the set of differentid equations
presented above, we have labded al processes that span multiple equations. Each unlabeled term
comprises its own process. These processes are combined together into afull smulation by

performing them one after the other as part of each time step:

1. For each Dt fromstart to end



2. For each process p
3. Sinulate p
4. End for

5. End for

Since the order in which we perform the processes (line 2) matters, and in redlity these processes
are occurring in pardld, we smply perform the processes in arandom order that changes each
time-gtep. This hopefully avoids introducing too much bias into the smulation (e.g., as would

happen if we dways performed the proliferation process before death).

The discrete/stochadtic framework is redlized as follows. The variablesin this framework
represent cell numbers within an individual germind center and are redtricted to integer vaues.
The rates on the right-hand-side of the differentia equations are interpreted as probabilities of
events occurring on individud cdls during atime-step. Thisideais easy to apply to processes
that are confined to a Sngle equation (e.g., al of the unlabeled terms in the above equations). As
an example, consider the process modeling the apoptosis of centrocytes (i.e., theterm - aC,).
We modé this as a Poisson process where the probability that one or more apoptosis ‘events
occur during a particular time-step is 1-e2™. Thiswill be valid aslong asa Dt << 1 which we can
ensure by making the time-step small. The dgorithm for Smulating centrocyte apoptosis goes
through al of the centrocytesin the germind center, caculates the probability that gpoptosis
occurs during the time-step and then chooses a random number to decide whether apoptosis

actudly occursfor each individua centrocyte.



For processes which are spread across multiple equations, we must ensure that events are
coordinated so that the total number of cdlsis conserved (where necessary). For example,
congder the process labeled 'Unbind' which spans three equations. When a complex dissociates,

the free B cdll can either become a centrocyte (C;) or arescued centrocyte (R;). Although the
differentiad equation model has separate terms for the formation of centrocytes ((1- r)k X, ) and
rescued centrocytes (r k. X; ), we combine these in order to conserve the number of B cells. This

can be pecified by the following agorithm:

1. For all i

2. For x =1 to X

3. If can(1-e ™) then

4, X =X -1

5. If caN(r) then R = R + 1lelse G =G + 1 End if
6. End if

7. End for

8. End for

where COIN(p) isafunction that returns TRUE with probability p.

Variants of these dgorithms are capable of handling al the rest of the processes.

Formulasto calculate parametersfor the affinity-class framework

10



The OP modd contains a number of parameters whose default values are not specificaly based
on the phOx system. For many of them, however, there is no evidence yet to suggest that their
vaueswould be sgnificantly different during the phOx response. Exceptions to this are the
parameters of the affinity-class framework, which describe the effect of somatic mutation on aB
cel. Theorigina study does not discuss how vaues for these parameters were derived; dso, they
do not correspond directly to experimentally observed vaues. In this section we overcome these
shortcomings by extending the affinity-class framework with formulas to obtain the framework
parameters from vaues that can be estimated directly from experimentd data. We then derive
edimates for these parameters that are congstent with the experimenta system commonly used
to study the phOx response (i.e., BALB/c mice immunized intraperitonedly with phOx coupled

to the protein carrier chicken serum adbumin) (9).

The afinity-class framework groups cellsinto a discrete number of affinity-classes

il { -2,-1,01,2, } based on their affinity for antigen. Class O represents the germline
dfinity. The affinity factor controls the factor difference in on-rate between neighboring affinity-
classes. The off-rate is assumed to be congtant (a presumption that may be justified for the phOx
response by the demonstrated importance of on-rates (10)). A non-lethd mutation may move a
cdl up or down asngle afinity-class or may leaveit inits current class. The relative probability
of generding alower- versus a higher-affinity mutant sarting from affinity-classi is governed

by the function L (i), which is a user-pecified parameter in the smulation. As specified in (4)

and shown in Table I1, the affinity- class framework requires atota of four parameters.
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The dfinity-class framework is an abstraction that equates a cdll's affinity and genotype. It was
first developed to avoid the problem of following and explicitly assgning affinitiesto each Ig
genotype. Thisis an important feature, especialy in modeling complicated responses, asiit
alows one to capture the qualitative features of the mutationa |andscape without knowledge of
the quantitative details. Often, we will not know which specific sequencesfdl into each affinity-
class or the effect of dl possible mutations. While this generaly makes experimentd validation
of amodd that uses this framework difficult, the relative smplicity of the phOx response dlows
us to connect the affinity-class abstraction with a cdl's genotype reasonebly wdll. In particular,
we interpret the affinity-class of aB cdl as the number of affinity-increesing mutationsinitsig
genes (relative to the germline sequence) minus the number of affinity-decreasing mutations. As
we will seg, thisinterpretation is not perfect, but it provides agood first approximation to the

redity of the phOx response.

Given any gstarting sequence, we can express m the expressed mutetion rate per division, in terms

of the overal mutation rate and the number of base-pairs.
U
m= mNp, 1)

where rUnisthe overdl mutation rate per base-pair per divison, N isthe number of base-pairs
that make up the Ig heavy and light chain genesand p, isthe fraction of mutations thet are

expressd, i.e. that cause achange in affinity-class.
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Based on experimentd data, an: 10°® per base-pair per divison (11) and N =681 base-pairs
(12). The fraction of mutations that are expressed, p,, isSmply the number of mutations thet
cause achange in finity class divided by the totd number of possible mutations:

_n+n+n+n,
N™ 3

Pe )

where N~ 3 isthe tota number of possible mutations (each nucleotide can mutate to one of 3

other bases) and:

n, = the number of mutetions thet are letha (non-stop) framework replacements
n, =the number of mutations that are stop mutations

n, = the number of mutations that confer higher affinity

n, = the number of mutations that confer lower &ffinity, but are not lethal

Although the OP modedl assumes the same mfor dl B cdls, the precisevdueof p,, and therefore

of m will depend on the particular nucleotide sequence that is being mutated. Given a specific
sequence, we can caculate mby enumerating dl possible mutations and counting how many of
them fdl into each of the four categories described above. Although np and n, are probably
amost congtant, the values for s and ny will dmost certainly be different for B cdls with
different germline genotypes aswell asfor the same B cell a different stages of meturation.
However, the case of phOx is greatly smplified by the fact thet the primary responseis
dominated by asingle germline encoded heavy/light chain combination (12). By restricting our

smulation to follow only those B cdlsthat carry this canonica germline sequence, we can
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cdculae asngleinitid vaue for m Also, snce the average B cdl accumulates only asmadl
number of point mutations (13) and ;. + np >> g + ny (See below), we should not be introducing
too much error if we base our caculations on the germline sequence and ignore the fact that the

vaueof mwill change as the B cell sequence changes under the influence of somatic mutation.

Starting from the canonica germline sequence, we find that n, =578 based on the assumption
that 50% of al framework replacements are lethd (14). Trividly, n, =96. To cdculate n,, we

rely on experiments that have shown that codon 34 of V-Ox1 ishighly sdected for during the
germind center reaction. Mutation of this codon from the germline hidtidine to either glutamine

or asparagine increases the affinity for phOx by about 10-fold (9). Thissingle amino acid
exchange accounts for most of the increase in affinity displayed by the best antibody seen by day
14 of the primary response (9). Thus, if we restrict our Smulation to the first 14 days podt-
immunization, we find thet there are only three mutations from the germline that lead to

increased effinity (i.e., those leading to glutamine or asparagine a codon 34), o n, =3. Fndly,
we assume that the number of affinity-decreasing mutationsis directly related to the number of
contact residues that make up the combining Site between the canonical antibody and phOx.
From structural studies of an antibody closdly related to the canonica phOx antibodly, it has been
estimated that there are 14 contact residues (15). Since 7 out of the 9 possible mutations lead to

replacements in the average codon in the CDR of the canonical antibody, we use n, =98.
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The mutations in categories iy and np are letha to the cdll. Thus, the fraction of expressed
mutations that are lethd to the cell, p, , can be cdculated as the number of mutations in these

categories divided by the total number of expressed mutations:

+
P, = n+n 3
n+n+n;+n,

Since there are only two known affinity-increesing amino acid exchanges in the phOx system,
both a the same codon and both increasing the affinity by approximately 10-fold, we need only a
angle high-affinity dassin our modd. B cdlsin this high-&ffinity class will have a10-fold

higher afinity compared with the cdlsin the germline affinity-class. We will assume a congtant
affinity factor of A = 10, so that that this 10-fold affinity difference dso carriesto the lower

afinity-classes.

The reldive probability of generating alower- versus a higher-affinity mutant from the germline
dfinity-class, L (0) , isgiven directly by the vaues of n; calculated above (i.e., n,/n, ). Thiscan
be extended to dl affinity-cdasses with:

L +;i il {- 13...-2- 1,0t with L(Q) =¥ and L(-14) =0 4)
n, -

L() =

snce each afinity-decreasing mutation that the cell accumulates means thet there are 7 less
mutations that decrease affinity (remember that i will be negative for cdls that accumulate
affinity decreasing mutations), and since each accumulated affinity-decreasing mutation implies
the creetion of, on average, 3 affinity-increasng mutations (i.e., reversons to the germline amino
acid). Also, the minimum affinity-classis set to - 14 reflecting the number of possible affinity-
decreasing mutations®.
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Table 1l shows the parameter vaues for the phOx system that we calculated using the above
formulas. Clearly, many assumptions were made in deriving parameters for the affinity-class
framework. Nevertheless, snce we are trying to vaidate the OP mode which was expressed
using this framework, we will useit in this paper. Interestingly, dthough the origind Opreaand
Perelson study did not specify how parameters for the affinity-class framework were determined,
we can use the formulas developed in this section to retrofit assumptions for their study based on
the (generic) parameter vaues they used. We find that the origind parameter settings are

equivaent to the assumption of 112 affinity-increasing mutations and 561 affinity-decreasing

oneswith amutation rate of 2 10°* per base-pair per generation.

A measurefor the efficiency of affinity maturation

Similar to many previous mathematica models of affinity maturation (1, 3, 4), the Opreaand
Perelson sudy usesthetota affinity of the B cell population to quantify the extent of maturation.
Although this measure provides an appropriate means to vaidate the mode, it isvirtualy
impossible to compare with experimenta data since the modd follows afinities at the cdlular
level while affinities are dways measured experimentdly & the thermodynamic leve (i.e, usng
free antibody). It is not a ample matter to trandate from one type of affinity measure to the other
since one must account for avidity effects, the presence of co-receptors, cross-linking, sgnd

transduction pathways, etc.
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Ingteed of the totd affinity, we define a new measure of affinity maturation F(d) asthe fraction
of B cellsthat are members of affinity-class 1, the high-affinity class, a day d in the smulated
system. While this measure ignores the classfication of cdlsin other affinity classes, we can
directly compare it with experimentally collected sequence datasince dl B cdlsin the hight
affinity class carry one of the high-affinity mutations a codon 34. An experimenta estimate of
F(d) is provided by (13). The estimate, A(d), measures the accumulation of high-affinity
mutations a codon 34 among splenic germind center B cells (an average over many germind
centers). Table 111 summarizesthis datawhich is available for days 10, 12 and 14 post-

immunization. We can measure F(d) in the model &s>;

F(d) = B,(d) +C,(d) + X,(d) + R (d)

- | 5)
B(d) +a (B,(d)+C,(d)+ X, (d) + R (d))

where descriptions of the variables can be found in Table I. When gpplying this formulato the
discrete/stochagtic smulation, each variable is the sum of 500 runs (i.e., approximately a spleens
worth of germind centers). In both the discrete/stochastic and the differentid-equation

smulations, F(d), like A(d), represents the average dynamics of many germina centers.

Comparing the efficiency of affinity maturation in Smulation ver sus experiment

We define a quantitative measure of the fit between simulation and experiment, R, as the sum of

the squares of the difference between F(d) and A(d) for d = 10, 12 and 14:

R = §(F(d)- A(d)f (6)

d=10,1214
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Lower vaues of R indicate a better fit. In order to validate the model, we first set the values of

any unknown parameters in such away that R? is minimized. To do this, we have employed the
downhill amplex method of Nelder and Mead (16). Next, we must decide whether the fit

between model and experiment is good enough. It is highly unlikely, nor is it necessary, that we
should find F(d) = A(d). While we expect that F(d) should give usthe ‘true’ average, A(d) is

based on sampling alimited number of sequences. To estimate the error in A(d), we have
determined the 90% confidence interva based on the binomid digtribution (17). We can rule out

the modd if F(d) < Amin(d) or F(d) > Amax(d), where Amin(d) and Anmex(d) are the lower and upper

bounds of the 90% confidence interval of A(d) respectively.

RESULTSWITH THE DIFFERENTIAL EQUATION SIMULATION

The differential-equation smulation with default parameter values

In this section, we present the results from the differentid equation smulation with al

parameters set to thelr default vaues as specified in (4) except for those associated with the
afinity-class framework which were sat as described above. (Later, we will examine changing
the other parameter values aswell.) A ligt of these default parameter vauesis presented in Table
1. Since Kon and Kot (the on and off rates for germline B cdls) have not been measured
experimentaly (or estimated theoreticaly) we have estimated their best-fit values based on the
fitness messure R?. We find that the bet it with the experimenta data occurs for kon = 0.01 and

Kot = ¥. Thisresult would seem to rule out competition for antigen asamgor pressure driving
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affinity maturation. In order for competition to exist, B cells must remain bound to FDCs for

some finite amount of time so they can prevent other cells from binding.

In order to further investigate this finding, we ran smulations for arange of germline ko and
Koft. The results (shown in Figure 1) revea two main selection pressures that can drive affinity
maturation in the OP modd. Which pressure is operationa depends on the germline affinity. For
vaues of ko, around 107, sdlection is driven by the fact that higher-afinity cells are morelikdly
to escape from gpoptoss. For higher values of ko, sdection isthe result of competition for
binding to FDC stes. Affinity-dependent surviva of apoptosisis not important in this latter case

gnce dl cdlswill have an on-rate sufficiently high to be rescued before apoptoss.

Under the default parameter vaues, affinity-dependent surviva of gpoptosis is the dominant
selection pressure. The best-fit vaue of Kyt isinfinity Snce dower vdues Smply prevent high-
afinity cdlsfrom recyding without making sdlection any more stringent. Of course, an infinite
off-rateis dearly not biologicaly redistic. We will later consder only kot £ 100. Asshown in
Fgure 1, kof = 100 can effectively be viewed as infinity since increasing Kot beyond this point

does not provide a significantly better fit with the experimentd data

Regardless of the vaue of K, we find that affinity maturation with these parameter valuesis not
strong enough to explain experimenta observations. For example, the maximum vaue of F(14)
is less than 15%. Thisiswell below the 90% confidence interval of 36% £ A(14) £ 71%.
However, it does not follow immediately from this thet the mode iswrong. Default parameter

vauesfrom (4) may be incorrect for the phOx response, or refinement of some aspects of the
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model may be necessary. In the next section we will investigate possible changes to the model

parameters that improve the efficiency of affinity maturetion.

Thedifferential equation smulation with revised parameter values

In this section, we broaden our search for parameter settings that can bring the model and
experiment into agreement. Previoudy, we looked a varying only those parameters whose

vaues were completely unknown (i.e., Kon and Koff). Which parameters should we now vary? The
OP modd has over a dozen parameters whose values have been estimated from experimenta

data and, without exception, each is associated with some degree of uncertainty. Unfortunately,
methods for quantifying the precise degree of uncertainty do not currently exist. Thus, one

cannot rigoroudy identify the weekest parameter estimates. This presents ared problem since a

fit obtained by dlowing dl parameters to vary fredy would dmost certainly be suspect.

Asafirg step, we have identified those parameters that are based on the weakest assumptions or
for which there is significant disagreement in the literature. We relied on numerous

conversations with experimenta immunologists as well as our own reading of the literature.

Here, we highlight two different and independent hypotheses (i.e., changes to the default
parameter settings) that bring smulation and experiment into agreement with respect to the

fraction of splenic germina center B cells that carry high-affinity mutations.

Hypothesis #1: The effective affinity factor is greater than ten.
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The default vaue of the affinity factor, which controls the factor differencein onrate between
neighboring affinity- classes, rests on the questionable assumption that aB cdl's effinity isa
ample multiple of its surface immunoglobulin (dg) affinity. Under this assumption, the
experimentally observed 10-fold affinity increase at the antibody level trandates directly into the
modeled 10-fold increase at the cdll level. In Figure 2, we show results from smulations that
chdlenge this assumption by looking at arange of vaues for the affinity factor. According to
these results, the smdlest vaue of the affinity factor that can account for the experimenta datais
goproximately 220. Although experimenta evidence suggests that affinity differences at the
antibody level will be diminished rather than amplified at the cdl leve (18), there is one possible

way to reconcile an increased affinity factor in the mode with biologicd redity.

T cdls, which condtitute about 5% of germina center cells (19), are not explicitly part of the
current modd. However, in addition to the rescue signd from FDC, centrocytes probably need to
get T cdl help in order to avoid gpoptosis (20). If the ability to secure T help were affinity-
dependent (i.e,, higher affinity B cdls could strip more antigen from FDCs and therefore present
themsdalves more effectively to T cells) then sdection pressure on centrocytes could be increased.
The overd| effect of this can be smulated in the current mode by increasing the affinity factor.
However, without developing a more detailed modd of T cdlsit is uncear what the magnitude

of thisincrease should be. Even so, if we assume that the effect of T cdlsiswell gpproximated

by an increase in the affinity factor, then the maximum effect that T cells could have on afinity
meaturation is gpproximeately given by the case where the affinity factor is 220; setting the affinity

factor to a higher value does not help significantly since other processes become limiting.
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Hypothesis #2: Division and migration parameters should be set to their most optimistic values

Even if the affinity factor remains st to its default vaue of 10, we can still match experimenta
data by changing other parameters. In Table IV we show evidence for four potential updates to
the default parameter settings: an increased centroblast divison and migration rate, an increased
centrocyte migration rate and an increased capacity for the FDC network. To determine the
impact of these changes, we ran anumber of smulations that included al of the updates
concurrently. The results (see Figure 3) show that these settings lead to a very good fit with the

experimental data.

RESULTSWITH THE DISCRETE/STOCHASTIC SIMULATION

Using a discrete/stochastic smulation to study distributions

So far, we have been using a differentid equation smulation, which models the average
ensembl e behavior of splenic germind centers. However, recent experiments examining the
accumulaion of high-affinity mutationswithin individual germina centers at day 14 have
produced surprising results (21, 22). The mogt gtriking feature of the datais that the entire high-
affinity population within each germind center, if any, is descended from a single high-afinity
mutant. Following the terminology of Radmacher et al. (6), we cal theinitid high-affinity

mutant which gives rise to the observed lineage afounder. In addition, there is some evidence
(summarizedin Table V) for the all-or-none phenomenon that seems to be a characterigtic of the

NP response (6). That is, while many germina centers produce no B cdls with high-afinity
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mutations, those that do are dominated by such cells by day 14. It isimportant to know if the OP

model reproduces these observations.

We can test the model againgt these observations by using the discrete/stochastic implementation
of the OP modd. Unlike the differential equation smulation, which follows populations and uses
the law of large number to suppress any deviations from the average behavior, the new
amulation follows single B cdls and takes into account the variation between individua

germina centers. This variaion arises from timing differences among individud B cdlsin the
occurrence of divison, migration, apoptos's, etc. Another advantage of this discrete
implementation isthat it naturaly handles dl finite-ze effects such as those recognized by (23)
and corrected by the artificid threshold term g, in the differentid equation smulation. This
threshold term prevents the growth of clones with a concentration of less than one B cell per

germind center.

For each hypotheses of the previous section, we performed 500 runs of the new smulaionin
order to Smulate gpproximately a spleens worth of germina centers. We define F(d) asthe
fraction of B cdlstha arein the high-affinity class (class 1) on day d for aparticular amulation

run x that represents asingle germina center.

Testing Hypothesis #1: The effective affinity factor is greater than ten.

Figure 4 shows the results of smulations with an affinity factor of 220. In contragt to the

experimenta data, the high-affinity population within each germind center camot be traced
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back to asngle founder. Instead, an average of 6 cells per germina center independently
accumulae high-affinity mutations and produce progeny that persist to day 14. An additiona 8
high-affinity lineages do not survive thislong. Isit possble that multiple high-affinity lineeges
have not been observed in the experiments smply because of the small number of samples
collected? Basad on the experimental data, we have calculated that the observed high-afinity
clone condtitutes at least 96% of the high-affinity population (p < 0.01). In contrast, the
smulation predicts that the founder with the greatest number of progeny will represent only
dightly more than hdf of the high-affinity population at day 14. It isdso easy to see that the
simulation fails to reproduce the expected all-or-none phenomenon which would exhibit itsdf as

abimodd didribution in Figure 4.

Testing Hypothesis #2: Division and migration parameters should be set to their most optimistic

values

We aso used the discrete/stochastic smulation with the updated parameter set corresponding to
higher divison and migration rates and alarger germina center Sze (but the default affinity
factor) introduced in the previous section. Figure 5 presents the results of these smulations
which are quditatively smilar to those found for hypothesis #1. On average, the high-finity
population at day 14 conssts of the progeny of 18 founders out of 72 total high-affinity lineages.
Furthermore, the founder with the greatest number of progeny represents only 27% of the high-
affinity population. It is also easy to see that the Smulation fails to reproduce the expected all-

or-none phenomenon.
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In both cases, the production of multiple founders and the failure to reproduce the all-or-none
phenomenon stems from the fact that high-affinity clones are generated too early and too
frequently (see Figure 6). Why don't we observe these clones experimentaly? Radmacher et al.
(6) suggest a possible reason. They have proposed that selection is a stochastic processes that
"overlooks' many potentid high-affinity founders. It isimportant to note that the Smulations we
have presented here dready include many stochadtic effects both in the initid generation and
subsequent selection of high-affinity cdls. However, the smulations show that their impact is
ggnificant only later in the response (Figure 6) by which point severd high-affinity dones have
dready reached alarge enough sze that surviva isvirtualy assured. Thus, additiond stochastic

mechanisms may have to be added in order to support the "overlooking” hypothess.

Radmacher et al. (6), in fact, propose two mechanisms to make selection stochastic which are
different from those aready included in the OP modd: cognate T/B cell interaction and
preferentia emigration of high-affinity cells. We can therefore add these to the model in order to
seeif they support the "overlooking" hypothesis. This can be accomplished by decreasing the
probability of recycling which approximates the effect of these processes on germina center
dynamics. Indeed, we find that such mechanisms are able to lower the number of high-affinity
founder cellsto one (Figure 7). However, the efficiency of affinity maturation is dragticaly
reduced in this case. This highlights an important ingght. Affinity maturation in the OP model
results only from the affinity-dependent selection of centrocytes since dl centroblasts grow at the
same rate regardless of ther affinity. Thus, an expanded high-affinity clone must have survived a
consderable number of sdlection events. Y et, the observation of a single high-afinity founder

means that other high-affinity clones, created at nearly the same time, must have alow enough
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probability of surviving selection that they are not observed. Thus, in the OP model, a stochastic
selection mechanism cannot be responsible for limiting the number of high-affinity founder cdls
without reducing the efficiency of affinity maturation. For example, a high probability of

selection leads to increased affinity maturation based on frequent recycling of high-affinity cdls
but also dlows alarge number of founder cellsto survive. In contrast, alow probability of
sdection dradtically reduces both the number of founder cdlls and the efficiency of affinity

meaturation since few high-affinity survive to undergo additiond proliferation.

To summarize the results of the discrete/stochastic Smulations, neither of the two hypotheses
that were able to explain the average ensemble dynamics of splenic germina centers during the
primary response to phOx was able to reproduce the experimental observations of individua
germind centers. Extending the modd to include the suggestions of Radmacher et al did not help
gther, and they in fact highlighted an important aspect of the OP modd that makes sngle-
founder based affinity maturation unlikely to be observed without significant extensonsto the

modd (i.e., more than just changing parameter vaues).

Avenuesfor additional validation experiments

In this section we list some additional predictions made by the OP mode that can be tested

experimentaly. Understanding whether these predictions hold in red experiments will give us

further, more specific ingghts into the validity of the mode and hence the processes behind

afinity maturation:
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Although no connection has yet been observed, the modd predicts a postive correlation

between the leved of affinity maturation and germind center Sze. Thisrdationship is dearly

seenin Figure 5 and, as best we can tell, takes the general form: size =c™™ wherecisa
congtant that depends on the particular modd parameters under consderation. This
correlation arises because effective divison and surviva reates are proportiond to acels

afinity in the OP modd.

The mode predictsthat aB cdl will quickly sense when it has accumulated alethdl

mutation. Although no mechanism for detecting lethal mutations and hence triggering
gpoptosis prior to slg expression is currently known, the OP model assumes that centroblasts
with letha mutationsimmediatdy begin gpoptoss. If we instead assume that these mutations
are only detected concurrently with the attempted expression of dg (i.e.,, on differentiation to
acentrocyte), we find that germind centers are dominated by cells containing letha

mutations (data not shown).

The OP modd is highly senditive to changesin the gpoptosisrate. For example, while Figure
1 has the same generd shape when the smulation is run with the gpoptoss rate set to zero
(data not shown), the overdl leved of affinity maturation is dragticaly reduced even when
competition is the main force driving affinity maturation (i.e, & higher values of ko). Thisis
in seeming conflict with the experimenta observation that interference with the gpoptotic

pathway through condtitutive expression of bcl-2 does not affect affinity maturation (24).
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As discussed above, there are two main selection pressures that can drive affinity maturation
in the OP mode. This suggests two modes of affinity maturation (at least with respect to on-
rates) depending on which selection pressureis operationd. For apoptosis driven sdection,
affinity maturation will proceed quickly, but will aso rapidly terminate as significantly

higher onrates cannot be selected for. In contrast, competition driven sdection, athough
dower, can proceed as long as the necessary Sgnds are available (eg., Agand T help).
These two modes may provide an explanation for repertoire shift. The smulation data dso
clearly shows the exisience of germline affinities for which affinity meturation will not

OcCcur.

DISCUSSION

Recently, Oprea and Perelson proposed a modd of germina center dynamics and affinity
maturation during a'typica’ immune response (4). Thismode is noteworthy in that it explicitly
describes the mechanism by which cells are selected for high-&ffinity binding to antigen.

However, the mode has never been gpplied to any specific experimenta system and the extent to
which it reflects biologica redity, and solves the puzzle of afinity maturation, remains unclear.

In order to better understand the modd and its inherent assumptions, we have attempted to
provide quantitative validation by comparing its dynamics with data from the primary response

to the hapten 2-phenyl-5-oxazolone.

The origind differentid equationbased implementation of the OP model describes the average

behavior of an ensemble of germina centers. Under biologicaly redistic assumptions and
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changing parameter vaues appropriady, this Smulation can be made consstent with
experimenta data messuring the accumulation of high-affinity mutations among olenic

germind center B cdlls. However, the limitations inherent in models based on differentid
equations means that this correspondence ignores potentialy important experimenta results. For
example, in order to compare the dynamics with the actua distribution of data collected from
individua germina centers, it was necessary to developed a discrete/stochastic implementation
of the OP modédl. In contrast to the findings based on the origind differentiad equationbased
amulation, the results using this implementation showed that the OP modd failsin two

important ways. Fird, it cannot explain the observation of asingle founder cel for the high-
affinity population. Second, it does not reproduce the all-or-none phenomenon whereby

germind centers tend to either contain no high-affinity cdls or are dominated by them.

The falure of the OP modd stems from the fact that high-affinity founders are generated too
early and too frequently. Although some of these high-affinity lineages are lost due to the
randomness inherent in the selection process, too many il survive. Furthermore, it is not
aufficient to Smply extend the mode by including additiona stochastic componentsin the
sdection of high-affinity cells smilar to those suggested by Radmeacher et al. (6) for the NP
response. In particular, decreasing the probability of salection reduces the number of founder
cdlsonly at the expense of affinity maturation. Thisrdationship is, in fact, inherent in the OP
modd. As a possible solution, we propose further extending the OP modd so that the
mechaniams leading to the identification and initid sdection of high-afinity cdls are different
from those leading to clona dominance. For example, while the initid selection of ahigh-

affinity cdl may be dependent on binding to antigen and recaiving T cell help, clond dominance
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may result from ahigher divison rate of this slected cell. Indeed, it has been estimated that the

rate of take-over occurs at the same time-scale as cdll divison (6).

It is possible that our comparison with experimental datais confounded by the fact that by
looking only & affinity the model may underestimate the number of cellsthat carry high-afinity
mutations. This could happen, for example, if a cdl gets a high-affinity mutation early and then
subsequently accumulates one or more affinity-decreasing mutations a other pogitions. While
such a cdl would be included in the high-affinity population in experimentd data, the smulation
does not count such a cell as high-dfinity. For this and a number of other reasons, we favor an
approach where the smulation follows nucleotide sequences instead of affinities. As pointed out
by Kepler and Perelson (2), thisis not possible with standard differentia equationbased
smulations because of the large number of possible genotypes that must be followed. However,
this problem can be overcome by using discrete smulations (which we have examined in this
paper). In support of the current results, preliminary Smulations using a sequence-based afinity
mode in place of the affinity-class framework produce vaues that are only about 10% higher

than predicted here and with asimilar distribution (data not shown).

In conclusion, our attempt to vaidate the OP modd by comparing its dynamics with data from
the primary response to phOx suggests that the Oprea and Perelson modd in its current
formulation is a best incomplete. However, we have proposed an extension to the mode that
should go along way towards reconciling the modd with experimenta data. In addition, we
have outlined a number of predictions of the OP model that can be tested experimentally. Other

extengons to the OP model, or new modds, that are capable of explaining the data on individua
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germind centers could also be investigated. Findly, athough the dynamics of other hapten
responses, such as NP, issimilar to that of phOx, it would be useful to apply the modd to these

systems directly.
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Footnotes

! Supported in part by the National Science Foundation.

" Department of Computer Science, Princeton University, Princeton, NJ 08544

T Address correspondence and reprint requests to Steven Kleinstein, 35 Olden Street, Princeton,
NJ 08544. E-mail address. stevenk@cs.princeton.edu

2 Abbreviations usad in this pgper: CDR, complementarity determining region; FDC, follicular
dendritic cdll; GC, germinal center; OP, Oprea and Perelson; phOx, 2- phenyl-5-oxazolone; dlg,
surface immunoglobulin

3 A note on terminology: When we say "the mode" or “the OP model,” we are referring to the
conceptual mode proposed by Oprea and Perelson. Thismode is defined by the set of
differentid equationsin (4). Where necessary, we will refer to specific implementations of the
moded by saying "the differentid equation smulation” or "the discrete/stochastic smulation”.

* Adtudly, the minimum affinity dassin the smulation is—3. The smal number of cellsthat
would populate the lower afinity classes do not effect the smulation dynamics.

> Note that this equation does not include centroblasts or centrocytes that have accumulated

lethd mutations, members of Lg or L respectively.
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Figure Legends

Figure 1: The effect of kon and koff on R2, the fitness measure between Smulaionand experiment.

Results are shown for the differential equation simulation with default parameter values. The constrained

best-fit parameter settings are indicated by the arrow (kon, = 0.01 and kq¢ = 100).

Figure 2: The effect of changing the affinity factor on R2, the fithess measure between simulation and
experiment. For each value of the affinity factor, the best-fit with the experimental data was found by
allowing kon and ko to vary with the constraint: ko £ 100. The thick dark portion of the line indicates
settings that fit the experimental data according to a 90% confidence interval. The arrow marks the

parameter values that we choose to exemplify hypothesis #1 (A = 220, kon = 0.002 and ky¢s = 100).

Figure 3: The effect of changing the cell division and migration rates. Compares F(d), the average fraction
of B cells that carry high-affinity mutations as predicted by the differential equation simulation, with the
experimental estimate A(d) for the default (light line) and updated (dark line) parameter settings
(described in Table IV). The error bars on the experimental measurements indicate the 90% confidence
interval based on the limited number of samples collected. The best-fit with the experimental data was

found by allowing kon and Kyt to vary with the constraint: kot £ 100. In both cases kg, = 0.01 and Ky = 100.

Figure 4: Testing hypothesis #1 with the discrete/stochastic simulation. The simulation was run 500 times
to simulate approximately a spleens worth of germinal centers. The parameters, corresponding to
hypothesis #1, included an increased affinity factor of 220 with ko, = 0.002 and ky¢; = 100. These
simulations predict a value of F(14) = 39 £ 16%. The graph shows the distribution (bars) and cumulative

distribution (solid line) of F«(14) over individual germinal centers.

Figure 5: Testing hypothesis #2 with the discrete/stochastic simulation. The simulation was run 500 times
to simulate approximately a spleens worth of germinal centers. The parameters, corresponding to

hypothesis #2, included faster centroblast division (pcy, = 4) and migration (mg = 4), faster migration of
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rescued centrocytes (mg = 3.4) and increased FDC network capacity (M = 104) with kon = 0.01 and Kq¢t =
100. These simulations predict a value of F(14) = 48 + 10%. (A) The distribution (bars) and cumulative
distribution (solid line) of F«(14) over individual germinal centers. (B) The relationship between F,(14) and

germinal center size at day 14.

Figure 6: The production and maintenance of high-affinity clones. Shows the cumulative number of
distinct high-affinity clones produced (solid line) and the number of founder cells (i.e., those whose
progeny are still present in the population) (dashed line) for hypothesis #2. The data represents an

average of 500 simulation runs.
Figure 7: The effect of decreasing the probability of selection. Shows the number of high-affinity founder

cells at day 14 (solid line) and R?, the fitness measure between simulation and experiment (dotted line),

for hypothesis #1. The data represents an average of 500 simulation runs.
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Table I: The variables of the Oprea and Perelson model of the germinal center as defined in (4).

Vaidble  Description

S Free FDC sites

B B cdl blasts

Bi Centroblagts in affinity-classi

Ci Centrocytes in effinity-classi

Xi Centrocyte-FDC complexes where the centrocyte is in affinity-class
R Rescued centrocytes in affinity-classi

M; Memory B cdlsin afinity-classi

Ls Centroblasts with lethal mutations

Lc Centrocytes with lethal mutations
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Table II: Default parameter values. (A) The parameters of the affinity-class framework along with their

default values calculated to model the immune response to phOx. Original values, taken directly from (4),

are shown for comparison. (B) The rest of the model parameters with default values as specified in (4)

A.

Parameter Description Original Value phOx Value

n Expressed mutation rate per genome per division 0.1 0.26

P, Fraction of expressed mutations that are lethal 0.5 0.87

L (|) Relative probability of generating a lower vs. higher L (O) =50 L (0) =327
affinity mutant starting from affinity-class i

A Factor difference in on-rate between neighboring 5 10
affinity-classes

B.

Parameter Description Default Value

Bo(0) Number of B blasts that seed the GC 3 B cells
Day when GC is seeded 3

So Initial number of FDC sites 300

1/ds Average lifetime of FDC sites 30 days™

Pg Maximum proliferation rate of B blasts 3 days'1

Kq Maximum rate that B blasts convert to centroblasts 6 day'1

Pcp Centroblast proliferation rate 25 day'l

M Capacity of the FDC network 1500 B cells

Mg Saturation constant for centroblast migration 500 B cells

dr Death rate of rescued centrocytes 0.03 day'l

dwm Death rate of memory cells 0.03 day'l
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ds

Pr

Death rate of centroblasts

Apoptosis rate

Probability of recycling

Proportion of cells that exit GC that become memory cells
Migration of centroblasts, maximal rate

Migration of centroblasts, baseline rate

Rescued centrocyte migration rate

on-rate for germline B cell / FDC binding

off-rate for germline B cell / FDC dissociation

Probability of a bound centrocyte being rescued

0.3day™
4 day'1
0.7

0.1

25 day'1
0.3 day™

2.5 day™

0.8
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Table lll: The fraction of splenic germinal center B cells carrying high-affinity mutations at day 14 as
summarized from (13). V-Ox1 sequences were amplified by using PCR on the PNA™ subset of splenic B
cells. A(d) measures the fraction of PCR products that carry one of the high-affinity mutation at codon 34

at day d. Apin(d) and Anax(d) are the lower and upper bounds of the 90% confidence interval respectively.

Sequences  A(d)  Amin(d) Amax(d)

Analyzed
Day 10 18 6% 0.3% 24%
Day 12 11 27% 8% 56%
Day 14 26 54% 36% 71%
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Table IV: Updates to the default parameter settings proposed by hypothesis #2. These changes are

based on the most optimistic values proposed in the literature.

Quote Reference Default Updated
"The present report provides evidence pointing to centroblasts (25 Pcb=2.5 pcp=4.0
having a remarkably short cell cycle time of 6 to 7 hours." mg = 2.5 mg = 4.0
"...the centrocyte population is renewed from centroblasts every (26)* mr = 2.5 mg = 3.4
7h."

"...we estimate that [the germinal centers] contain »1 x 10* B (27) M=1500 M=10"
cells each.”

" used rats (not mice) in a carrier primed response (i.e., T help is non-limiting)

used germinal centers from human lymph nodes



Table V: The fraction of cells carrying high-affinity mutations at day 14 within individual germinal centers
as summarized from (21) and (22). Ten germinal centers (not shown) produced no high-affinity cells.
Individual germinal centers were dissected from frozen spleen sections and Vy-Ox1 sequences were
amplified by PCR. A,(14) measures the fraction of PCR products that carry one of the high-affinity

mutations at codon 34 at day 14.

GC  #Sequences A (14)

Q 61 3%
7A 21 29%
N 30 67%
E 20 85%
-1 11 100%
-2 73 100%

"Three different V,-Ox1 rearrangements were found in this germinal center
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Figure 1: The effect of kon and kot on RZ, the fitness measure between simulation and

experimen.
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Figure 2: The effect of changing the affinity factor on R, the fitness measurre between smulation

and experiment.
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Figure 3: The effect of changing the cdll divison and migration rates.

0.8

0.7 71 *© Experiment

0.6 T Simulation (Default)

0.5 + —Simulation (Hypothesis #2)

F(d) 04 7

03 y

0.2 /

0.1

0 LA S e S e . R E T T T T
012 3 45 6 7 8 9 1011 12 13 14 1516
Days post-immunization

48



Figure 4: Tegting hypothesis #1 with the discrete/stochastic smulation.
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Figure 5: Testing hypothesis #2 with the discrete/stochagtic smulation.
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Figure 6: The production and maintenance of high-affinity clones.
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Figure 7: The effect of decreasing the probability of sdlection.
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