Practical LFU Implementation for Web Caching

G. Karakostas* D.N. Serpanos
Dept. of Computer Science Dept. of Computer Science
Princeton University University of Crete
35 Olden St. P.O. Box 1470
Princeton, NJ 08544 GR-71110 Heraklion, Crete
USA Greece

June 19, 2000

Abstract

Web caches can achieve high hit rates through exploitation of the properties of object access
distribution, which is governed by Zipf’s law, in general. Web caches need to store the most
popular objects and typically employ the Least Frequently Used (LFU) replacement policy, which
achieves high cache hit rates, and often the highest hit rate. Correct implementation of LFU
requires that replacement decisions are made based on frequency access information (popularity),
for all the objects accessed since the beginning of a cache’s operation. The immensely large
number of such objects renders the implementation of LFU impractical in many environments.

In this paper, we introduce an alternative implementation of LFU, the Window-LFU policy,
which makes replacement decisions based on access frequency measurements in a recent past,
called time-window. Window-LFU achieves cache hit rates equivalent to those of LFU, but with
access information from a shorter history, leading to high performance at a low cost (significantly
lower than that of LFU). We provide analytical results which enable one to estimate the appro-
priate window size, in order to achieve the target cache hit rate of LFU. Furthermore, we present
simulation results using actual traces, which indicate that the proposed Window-LFU policy
behaves as expected and in some configurations it leads to better results than theoretically ex-

pected, due to dependencies between successive Web objects requests in real environments. Our

*Research supported by NSF CAREER award NSF CCR-9502747, an Alfred Sloan Fellowship, and a Packard
Fellowship.

theoretical and simulation results demonstrate that Window-LEFU provides an efficient solution

for effective Web caches at a low cost, due to its shorter history measurements.

1 Introduction

The World Wide Web constitutes a significant technological advance, but importantly, it provides
the means for the development and deployment of a wide range of services to end-users. The number
of Web users (clients) is increasing dramatically, with exponential growth, at a rate which is larger
than the deployment of bandwidth either in the backbone or to the end-user. This leads to significant
congestion in the network, leading to long access delays, absence of Quality-of-Service (QoS), and
low penetration of services to the electronic customer base. Caching of Web objects provides a
promising solution to the problem of long access delay. Its potential and improved performance has
led to the development and deployment of systems, which implement caching mechanisms [1] [3].
Effective and efficient caching requires careful analysis of the access patterns of Web objects, so
that caches can store the objects that are most likely to be accessed in the near future. Analyses
of traffic (user access patterns) on the Web show that accesses follow a non-uniform distribution.
Specifically, they are governed by Zipf’s law, following a Zipf or Zipf-like distribution [4] [2]. Ac-
cording to this law, the probability of requesting a particular object (page) is inversely proportional

to its popularity. Specifically, considering a set of objects accessed by a set of clients, Zipf’s law

15

Figure 1: Zipf’s function

enables us to calculate the number of accesses to each object based on its popularity. Assuming a set

S ={0;|]1 <i < N and O; is the i-th most popular object} of N objects, Zipf’s function quantifies

the probability that an access is made to object O;: P; = % where a is a constant (it is easily

1
Hp>

for N = 10%, where 2 < i < 5.

calculated that a = where Hp is the N-th harmonic number). Figure 1 plots the probabilities

This property of Web traffic enables us to develop Web caches which can achieve arbitrarily high
cache hit rates, by storing the most popular objects and employing the LFU (Least Frequently
Used) cache replacement policy, as has been shown analytically [7] and verified with simulations [2].
However, such caches suffer from two drawbacks: (a) the successful implementation of LEU (Perfect-
LFU) requires the accumulation of access information from the beginning of a cache’s operation,
and () the size of the cache has to be large in order to achieve a high hit rate [7] [2].

In this paper we solve the problem of implementing efficiently the LFU policy for Web caching.
Instead of examining all past requests in order to determine the popularity of each object, we take
into account only the latest few requests to determine the ordering of the objects according to their
popularity. Specifically, we introduce the concept of a time window, W, a time interval of the recent
past, and implement an LFU policy, called Window-LFU, which replaces objects based on access
measurements only in the window W. We prove analytically that the time window size can be
chosen as a function of the cache size, independently of the number of available objects on the Web,
and still achieve the same cache hit rate as Perfect-LFU, under certain assumptions. Considering
that the number of objects on which we need to keep statistics cannot be larger than the window
size, it becomes clear that a small window size leads to a small number of objects on which statistics
are collected. In this fashion, we overcome the most significant obstacle to the implementation of
LFU policies: the impractically large amount of resources necessary for the calculation and storage
of statistics on accessed objects.

Furthermore, we show that our analytical result applies to realistic traffic through simulation
based on actual traces. Actually, our simulation results indicate that, for some configurations our
caching mechanism achieves in practice better results than expected from the analysis. This counter-
intuitive result is due to our assumption (the same assumption has been made by others [2]), that the
requests for objects are independent. Our experiments show that, in reality, there are dependencies,
due to locality phenomena, and Window-LFU takes advantage of them to achieve higher cache hit
rates than those expected theoretically, with even smaller window sizes than those predicted by our
analysis. This leads to an efficient caching scheme with a low cost, since all information used is

based only on the recent history of requests.

SERVER

Client

WEB

CACHE

Client

SERVER

Client

Figure 2: A simple caching environment

The paper is organized as follows. Section 2 describes the model we use and introduces our
notation. Section 3 presents our analysis and its results, while Section 4 presents the simulation and

its results.

2 Model and Notation

We analyze a simple environment, as the one shown in Figure 2. In this environment, an enterprise
network (or LAN) is connected to the Internet through a gateway, which also serves as a cache (for
example, in a typical environment, the gateway could be a firewall). Users (clients) connect to
Web servers through the gateway. So, user requests arrive to the gateway-cache and they are either
forwarded to the Internet, or served through the cache, if the data are already cache-resident.

We assume that the set of all available objects, denoted O = {01,0a,..., Oy, has size | O |=
N. Also, we assume that client requests follow Zipf’s distribution. Specifically, we assume that
the stream of client requests, R, is a series of independent trials drawn from a Zipf (or Zipf-like)
distribution over the set of N possible objects (e.g., web pages or sites). This means that the next

request in R will be for the i-th most popular of the N items with probability

where

1 1
n N

o
=

Hpy is the N-th harmonic number, which we approximate with In N. Furthermore, we assume that
the system is closed, i.e., that N, the total number of objects, and their nature do not change (no
objects “die” and no new ones are “born”). This assumption is realistic for time intervals of the
order of weeks or months, when we observe no dramatic changes in the population of requested
objects.

In any caching scheme, a cache stores the items that have been accessed in some recent past,
which we refer to as time window W (or simply window). We denote as | W | the length of the

window, measured in number of requests. The window W always contains the last | W | requests,

which are denoted as Wi, Wa, ..., Wyy; for example, in Figure 2, window W contains requests
(Wi, Wa, ..., Wiw)) = (Rk, ..., Rr_pwi+1)- The existent analytical results have been drawn for
the case | W |=| R |, where R contains all requests received by the cache since the beginning of its

operation [7].

Considering the definition of W, as the | W | most recent requests in R, we define nyy (i) as the
number of appearances of the i-th most popular object, object O;, in W; the definition of the i-th
most popular object is based on the number of requests in R. The expected value of ny (i) is easily

calculated:

We denote this value as E(i).

3 Estimation of Window Size

The goal of our analysis is to estimate the length of W, so that, if the cache measures access frequen-
cies using the information in the last | W | accesses, then the achieved cache hit rate approximates

the one achieved with Perfect-LFU. We formalize this, through the following definition:

Definition 1 (Good estimator) Let C be the number of objects that are kept in the cache. Then
the window W will be a good estimator of the C' most popular objects in R, if two conditions are

met:
o the number of appearances of the C' most popular objects is greater than E(C + 1);

e the number of appearances of the remaining N — C objects is smaller than E(C + 1), i.e. the

remaining objects do not interfere with the ordering of the C most popular ones.

The definition indicates that, while we ensure a separation between the C most popular objects and
the (N —C) less frequent, the conditions of the definition are too weak to ensure the correct ordering
of the objects according to their access frequencies in the complete history (for a stronger condition,
the reader is referred to [6]). However, the critical observation is that for the implementation of
Perfect-LFU, it is sufficient to have the C' most popular objects in the cache, without a need for
knowledge of the specific order of their frequencies (popularities) in the window. The weakness of
the conditions in the definition are the key of the improvements we achieve.

If both of the conditions are met, then we designate the window as good. In this case, our replace-
ment algorithm, Window-LFU, will provide exactly the same performance (hit rate) as Perfect-LFU.
So, the goal of our analysis is to choose W in such a way, so that it will ensure the “goodness” of
the window with very high probability. Then our hit-rate will be very close to the one achieved with
Perfect-LFU.

In the analysis, we use the following Chernoff bounds:

Lemma 1 (Chernoff bounds) Let X, Xs,..., X, be mutually independent random variables such

that

for some p € [0, 1].
Let X = X1+ Xo+ ...+ X,, and E[X]| =pn. Then

2
PriX > (1+0)pn| < e~ TP
PriX —pn< —a] < e0%/2m
PriX —pn >] < e 2%

Pr[X —pn > 4] < ¥~ 0pn)In(i+9/pn)
where 0 < 0 <1, >0, B> 2pn/3 and v > 0.

We use these bounds, because they describe quantitatively the following simple fact: a series of
independent trials is concentrated very heavily around its expected value. We use this fact to prove
that, one does not need many trials, i.e. past requests, in order to get a very good estimate of the

expected value, i.e. the frequency.

3.1 Theoretical upper bounds for window size

Assume that, the N objects are ordered according to their popularity in R (O; is the most popular,
O3 the second most popular, etc.). We define the following sequence of random variables for each
O;:
wii) 1, if Wj (the j-th request in W) is for O; i—la W
0, otherwise
Then, by hypothesis, the w;(i)’s are mutually independent, ny (i) = Zl-vﬂ w;(i) and Prw;(i) =
1] =~ zhﬁ from Zipf’s distribution.
We distinguish the following cases:
Case 1: 1 <i< (C+1)
From inequality (2) with a = E(i) — E(C + 1) we obtain:
Wi (C+1-1) W

Prin,(i) < BE(C +1)] = Pr[n,(i) — E(i) < —(E(i) — E(C +1))] <e 2(C+)?N < e wmn (5)

Case 2: C+1<i<2(C+1)

From inequality (1) with 6 = ’_06:1 we obtain:
_G—c-1? |w| _ 1id
Pring(i) > BE(C +1)] < e 3C+DZ iMN < o 3C(C+DZ N (6)

Case 3: 2(C+1) <i<3(C+1)
From inequality (3) with 8= E(C + 1) — E(i) we obtain:

W] W]

Pring (i) > E(C +1)] < e‘mziﬂ < e WICHIWN (7)

Case 4: 3(C+1)<i<N
From inequality (4) with v = E(C' + 1) — E(i) we obtain:

Pring(i) > B(C +1)] < ECHD-EO-EC+D gty 1 - .

The probability that a window is not a good estimator is evaluated as:

Prlthe window is not a good estimator] = Pr[Case 1 holds V...V Case 4 holds, for some 1

(W W] 2| W|
"

_ W]
< Ce™TWT 4+ Ce T@THN 4 (C +2)e WHCHTN 4 (N — 3(C + 1))e TN (9)

If we choose |W| = max{O(C®InCIln N),O(C'1n? N)}, then we can force the probability in Equa-

tion (9) to be smaller than any constant € > 0.

If we denote with Hyy_,py(C, W) and Hp_1py(C) the cache hit rates for the Window-LEFU
and Perfect-LFU cases, respectively (with the window size |W|, as specified above), the following

relations hold:

C
1
Hp 1pu(C) =) (10)
i=1
Hyw_Fpu(C,W) = Prnext requested item 7 is in the cache] (11)

v
Mo

Pr{r =1i|W is good estimator] x Pr[W is good estimator] (12)

i=1

€
= ; N X (1 — Pr[W is not a good estimator]) (13)
©) S
> (1- 14
= (-9 ; iln N (14)
= (1 -¢HppylC) (15)

where € > 0 is the accuracy constant we have chosen.

3.2 The importance of the theoretical results

From the analysis, it becomes clear that the required window size depends only on the logarithm
of the total number of objects N that can be accessed. Thus, we succeed to reduce exponentially
the effect of parameter N on our cache replacement policy, which is an advantage because N is
not a parameter of the cache system itself, and we cannot control it. control. As the number of
objects for which one keeps statistics cannot be larger than the window size, a smaller time window
results in a smaller set of such objects. Unfortunately, Case 2 shows a dependency on the cache size
C', which is impractical for big enough caches. However, the result is very strong (approximation
of Perfect-LFU performance within any constant factor), which means that, in practice, smaller
window sizes should perform quite well, e.g., [W| = O(C'In N) or O(C?In N). This is supported by

the results of simulations with traces of real traffic, as described below.

4 Simulation Results

We have performed several simulations of a cache employing the Window-LFU policy using traces
from actual traffic patterns. Specifically, we have used two traces from NLANR [5]. The first of the

traces is short, it includes the object requests of one day, while the second one is longer, including

the requests of a week. The traces are continuously updated; the ones we used are from the last
week of January 2000.

Our simulator simulates a cache that uses Window-LFU replacement policy for variable window
sizes W. When a replacement of an object is due, the object with the smallest frequency is replaced.
If more than one objects in the cache have the same (smallest) frequency, then we replace the one
which was used least recently; i.e., we use an LRU (Least Recently Used) rule in order to “break

ties” among the least popular window objects.

0.5 T T T T T
C=100 <-—
C=1000 -+~
0.45 C=10000 -&--
C= 25000 -
C=50000 -4~
04 C=100000 -*-- 4
C=600000 -<--
0.35 B
7777777 e R
s 03} Kook * g
I RS
F: A,,_,.A—/»—”"’A><_ii - - -
T 0.25 % x 4
2 X ' %
S FEN
] 0.2 w2 " I Beoeee e R T Eeoeennnnneeeeee g
0.15 |*o B
e
777777777777777 - ; - |
> M -
0.05 B
0 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000

Window Size (in Requests)

Figure 3: Cache hit rate for variable window sizes (short trace)

Figure 3 shows the results of the simulations, using the short trace with a total of 375,000 objects
and 600, 000 requests. The plot shows the cache hit rate of a cache with Window-LFU as a function
of the size of window W, and for various cache sizes C' (measured in objects). As the results
indicate, for all cache sizes, the effect of the window size is insignificant after a “threshold” value.
This verifies our first result that, a small window size is sufficient to achieve the highest possible
cache hit rate (per cache size). Interestingly, with small cache sizes and small window lengths, it
appears that the cache hit rate improves. This seemingly surprising result can be explained easily:
the source is the dependency among successive requests. In our analyses, we have assumed that

the object requests Ri, R, ..., are independent. However, in real traces there is a dependency

among them, which actually leads to higher locality, and thus improves the hit rate. As the length

Number of cache hits

Number of Requests ? decreases, because the

of the window increases, the cache hit rate, which is h =
“longer” history (due to the longer window size) tends to influence the replacement decision using
popularities from a distant past, which do not apply to the recent past (due to the dependency of
requests). In simpler terms, this means that, if an object was accessed heavily in the distant past,
but is not accessed any more, Perfect-LFU will not replace this object from the cache, unless a new
object is accessed at least as many times as the previous one; in the (possibly very long) meantime,
the object will reside in the cache, although it is not accessed at all. So, with the longer window
size, it takes longer for the cache to store the more recently accessed objects, which are more likely
to be accessed in the near future due to the aforementioned locality. On the other hand, a small
window will not allow accesses made in the distant past to be counted against the calculation of
object frequencies. Thus, considering locality, the cache will store objects more likely to be accessed

in the future.

0.7 T T T T T T T
C=100 <—
C=1000 -+--
C=10000 -&--
o6 L C=25000 -~ |
C=50000 -&-
C=100000 -* -
C=500000 -©--
C= 1000000 -+---
05 | o m e eneeee o ETTEIIIIImeEIsmuimemsicgs
e Tk *
® * e T e _
© 04 aacm =TT B T
le: T - X X
T a--8--
© =) [P
e e EREECEEEEEERR g
54 03 | 7]
© "
P
e
e
: &\\\; 7777777777777777777777777 - -
0.1 4
0 1 1 1 1 1 1 1
0 200000 400000 600000 800000 1le+06 1.2e+06 1.4e+06 1.6e+06

Window Size (in Requests)

Figure 4: Cache hit rate for variable window sizes (long trace)

Figure 4 shows the results of the simulations, using the long trace with a total of 751,000 objects
and 1.5 million requests. As the results show, the behavior of the cache is similar to the one with the

shorter trace, but with increased cache hit rates; this is due to the higher average number of accesses

per object in this trace. As in the previous results, the size of the window plays has insignificant
effect on the cache hit rate over a “threshold” value and the locality of accesses leads to higher hit
rates for small caches and small window sizes, similarly to the short trace. Importantly though, the
effect of the dependency among requests is more dramatic in this trace, leading to the significantly
higher hit rates observed for small caches and window sizes.

Overall, the simulation results verify the analytical results of Section 3. Importantly, the simu-
lations indicate that Window-LFU performs better than expected from the analytical results. This
phenomenon is due to that, the assumption of request independence made for the analysis does not
hold; there are dependencies in a real trace of requests, which actually render the Window-LFU

more effective than analysis indicates.

5 Conclusions

We introduced Window-LFU, a novel, LFU-based replacement policy for effective and efficient Web
caches. Window-LFU makes replacement decisions based on access frequency measurements of
objects in a recent past, called time-window, in contrast to Perfect-LFU, which measures object
access frequencies for all objects and from the beginning of the cache’s operation.

Window-LFU achieves cache hit rates equivalent to those of LFU, but with access information
from a shorter history, leading to high performance at a low cost (significantly lower than that of
LFU). We have provided analytical results which enable one to estimate the appropriate window
size, in order to achieve the target cache hit rate of Perfect-LFU. Furthermore, we presented sim-
ulation results using actual traces, which indicate that the proposed Window-LFU policy behaves
as expected. Importantly, in some configurations Window-LFU leads to better results than theo-
retically expected, due to locality phenomena, i.e. dependencies between successive Web objects
requests in real environments. Our results demonstrate that Window-LFU provides an efficient,

practical solution for effective Web caches at a low cost, due to its shorter history measurements.

References

[1] Akamai Technologies, Inc. http://www.akamai.com.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and Zipf-like Distributions:

Evidence and Implications. In Proceedings of Infocom’99, 1999.

[3]

[4]

CacheFlow, Inc. http://www.cacheflow.com.

C.R. Cunha, A. Bestavros, and M.E. Crovella. Characteristics of WWW Client-based Traces.
Technical Report BU-CS-95-010, Computer Science Department, Boston University, July 1995.

National Laboratory for Applied Network Research. http://www.nlanr.net (traces at:

ftp://ircache.nlanr.net/traces/.

D.N. Serpanos, G. Karakostas, and W.H. Wolf. Effective Caching of Web Objects Using Zipf’s
Law. In Proceedings of IEEE International Conference on Multimedia and Expo (ICME 2000),
page (To appear), July, 30 - August, 2 2000.

D.N. Serpanos and W.H. Wolf. Caching Web Objects Using Zipf’s Law. In Proceedings of
SPIE, Vol. 8527, Photonics East, Technical Conference 8527: Multimedia Storage and Archiving
Systems 111, Boston, MA, USA, November 2-4, 1998, pp. (not available yet).

See “http://www.spie.org/web/meetings/programs/pe98/confs/3527.html, 1998.

