
Query Affinity in Internet Applications

Minwen Ji, Edward W. Felten, Jaswinder Pal Singh and Mao Chen

Abstract

We investigate how to improve the price-performance
of Internet application servers by caching their dynamic
content in a cluster of cache servers. In particular, we
study distribution strategies that automatically and dy-
namically partition and replicate data across individual
cache servers and directs queries to the right servers, in
order to maximize effective cache capacity and minimize
synchronization cost. Despite the conflicts in partition-
ing dynamic content, we observe natural query affinity
in a wide range of Internet applications, which could be
exploited in distribution strategies. We have designed an
affinity-based distribution (ABD) strategy for a cluster
of cache servers. We evaluate the distribution strategy
with a set of trace-based simulations. The results show
that ABD reduces cache miss ratio by a factor of 1.7
to 9 over alternative strategies. The results also indi-
cate that application servers, especially those that up-
date their back-end databases, have a higher demand for
good distribution strategies than static web servers.

1 Introduction

We shall start the discussion in this paper by considering
how to improve the price-performance of Internet appli-
cation servers, i.e. how to achieve high quality of service
with minimal committed resources. In today’s Internet
data centers or server farms [6], the ability to guarantee
the same service level agreement (SLA) with fewer server
machines allows savings in power consumption, environ-
mental control (e.g. cooling), administration effort, rack
space as well as equipment cost.
Application servers are typically persistent processes

that sit between web servers and databases and per-
form so-called “business logics”. Many popular Inter-
net sites, especially e-businesses [5], web portals [9] and
search engines [7], provide value-added services as well
as information to their clients in the form of dynamic
content. Application servers generate dynamic content
on demand by accessing and perhaps updating back-end
databases and communicating with web servers using
protocols such as Common Gateway Interface (CGI). In
contrast, static content, such as HTML pages and im-
ages, is pre-existing in file systems and is loaded directly

by web servers.
We investigate improving the price-performance of ap-

plication servers by decoupling the request processing in
application servers from the heavyweight query process-
ing in databases. Traditional databases were not specif-
ically designed for Internet workloads; their complexity
and overhead are often depressing for Internet applica-
tions.
We consider interposing a cache server between ap-

plication servers and back-end, on-disk databases. The
cache server caches frequently accessed data from the
on-disk databases and is optimized in buffer manage-
ment, retrieval and indexing specifically for memory-
resident data. Although caching and buffer manage-
ment inside database systems have also been extensively
studied [12] [2], traditional databases are optimized for
disk I/O or client/server communications rather than
for memory-resident operations. The cache server of-
fers the same, standard interfaces as traditional, on-disk
databases, such as indexed search, concurrency control
and consistency guarantee; therefore, the use of the cache
server is made transparent to application servers.
However, it is not unusual that the size of an on-disk

database, e.g. tens of gigabytes to terabytes, exceed the
physical memory capacity of a single commodity ma-
chine, e.g. hundreds of megabytes to a few gigabytes.
A single cache server might limit the scalability of appli-
cation servers due to thrashing or CPU saturation. In-
tuitively, a scalable caching system might be composed
of a cluster of cache servers, each of which runs on a
commodity computer and contributes to the aggregate
memory capacity and processing power of the cluster as
a whole.
We expect that a well-designed data/query distribu-

tion strategy for such a cluster of cache servers is neces-
sary in order to achieve the projected price-performance
advantage. The task of distribution is to partition and
replicate data across individual cache servers and to di-
rect queries to the right servers, while maintaining the
consistency across servers at a low cost. The goal of this
task is to maximize effective cache capacity and minimize
synchronization cost. Such a task in the database com-
munity has often been performed manually and statically
by database administrators. While the existing approach
worked for on-disk databases, an automatic and dynamic
approach is necessary for a cluster of cache servers be-

1



cause of the volatile nature of main memory and the
rapid changes in contents and access patterns on the In-
ternet.

Dynamic content can be accessed through multiple ap-
plications or by multiple attributes, and a single query
can access multiple data items. These require the data
to be partitioned across cache servers in different, of-
ten conflicting, ways. The partitioning conflicts result
in data sharing across individual cache servers. If the
data is read only, sharing causes data duplication or
transmission across cache servers. If the data is writ-
ten, e.g. when a browsing request implicitly causes an
update to a customer preference database, one needs to
pay synchronization cost for the data sharing. There-
fore, data sharing needs to be reduced for both read-
only data and write-shared data in order to improve the
price-performance of a cluster of cache servers.

In the rest of the paper, we investigate scalable and
cost- effective distribution strategies for a cluster of cache
servers. First, we will show that a good partitioning of
dynamic content does exist in certain applications de-
spite the conflicts [Section 4]. Then we design a dis-
tribution strategy that takes advantage of this fact and
compare it with alternative strategies that handle the
conflicts to different degrees [Section 6]. Related work
is cited in Section 7. Finally, we draw conclusions in
Section 8.

2 Cluster-based Internet infras-

tructures

The discussion in the rest of this paper is based on the
following assumptions about cluster-based Internet in-
frastructures. A number of processing nodes run web
servers and application servers, and each web server or
application server is capable of processing any HTTP
or application-specific requests. The application servers
store all their persistent data in a shared, on-disk
database, which we call the master database. Redun-
dancy may be applied inside the master database for
high reliability and scalability. A cluster of cache servers
is transparently situated between the application servers
and the master database, caching partial or all data from
the master database. Data accessed by a query will be
loaded from the master database into a cache server be-
fore the query is executed in that server. Data will stay in
the cache server until it is evicted by a cache replacement
policy or invalidated by a synchronization protocol. The
cache servers may or may not be physically co-located
with the application servers. See Figure 1.

3 Challenges of dynamic content

illustrated

As discussed in the previous section, the challenges in
the distribution strategies are mainly raised by the con-
flicts across queries for dynamic content, which result in
data sharing across nodes in the cluster. It can be best
explained by examples.
In the first example, we consider an online bookstore

like Amazon.com, where books can be queried by sub-
ject, by author or by ISBN. In an ideal case, the books
are cached in a minimal number of cache servers, i.e.
no data is stored redundantly; each query can be exe-
cuted in one of the individual cache servers without data
transmission from any others. Unfortunately, queries by
different attributes require the books to be partitioned
in different, possibly conflicting ways. For instance, if
the books are assigned to individual cache servers by a
random hash function on their ISBNs, none of the indi-
vidual cache servers could guarantee to contain the com-
plete results of any query by author or subject. Even
if the books are partitioned in the ideal way, it is still
hard to direct the queries to the right cache servers for
execution without knowing the query results first.
In the second example, we consider two queries to a

general search engine like Google, one containing the key-
word ”herbs” and the other ”vitamins”, and a highly
ranked article on ”healthy food”. The search engine will
typically return this article to both queries. Similarly to
the first example, it is hard to direct the two queries to
the cache server that caches this article. In fact, it is
even hard to predict that the two queries should be ex-
ecuted in the same cache server without executing them
first.

4 Observation on query affinity

Despite the variety of the contents and services that the
Internet provides, we observe query affinity in a wide
range of applications, including e-commerce, search en-
gines, maps, directories, news, and digital libraries. By
query affinity we mean the fact that there exists a way
of dividing queries into groups where queries in the same
group access the same or overlapped data sets (we call
them affined queries) while queries in different groups
access separate data sets. In addition, query affinity is a
natural result of the content structures or access patterns
of the applications, rather than a result of the physical
data storage.
We hereby introduce two important sources of query

affinity:

• Containment: data accessed by certain queries
tends to contain data accessed by certain other

2



Figure 1: cluster-based Internet infrastructures.

queries. In the previous bookstore example, the
books written by an author, e.g. Brian W.
Kernighan, often belong to a few particular sub-
jects, e.g. computer programming, because most
authors have expertise knowledge in a limited num-
ber of subjects. In another example, such as
MapQuest, the map of California contains the map
of Palo Alto because California geographically con-
tains Palo Alto. The containment relationship is
transitive; therefore, there might exist chains of
queries in an application where queries in the front
contain queries in the back. In this case, data sets
accessed by different containment chains are sepa-
rate from each other.

• Ranging: in range searches, data items “close” to
each other in a domain-specific sense are often ac-
cessed together in the same query while data items
“far” apart are rarely accessed together. Examples
include searches for restaurants by distance to a
given location, searches for articles by a range of
publishing dates, and searches for people by similar
names.

Table 1 summarizes instances of query affinity in some
popular Internet services.

5 Exploiting query affinity

The presence of query affinity indicates that a good dis-
tribution strategy could be found for a cluster of cache
servers. If affined queries are directed to the same cache
server, data sharing across servers can potentially be re-
duced. Queries on different servers are likely non-affined
queries, and hence will access separate data sets by def-
inition.
In order to direct a query to the same server as its

affined queries as it comes in, we need the following in-
puts:

1. To which queries in the past this query is affined.

2. To which servers the affined queries have been di-
rected in the past.

Based on the facts that affined queries access the same
or overlapped data and that data accessed by recent
queries is kept in the cache servers where the queries
were executed, the two required inputs can be reduced
to the following respectively:

1. What data the query will likely access.

2. In which servers some or all of the data is currently
cached.

3



Services Containment Ranging
Book stores Subject ⊃ author

⊃ ISBN
Books with close
publishing dates

Auctions Category ⊃ seller
⊃ item

Items with similar
prices or locations

Maps Country ⊃ state
⊃ city ⊃ zip code

Geographically
close places

News Category ⊃ sub
category ⊃ article

Articles of related
topics

Yellow
Pages

Category ⊃ brand
name ⊃ retailer

Geographically
close businesses

White
Pages

State ⊃ city ⊃
phone

People with simi-
lar names

Digital Li-
braries

Subject ⊃ journal Papers in related
areas

Search En-
gines

General key-
word ⊃ specific
keyword

Documents with
similar keywords

Table 1: query affinity. The “containment” col-
umn shows the containment chains in the databases.
The “ranging” column shows the “close” items in the
databases.

By selecting the server that currently has in its cache
the most data for the query, we can effectively distribute
query and data across servers with reduced sharing.
This strategy benefits only those applications that ex-

hibit query affinity, and the quantitative reduction in
data sharing is a function of the dimensions of query
affinity, which we define as the average number of sep-
arate groups a query is affined to. The ideal number of
dimensions is 1. Larger dimensions result in more parti-
tioning conflicts and hence less reduction in data sharing.
In range searches, the conflicts exist in the situations
where a data item is “close” to more than one separate
set of data items. In the containment case, the conflicts
may arise if the containment relation is not strict, i.e.
the data accessed by a query spreads across the data sets
of more than one containing queries. For example, the
books written by Isaac Asimov belong in many different
subjects.
Based on the observation above, we have designed an

affinity-based distribution (ABD) system for a cluster of
cache servers. The basic method in ABD is to divide
the execution of each query into two stages and to use
the result from the (local) first-stage execution to de-
termine the (remote) destination of the second-stage ex-
ecution. The first stage is computation-intensive; the
function and data needed for the first-stage execution
are replicated on each machine that hosts application
servers. The second stage is data-intensive; data ac-
cessed during the second-stage execution is partitioned

across cache servers. The first stage determines the set of
data that the query will likely access, which is then used
to determine the destination of the query in its second
stage. The second stage completes the query execution
and generates results. The intention of the two-stage
execution is to determine the destination of each query
with the knowledge of the data to be accessed.
The implementation of ABD is system-dependent, i.e.

it varies for different types of master databases, such as
relational databases, object-oriented databases, or file
systems. The implementation details are outside the
scope of this paper.

6 Simulations

In this section, we present the evaluation of ABD in com-
parison to alternative distribution strategies that handle
the conflicts to different degrees. With a set of simu-
lations, we study the impact of the following factors on
the performance of various distribution strategies: appli-
cations, access patterns, human assistance, dimensions
of affinity, memory sizes and cooperative caching. This
study is analogous to the study on request distribution
strategies for a cluster of web servers [11].

6.1 Setup

We use a modified version of the cluster simulator previ-
ously used for distribution strategies for a cluster of web
server [11]. The original simulator models the schedul-
ing of CPU queues, disk queues and incoming request
queues as well as activities on the main memory cache
in the server machines. It assumes that the entire data
set is replicated on the local disks of all server machines
and a subset of data is cached in the main memory cache
of server machines where it is frequently accessed. A
request is processed in the following steps: connection
setup, disk reads (if needed), target data transmission,
and connection teardown. Parameters such as memory
size, CPU speed, disk speed, network speed and caching
protocol are configurable. A detailed description of the
original simulator can be found in [11].
The major modifications we make to the original sim-

ulator in order for the simulator to work for application
servers and databases rather than web servers and file
systems are following. For write-shared data, we model
a multi-reader-single-writer locking protocol for cache
consistency. Each lock-related operation is charged for
a round-trip network latency. In addition to the steps
of connection setup and teardown for each query, each
accessed data item in the query is processed in the fol-
lowing steps: lock acquisition (if needed), disk reads (if
needed), data processing or transmission, and writes (if
needed). For written data, we assume an asynchronous

4



cache write-through policy; that is, we charge the CPU
overhead for sending data to disk, but not disk write
time. Therefore, written data is immediately visible to
successive reads. In fact, we do not charge the delay
caused by synchronization in any lock-related operations.
These assumptions are conservative with regard to the
benefits of ABD because they lower the performance
penalty of the events that ABD is designed to reduce,
i.e. shared writes.
Table 2 shows the parameter settings common in all

simulations reported in this paper.

Parameters Values
Connection setup and teardown
time per HTTP request

750

Initialization overhead per re-
quest to an application server

1 ms

Data processing or transmission
time per 512 bytes

85

Disk transfer time per 512 bytes 50
Average disk seek time 10 ms
CPU overhead per 512 bytes ac-
cessed on disk

4

Memory page size 1 KB
Replication of hot data allowed Yes
Cache replacement policy LRU

Table 2: Common parameter setting. Data is cached at
row page granularity, whichever is larger.

We compare the following five distribution strategies
in each experiment:

1. Weighted round-robin distribution (WRRD):
Queries are distributed to cache servers in a round-
robin fashion, weighted by the servers’ loads. This
is analogous to a front-end, connection-based distri-
bution strategy for a cluster of web servers [4].

2. Query-based distribution (QBD): Identical
queries are directed to the same server, but distinct
queries that return the same or overlapped data will
not necessarily be directed to the same server. In
practice, this strategy cannot make a good decision
for queries that consist operations unrelated to se-
lection conditions, such as an ”ordered by” opera-
tion. However, such operations are not present in
the simulations, which benefits this strategy. This
strategy is analogous to a content-based distribution
strategy for a cluster of web servers [11].

3. Human-assisted QBD or enhanced QBD
(EQBD): Domain-specific information is added to
QBD by application programmers or system admin-
istrators. The additional information helps QBD

select the most relevant attributes in queries for de-
cision making. Therefore, queries on the same data
by the same selected attributes will be directed to
the same server. However, queries on the same data
by different selected attributes will not necessarily
be directed to the same server.

4. Affinity-based distribution (ABD): Queries on
the same or overlapped data, i.e. affined queries,
will be directed to the same server regardless of the
attributes or operations in the queries.

5. An ideal case (Ideal): This is a multi-processor
machine with hardware shared memory of the same
capacity as its cluster counterpart. No data repli-
cation or transmission is needed since all processors
have access to all data in memory. This is viewed
as an ideal case for comparison purpose.

We choose two example applications for case studies,
white pages [8] and auctions [5]. These two examples
exhibit the two sources of query affinity We observe, i.e.
ranging and containment, respectively.
All five distribution strategies achieve comparable and

good load balance in the simulations, which confirm the
previous results [11], and hence load balance is not dis-
cussed in detail below.

6.2 Case study 1: White pages

We extract the traces on a university white page service
[8] from the access logs of the university web server in
the year 1999, which include 809194 queries by names
and 181719 queries by phone numbers, email addresses
and/or departments. 23442 distinct names were queried
in total. Since the results of the experiments depend
on the actual data accessed by the queries as well as
the queries themselves, and since the actual data is not
contained in the access logs, we resend the queries on
the distinct names to the web server that generated the
traces, and store the returned data from the web server
for use in the simulations. For queries that contain mul-
tiple names, We use the intersection of the results for
each name as the results for the query, which is what We
observe the original CGI program does. To avoid resend-
ing an excessively large number of requests to the web
server, we exclude the queries by phone numbers, email
addresses and/or departments. Due to the small size of
the university, only 19534 valid, distinct people’s data is
accessed in total. Since We am interested in studying
a large data set that does not fit in the memory of a
single node, we augment the actual data set by a fac-
tor of 8. Assuming each person’s data takes 1024 bytes,
the augmented data set is less than 153 MB. We set the

5



0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16

T
h
r
o
u
g
h
p
u
t
 
(
R
e
q
s
/
s
)

Nodes

"ABD"
"EQBD"

"Ideal"
"QBD"

"WRRD"

Figure 2: throughput of the white page traces

memory size of individual nodes to 16 MB to 32 MB in
our experiments.
We run the five simulated distribution strategies with

the white page traces. QBD and EQBD direct each
query to a node based on the whole query and the first
queried name, respectively. Figure 2 shows the through-
put of the five distribution strategies on 1 through 16
nodes with 24 MB memory per node. Figure 3 shows
the cache miss ratio, which explains the differences in
throughput. (All ratios shown in this paper are the ab-
solute number of events, e.g. cache misses, divided by the
total number of data accesses in the simulation.) The re-
sults of WRRDmatch those for static content in a cluster
of web servers: the cache miss ratio does not decrease as
the cluster size increases, because the most accessed data
tends to be replicated in all nodes. In QBD and EQBD,
queries on the same names are directed to the same node;
therefore, QBD and EQBD achieve locality to a certain
degree, reduce cache miss ratio and improve throughput
by a factor of 5 over WRRD with 16 nodes. QBD per-
forms slightly better than EQBD because EQBD, using
a single name in each query for distribution, experiences
a small degree of load imbalance. ABD reduces cache
miss ratio and improves throughput by a factor of 2 over
QBD and EQBD and 9 over WRRD.
We also run the simulations with 16 MB and 32 MB

memory per node, respectively. The results show that,
as the memory to data ratio increases, the performance
difference among the different distribution strategies de-
creases, which matches the results observed for static
content in a cluster of web servers [11].
To summarize, read-only dynamic content behave

largely in the same way as static content in a cluster
of web servers under various distribution strategies ex-
cept for the fact that there tends to be more data sharing
for dynamic content; ABD reduces data sharing and im-

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16

C
a
c
h
e
 
M
i
s
s
 
R
a
t
i
o
 
(
%
)

Nodes

"ABD"
"EQBD"

"Ideal"
"QBD"

"WRRD"

Figure 3: cache miss ratio (the number of cache misses
divided by total accesses) of the white page traces

proves throughput and scalability by directing queries on
similar names, i.e. affined queries, to the same node.

6.3 Case study 2: Auctions

We downloaded the bid history of the first 50 completed
items in 3212 categories from the well-known auction
site eBay [5]. We extracted the following events with
time stamps and relevant parameters from the bid his-
tories: 117623 SellItem events (with the seller, category
and item parameters), 231521 BidItem events (with the
bidder and item parameters) and 117623 CompleteItem
events (with the item parameter).
Since these events are only a subset of the actual

events at eBay and represent only write accesses to
the database, we synthetically add other events to the
traces based on expected user behaviors. For each
SellItem(seller, category, item) event, we generate a
configurable number of BrowseCategor(category) events
within half an hour before, ViewItemsBySeller(seller)
events within half an hour after, ViewItem (item) events
within half an hour after, and ReviseItem(item) events
within two days after. For each BidItem(bidder, item)
event, we generate a configurable number of ViewItems-
ByCategory(item.category) events within half an hour
before, ViewItem(item) events within 15 minutes before,
ViewBidsByItem(item) events within 5 minutes before
and after, and ViewBidsByBidder(bidder) events within
5 minutes after. To each generated event, we assign a
time stamp that is randomly chosen within the given
time range. We sort all generated events together with
the original events in ascending order of time stamps and
use them as the input to the simulator.
In the traces used in the simulations, there are

698288 ViewItemsByCategory events, 698288 ViewItem

6



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16

T
h
r
o
u
g
h
p
u
t
 
(
R
e
q
s
/
s
)

Nodes

"ABD"
"EQBD"

"Ideal"
"QBD"

"WRRD"

Figure 4: throughput of the auction traces

events, 117624 CompleteItem events, 231521 BidItem
events, 115769 ViewBidsByBidder events, 463042 View-
BidsByItem events, 117623 SellItem events, 58729
ViewItemsBySeller events, and 11917 ReviseItem events.
There are 2512801 events in total and 81% of them are
reads.
The data set includes 117623 items in 3212 categories,

offered by 42536 distinct sellers, and 231521 bids, made
by 167752 distinct bidders. We assume that the size
of each item is 4 KB and the size each of bid is 128
bytes. For simplicity, data items smaller than a page
are padded to a page in cache (1 KB in the simulations).
The memory footprint of all items and bids is roughly 686
MB. The memory space needed for the replicated keys,
e.g. item ids and bidders, is roughly 21 MB per node.
We choose 64 MB as the memory size per node so that
the entire data set can fit in the memory in the best case
in the simulations, i.e. a machine with 16 processors, 1
GB hardware shared memory and no replication.
We expect that the actual memory and data sizes at

eBay are much larger than the sizes in the simulations,
but the relative data to memory ratio in the simula-
tions is reasonably realistic. It is reported that there
are roughly 4 million items on sale at eBay everyday,
meaning that it will take 16 GB to cache the items.
Figure 4 shows the throughput of the five distribution

strategies on 1 through 16 nodes. Like in the white page
case, the throughput is determined by the cache miss
ratio, shown in Figure 5. Unlike the white page case,
which has a read-only access pattern, the cache misses
are caused both by memory pressure and by synchroniza-
tion in this case. Figure 6 shows the cache eviction ratio
as a measure of the memory pressure. Figure 7 shows
the cache invalidation ratio as a measure of synchroniza-
tion cost. The cache eviction ratio decreases as the clus-
ter size increases except in WRRD, because the effective

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

C
a
c
h
e
 
M
i
s
s
 
R
a
t
i
o
 
(
%
)

Nodes

"ABD"
"EQBD"

"Ideal"
"QBD"

"WRRD"

Figure 5: cache miss ratio (the number of cache misses
divided by total accesses) of the auction traces

cache size increases with the cluster size in the other four
cases. The cache invalidation ratio slightly increases with
the cluster size in all but the ideal case because the num-
ber of nodes that write-share data increases. As a result,
the overall cache miss ratio decreases at a slower speed
than the cache eviction ratio except in the ideal case.
ABD, EQBD and QBD achieve 90%, 67% and 38% of
the ideal throughput with 16 nodes, respectively.

The throughput curves also suggest that, in order
to achieve the same throughputs as WRRD, QBD and
EQBD with 16 nodes, ABD requires only 4, 10 and 12
nodes, respectively.

It is known for static or read-only dynamic content
that increasing memory size reduces the difference in dis-
tribution strategies (Section 5.6.2). We rerun the auction
simulations with the memory size increased to 128 MB
per node. The results show that there are no longer cache
evictions in ABD, EQBD and QBD with 16 nodes, but
the increased memory size does not help reduce cache
invalidations. From 12 to 16 nodes, the cache eviction
ratio is reduced from 5%, 10% and 17% to 0% while the
overall throughput is improved by only 1%, 5% and 2%
for ABD, EQBD and QBD, respectively.

To summarize, ABD improves the throughput and
scalability of write-shared dynamic content because it
reduces synchronization cost as well as memory pressure
for write-shared data. The difference across distribu-
tion strategies for write-shared data is not as sensitive
to memory size as that for static or read-only data be-
cause synchronization cost does not decrease as memory
size increases.

7



0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

C
a
c
h
e
 
E
v
i
c
t
i
o
n
 
R
a
t
i
o
 
(
%
)

Nodes

"ABD"
"EQBD"

"Ideal"
"QBD"

"WRRD"

Figure 6: cache eviction ratio (the number of old data
items evicted from cache to make room for new items,
divided by total accesses) of the auction traces

6.4 Dimensions of query affinity

The statistics on the white page traces show that on
average each person’s record is accessed by 6.8 distinct
queries in EQBD and by 2.4 distinct queries in ABD.
As a result, ABD reduces the average number of replicas
per record from 6.8 to 2.4. The number 2.4 is in fact the
dimensions of query affinity in this application. It results
from the fact that each person has 2 to 3 names, i.e. the
first name, the last name and probably the middle name,
and queries with any of the names will access the person’s
record.
In the auction application, there also exists dimensions

of query affinity that are larger than 1. For example, the
items offered by the same seller could fall into more than
one category. We examine the cache miss ratio for three
queries, ViewItem, ViewItemsBySeller and ViewBidsBy-
Bidder, separately in ABD to study the impact of the
multi-dimensional affinity on cache miss ratio. Table 3
shows the average and maximum numbers of containing
queries and the cache miss ratio of the three queries with
16 nodes. The numbers of containing queries shown in
the table are statistical results from the traces. The table
shows that larger numbers of containing queries result in
higher cache miss ratio.

6.5 Cooperative caching

We study the impact of cooperative caching [3] [1] in
both the white page case and the auction case. With
”pull-based” cooperative caching, data can be trans-
ferred from a server’s cache to another rather than be
loaded from disks. The lock manager in the consistency
protocol provides the locations of cached data for cooper-

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

C
a
c
h
e
 
I
n
v
a
l
i
d
a
t
i
o
n
 
R
a
t
i
o
 
(
%
)

Nodes

"ABD"
"EQBD"

"Ideal"
"QBD"

"WRRD"

Figure 7: cache invalidation ratio (the number of data
items removed from cache because the node no longer
holds the read or write lock, divided by total accesses)
of the auction traces

Queries Containing
Queries (CQs)

Ave.
Num.
CQs

Max.
Num.
CQs

Cache
Miss
Ratio

ViewItem ViewItems By-
Category

1 1 11.10%

ViewItems
BySeller

ViewItems By-
Category

2.77 197 35.60%

ViewBids
ByBidder

ViewBids
ByItem

1.38 32 21.90%

Table 3: Impact of dimensions of query affinity on cache
miss ratio. The third and fourth columns from the left
show the average and maximun numbers of containing
queries per query, respectively.

ative caching. In the simulator, each cache-to-cache data
transfer is charged 0.5 ms network latency and 6 MB/s
network transfer time. Without cooperative caching,
each cache miss is charged 10 ms disk seek time and
9.8 MB/s disk transfer time.
Figure 8 and Figure 9 show the throughput of the

white page traces and auction traces with cooperative
caching, respectively. In the white page traces, the
throughputs of QBD, EQBD and ABD are all signif-
icantly improved. In the auction traces, ABD is not
improved much because it is already close to the ideal
case without cooperative caching. Cooperative caching
improves performance for two reasons: it replaces disk
accesses with network accesses, and it helps make bet-
ter cache replacement decisions due to the availability of
global reference information. However, it is complemen-
tary to ABD in that it does not reduce data replication
or write sharing. In other words, it does not reduce the

8



0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16

T
h
r
o
u
g
h
p
u
t
 
(
R
e
q
s
/
s
)

Nodes

"ABD"
"EQBD"

"Ideal"
"QBD"

"WRRD"

Figure 8: throughput of the white page traces with co-
operative caching

number of costly events, but lowers their cost.
QBD benefits the most from cooperative caching and

achieves 86% and 78% of the throughput of ABD with 16
nodes in the white page and auction cases, respectively.
However, the results are based on conservative assump-
tions about the cost of cooperative caching and on the
use of simplified queries in requests. In the simulator,
we assume infinite network capacity, no synchronization
delay and no bottleneck at the centralized lock manager
for cooperative caching.
We have also studied another cooperative caching pro-

tocol, in which each data item is cached and accessed
in a fixed node. It makes efficient use of cache space
and avoids synchronization across nodes for write-shared
data. However, it outperforms pull-based cooperative
caching only under high memory pressure, e.g. with 1 to
4 nodes in the simulations, and suffers from lower local
cache hit ratio than pull-based protocol as memory size
increases.
Cooperative caching improves QBD and EQBD rela-

tive to ABD. However, in reality, the closing in the gap
would likely be much smaller. Besides, many systems
do not incorporate cooperative caching, while ABD is a
general and easy-to-deploy strategy whether or not co-
operative caching is present.

7 Related work

An alternative to caching raw data is to cache query
results in web or proxy servers. Result caching has
shown to reduce CPU cost and disk access involved
in generating pages that do not change frequently and
do not cause updates to the underlying database [10].
Application-specific annotation is usually needed for

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16

T
h
r
o
u
g
h
p
u
t
 
(
R
e
q
s
/
s
)

Nodes

"ABD"
"EQBD"

"Ideal"
"QBD"

"WRRD"

Figure 9: throughput of the auction traces with cooper-
ative caching

managing cached results due to the diversity in contents
and operations [13]. Result caching has the following
limitations: 1) Certain queries modify data and hence
cannot be cached. 2) Certain applications need to be
rewritten to explicitly keep cached results up to date.
3) There are often overlaps across different query results
and cache space can be wasted on duplicate information.
Content-based request distribution strategies [11] [14]

have been developed to effectively improve the perfor-
mance and scalability of a cluster of web servers with
static content. In the HACC project [15], there is an
extension to content-based distribution for dynamic re-
quests in Lotus Domino. It makes decision based on re-
quested objects and actions in Lotus Domino, but does
not address distribution of dynamic content in general.
ABD extends the existing work by postponing the deci-
sion on query distribution till after the queries are pro-
cessed and by exploiting natural affinity in a wide range
of Internet applications.
Our main contributions are identifying the causes for

data sharing in dynamic content servers, observing query
affinity in a wide range of Internet applications, and re-
ducing the sharing by exploiting query affinity.

8 Conclusion

We have studied data/query distribution strategies in
cluster-based Internet application servers. We proposed
a distribution strategy that exploits natural query affin-
ity in content structures and access patterns of many
popular Internet services. Such affinity is independent
of the physical storage of data.
With trace-based simulations, we compare ABD to

weighted round-robin distribution, basic query-based

9



distribution, enhanced query-based distribution and an
ideal case. The results show that ABD reduces cache
miss ratio by a factor of 1.7 to 9 over alternative strate-
gies, and that ABD outperforms alternative strategies by
a factor of 1.3 to 9 and achieves up to 90comparison in-
dicates that ABD requires only 1

4 to 3
4 of the resources in

order to achieve the same throughput as the alternative
strategies. The results also indicate that applications
with dynamic content, especially write-shared content,
have a higher demand for good distribution strategies
than applications with static content, due to the ten-
dency for more data sharing and the synchronization
cost that cannot be reduced by simply increasing mem-
ory size.

References

[1] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and
D. A. Patterson. Cooperative caching: Using re-
mote client memory to improve file system perfor-
mance. In Proceedings of the USENIX Conference
on Operating Systems Design and Implementation,
November 1994.

[2] W. Effelsberg and T. Haerder. Principles of
database buffer management. ACM Transactions
on Database Systems, Vol. 9 No.4, December 1984.

[3] M. J. Franklin, M. J. Carey, and M. Livny. Global
memory management in client-server dbms architec-
tures. In Proceedings of the 18th VLDB Conference,
August 1992.

[4] http://www.cisco.com. Cisco systems localdirector.

[5] http://www.ebay.com.

[6] http://www.exodus.com.

[7] http://www.google.com.

[8] http://www.princeton.edu/Siteware/puphf.shtml.
University campus directory.

[9] http://www.yahoo.com.

[10] A. Iyengar and J. Challenger. Improving web server
performance by caching dynamic data. In Proceed-
ings of the 1st USENIX Symposium on Internet
Technologies and Systems, December 1997.

[11] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Dr-
uschel, W. Zwaenepoel, and E. Nahum. Locality-
aware request distribution in cluster-based network
servers. In Proceedings of the 8th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, October 1998.

[12] O. Shmueli and A. Itai. Maintenance of views. ACM
SIGMOD Record, Vol. 14 No. 2, 1984.

[13] B. Smith, A. Acharya, T. Yang, and H. Zhu. Ex-
ploiting result equivalence in caching dynamic web
content. In Proceedings of the 2nd USENIX Sym-
posium on Internet Technologies and Systems, Oc-
tober 1999.

[14] C. Yang and M. Luo. Efficient support for content-
based routing in web server clusters. In Proceedings
of the 2nd USENIX Symposium on Internet Tech-
nologies and Systems, October 1999.

[15] X. Zhang, M. Barientos, J. B. Chen, and M. Seltzer.
Hacc: An architecture for cluster-based web servers.
In Proceedings of the 3rd USENIX Windows NT
Symposium, July 1999.

10


