
A Low-Cost Consistency Protocol for Replicated Directory Data in

Cluster-Based Storage Systems

Minwen Ji
Princeton University
mji@cs.princeton.edu

Abstract

We discuss a low-cost consistency protocol for replicated
metadata in cluster-based storage systems. Our goal in
maintaining the consistency is to minimize the efforts for
porting applications from single systems to the cluster-
based environment. The access patterns to the repli-
cated metadata in recent cluster-based storage systems
offer a new opportunity for strong consistency without
sacrificing performance in common cases. We design and
implement a protocol for the atomicity, serialization and
recovery of operations in the face of arbitrary sequences
of failures. The correctness of the protocol is checked
with randomized failure injections into a prototype im-
plementation. We measure the impact of the consistency
protocol on the performance and scalability of an exam-
ple cluster-based file system. The measurement of micro
benchmarks shows that the protocol adds little overhead
to common operations; while the measurement of trace-
based operation mixes shows a speedup of 15.7 in a clus-
ter of 16 nodes.

1 Introduction

In many cluster-based storage system, e.g. file systems
[26] [1] [17], memory/cache systems [7] [8] and virtual
disks [20], a small amount of metadata is replicated
across nodes in the cluster for fast local lookups. The ac-
cess pattern to the replicated metadata in those systems
can be characterized as “read mostly, write critically”.
For example, the manager map in xFS [1], which maps
each file’s index number to the file’s manager, who man-
ages cache consistency and disk location of the file, is
globally replicated. The manager map will be looked up
upon the opening of each file, while it will change only
to correct a load imbalance or when a machine enters or
leaves the system. When it does change, however, it is
critical that the change is made in an atomic, serializable
and recoverable way, because the integrity of metadata
is critical for the system to function correctly and to
recover successfully from possible failures, and because

corrupted metadata affects not only individual files or
clients but also the entire system.
In this paper, we focus on two recent systems, an

island-based file system [17] and an affinity-based man-
agement system for clustered in-memory databases [8].
The replicated metadata in these two systems shares
the same “read-mostly, write-cirtically” access pattern as
that in other cluster-based storage systems. However, in
these two systems, the replicated metadata includes not
only system internal metadata but also directory data,
which is created by clients to organize or locate other
data, such as directories in file systems and search keys
in databases.
To motivate the design of a consistency protocol for

the replciated direcotry data, we give the following two
examples of possible hazards in a distributed file system
where directories are replicated across servers and clients
are allowed to access any replicas:

1. An empty directory a is replicated in cluster servers
1 and 2; client B deletes directory a in server 1 and
server 1 propagates the deletion request to server 2;
simultaneously, client C creates a sub directory d in
a in server 2 and server 2 propagates the creation
request to server 1; the deletion is aborted in server
2 because a is not empty and the creation is aborted
in server 1 because a no longer exists; in a consistent
system, only one, not both, of the operations would
abort.

2. A directory a with a file b is replicated in servers 1
and 2; client C, the owner of a, changes a’s permis-
sion from 700 to 755 (world-readable) in server 1 and
server 1 propagates the change to server 2; client D
successfully reads file b in server 1 but, shortly after,
it gets a ”permission denied” error when it tries to
list the content of directory a in server 2. In a con-
sistent system, client D is expected to have access
to directory a as well after it successfully reads file
b.

The hazards occur because the file system operations
are not serialized, or clients observe the results of the op-

1



erations in conflicting orders; the consequence is that the
system no longer behaves in the same way as its single-
system counterparts and start generating confusing or
incorrect answers to clients’ requests. Furthermore, the
chance for such hazards is highly magnified when fail-
ures, such as server crashes and network partitions, are
present.
Our goal in maintaining the consistency of the repli-

cated directory data is to minimize the efforts for porting
applications from single, tightly-coupled and/or small-
scale systems to large cluster-based environments. In
particular, we want to eliminate as many hazards as pos-
sible that a cluster environment might introduce. Mean-
while, we do not want the consistency protocol to have
an intolerable impact on the performance and scalability
otherwise achievable in these two systems.
Both the island-based design and affinity-based man-

agement offer an opportunity for strong consistency
without sacrificing performance in common cases. Since
they strive to reduce data sharing across nodes and
the replicated directory data exibits “read-mostly, write-
critically” pattern, the cost for maintaining consistency
of shared data can potentially be reduced as well. There-
fore, it is possible to achieve strong consistency for the
small set of shared data while maintaining the overall
performance and scalability of the system.
We discuss in this paper how to design a low-cost pro-

tocol for the synchronization of operations on replicated
directory data in the face of node failures and network
partitions.

2 Related work

File system replication and consistency issues have been
studied in a wide variety of contexts. Consistency guar-
antees vary largely from system to system due to the dif-
ferences in their system structures and replication mod-
els.
Wide-area distributed file systems such as Ficus [24],

Coda [25] and Locus [28] employ optimistic one-copy
availability, in which any data may be updated as long
as some copy, including the client cache, is available.
Strong semantics such as serialization of operations on
replicated data are traded for availability and perfor-
mance in those systems. The systems choose to guaran-
tee ”eventually” consistent data instead, i.e. they allow
temporary inconsistency and try to detect it, which must
then be resolved by applications or users. (The excep-
tion is that Ficus can automatically reconcile conflicting
updates to its directories.)
Harp [21] and Echo [14] use primary-copy scheme with

logging for replication, where clients can access only the
primary copy. Harp is able to guarantee the atomicity

and serialization of updates with write-behind logging.
Since it handles updates to data and metadata in the
same way, it relies on in-memory logging and uninter-
ruptible power supply (UPS) to reduce the overhead of
the consistency protocol. In a recent distributed file sys-
tem [27], the overhead is reduced by distributing load
across servers and amortizing the costs of individual op-
erations with file sessions.
In recent cluster file systems like Frangipani [26] and

xFS [1], data redundancy is provided in the virtual block
device layer, not in the file system layer. Locking scheme
is used in the block device layer for consistency of data
replicas. Since updates to data and metadata are han-
dled in the same way in the block device layer, those
systems typically use fast system area network such as
ATM for aggressive communications across data replicas
[20].
The replication model generalized from we systems is

similar to the models in typical replicated databases [4]
[3]. However, our consistency requirement differs, pri-
marily because we do not require transactional seman-
tics for file accesses or persistence for in-memory data.
Therefore, we believe that a light-weight protocol can be
designed for the model in our systems.
The Cluster-Based Scalable Network Services (SNS)

[9] provide an architecture and programming model for
building Internet services that are willing to trade con-
sistency for availability. Our approach is complementary
to theirs in that, while their system can be used for cre-
ating new, scalable Internet services on loosely-coupled
clusters, we strive to make it easy to run existing applica-
tions, such as the well-adopted web servers [15], database
servers [16] and database applications in a cluster as well
as on a single machine.

3 Our contributions

The context of system structure and replication model
in which our consistency protocol is considered differs
from the contexts in previous studies. In the island-
based file system, only certain directory attributes, but
not the directory contents or files, are replicated across
islands. The degree of replication varies by directories
based on their usage, and changes dynamically as the
usage changes. In the clustered in-memory database,
only search keys, but not massive data, are replicated,
and the replicated data is stored in memory only. The
contributions of this paper are the following:

1. We design a consistency protocol that offers stronger
semantics than ”eventual” consistency, and hence
increases the likelihood that applications can be
ported from single systems to cluster-based systems
with few modifications.

2



2. The overhead of the consistency protocol is reduced
by taking advantage of the data distribution strate-
gies in the target systems and using a light-weight
non-locking algorithm, rather than using additional
hardware or fast network.

3. We take arbitrary sequences of failures into consid-
eration and use a recovery procedure based on a fi-
nite state machine model to handle the failures. We
check the correctness of the protocol by randomized
failure injection into a prototype implementation.

4 Overview of two cluster-based
storage systems

In this section, we summarize the characteristics of two
cluster-based storage systems that are relevant to the
discussion of consistency protocol design in the rest of
the paper. The motivation, reasoning and design details
of the two systems are outside the scope of this paper.
Interested readers should refer to separate publications
[17] [8].

4.1 Island-based file system

An island-based file system is a clustered file system with
a failure isolation mechnism that partitions and repli-
cates data and metadata across cluster nodes in such
a way that the server in each node can deliver data
to clients independently of the failures in other nodes.
This approach is complementary to existing redundancy-
based methods: redundancy can mask the first few fail-
ures, and failure isolation can take over and maintain
availability for the majority of clients if more failures
occur. The building blocks of such a file system are
self-contained, load-balanced and off-the-shelf file servers
called islands. The main idea underlying the island-
based design is the one-island principle: as many opera-
tions as possible should involve exactly one island. The
one-island principle offers improved availability because
each island can function independently of other islands’
failures. It also helps the file system scale efficiently with
the system and workload sizes because communication
and synchronization across islands are reduced.
The target applications of island-based file system

are those Internet services that prefer to serve as many
clients as possible rather than to go entirely offline when
partial failures are present, that are medium to large
scale, e.g. tens to hundreds of commodity PC’s con-
nected by commodity local area networks, and that ex-
pect occasional node failures and network partitions. Ex-
amples include email, Usenet newsgroup, e-commerce,
web caching, and so on.

In an island-based file system, data is distributed to is-
lands at directory granularity by hashing the pathnames
of the directories to island indices. The file system run-
ning inside each island is called the internal file system.
An internal file system can be an instance of any exist-
ing file system such as a local file system, a replicated file
system or even another cluster-based file system. Inside
each island, directories are stored in a skeleton hierar-
chy. The skeleton hierarchy in an island contains the
directories hashed to this island index and their ances-
tor directories up to the root, and is stored in the un-
modified internal file system as a normal tree. This way,
the data stored in each island is made self-contained and
the built-in functions of the internal file systems can be
leveraged.
The consequence of storing data in skeleton hierar-

chies is the replication of directory attributes that are
needed when a descendent of the directory is looked up.
Such attributes include name, security, read-only tag,
compressed tag, etc. Updates to those attributes need
to be propagated to all replicas. The overhead of up-
dates is acceptable since those attributes rarely change
[17]. The replication scheme is a usage-based adaptive
scheme, i.e. We replicate attributes for directories that
are more frequently used to a higher degree. Directory
contents or files are not replicated across islands, but
data redundancy can be used inside each island to im-
prove reliability.
The majority of operations in an island-based file sys-

tem, such as CreateFile, WriteFile and ReadDirectory,
involve exactly one island and are called one-island op-
erations. The following operations involve the replicated
directory attributes and are called cross-island opera-
tions: CreateDir, RemoveDir, SetDirAttr, SymLinkDir,
DeleteLinkDir and RenameDir.
The consistency protocol presented in this paper shall

handle the cross-island operations in the face of partial
failures.

4.2 Affinity-based management system
for clustered in-memory databases

An affinity-based management (ABS) system for clus-
tered in-memory databases was designed for the follow-
ing application server infrastructure. A number of pro-
cessing nodes in the infrastructure run web servers and
application servers, and each web server or application
server is capable of processing any HTTP or application-
specific requests. The application servers store all their
persistent data in a shared, on-disk database, which is
called the master database. Redundancy may be ap-
plied inside the master database for high reliability and
scalability. A cluster of in-memory databases are trans-
parently situated between the application servers and

3



the master database, caching partial or all data from
the master database for speedy access from the applica-
tion servers. In-memory databases [10] are optimized in
many aspects, such as buffer management, retrieval and
indexing, specifically for memory-resident data, and is
lightweight enough to be hosted on the same machine as
application servers. An individual in-memory database
in the cluster is called a cache server. Data accessed by
a query will be loaded from the master database into a
cache server before the query is executed in that server.
Data will stay in the cache server until it is evicted by
a cache replacement policy or invalidated by a synchro-
nization protocol.

The task of ABS is to automatically and dynami-
cally partition and replicate data across individual in-
memory databases in the cluster and directs queries to
the right databases, in order to maximize effective cache
capacity and minimize synchronization cost. The ba-
sic method in ABM is to divide the execution of each
query into two stages and to use the result from the (lo-
cal) first-stage execution to determine the (remote) des-
tination of the second-stage execution. The first stage
is computation-intensive; the function and data needed
for the first-stage execution are replicated on each ma-
chine where a database client is installed. The sec-
ond stage is data-intensive; data accessed during the
second-stage execution is partitioned across individual
in-memory databases at row granularity. The first stage
determines the set of data that the query will likely ac-
cess, which is then used to determine the destination of
the query in its second stage. The second stage com-
pletes the query execution and generates results. The
intention of the two-stage execution is to determine the
destination of each query with the knowledge of the data
to be accessed.

The replicated data for the first-stage execution is the
columns or search keys used in the selection conditions of
queries, which are typically of short data types, such as
integers, timestamps, short character strings, etc. The
replication enables the database clients to locally exe-
cute first-stage queries. And yet the space required for
replicating search keys is strictly less than the space re-
quired for replicating the entire table. Any update to
the database will be executed in the master database
before the update operation is completed. Any update
that results in modifications to the replicated keys, such
as insertion, deletion or update operations on the repli-
cated columns, will be broadcast to all replicas.

The consistency protocol presented in this paper shall
handle the updates to replicated keys in the face of par-
tial failures.

Figure 1: Replication of directories. Figure (a) is the
image of an entire system. (b) (c) and (d) are the images
of the internal file systems in three other islands. Shaded
directories in the figure represent replicas that contain
only attributes and partial contents or no contents.

5 Replication model

We define a few terms below to assist in generalizing the
replication model in the island-based file system and the
clustered in-memory database. For each replicated ob-
ject (a set of attributes of a directory or the entire set
of search keys), a particular node (the directory owner
or the master database server) is chosen as the coordi-
nator of the global operations or updates on this object,
or simply called the coordinator of the object. The copy
of an object in its coordinator is called the primary copy
and the other copies are called secondary copies. Any
node (an island or a pre-executor) that has a copy of the
object is called a replica of the object. Each operation
originates from a single replica. Each update must orig-
inate from the coordinator and be propagated to other
replicas. All objects in a node are readable by operations
originated from or propagated to this node. Figure 1 il-
lustrates the replication in the island-based file system.
The cache servers in the clustered in-memory database

are a special case: they do not have a copy of the
replicated keys unless they are co-located with the pre-

4



executors, but they participate in the consistency pro-
tocol as replicas because it is implicitly assumed that
the cache servers have a consistent view of the database
state with the pre-executors. To determine the set of
cache servers involved in an update, the distributor is
consulted before the commit of the update starts.

6 Consistency protocol design

A strawman’s approach to the consistency of replicated
directories across replicas is to lock a directory before
operating on it. Locking schemes, especially ones with
multi-reader-single-writer locks, are a typical approach
to the consistency on replicated data in general. To
avoid deadlocks and to handle partial failures and net-
work partitions, a locking scheme often needs to be used
in combination with other mechanisms such as timeout
[23], majority consensus [26] and/or versioning [2].
Unfortunately, such a scheme can seriously weaken the

availability and scalability. In the island-based file sys-
tem, since each operation implicitly involves recursive
lookup and permission checking with the ancestor direc-
tories, the ancestor directories need to be locked for the
operation as well. A lock on each directory requires at
least two round-trip messages, acquiring the lock and
releasing/revoking the lock, to and from the coordina-
tor of the directory. Consequently, there will no longer
be ”one-island” operations in the island-based file sys-
tem since almost every operation needs to contact mul-
tiple islands for locking involved directories. The same
overhead is also inevitable in the clustered in-memory
database. If We use a global lock for the entire system
rather than a lock per replicated object, We can reduce
the communication cost for locking, but We also reduce
the parallelism offered by the cluster structure.
We use a novel combination of logical clock synchro-

nization [19], two-phase commit [12], logging [13] and
finite-state-machine-based recovery to serialize the up-
dates while keeping the synchronization for one-island
operations or read-only queries local. Our methodology
takes three steps. First, we guarantee that each update
is atomic; second, we serialize updates and other opera-
tions in common cases; third, we ensure the serialization
of updates during a recovery from failures.

6.1 Atomicity

The basic consistency guarantee our protocol offers is
the atomicity of the updates, i.e. clients would never
observe the intermediate state of any update. In other
words, once a client observes the result of an update in a
node, it would always observe the result of that operation
in other replicas afterwards.

Figure 2: Synchronization of a client c’s clock Vc[i] with
the island d’s clock Vd[i]. Op Vc[i] is the cross-island
operation that generated the clock value Vc[i] in its co-
ordinator, island i.

We use a vector of logical clocks for the atomicity of
updates. Each coordinator has its local logical clock and
each update coordinated by this node increases the clock
by 1, or generates a new clock value. Each replica or
client maintains a vector of all coordinators’ clocks. Each
request to a replica carries the sender’s current clock vec-
tor for synchronization with the receiver’s vector before
the request is processed, and returns the receiver’s vec-
tor to the sender after the request is completed. We say
vector V2 is equally or more up-to-date than vector V1,
or V2 ≥ V1, if and only if V2[i] ≥ V1[i], 0 ≤ i < n, where
n is the number of coordinators.
We maintain the following invariants:

1. The local commit of an update and the increase of
the local clock are atomic in each coordinator, which
is guaranteed with a local lock in that coordinator.

2. A coordinator does not release the new clock value
to a client until it has notified all replicas of the op-
eration, i.e. until the operation is either outstanding
or committed in all replicas. This is guaranteed with
a two-phase commit [12]: the coordinator notifies
all replicas of the operation in phase 1, then locally

5



commits the operation and updates the clock, and
asks replicas to commit the operation in phase 2.

3. A request cannot be processed in a replica if the
request carries a clock that is generated by an out-
standing operation in that replica. Based on invari-
ants 1 and 2, this invariant means that once a client
observes the result of an operation in at least one
replica, it will always observe the result of that op-
eration in other replicas afterwards. This is guaran-
teed by the clock synchronization algorithm in Fig-
ure 2, which is an extension to Lamport’s algorithm
[19].

The three invariants above guarantee that a replica
will never expose the intermediate state of any operation
to clients. Invariant 2 ensures that synchronization in a
replica for reads does not need communication with the
coordinator, if no network partition is present.
We make an exception to invariant 2 to handle net-

work partitions. If any replica is inaccessible due to ei-
ther a node crash or network partition during phase 1 of
the commit, the coordinator updates its clock with an
alerted bit set, which will be propagated to the clients
together with the clock. During the clock synchroniza-
tion with a client, a replica must ask for a confirmation
from the coordinator about its involvement in an alerted
operation that it has not seen but the client has. If the
coordinator crashed or disconnected from a replica after
phase 1, the operation will be outstanding in the replica
till the coordinator reconnects. This type of failure will
be detected by a timeout in the clock synchronization.
See Figure 2. The alerted bit will be cleared once the
nodes reconnect and all outstanding operations are ei-
ther committed or aborted.

6.2 Serialization

The higher-level consistency guarantee our protocol of-
fers is the serialization of the updates, i.e. clients observe
the results of all operations in the same order in all repli-
cas. All the updates on the same object are coordinated
by the same node, hence can be serialized by a local
mutex in that node, unless a replica failed.
The serialization in case of failures is guaranteed by

write-ahead logging [13]. The coordinator always writes
a record with its clock vector to stable storage before
it locally commits an update. Only after the opera-
tion is committed in all replicas, the record can be re-
moved from the log. (However, the secondary copies
in the clustered in-memory database will be completely
lost during node crashes. The write-ahead logging is not
necessary in this case because, during the recovery of a
pre-executor after a crash, a complete snapshot of the

replicated keys, rather than updates that occurred after
the crash, will need be copied from the master database.)
When a replica b is reconnected, the coordinator a

sends to b a list of operations that involved b but have
not been committed on b. The operations will be com-
mitted in b in ascending order of their clocks (V[a]’s),
i.e. in the same order as if b had not been disconnected
from a. Note that b needs not know about the local op-
erations on the same objects that were done while it was
disconnected from a because it would not have known
those operations even if it had not been disconnected.
If a client thread issues at most one request at a time,

all the operations by the same thread are serializable
even if a replica failed. Consecutive operations by the
same thread are guaranteed to have ascending clock vec-
tors because, with the logical clock synchronization (Fig-
ure 2), the clock vectors in all replicas and clients never
decrease and always increase upon updates, even with
network partitions. Therefore, recovering replicas are
able to commit the operations by the same client thread
in the same order as if it had not failed, by sorting the
operations from all coordinators in the ascending order
of their clock vectors.
If two clients interact with each other by accessing

the same objects, then the operations by the two clients
are serializable in the face of failures. For example, if
two clients, c1 and c2, access the same object at time t1
and t2 (t1 < t2) and receive the clock vectors V1 and V2

respectively, then V1 ≤ V2 because the vectors are issued
by the same replica; therefore, c1’s operations before t1
(with vectors < V1) and c2’s operations after t2 (with
vectors> V2) are serializable.
Clients that do not interact through accesses to the

same objects might have concurrent clock vectors. We
say two vectors V1 and V2 are concurrent if and only if
there exist i and j, i �= j and 0 ≤ i, j < n, such that
V1[i] < V2[i] and V1[j] > V2[j], where n is the number
of coordinators. During a failure recovery, concurrent
vectors will be sorted with a simple tie resolution rule
consistent across all replicas, which does not necessarily
reflect the real-time ordering. The reordering of concur-
rent operations would not be observable and could not
cause problems as long as the replicated objects were
concerned [19].

6.3 Recovery

We have designed a recovery procedure for replicas to
recover from arbitrary sequences of failures back to con-
sistent states. Table 1 shows the possible failures for an
individual replica and how the replica can be recovered
from those failures.
Given the finite set of possible failures and the infinite

set of possible sequences of the failures, we find it a good

6



Failures Definitions Examples Recoveries
Self Fail-
ures

Any fail-
ures that
stop the
island
itself from
function-
ing

Software
failures,
machine
crashes,
disk fail-
ures,
power
failures

Rerun
software,
reboot
machines,
repair
disks,
restore
power

Peer Fail-
ures

Any fail-
ures that
make
other
islands in-
accessible
from this
island

Self fail-
ures of
other
islands,
network
partitions

Recover
other
islands,
repair
networks

Table 1: Possible failures and recoveries for an individual
replica

practice to model the recovering replica as a finite state
machine, in which each state corresponds to a set of be-
haviors that are allowed in the recovering replica, and
each state transition is triggered by a failure or recovery
event. Figure 3 shows the state transitions of a replica in
response to the possible failures and recoveries. A replica
can be in one of the 5 states, normal, failed, restarted,
hidden and isolated. Each state is distinguished from
others by the types of requests the replica is allowed to
process in that state. The types of requests a replica
receives include client requests (from the clients), co-
ordinator requests (from the coordinators of updates),
recovery requests (from the recovering or reconnecting
replicas), etc.

In the normal state, a replica processes all requests.
A self failure in any state causes the replica to transit
to the failed state, in which no requests, of course, are
processed. When it is recovered, a replica transits from
the failed state to the transient restarted state, in which
it initializes necessary data structures while rejecting all
requests. It automatically transits to the hidden state af-
ter all data structures are initialized. In the hidden state,
it attempts to reconnect to other nodes and to synchro-
nize replicated state with other nodes by log exchanges.
In the hidden state, the replica rejects all client requests
so that inconsistency, if it is present in the replica, is
not visible to clients. The replica accepts requests from
other recovering or reconnecting nodes so that both can
make progress. It also accepts requests from the coor-
dinators of new updates and stores them in a message
queue for sorting with other operations when all have ar-
rived. If the queue becomes full, the replica transits from

Figure 3: State transitions of an island in response to
various failures and recoveries. The types of requests ac-
cepted in each state are listed in parenthesis. Each tran-
sition is labeled with the event that triggers the tran-
sition. ”Reconnected” is the event that the recovering
island has reconnected to and resynchronized with all
other islands.

the hidden state to the isolated state, in which it accepts
no more coordinator requests. (Note that the buffer for
keeping outstanding operations in the normal state will
never be filled because there is at most one outstanding
operation per coordinator in the buffer.)
When all nodes have reconnected and exchanged logs

with it, the replica commits all the operations stored in
the message queue in the ascending order of their clock
vectors. If it is in the isolated state, it asks for new op-
erations from coordinators that it has rejected. After it
commits all pending operations, it transits to the normal
state.

7 Implementation

We have implemented the consistency protocol as a li-
brary, which consists of approximately 1800 lines of C++
code. We have used the library in a prototype of the
island-based file system called Archipelago. Archipelago
[17] runs on a cluster of Pentium II PCs with Windows
NT 4.0. Cross-island operations in the prototype call the
consistency protocol library for the functions on logical
clock synchronization, two-phase commit, logging, etc.

7



At startup, the island servers call the recovery procedure
in the library. Win32 RPC (Remote Procedure Call) is
used for cross-island communication. Due to its spe-
ciality and simplicity, the clustered in-memory database
needs to call only a subset of the functions in the library.

8 Correctness

As discussed in the previous sections, the combination
of logical clock synchronization, two-phase commit and
write-ahead logging maintains the following invariants in
the face of failures:

1. All updates on the replicated directory data are
atomic.

2. All updates on the replicated directory data are se-
rialized.

3. In most cases, read-only operations can be processed
locally, i.e. without contacting other replicas for
synchronization purpose.

The correctness of the systems that use this consis-
tency protocol largely relies on the details in implemen-
tation, which are hard to model or check using existing
tools [6] [5]. Therefore, we use a randomized test engine
to test the correctness of the protocol instead. The test
engine is extended from a model checker originally de-
veloped in Hewlett-Packard Labs [11]; the model checker
is based on the input/output automata (IOA) [22]. We
extended the tool so that it checks the implementation
of a system, rather than a simulation written in IOA
style. Unlike the tools that exhaustively search the state
space [6] [5], the randomized testing tools cannot prove
that a system is correct. Instead, it helps identifying in-
correct parts of a system by injecting various sequences
of events to the system and analyzing the results. Such
events typically could not possibly be experienced in real
workloads or manual tests during a short period of time.
Archipelago is tested with the randomized test engine.

The test engine consists of three components, termi-
nators, network partitioner and clients. The termina-
tors are independent threads or processes, one for each
replica. Each terminator injects crash or reboot events
to its associated replica at intervals randomly chosen
within given ranges. It simulates a crash of the replica
by killing the server process of that replica, and the re-
boot of the replica by forking a new server process for
that replica. The network partitioner is an independent
thread that simulates network partitions between repli-
cas. At random intervals, it randomly chooses a pair
of replicas and sends a message to both replicas to tear
down or to reestablish the connections between them.

Since multiple pairs can be disconnected this way, a se-
quence of such events can generate complicated parti-
tions. The clients are multiple threads that share the
same set of objects (files, directories and symbolic links)
in Archipelago. Each client generates workloads on the
file system by repeatedly issuing a randomly chosen re-
quest with given frequencies on a randomly chosen ob-
ject.
The IOA formal language has an interface for defining

models for safety and liveness checking [22]. A safety
model specifies a property that must hold at any time,
while a liveness model specifies an event that must even-
tually occur. A prototype of the interface was imple-
mented in the original tool, but We have not ported it
to the test engine yet. Instead, we check the safety of the
protocol by manually inserting assertions to key parts of
the code. A few examples of the assertions are: there is
at most one outstanding operation coordinated by each
node at any given time; there is no gap and no overlap
in the clocks of the operations coordinated by the same
node; the coordinator i always has a more or equally
up-to-date clock V[i] than any other replicas or clients;
etc.. These assertions have been surprisingly helpful in
our preliminary experiments. Liveness assertions such
as that a replica will eventually transit from the failed
state to the normal state in the recovery procedure will
be added once the system has passed the simpler tests.
The test engine takes parameters such as the inter-

val ranges of failure/recovery events, and the relative
frequencies of operations. We selected the intervals in
such a way that they both allow a sufficient workload
in each state of the system, and allow the overlap of
failure/recovery events to exercise the recovery proce-
dure. We exaggerated the frequencies of updates from
real workloads by two orders of magnitude to stress the
consistency protocol. We tested Archipelago with 4 is-
lands in the randomized test engine. Table 2 shows the
parameters and results in our latest test. After surviv-
ing through 28 node crashes and 7 network partitions,
Archipelago failed one of the assertions and caused the
test engine to halt.
We found 14 non-obvious bugs in the protocol during

two days of testing Archipelago. The bugs are all at im-
plementation detail level and do not invalidate the over-
all protocol design. An example of the bugs We found
is following. The coordinator of an update crashed af-
ter it notified the replicas of the operation, but before
it logged the operation on disk. Therefore, the opera-
tion was aborted in the coordinator, but outstanding in
the replicas. When the replicas received the next opera-
tion from the same coordinator later, the assertion of at
most one outstanding operation per coordinator failed.
The fix to this bug is to clear the relevant buffers of
outstanding operations upon reconnection of two nodes.

8



Events Parameters Numbers of
Events

CreateDir 3.23% 1565
CreateFile 2.82% 1369
DeleteFile 1.92% 974
DeleteLinkDir 0.81% 221
ReadDir 11.22% 5273
ReadFile 13.15% 8162
RemoveDir 2.42% 1469
ResolveLinkDir 7.34% 530
SetDirAttr 5.65% 2609
SetFileAttr 21.98% 14970
SymLinkDir 0.81% 227
WriteFile 28.65% 16394
Crash 60 to 120 sec 28
Reboot 8 to 16 sec 24
Partition 15 to 30 sec 7
Reconnection 2 to 4 sec 4

Table 2: Parameters and results in testing Archipelago
in the randomized test engine. The parameters are the
given frequencies for normal operations and the given
interval ranges for failure/recovery events. For example,
each time a client randomly chooses an operation, the
probability that CreateDir is chosen is 3.2279%; the ter-
minator waits for an interval randomly chosen from 60
to 120 seconds each time before it kills the server pro-
cess. The results are the actual numbers of successful
operations or events in the test. The actual numbers are
different from the specified values due to randomization,
race conditions and simulated failures. The operations
SymLinkDir, ResolveLinkDir and DeleteLinkDir are cre-
ating a symbolic link to a directory, reading the directory
entries in a symbolic link to a directory and deleting a
symbolic link to a directory, respectively.

Both the development of the test engine and the cor-
rectness checking of Archipelago are in a very early stage.
However, the preliminary results are encouraging, and
we believe that randomized failure injection is a promis-
ing approach to checking the implementation correctness
of a complicated system.

9 Performance

In this section, we present the results of measuring
Archipelago with the following metrics: 1) overhead of
the consistency protocol in simple cases; 2) impact of
the consistency protocol on the scalability of cross-island
operations; 3) impact of the consistency protocol on the
overall scalability of Archipelago.
The machines used in our experiments have Pentium

Figure 4: Single client performance. A single client
runs the micro benchmarks with the consistency pro-
tocol turned on and off, respectively. The y-axis in (a) is
the latency in milliseconds measured at the client side.
Lower columns represent better performance. The y-axis
in (b) is the bandwidth in MB/s in the WriteFile and
ReadFile operations measured at the client side. Higher
columns represent better performance.

II 300 MHz processors, 128 MB main memories and
6.4 GB Quantum Fireball IDE hard disks for use by
Archipelago. The PCs are connected by a 3COM Super-
Stack II 100Mbps Ethernet hub. The PCs run Windows
NT Workstation 4.0 and the hard disks for Archipelago
are formatted in NTFS.

9.1 Single client performance

We use a set of micro benchmarks that consists of 9
phases and each phase exercises one of the file sys-
tem operations: CreateDir, SetDirAttr, CreateFile, Set-
FileAttr, ReadDir, WriteFile, ReadFile, DeleteFile and
RemoveDir. The data set for the micro benchmarks is
an inflated project directory that consists of 3600 direc-
tories, 3876 files and 154.4 MB of data in files. The
3876 files are stored in 540 directories and the rest of
the directories are empty. Disk space is pre-allocated for
each file in the CreateFile phase. The transferred block
size in the WriteFile and ReadFile phases is 64 KB or
the file size, whichever is smaller. Each test is run more
than 3 times and the results shown in this section are
the averages.
We run the micro benchmarks with a single client and

two servers (or islands) in Archipelago. We turn on
and off the consistency protocol to measure its overhead

9



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

R
e
q
u
e
s
t
s
/
m
s

Servers

"CreateDir"
"CreateDir(C)"

"SetDirAttr"
"SetDirAttr(C)"

Figure 5: Impact of the consistency protocol on cross-
island operations. The CreateDir(off) and SetDi-
rAttr(off) curves are the throughputs (requests/ms) of
the two operations with the consistency protocol turned
off. The CreateDir(on) and SetDirAttr(on) curves are
the throughputs in the same benchmark but with the
consistency protocol turned on.

on individual operations. With the protocol turned off,
the coordinators of cross-island operations merely prop-
agate updates to involved islands without guarantee of
atomicity, serialization or recoverability. The protocol
increases the RPCs between servers for cross-island op-
erations by a factor of 2 for two-phase commit and re-
quires a log write per successful cross-island operation.
Figure 4 shows the bandwidth in WriteFile and ReadFile
and the response times in other operations, all measured
at the client side. As expected, the consistency proto-
col adds considerable overhead to cross-island operations
(CreateDir, SetDirAttr and RemoveDir), but does not
have a significant impact on one-island operations.

9.2 Scalability of cross-island operations

We run the same micro benchmarks with 1 to 16 servers
and clients. We turn on and off the consistency proto-
col to measure its impact on the scalability of individ-
ual operations. Figure 5 shows the throughputs of two
cross-island operations, CreateDir and SetDirAttr. (Re-
moveDir is similar to CreateDir.) The throughput of
CreateDir scales at roughly the same rate with or with-
out the protocol because each CreateDir operation in-
volves a constant number (two) of islands in Archipelago.
The throughput of SetDirAttr does not scale in either
case because each operation involves all islands. The
protocol does not have a noticeable impact on one-island
operations, which are not shown here. Therefore, the
overall scalability depends on the actual operation break-
down in the system.

9.3 Scalability of operation mixes

We run a benchmark of randomized operation mixes with
the consistency protocol turned on to measure the overall
scalability of Archipelago. The benchmark is extended
from the SPEC SFS or LADDIS benchmark [18]. Since
Archipelago is implemented on top of NTFS, the opera-
tion mix in our benchmark uses NTFS API and is based
on the traces we took on Windows NT workstations [17].
We run the benchmark with 1 to 16 clients and servers.

The pre-created data set includes 2000 directories, 2000
files, and 100 symbolic links shared by all clients, and the
same numbers of private objects (directories, files and
symbolic links) per client. The client repeatedly does an
operation that is randomly chosen at specified frequen-
cies. For each operation, the client randomly chooses an
object, either from the existing shared or private objects,
or by generating a new name in an existing directory,
depending on the operation. The WriteFile operation
writes a random number (chosen from 0 to 1 MB) of
bytes to the file; both WriteFile and ReadFile operations
transfer up to 8KB per request so that the operation
time is comparable to those of other operations. Each
client maintains its own view of the shared objects and
its private objects, but does not synchronize with other
clients on the creation and deletion of the shared ob-
jects. Therefore, an operation on a shared object might
fail if it conflicts with a previous operation on the same
object from another client [18]. After the data set is pre-
created, all clients run the randomized operation mix for
10 minutes. The throughput is calculated as the total
number of successful operations by all clients divided by
10 minutes.
We run the benchmark with two different operation

mixes. Mix 1 exaggerates the cross-island operations
and mix 2 is closer to the measured breakdown. We
record the actual client operations and server-to-server
RPCs in the benchmarks, and estimated the speedups
of the overall operation mix accordingly. Table 3 shows
the recorded operation mixes and Figure 6 shows both
the measured speedups and estimated speedups. Assum-
ing that each local operation and RPC takes the same
amount of time, the estimated speedup with n servers is

n
1+OverheadPerOperation , where OverheadPerOperation
is the total number of server-to-server RPCs divided by
the total number of successful client operations.
Operation mix 1 scales at a less than ideal slope due

to the relatively large number of cross-island operations.
For example, with 16 servers, the average overhead per
operation is 0.8. The difference between the estimated
speedup and measured speedup is due to the assumption
of equal RPC processing times and local operation times.
Operation mix 2 is closer to the measured breakdown,
i.e. contains a smaller number of cross-island operations;

10



0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Servers

"Mix1-Estimated"
"Mix1-Measured"
"Mix2-Estimated"
"Mix2-Measured"

Figure 6: Speedup of throughputs of randomized oper-
ation mixes. The four curves are the measured speedup
of operation mix 1, estimated speedup of operation mix
1, measured speedup of operation mix, and estimated
speedup of operation mix 2, respectively. The speedup
is calculated as the absolute throughput (requests/sec)
divided by the throughput of 1 server. The throughput
of 1 server is 75.6 requests/sec in operation mix 1 and
80.1 requests/sec in operation mix 2, respectively.

it scales nearly ideally in both estimated and measured
throughputs. For example, it reaches a speedup of 15.7
on 16 islands.

10 Conclusions

We have designed and implemented a protocol for the
atomicity, serialization and recovery of updates on repli-
cated directory data in the island-based file system and
the clustered in-memory database. We build a random-
ized test engine to check the correctness of the protocol
in the face of arbitrary sequences of failures. The im-
pact of the consistency protocol on the performance and
scalability of the system is studied in micro benchmarks
and trace-based operation mixes.
The protocol has little impact on common cases or lo-

cal operations since all operations that read replicated
data or read/write non-replicated data can be processed
in a single replica without communication to others. Un-
der this protocol, the replicas never expose the interme-
diate state of updates to clients and clients never observe
the results of updates in conflicting orders; therefore, the
chance for hazards introduced by the cluster environ-
ment is largely reduced, and it is possible to port appli-
cations from single systems to the cluster-based systems
with few modifications.
We conclude that it is possible to distribute data in

a cluster under such a protocol that the system can

Mix 1 (%) Mix 2 (%)
CreateDir 0.9297 0.0522
CreateFile 4.0314 3.5661
DeleteFile 2.7731 2.4353
DeleteLinkDir 0.985 0.0128
ReadDir 14.4505 15.6528
ReadFile 14.1343 15.2778
RemoveDir 0.7543 0.0162
ResolveLinkDir 1.7205 0.1014
SetDirAttr 1.0383 0.0713
SetFileAttr 26.6085 29.2835
SymLinkDir 1.0089 0.0109
WriteFile 31.5656 33.5194
Successful 45360 to

309960
48042 to
756120

Total 48042 to
325534

48043 to
780260

Throughput
(requests/sec)

75.6 to 516.6 80.07 to 1260.2

Table 3: Operation mixes. Each percentage in this table
is the number of successful requests on each operation
divided by the total number of successful requests, aver-
aged over 1 to 16 clients and servers. The total numbers
of requests and throughputs grow with the numbers of
clients and servers for the fixed 10 minutes period; the
ranges are shown in the last three rows in the table.

both achieve high availability and strong consistency,
and scale efficiently with the cluster size.

References

[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.
Patterson, D. S. Roselli, and R. Y. Wang. Server-
less network file systems. In Proceedings of the 15th
ACM Symposium on Operating Systems and Prin-
ciples, December 1995.

[2] Anonymous authors. The Common Internet File
System (CIFS) Specification Reference. Microsoft,
1996.

[3] Y. Breitbart, R. Komondoor, R. Rastogi, S. Se-
shadri, and A. Silberschatz. Update propagation
protocols for replicated databases. In Proceedings
of ACM SIGMOD, 1999.

[4] P. Chundi, D. J. Rosenkratz, and S. S. Ravi. De-
ferred updates and data placement in distributed
databases. In Proceedings of 12th International
Conference on Data Engineering, 1996.

11



[5] E. M. Clarke, O. Grumberg, and D. E. Long. Model
checking and abstraction. In Proceedings ACM Sym-
posium on Principles of Programming Languages,
January 1992.

[6] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang.
Protocol verification as a hardware design aid. In
Proceedings of IEEE International Conference on
Computer Design: VLSI in Computers and Proces-
sors, 1992.

[7] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R.
Karlin, H. M. Levy, and C. A. Thekkath. Imple-
menting global memory management in a worksta-
tion cluster. In Proceedings of the 15th ACM Sym-
posium on Operating Systems and Principles, De-
cember 1995.

[8] Suppressed for anonymous review. Affinity-based
management of clustered in-memory databases for
application servers. Submitted for publication,
March 2001.

[9] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-based scalable network
services. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles, Octobor
1997.

[10] H. Garcia-Molina and K. Salem. Main memory
database systems. In IEEE Transactions on Knowl-
edge and Data Engineering, December 1992.

[11] R. Golding, J. Wilkes, and A. Veitch. Private com-
munications, August 1999.

[12] J. Gray. Notes on database operating systems. In
Operating Systems: An Advanced Course, 1978.

[13] R. Hagmann. Reimplementing the cedar file system
using logging and group commit. In Proceedings
of the 11th ACM Symposium on Operating System
Principles, November 1987.

[14] Hisgen, A. Birrell, C. Jerian, T. Mann,
M. Schroeder, and G. Swart. Granularity and
semantic level of replication in the echo distributed
file system. In Proceedings of Workshop on
Management of Replicated Data, November 1990.

[15] http://www.apache.org. Apache web server.

[16] http://www.mysql.com. Mysql database server.

[17] M. Ji, E. W. Felten, R. Wang, and J. P. Singh.
Archipelago: An island-based file system for highly
available and scalable internet services. In Proceed-
ings of 4th USENIX Windows Systems Symposium,
August 2000.

[18] B. E. Keith and M. Wittle. Laddis: the next gen-
eration in nfs file server benchmarking. In Pro-
ceedings of USENIX Summer Technical Conference,
June 1993.

[19] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. In Communications
of the ACM, July 1978.

[20] E. K. Lee and C. A. Thekkath. Petal: Distributed
virtual disks. In Proceedings of the 7th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, October
1996.

[21] Liskov, S. Ghemawat, R. Gruber, P. Johnson,
L. Shrira, and M. Williams. Replication in the harp
file system. In Proceedings of the 13th Symposium
on Operating Systems Principles, October 1991.

[22] N. Lynch and M. Tuttle. An introduction to in-
put/output automata. CWI-Quarterly, Vol. 2 No.
3, September 1989.

[23] T. Mann, A. Birrell, A. Hisgen, C. Jerian, and
G. Swart. A coherent distributed file cache with di-
rectory write-behind. ACM Transactions on Com-
puter Systems, Vol. 12 No. 2, May 1994.

[24] G. J. Popek, R. G. Guy, T. W. Page Jr., and J. S.
Heidemann. Replication in ficus distributed file sys-
tems. In Proceedings of Workshop on the Manage-
ment of Replicated Data, November 1990.

[25] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, and D. C. Steere. Coda: A
highly available file system for a distributed work-
station environment. In IEEE Transactions on
Computers 39(4), April 1990.

[26] C. A. Thekkath, T. Mann, and E. K. Lee. Frangi-
pani: A scalable distributed file system. In Pro-
ceedings of the 16th ACM Symposium on Operating
Systems Principles, Octobor 1997.

[27] P. Triantafillou and C. Neilson. Achieving strong
consistency in a distributed file system. IEEE
Transactions on Software Engineering, Vol. 23 No.
1, January 1997.

[28] Walker, G. Popek, R. English, C. Kline, and
G. Thiel. The locus distributed operating system.
In Proceedings of 9th ACM Symposium on Operat-
ing Systems Principles, October 1983.

12


