
Machine Instruction Syntax and Semantics in
Higher Order Logic

Neophytos G. Michael and Andrew W. Appel

Computer Science Department, Princeton University, 35 Olden Street,
Princeton, NJ 08544, USA

nmichael@cs.princeton.edu
appel@cs.princeton.edu

Abstract. Proof-carrying code and other applications in computer secu-
rity require machine-checkable proofs of properties of machine-language
programs. These in turn require axioms about the opcode/operand en-
coding of machine instructions and the semantics of the encoded in-
structions. We show how to specify instruction encodings and semantics
in higher-order logic, in a way that preserves the factoring of similar
instructions in real machine architectures. We show how to automat-
ically generate proofs of instruction decodings, global invariants from
local invariants, Floyd-Hoare rules and predicate transformers, all from
the specification of the instruction semantics. Our work is implemented
in ML and Twelf, and all the theorems are checked in Twelf. A version
of this paper is to appear at the 17th International Conference on Au-
tomated Deduction to be held between June 17-20, 2000 in Pittsburgh,
Pennsylvania.

1 Introduction

The security problem for mobile code or for component software is this: an
untrusted program (or program fragment) is to execute in a host environment
(the code consumer), and we want to ensure that it will do no harm. Proof
Carrying Code (PCC) [1] is a framework for solving this problem by providing
such assurances to the host. In the PCC framework the code consumer advertises
a safety policy which specifies the logic in which it will accept proofs, the regions
of readable or writable addresses, and so on. The code producer must construct
a proof that the machine-language program satisfies the safety policy; the proof
might be generated using hints from the compiler that generated the code. This
proof along with the code is communicated to the host environment and the host
verifies it before executing the code. PCC has significant advantages over other
approaches that address the same problem (such as software fault isolation [6]
or byte code interpretation [7]): no performance penalty is taken since the code
is run at native speeds, and the proofs are performed on native machine code
so no unsoundness can be introduced in the translation (or compilation) from
the proved program to the one that will actually execute. For well-chosen safety
policies, the proofs can be generated completely automatically.

1

In Appel and Felty [5] we gave an overview of our PCC system and described
how it differs from the approach taken by Necula [2]. Instead of building type-
inference rules into the safety policy, we model types as defined predicates using
the primitives of ordinary logic; we prove typing rules as lemmas, and show how
to model a wide variety of type constructors. This way the PCC safety policy
is independent of the code producer’s programming language and type system.
The machine description semantics are moved from the verification-condition
generator to the safety policy. More specifically our safety policy consists of the
following:

1. The logic: a fairly standard higher order logic1 (L) consisting of eight infer-
ence rules for the logic and twenty-nine for arithmetic (with addition and
multiplication taken as primitives).

2. The machine code syntax and semantics: this is encoded as the definition of
the step relation (7→) that describes the syntax and semantics of the ma-
chine. Step formally captures the notion of a single instruction execution.
These axioms also define the decode relation that completely specifies in-
struction opcodes and operands (machine syntax) for all legal machine-code
instructions.

3. Safety constraints: these are statements2 in L that describe general prop-
erties of the runtime system (such as readable and safe-to-jump memory
locations). They may also contain typing judgments for the initial contents
of the register bank.

The small size of the logic is one of the major advantages of our approach.
It contains no inference rules on types and no Hoare-logic rules for instructions
(thus avoiding all complications due to substitution). Since it is so small, the
proof checker can be likewise small. Thus the trusted computing base (TCB)
can be verified easily (either by hand or through other means). A small TCB is
the essence of PCC.

To simplify the presentation of the following sections we will use the toy
machine (from [5]), a word-addressed 16-bit CPU. Its instruction set is presented
in figure 1. Our system currently works with two other machine architectures
(Sparc and Mips) and when appropriate we will also use examples from these.

1 Our logic L, is a sublogic of the Calculus of Constructions [11] and of the logic used
in the HOL theorem prover [12], so our proofs can be checked in either Coq or HOL.
Our current implementation uses Twelf [4].

2 We offer a brief introduction to the syntax of our object logic: A metalogic (Twelf)
type is a type, and an object-logic type is a tp. Object-logic types are constructed
from num (the type of rationals), form (the type of formulas) and the arrow construc-
tor. Object-level terms of type T have type (tm T) in the metalogic. Terms of type
(pf A) are terms representing proofs of object formula A. The term lam [x]F (x) is
the object-logic function that maps x to F (x) and @ is the application operator for
λ-terms. See Appel and Felty [5] for more details.

2

Instruction Fields Effect
add 0 d s1 s2 rd := rs1 + rs2
addi 1 d s c rd := rs + sign ext(c)
load 2 d s c rd := m[rs + sign ext(c)]
store 3 s1 s2 c m[rs2 + sign ext(c)] := rs1
jump 4 d s c rd := rpc ; rpc := rs + sign ext(c)
bgt 5 s1 s2 c if rs1 > rs2 then rpc := rpc + sign ext(c)
beq 6 s1 s2 c if rs1 = rs2 then rpc := rpc + sign ext(c)

Fig. 1. The toy machine instruction set.

2 Overview

Our focus in this paper is twofold: concise axioms modeling machine architec-
tures, and efficient proofs using those axioms.

We will describe in detail our step relation and show how it succinctly cap-
tures the syntax and semantics of real machines. Since it is by far the largest
piece of our safety policy we are of course concerned about its correctness. To
this end we will show how parts of it can be automatically generated from ex-
isting systems. Here we tackle the syntax of machine instructions using machine
descriptions from the New Jersey Machine Code Toolkit [8]. We also show how to
automatically generate proofs of correspondence between machine code integers
and statements involving the decode relation.

We will describe the engineering aspects of generating small proofs of safety.
Program safety is proved using a coinduction theorem based on progress and
preservation of an invariant. We construct invariant expressions whose size is
linear in the number of program instructions, and structure the progress and
preservation proofs so that – modulo the parts that will have to be built by our
tactical theorem prover – they are linear in size. In building these invariants we
need to use the weakest preconditions of instructions and we will show how to
automatically generate lemmas for a Hoare logic of machine language from the
step relation. Our safety proofs will be linear-sized trees of applications of these
Hoare lemmas.

Figure 2 shows our system operating on a small program that computes the
sum of a linked list of integers. The goal of the system is to prove that the initial
machine configuration (IMC) is safe, in symbols the following theorem:

IMC(r0,m0)→ safe(r0,m0)

where

IMC(r,m) := m(100) = 8976∧ · · · ∧m(105) = 24859
safe(r,m) := ∀r′,m′ (r,m 7→∗ r′,m′)→ ∃r′′,m′′(r′,m′ 7→ r′′,m′′).

The IMC describes parts of memory at the moment the program will run (in this
case only the part containing the program itself). The step relation r,m 7→ r′,m′

3

CInv0

CInv1

CInv0

CInv1

100:

101:

102:

103:

104:

105:

8976

25413

8978

547

8465

24859

Machine
Code

load r3, r1, 0

beq r3, r4, 5

load r3, r1, 2

add r2, r2, r3

load r1, r1, 1

beq r1, r1,−5

L Predicates

-Decode

Prover

-Inv

Gen

Global
Invariant

Inv
-Prover

pf (Inv(r0,m0))
pf (progress(Inv))

pf (preservation(Inv))

?
Coinduction Theorem

pf (safe(r0,m0))

Fig. 2. Generating safety proofs.

formally describes a single instruction execution, i.e. given a machine at state
(r,m), after execution of the instruction found at r(pc), the machine will be at
state (r′,m′). The safe property states that no matter how far the execution
proceeds, it never gets stuck, i.e. executes an illegal instruction or performs an
illegal fetch.

The PCC system is presented with a list of machine code instructions (i.e.
integers). The instruction stream is fed through the decode-prover whose job
is to discover the instruction each integer represents, and to produce the sym-
bolic representation of each instruction – which is a predicate that describes the
instruction’s semantics. The decode-prover also produces proofs of this corre-
spondence. Following this, the predicates are fed into the invariant-generator
which builds the global invariant to be used in the coinduction proof. Construct-
ing invariants is not computable in general, so the prover requires hints in the
form of local loop invariants decorating the targets of backward branches. Once
the global invariant is built we must prove the three preconditions of the coin-
duction theorem3 (see figure 3) in order to apply it. This is done by the prover
and given the three proofs we apply the rule to finally establish safe(r0,m0).

3 Machine Semantics

In this section we show that the semantics of machine instructions can be easily
and concisely expressed in higher order logic. We begin by explaining the idea
using the toy machine, and then explore the problems in defining a semantic
description of a real CPU.

Each instruction defines a relation between the machine state (registers,
memory) before and after its execution. We treat both the memory and reg-
ister bank as functions from integers to integers. Each instruction then becomes
3 A note on notation: in the interest of brevity we will sometimes use mathematical

notation when presenting Twelf terms.

4

progress(Inv) := ∀r,m Inv(r,m)→ ∃ r′,m′ (r,m 7→ r′,m′)

preservation(Inv) := ∀r,m, r′,m′ Inv(r,m) ∧ (r,m 7→ r′,m′)→ Inv(r′,m′)

Inv(r,m) progress(Inv) preservation(Inv)
safe(r,m)

Fig. 3. The coinduction theorem.

upd(f, d, x, f ′) := ∀z if (z = d) then f ′(z) = x else f ′(z) = f(z)

i add(d, s1, s2)(r,m, r′,m′) := ∃sum plus mod16(r(s1), r(s2), sum) ∧
upd(r, d, sum, r′) ∧ no mem change(m,m′)

i load(d, s1, c)(r,m, r′,m′) := ∃cext , addr

sign ext(3, c, cext) ∧
plus mod16(r(s1), cext , addr) ∧
upd(r, d,m(addr), r′) ∧
readable(addr) ∧ no mem change(m,m′)

Fig. 4. Semantics of the add and load instruction of the toy machine.

a predicate which takes (r,m, r′,m′) as input, and holds when the instruction
can safely take state (r,m) to (r′,m′). In figure 4 we show the terms expressing
the semantics for the “add” and “load” instructions of the toy machine. The
Twelf term i add (what we will call a constructor in section 4) expects three
arguments (d, s1, s2) and returns a predicate of type instr, defined as:

instr = regs→ mem→ regs→ mem→ form.

It is this predicate that we view as the semantics of the instruction. Thus for the
add instruction, i add(d, s1, s2) holds when for some integer sum, the following
three equations hold:

sum = (r(s1) + r(s2)) mod 216

∀x if (x = d) then r′(x) = sum else r′(x) = r(x)
∀x m(x) = m′(x).

The situation is similar for the semantics of the “load” instruction. But we
wish to consider a program safe only if all of its memory accesses are within a
specified region. Therefore our step relation admits only a subset of executable
load instructions: those that load from readable addresses. The designer of the

5

safety policy must provide axioms that define the readable predicate. In general
the semantics of each instruction must enforce the proper conditions under which
the instruction can be executed. For “add” there are no such conditions; we can
always add two numbers.

Real hardware can be a lot more complex than our simplistic toy machine.
On a modern CPU one has to deal with the issues of delayed branches, address
alignment, stores and loads of different sizes, condition registers, sign extension,
instructions with multiple effects, and ALU operations not directly expressible
in our arithmetic, to mention just a few. We claim that all of these can be
handled relatively easily with the right set of abstractions and definitions. Space
restrictions only allow us to deal with a representative subset here. We will use
the Sparc CPU in the presentation.

– Condition Registers: We model condition registers exactly as we model phys-
ical registers. We assign a number to each of them that is outside the range
of representable register numbers and refer to them exactly the same way
we refer to regular registers. Instructions that need to modify individual bits
do so by the use of appropriate definitions (see the bits predicate below).

– Delayed Branches: In order to keep their deep pipelines filled, some modern
CPUs have introduced the notion of a delayed branch. On such CPUs one
(or more) of the instructions following a branch will be executed even if the
branch is taken, before the CPU starts executing instructions from the target
address. We will assume a single instruction delay slot (the solution can be
easily generalized to a delay slot of n instructions). We introduce another
register called the next program counter4 (npc) which holds the address at
which the pc will be next. In the semantics of a branch instruction, if the
branch is to be taken we simply set r(npc) = target and the step relation
takes care of updating r(pc) to r(npc) at the appropriate time.

– Address Alignment: Machine addresses have to be properly aligned depend-
ing on the instruction that uses them. Using the bits(r, l, v, w) predicate
(which holds when the value in the binary representation of w between bits
r and l equals v; in symbols bits(r, l, v, w)⇔ v =

⌊
w
2r
⌋

mod 2r−l+1) we can
easily express such constraints. In a load-word instruction for the Sparc for
instance we would insist that bits(0, 1, 0, address) holds.

– Stores/Loads: We chose to model memory by a function m : num→ num that
we define only on word-aligned addresses. This way we avoid the complica-
tions of modifying individual bytes in a word. When we wish to store a byte
quantity, the entire word must be fetched from memory, the byte spliced
into it, and then stored back in memory. For load we have a similar situa-
tion. With the appropriate definitions all these operations can be specified
painlessly. With careful selection of predicates most of them can be shared
between the load and store instructions. One such example is the predicate
form address below. It computes a word aligned address and offset from an

4 This is in fact how the hardware manages delayed branches. Some machines make
the npc register explicit in the specifications [10].

6

unaligned one, and ensures that the original address was well aligned with
respect to the size of the value we are trying to load/store.

form address(u addr , alignment bit , addr , offset , size) :=
bits(0, alignment bit , offset , u addr) ∧
minus mod32(u addr , offset , addr) ∧ modulo(offset , size, 0)

– Arithmetic Operations: Some of the arithmetic operations performed by
modern CPUs are not directly expressible as functions in our logic. We can-
not, for example, write the function that computes the bitwise “exclusive
or” of two integers since our arithmetic primitives include only addition and
multiplication and we have no recursion at the object level. Such operations
are however, trivially expressed as relations (predicates). Here is for instance
the xor predicate:

xor(a, b, c) = ∀i ∃x, y, r bits(i, i, x, a) ∧ bits(i, i, y, b)∧
(if x = y then r = 0 else r = 1) ∧ bits(i, i, r, c)

Factoring via Higher-order Predicates. Machine instruction sets are highly fac-
tored, both in syntax and semantics. Consider for instance the ALU operations
of any modern RISC chip. The ALU takes its input from two registers (or a
register and a constant) and produces the result in another. The only difference
between instructions is the operation performed. Our use of higher order logic
allows us to exploit such factoring very effectively. We find the commonalities in
families of instructions (even between families as in the load/store case above),
factor those out and reuse well-chosen definitions. Here is an example from the
Sparc. The definition of i aluxcc is reused to define 23 different instructions.
Argument with carry specifies whether the instruction operates with a “carry”,
modifies icc specifies whether it modifies the integer condition codes, and func
is the predicate describing the operation performed by the instruction.

alu_fun = num arrow num arrow num arrow form.

i_aluxcc : tm (form arrow form arrow alu_fun arrow alu_typ) =
lam3 [with_carry : tm form][modifies_icc : tm form][func : tm alu_fun]
lam3 [rs1][reg_imm][rd]
lam4 [r][m][r’][m’]
(exists3 [v][v’][r’’]
(load_reg_imm @ r @ reg_imm @ v) and
(compute_with_carry @ with_carry @ func @ r @ rs1 @ v @ v’) and
(compute_cc @ modifies_icc @ r @ r’’ @ v’) and
(upd_reg @ r’’ @ rd @ v’ @ r’) and
(no_memory_change m m’)).

i_AND = i_aluxcc @ false @ false @ and_oper.
i_ANDcc = i_aluxcc @ false @ true @ and_oper.
" " " " " " -- 21 cases omitted.

Moreover we exploit commonality between machines. Many of our definitions
that deal with the mechanics of splicing values into words, sign extension, and

7

arithmetic operations, are shared between semantic descriptions of different ma-
chines. Higher-order predicates are useful in expressing this kind of sharing; note
that the i aluxcc predicate above is higher order.

4 The Decode Relation

On a von Neumann machine, each instruction is represented in memory by an
integer. The decode relation makes this notion precise. It is a predicate of four
arguments (m,w, i, s) stating that address w in memory m contains the encod-
ing of instruction i that has size s. Modern microprocessors have hundreds of
instructions and to construct this relation manually would be a daunting task.
The observation that the information we wish to encode is very similar to the
information used by an assembler/disassembler led us to look for an automatic
way to generate the relation.

The New Jersey Machine Code Toolkit [8] helps programmers write appli-
cations that process machine code – assemblers, disassemblers, code generators,
and so on. The toolkit lets programmers encode and decode machine instruc-
tions symbolically. It transforms symbolic manipulations into bit manipulations,
guided by a specification that defines mappings between symbolic and binary rep-
resentations of instructions. Of interest to us here is the specification language
(called SLED) for encoding and decoding assembly-language representations of
machine instructions [9]. It is a concise, elegant, and semantically well-founded
language, a fact that has made the translation into logic fairly painless. In fact
our translation into L can be viewed as a semantics for the language.

Before describing our encoding of SLED into L we offer a brief introduction
to the language. In order to accommodate machines with non-uniform instruc-
tion sizes the toolkit works with streams of tokens instead of instructions. Each
instruction consists of one or more tokens. Tokens are further partitioned into
fields which are sequences of contiguous bits within a token. Patterns in SLED
serve two purposes: firstly they are used to constrain the division of streams into
tokens, and secondly to constrain the values of fields in those tokens. Patterns
can be combined with various operators to produce new patterns. The toolkit is
concerned with two representations of machine instructions: machine code and
assembly language. Constructors are used to connect the two representations.

Figure 5 presents a SLED specification of the toy machine architecture. The
first two lines specify the 16-bit token instr and its fields: op which occupies
bits 12 to 15, rd which occupies bits 8 to 11, and so on. The next line specifies a
list of patterns (add, . . . , beq,) and for each one, it constrains the op field to have
the value 0, . . . , 6 respectively. Finally the constructors clause specifies the
toy machine instructions. A special toolkit shortcut is used here: if no pattern is
specified in the constructor definition then all the names used in the constructor
must be either patterns or fields and their conjunction is taken to be the pattern
that will be generated by the constructor. In the next subsections we show how
to map fields, patterns, and constructors into higher-order logic.

8

fields of instr (16)
op 12:15 rd 8:11 rs1 4:7 rs2 0:3 c 0:3

patterns [add addi load store jump bgt beq] is op = 0 to 6

constructors add rd, rs1, rs2
addi rd, rs1, c
load rd, rs1, c
store rd, rs1, c
jump rd, rs1, c
bgt rd, rs1, c
beq rd, rs1, c

Fig. 5. The SLED specification for the toy machine.

4.1 Mapping fields into L

The definition of the bits predicate (from section 3) makes it straightforward
to map fields into L. All that it takes is to supply the right and left bit specifiers
of each field to this predicate. Since our definitions are curried, defining fields
in L becomes very convenient and almost as terse as it is in SLED. For the toy
machine the first two fields are translated as follows:

op = bits @ (const 12) @ (const 15).
rd = bits @ (const 8) @ (const 11).

The op predicate expects two integers as arguments (v, word), and it holds when
v is equal to the integer between the 12th and 15th bit of word.

4.2 Mapping Patterns into L

Patterns in SLED constrain both the division of streams into tokens and the
values of the fields in those tokens. They are composed of constraints on fields.
Patterns can be combined using various operators to form other patterns. The
RISC machine descriptions we have considered so far contain only conjunction
and disjunction operators, and those are the ones we currently translate. We
expect no problems in translating the rest when we choose to deal with CISC
machines. Conjunction is used to constrain multiple fields within a single token.
When p and q are patterns, the pattern “p & q” matches if both p and q match.
For example, in the SLED description for Sparc [8] we find:5

patterns
[TABLE_F2 CALL TABLE_F3 TABLE_F4] is op = {0 to 3}

5 This is another example of the terseness of SLED. In the definitions of these patterns
Ramsey [9] makes use of a SLED feature called generating expressions, which describe
ranges of lists either explicitly or implicitly as shown in the example.

9

[UNIMP Bicc SETHI FBfcc CBccc] is TABLE_F2 & op2 = [0 2 4 6 7]
NOP is SETHI & rd = 0 & imm22 = 0

In the first line TABLE_F2 is defined as the pattern that wants the op field to
equal zero, in the second line TABLE_F2 is used in the definition of SETHI which
is defined as the conjunction of patterns TABLE_F2 and op2 = 4. Finally in the
last line pattern SETHI is used in the definition of the NOP pattern.6 Patterns of
this kind are very easy to translate into L. We make use of a higher level infix
“and” operator defined as:

num_pred = num arrow form.
&& : tm num_pred -> tm num_pred -> tm num_pred =
[p1][p2] lam [w] (p1 @ w) and (p2 @ w).

Given && it is now easy to deal with conjunctive patterns by simply “anding”
together the different conjuncts after mapping each of them to an L predicate.
The example above then becomes:

p_TABLE_F2 = op @ (const 0).
p_SETHI = p_TABLE_F2 && (op2 @ (const 4)).
p_NOP = p_SETHI && (rd @ (const 0)) && (imm22 @ (const 0)).

Disjunction in patterns is usually used to group patterns for related instruc-
tions. In the following example from the Sparc SLED we use disjunction to group
the logical, shift, and arithmetic instructions into three groups, which are then
disjunctively combined into a pattern that matches any ALU instruction.

patterns
logical is AND | ANDcc | ANDN | ANDNcc | OR | ORcc | ORN | ORNcc | ...
arith is ADD | ADDcc | ADDX | ADDXcc | TADDcc | TADDccTV | ...
shift is SLL | SRL | SRA
alu is logical | arith | shift

Disjunction patterns are mostly used as opcodes to constructors and we show
how we deal with them in the next subsection.

4.3 Mapping Constructors into L

A constructor maps a list of operands to a pattern which stands for the binary
representation of an operand or an instruction. There are two kinds of construc-
tors, typed and untyped. Typed constructors generate instruction operands and
untyped constructors generate instructions. The following definition from the
Sparc specification is an example of a typed constructor:

constructors imode simm13! : reg_or_imm is i = 1 & simm13
rmode rs2 : reg_or_imm is i = 0 & rs2

6 A NOP on the Sparc is a SETHI on r0 with value 0, and since r0 is hardwired to zero
it has no effect.

10

Each line in the definition of a constructor specifies the opcode, the operands,
the constructor type, and matching pattern. Usually the opcode is the construc-
tor’s name (as in this case). Constructors generate disjoint sum types. In the
above, imode : num → reg or imm is the canonical injection from num into the
reg or imm type – likewise for rmode : num → reg or imm. The type is defined
implicitly at first use. Each constructor is applicable when the pattern following
the is keyword is satisfied.

The above constructor definition captures the following idiom: many Sparc
instructions (such as add r1, reg or imm, r2) take either a register or a constant
as one of their arguments. The hardware differentiates between the two instances
by the value of bit 13 (field i) in the representation of the instruction. Depending
on the value of i, either imode or rmode can be applied, giving in each case a
reg or imm.

We translate a typed constructor into L as follows. We first create a new
object-logic type for the constructor type. For each of the injective arrows (imode
and rmode above) we create an injective Twelf term (c imode and c rmode),
as well as a discriminator term (p imode and p rmode). Finally we generate a
predicate that decides the type itself (p reg or imm), i.e. a term that when given
an object of that type and a word decides whether that word contains the given
object. We show these terms for the example below:

reg or imm : tp
c imode : num −→ reg or imm

c rmode : num −→ reg or imm

p imode(simm) := i(1) && simm13(simm)
p rmode(s2) := i(0) && rs2(s2)

p reg or imm(regimm,word) :=
(∃simm p imode(simm,word) ∧ regimm = c imode(simm)) ∨
(∃s2 p rmode(s2,word) ∧ regimm = c rmode(s2))

Untyped constructors represent the instructions themselves. Their transla-
tion into L is not much different from the typed case so we omit it.

Factoring via Higher-order Predicates. The extensive factoring present in the
SLED specifications (through the wide use of “or” patterns) carries over to the
translated higher-order logic terms. When translating a constructor that uses an
“or” pattern as an opcode, we do not generate a unique term for each instruction
but instead build just a single term that describes all of them. This way we
preserve SLED’s economy of syntax. Here is an example for the ALU instructions
of the Sparc shown earlier. The constructor in the spec is the following:

constructors alu rs1, reg_or_imm, rd

and we generate the following two terms for it:

p alu aux(p i , i cons, s1, regimm, s2,word , i) :=

11

p instr(word , i) := (p add ||2 p addi ||2 p load ||2 p store ||2
p jump ||2 p bgt ||2 p beq)(word , i)

decode(m,w, i, s) := (s = 1) ∧ p instr(m(w), i)

step(r,m, r′,m′) := ∃ i, r′′, size decode(m,r(pc), i, size) ∧
upd(r,pc, r(pc) + size, r′′) ∧
i(r′′,m, r′,m′)

Fig. 6. The decode and step relations for the toy machine.

(p i && rs1(s1) && p reg or imm(regimm) && rs2(s2))(word) ∧
i = i cons(s1, regimm, s2)

p alu(word , i) := ∃s1, rimm, s2 (p alu aux(p AND, i AND) ||5
p alu aux(p ANDcc, i ANDcc) ||5

...
...

...
... – 35 cases omitted

p alu aux(p SRA, i SRA))(s1, rimm, s2,word , i)

where p AND is the opcode pattern, i AND is the instruction constructor and
likewise for the rest of them. Here again we make use of a higher level “or” (||5)
operator to factor out the common arguments to the auxiliary predicate.

Our decode-generator is a 3200-line ML program that operates directly on
SLED specifications. Since it generates a large portion of our safety policy it
ought to be considered trusted code (along with the SLED specifications). We
feel that this is a small enough program that can be thoroughly and convincingly
debugged into correctness. Furthermore its output is human readable and only a
constant factor bigger (between 2x and 3x) than the original SLED specification.
Thus the output can easily be inspected and debugged directly. The program
currently does not share any code with the New Jersey Machine Code Toolkit
although the front-end code and some of the analysis that the two programs
perform could be shared. We plan to investigate an integration of the two tools
in the future.

4.4 The Decode and Step Relations

We are finally in a position to present the decode relation for the toy ma-
chine (see figure 6). After all the instruction predicates have been emitted, the
decode-generator creates a predicate for the top-level token (i.e. instr in the
case of the toy spec). This predicate is the disjunction of all the instruction pred-
icates (modulo factoring as described above). Decode is then defined in terms of
this predicate. Figure 6 also shows the step relation for the toy machine. It is a
predicate mapping the machine state (r,m) 7→ (r′,m′) by requiring the existence

12

of an instruction i, a register bank r′′, and an integer size such that location
r(pc) in memory m decodes to i, updating the register bank r with the next pc
produces r′′, and finally instruction i safely maps (r′′,m) to (r′,m′). Step models
the meaning of a single instruction execution.

5 Machine Code Proofs

In this section we discuss some of the issues in generating the proofs used in the
coinduction theorem (figure 3).

5.1 Hoare-logic predicates for local invariants

In the Floyd-Hoare logic one tries to establish statements of the form P {S}Q,
where S is a program statement, and P , Q are logical formulae. P {S}Q means
that if P holds, and S executes to completion, then Q holds. The logic specifies
a set of axioms and inference rules that allow the deduction of statements of
this form. The assignment axiom for instance states: ` P [E/V] {V :=E}P . In
our framework we have no such axioms or rules; nevertheless, our preservation
statement (in figure 3) bears a striking resemblance to a Hoare judgment. What
is stated there is in essence equivalent to:

Inv(r,m) {(r,m) 7→ (r′,m′)} Inv(r′,m′) (1)

i.e. if the invariant holds at (r,m), then it must hold at the new state (r′,m′) at
which we were taken by the execution of some instruction (a single step). This
similarity is of course no accident; we wish to exploit the well understood theory
of Hoare logic in order to construct the weakest preconditions that will allow us
to prove preservation.

Our invariant (as described in detail in previous work [5]) is in essence a
disjunction of statements7 of the form r(pc) = n ∧ decode(m,n, i, 1) ∧ In(r,m)
where i is the instruction found at m(n) and In is the local invariant at n.
To make the situation more concrete assume that at r(pc) we find instruction
add(r1, r2, r3) (r1 := r2 + r3), and that after completion of this instruction, we
wish predicate Q(r,m) to hold at the new state. The question now is what should
In be in order to be able to prove equation 1, or equivalently the statement:

r(pc) = n ∧ decode(m,n, i, 1)∧ i = add(r1, r2, r3) ∧ In(r,m) ∧
(r,m 7→ r′,m′)→ Q(r′,m′). (2)

7 The invariant presented in Appel and Felty [5] could grow exponentially large for
certain kinds of programs. By the use of appropriate higher-order definitions we
have remedied this problem and now produce invariants that are always linear in
the number of program instructions and in the size of the compiler-inserted loop
invariants (see subsection 5.2). The structure of the new invariant is beyond the
scope of this paper. The discussion in this section is equally applicable to either kind
of invariant.

13

It is not difficult to see that one such In is the following: Q(r,m)[(r2 + r3)/r1],
i.e. the formula we get after applying the assignment axiom of Hoare logic to
the postcondition Q(r,m). In building the invariant though, we do not wish to
perform substitution of terms for two main reasons. Firstly, if we are not careful
during substitution the local invariants could grow exponentially large.8 The
goal is to end up with small proofs of safety; an exponentially large theorem
is unlikely to have a small proof. Secondly, our logic does not contain axioms
that express term substitution; such axioms would render the proof checker
more complex and would defeat our efforts for a small TCB. Instead we view
substitution as a relation between terms and express the notion concisely by
higher-order definitions. These definitions allow us to express In(r,m) in terms
of Q(r,m) in such a way that the size of local invariants stays constant, and
substitution is completely avoided (at this stage). We define predicate let upd

in terms of upd (introduced in figure 4) as follows:

let upd(r, a, v, f) := ∀r′ upd(r, a, v, r′)→ f(r′).

Predicate let upd specifies that for any function r′ that updates r at a with value
v, f(r′) must hold (we note that there is exactly one such r′; upd is deterministic).

Using this predicate we can succinctly express the weakest precondition for
each of our instructions. Below we show the term for the add instruction; compare
hx add with the semantics of add shown in figure 4.

hx add(d, s1, s2, post)(r,m) := ∃sum plus mod16(r(s1), r(s2), sum) ∧
let upd(r, d, sum, λr′.post(r′,m))

The last argument to hx add is the postcondition, and the return value is a
predicate on (r,m) expressing the weakest precondition for the add. Our sys-
tem currently generates all the predicate transformers (such as hx add above)
automatically for each instruction from the step relation of each machine. The
program performing the translation is not part of the TCB; if there is a bug in
it then we will simply fail to prove preservation.

In proving preservation we will have to prove a statement very similar to
that in equation 2 for each instruction in our program (but see section 5.2).
Such statements can be proved once and for all as lemmas and applied each
time the corresponding instruction is encountered. The extensive use of such
lemmas will have a profound effect on the size of our safety proofs. We have
currently proven such lemmas for all the instructions of the toy machine by
hand. It is our intention to generate them and their proofs automatically from
the step relation of each machine.

8 Consider for example the program (r2 := r1 + r1; r3 := r2 + r2; r4 := r3 + r3) with
postcondition Q(r4). Its weakest precondition is Q(((r1 + r1) + (r1 + r1)) + ((r1 +
r1) + (r1 + r1))). The size of the argument to Q grows by a factor of two for each
assignment.

14

5.2 Domain Specific Proofs

Precondition strengthening (shown below) is another rule of Hoare logic.

P ′ → P P {S}Q
P ′ {S}Q (3)

It states that if P {S}Q then one may replace P by a stronger predicate. This
scenario occurs when we deal with program loops, as we explain next. Safety
proofs for programs with loops require the use of loop invariants. Construction
of loop invariants is not computable in general, so our theorem prover requires
hints in the form of typing judgments at every location that is the target of
a backward jump. At such locations though, our invariant-generator would
have computed a local invariant In (this is the weakest precondition of the in-
struction – see subsection 5.1). We wish to replace In by Hn (the typing hint
at that location) as the precondition of that instruction, but in order to be able
to do that we must establish that Hn → In. After that, a lemma application
similar to rule 3 allows us to conclude Hn{S}Q. We are building a tactical the-
orem prover that understands the structure of types and is able to produce such
proofs. The “linear size of proofs” discussed in this paper excludes the size of the
strengthening proofs. These are not necessarily large but a description of their
structure is beyond the scope of this paper.

5.3 Decode Proof-Generation

Proofs involving the decode relation can be hard to generate since the def-
inition itself is quite involved. Our decode-prover (see figure 2) is a Twelf
logic program that analyzes the machine-code stream and not only discovers
which instruction each integer represents but also produces a proof of this fact.
More concretely, if integer n represents instruction i, we get a proof of state-
ment instruction(n, i) from which a proof of decode(m,w, i, s) follows triv-
ially (given a proof that n = m(w)). The decode-prover for the toy machine
is about 600 lines of Twelf, currently hand written. We plan to generate the
decode-prover itself from the SLED specification of each machine. Note that
the decode-prover is not part of the TCB; any bug in it will simply produce
an invariant from which it will be impossible to show preservation.

6 Related Work

There has been a large amount of work in the area of proofs of machine language
programs using both first order [14] and higher order logics [15][16]. Some of this
work was focused on proving the correctness of the compiler or the code generator
(see for instance [13]). For a historical survey see Calvert [18]. The practice of
proving the Hoare rules as lemmas (see subsection 5.1 and 5.2) in an underlying
logic is widespread among the program-verification community [15][16][17].

15

Two pieces of work are most related to ours: Wahab [15] is concerned with
correctness (not just safety) of assembly language programs. He defines a flow-
graph language expressive enough to describe sequential machine code programs
(he deals with the Alpha AXP processor). Substitution is a primitive operator
and the logic contains rules detailing term equality under substitution. He proves
the Hoare-logic rules as theorems and uses abstraction in order to massage the
code stream and get shorter correctness proofs. The translation from machine
code to the flow-graph language does not go through a “decode” relation. Also
the use of substitution as a primitive makes this approach unsuitable for our
purposes since it complicates the TCB.

Boyer and Yu [14] formally specify a subset of the MC68020 microprocessor
within the logic of the Boyer-Moore Theorem Prover [19], a quantifier-free first
order logic with equality. Their specification of the step relation is similar to ours
(they also include a decode relation) but in their approach these relations are
functions. The theorem prover they use allows them to “run” the step function
on concrete data (i.e. once the step function is specified they automatically have
a simulator for the CPU). Their logic, albeit first-order, appears to be larger
than ours mainly because of its wealth of arithmetic operators (decoding can be
done directly from the specification). Also their machine descriptions are larger
than ours; the subset of the 68020 machine description is about 128K bytes while
our description of the Sparc is less than half that size. Admittedly, the Motorola
chip is much more complex than the Sparc, but we suspect that most of the
size difference is attributed to our extensive use of factoring facilitated by higher
order logic.

7 Conclusion and Future Work

We have shown how higher-order logic can be used to succinctly describe the
syntax and semantics of machine instructions, in a manner that preserves the
natural factoring of each architecture. Our step relation formally captures the
notion of a single instruction execution. It consists mainly of two pieces: (1) the
decode relation that specifies the syntax of machine instructions, and (2) ax-
ioms describing the semantics of each instruction by predicates mapping machine
states to machine states. The decode relation is generated automatically from
existing compiler tools. Large parts of the safety proof involving decode can
be generated completely automatically. We explained how to build Hoare-logic
predicate transformers from our step relation in order to simplify the construc-
tion of the global invariant, and how lemmas can be used to minimize the size
of safety proofs involving this invariant. The system is implemented in Twelf [4]
and all theorems have been mechanically checked.

We are building a PCC system that will be used to generate safety proofs for
many different architectures. Building all the pieces of figure 2 for each machine
would be a daunting and unrewarding task. We instead intend to generate most
of the prover components shown in figure 2 completely automatically. Since the
decode-prover is in essence a machine-code disassembler, we intend to gener-

16

ate it directly from the decode relation of each machine or alternatively from
each machine’s SLED specification. Note that the decode-prover not only dis-
assembles but also builds proofs involving decode. The invariant-generator
is again machine-instruction dependent and can also be generated directly from
decode (we already generate the predicate transformers expressing the weakest
precondition for each instruction automatically from step). It is our intention
to automatically generate the Hoare-logic lemmas (of subsection 5.1) along with
their proofs from step since there will be a large number of them and their
proofs tend to be rather long. The proof of preservation (see figure 3) requires
an inversion lemma for decode. We have not proved this lemma for any machine
yet, but we expect the proof to be mundane and long (linear in the size of the
instruction set). Our plan is to generate these proofs from decode. Finally we are
working on a tactical theorem prover that will fill in parts of the proofs involving
compiler inserted invariants at locations of backward branches (see subsection
5.2).

References

1. George Necula. Proof Carrying Code. In The 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 106-119, New York, Jan-
uary 1997. ACM Press.

2. George Ciprian Necula. Compiling with Proofs. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, September 1998.

3. Frank Pfenning. Logic Programming in the LF logical framework. In Gérard and
Gordon Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge University
Press, 1991.

4. Frank Pfenning and Carsten Schürmann. System description: Twelf - a meta-logical
framework for deductive systems. In the 16th International Conference on Auto-
mated Deduction. Springer-Verlag, July 1999.

5. Andrew Appel and Amy Felty. A Semantic Model For Types and Machine Instruc-
tions for Proof-Carrying Code. In the 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’00), January 2000.

6. R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient software-based fault
isolation. In Proc. 14th ACM Symposium on Operating System Principles, pages
203-216, New York, 1993. ACM Press.

7. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison
Wesley, 1997.

8. Norman Ramsey, Mary Fernandez. The New Jersey Machine-Code Toolkit. In Pro-
ceedings of the 1995 USENIX Technical Conference, pages 289-302, New Orleans,
LA, Han. 1995.

9. Norman Ramsey, Mary Fernandez. Specifying Representations of Machine Instruc-
tions. In ACM Transactions on Programming Languages and Systems, pages 492-
524 Vol. 19, No. 3, May 1997.

10. SPARC International, Inc. The SPARC Architecture Manual v. 8, Prentice-Hall,
Inc. 1992.

11. Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and Computation, 76(2/3), pages 95-120, February/March 1988.

17

12. M. J. C. Gordon and T. F. Melham (editors). Introduction to HOL: A theorem
proving environment for higher order logic, Cambridge University Press, 1993.

13. R. Milner and R. Weyhrauch. Proving Compiler Correctness in a Mechanized Logic.
In Machine Intelligence, 7:51-70, 1972.

14. Robert S. Boyer and Yuan Yu. Automated Correctness Proofs of Machine Code
Programs for a Commercial Microprocessor. In the 11th International Conference
of Automated Deduction, pages 416-430. Springer-Verlag, 1992.

15. M. Wahab. Verification and Abstraction of Flow-Graph Programs with Pointers
and Computed Jumps. Technical Report, University of Warwick, Coventry, UK.

16. M. Gordon. A Mechanized Hoare Logic of State Transitions. In A Classical Mind:
Essays in Honour of C. A. R. Hoare, pages 143-159. Edited by A. W. Roscoe
(Prentice-Hall, 1994).

17. M. Gordon. Mechanizing Programming Logics in Higher Order Logic. In Current
Trends in Hardware Verification and Automated Theorem Proving, pages 387-439.
Edited by G. Birtwistle and P. A. Subrahmanyam (Springer-Verlag, 1989).

18. David William John Stringer-Calvert. Mechanical Verification of Compiler Cor-
rectness. Ph.D. thesis, University of York, 1998.

19. Robert S. Boyer and J Strother Moore. A Computational Logic Handbook. Aca-
demic Press 1988.

18

