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Abstract

A scalable, high-resolution display may be constructed by
tiling many projected images over a single display surface.
One fundamental challenge for such a display is to avoid
visible seams due to both misalignment and variations in
color balance among the projectors. Traditional methods for
avoiding seams involve sophisticated mechanical devices and
expensive CRT projectors, coupled with extensive human
e�ort for �ne-tuning the projectors. This paper describes
three methods that facilitate seamless imaging on a multi-
projector display: automatic alignment, automatic color
balance, and optical blending. These methods rely on an
inexpensive, uncalibrated camera to measure the relative
mismatches between neighboring projectors, and then cor-
rect the projected imagery to avoid seams without signi�cant
human e�ort.

1 Introduction

Visualization of large data has become available and in-
dispensable due to rapid advances in computer technology.
While the cost-performance ratio for many key enabling
technologies has been improving at or beyond the rate
predicted by Moore's Law, display resolution { a key aspect
of an e�ective information system { is lagging far behind.
Monitors are still the dominant display technology through
which people visualize information. Their resolutions have
been increasing at a mere 5% annual rate for the last two
decades.

One strategy for overcoming limited resolution is to tile
multiple projectors over a single display surface. Several
commercial vendors and research labs [9] have employed
this approach to build small-scale multi-projector displays
using 3 or 4 projectors. However, most previous systems are
not scalable and cannot employ many projectors to achieve
tens of millions of pixels. The two dominant limitations
are: (1) the use of expensive high-end computer systems
to drive the projectors, and (2) manual alignment and
color balancing among multiple projectors. The Scalable

DisplayWall Project at Princeton University investigates
research issues in building a scalable Display Wall systems
out of commodity projectors and clusters of PCs [1]. Our
clustering approach can in principle scale to drive a multi-
projector Display Wallwith scores of projectors and up to
hundreds of millions of pixels.

The two key challenging problems in building such a
scalable display wall are achieving pixel-level image align-
ment across overlapped regions and color uniformity across
projectors.

A multi-projector display might in principle be perfectly
aligned by manual means just once, but in practice physical
realities (vibration, lamp-changing, and so on) mean that
re-alignment is frequently needed. In addition, manually
�ne-tuning projector mounts to achieve good alignment is a
time-consuming task that requires both skill and experience.
It also requires the use of either sophisticated mechanical
positioning devices or projection geometry adjustment found
only on expensive CRT projectors. The high cost of the
manual approach can hinder wide deployment of high-
resolution multi-projector displays.

Similarly, due to small variations in lamp ages, optical
paths, and imaging devices (LCD and DMD), the color
temperatures vary, often noticeably, across projectors. In
the past color-balancing multiple projectors was also done
by hand, using sophisticated color tuning mechanism such
as found on high-end CRT projectors and requiring trained
human experts. Color-matching two or three projectors
could be manageable, though already time-consuming. Do-
ing so on a large projection array with tens of projectors is
a daunting, if not impossible task.

We have developed automatic alignment and color-
balancing method that use an uncalibrated camera to de-
termine the amount of misalignment and color imbalance
amongst the projectors. Our algorithm then computes
appropriate digital compensation for each projector in both
geometry and color spaces to counter the e�ect of actual
physical misalignment and color imbalance. The digital
compensation, in the form of pre-distortion and color-
adjustment, is applied to each image tile before it is sent
to the projector so that when the �nal image displayed by
all projectors is perfectly aligned and color consistent.

Our algorithm introduces a novel technique of taking
only relative measurements such as point and line relation-
ships between adjacent projectors, as opposed to absolute
measurements such as measurement against a physical grid,
or a well-calibrated camera, or an expensive colorimeter.



The bene�ts are threefold. First, our algorithm obviates
completely the need for human involvement in setting up
the absolute measurement environment; all that is required
is to place the camera(s) in front the Display Wall. Second,
our algorithm allows the camera to zoom arbitrarily close to
the display area of interest to obtain the measurements with
�nest accuracy, thus overcoming the huge resolution gap
between cameras and a large-scale Display Wall. Third, the
measurements in our algorithm only require the camera �eld
of view (FOV) to be linear in some cases. This requirement
can be easily met by zooming the camera close and using
only its center FOV. Due to these three advantages, our
algorithm can align and color-balance multi-projector high-
resolution displays with little or no human involvement
and at a low cost. We only require the coarsest physical
alignment of the projectors and placement the camera(s) in
front of the display wall.

In addition to these computational methods, we also
developed an optical edge-blending technique that can create
a smooth luminance transition between adjacent projectors.
The traditional method to edge-blend images is to digitally
alter the image source. This approach has problems with
commodity projectors which leak substantial amount of
light even when they are supposed to display a pitch black
image. The result is a distinct gray stripe in the overlapped
region when the projectors project black. Our optical edge-
blending method operates directly on the light emitted by
the projector. It does not su�er from the same problem that
a digital blending method does.

The rest of the paper describes the details and imple-
mentation results of our automatic alignment and color-
balancing algorithm as well as our optical edge-blending
technique.

2 Related Work

Multi-projector displays have been around for at least a
decade [9]. Previous systems typically employed expensive
CRT projectors, because they o�er sophisticated mecha-
nisms to adjust the image distortion and color balance.
These systems required manual adjustments on each CRT to
align projectors. Recent interest in bringing high-resolution
displays to oÆces and entertainment arenas have motivated
several research projects to address the seamlessness is-
sue [15, 5]. The algorithms developed employ a common
two-stage process: camera calibration and geometric regis-
tration. The �rst stage calibrates one or more �xed cameras
according to a �xed global coordinate system (either 2-
dimensional or 3-dimensional). The calibrated cameras are
used as precision measurement instruments to map pixels
from each projector to the global coordinate system.

Surati and Knight developed a vision-based algorithm
to register pixels from a multi-projector array in a pre-
established global screen coordinate system [15]. Their
method consists of two stages. During the �rst stage, a
camera is calibrated against a precision grid aÆxed to the
display surface. The grid is physically drawn by a high-
precision plotter. It helps the vision software establish
a mapping between pixels in the camera �eld and the
physical points on the display surface. In the second stage,
each projector projects a regular grid onto the display
surface. A computer vision algorithm acurately locates each
projected grid point in the camera's �eld of view. Using the
camera-to-display-surface mapping established previously,

the projected grid point (or a pixel in the projector) is
mapped to a physical point on the display surface with high
precision. This method works pretty well for a small-scale
display wall. Its drawback is the reliance on calibrating the
camera using an absolute measurement grid. For a large
display wall, it is problematic whether one can generate a
physical or project a virtual measurement grid that is large
enough but still have �ne precision.

Raskar et al. attempted to solve a general case in
which the display surface can be arbitrarily complex, for
example, the corner of a wall, or a curved screen [5].
This requires registration of the 3D surface geometry of
the screen surface as well as registration of the projected
pixels on the screen surface. Their algorithm uses known
3D objects such as painted boxes to calibrate the extrinsic
and intrinsic parameters for a set of �xed cameras. Two
calibrated cameras that overlap in their �elds of view can
observe the same mesh pattern displayed by a projector.
The observations from both cameras are correlated using
the stereo vision technique to derive the exact location
of a projected pixel on the display surface. The location
information is in the 3-dimensional space and therefore also
reveals the surface contour of the screen. The drawback of
this approach is again the requirement of camera calibration.

Rencently Majumder et al studied the problem of color-
matching a multi-projector display [8]. Their approach is
very similar to ours. The luminance of the projectors are
�rst matched using a precision color-spectrometer. Then the
luminance of each color channel is matched separately, again
with a precision color-spectrometer. They demonstrated
good color matching between two commodity projectors.
The key component of their method is an expensive color-
spectrometer, which gives very accurent measurements.
Operating the spectrometer is also time-consuming, as it
is generally not designed for large-scale automatic data
gathering.

Previous systems of seamless multi-projector displays
employed what is known as \edge blending" to reduce
the perceptual seams between projectors. In this method,
adjacent projectors are overlapped by some amount, say,
10 %. The image intensity in the overlapped region is
brought down gradually to zero, so that the combined image
intensity is a smooth curve that can bridge two projectors
with di�erent color characteristis without sharp transitions.
Edge-blending is typically done digitally by altering the
image source either at the video signal level or in the
raw image themselves [9, 14, 15]. This approach cannot
easily deal with light leakage problem found on commodity
projectors without reducing the e�ective contrast ratio of
the display wall [15].

Our research is di�erent from previous work in two
ways. First, we use uncalibrated cameras to minimize
the amount of human involvement and equipment required
in the projector calibration process. Reliance on camera
calibration implies that the cameras themselves must be
�xed and cannot pan and zoom during measurement, for
otherwise camera parameters will have to calibrated con-
tinously. Camera calibration also requires either human
involvement and non-trivial equipment such as �ne-plotted
grid and regular 3D objects. Second, we devised an optical
edge-blending technique to bypass the light-leakage problem
with commodity projectors. Optical edge blending yields
reasonably good results. We are experimenting digital tun-
ing method using the feedbacks from uncalibrated cameras
to further �ne-tune the result of optical edge blending. This



would allow us to achieve near optimal edge-blending for
projectors that have the light energy leaking problem when
their video signals are at the lowest level.

3 The Automatic Alignment Algorithm

The basic idea of our algorithm is to use the camera to
\observe" geometric relations between adjacent projectors in
the alignment measurement process. Relations thus obtained
serve as constraints in the alignment computation process,
which employs a multi-dimensional global minimization
technique to deduce a good set of correction functions,
one for each projector, that satis�es these constraints. A
schematic of our alignment system is depicted in Figure 1.
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Figure 1: Camera-based Alignment Data Collection

Our alignment algorithm uses two types of inter-
projector relations: the point match and the line match.
A point match simply states that a pixel (x; y) from one
projector locates at the same spot on the display surface
as another pixel (x0; y0) from an adjacent projector. Note
here that we use the fact that adjacent projectors overlap
by a small amount. The rationale for using point matches is
simple: if there are a lot of point matches between any pair
of adjacent projectors, the result of alignment computation
will yield a set of projection functions that will maintain C0

continuity across projectors. However, the point matches
alone are not suÆcient to constrain the system. This is
particularly so when the projectors overlap only a small
portion of their screens in a typical display wall system. The
line match provides further shape constraints, especially C1

continuity across the projectors. It basically means that a
projected line from one projector is co-linear with another
line from the neighboring projector.

The point and line matches act very much like the
constraints in a rigid-body system. Line matching is like
putting \struts" to keep components of a system from
arbitrary deformation. We hope that by observing many
such relations for a grid of projectors, there may just be just

enough constraints so that we can �gure out relative position
and orientation for each projector.

3.1 Automatic measurement

Obtaining the line and point matches can be fully automated
by using a camera controlled by a computer. Figure 2
contains a brief sketch of the measurement algorithm to
obtain a point match between point P from projector A and
a point Q from projector B.

1. display black on all projectors
2. pan the camera to roughly center its FOV on pixel P
3. display a cross centered at P on projector A
4. measure P's location L in the camera
5. take a guess of a pixel Q in projector B
6. loop
7. display a cross center at Q on projector B
8. measure Q's location L' in the camera
9. if kL; L0k > �
10. modify Q accordingly
11. else
12. return (P, Q)

Figure 2: pseudo-code for obtaining a point match

The line-matching algorithm works in similar fashion. As
a simpli�cation, we insert a point match so that the inner
ends of the two line segments occupy the same spot on the
display surface. To be more speci�c, the �rst line segment
is displayed from pixel P1A to pixel P2A by projector A;
the second line segment from P1B to P2B by projector B.
The two line segments are said to be matched when (a) the
have the same slope in the camera's �eld of view, and (b)
(P2A, P1B) is a point match. The pseudo-code for obtaining
a line match is sketched in Figure 3.

1. display black on all projectors
2. roughly center the camera's FOV on pixel P2A
3. obtain a point match (P2A; P1B)
4. measure line slope k of P1AP2A in camera space
5. take a guess of a pixel P2B in projector B
6. loop
7. measure line slope k0 of P1BP2B
9. if 6 k; k0 > �
10. modify P2B accordingly
11. else
12. return (P1A; P2A; P1B ; P2B)

Figure 3: pseudo-code for obtaining a line match

The bene�t of relying only on line and point matches is
that all the measurements taken are relative. Therefore the
cameras need not be calibrated. Furthermore, when taking
point matches, our algorithm can tolerate any kind of camera
distortion, as long as the camera remains steady during a
point match. For obtaining a line match, we only require
that the the camera �eld of view be linear. This assumption
can be easily met by using only the central area of a camera
or, by centering the camera FOV on the adjoining ends of
the line segment as we currently do. The latter approach can
deal with a camera's radial distortion, because a straight line
passing through the center of a camera FOV is not bent by
radial distortion.



By using only relative measurements, we also circumvent
the resolution limitation of an o�-the-shelf camera. The
problem lies in the fact that the resolution of a camera is
much smaller than that of a high-resolution display wall.
Simply using a single camera to capture the entire display
surface at once won't yield enough measurement accuracy
to guarantee pixel-level alignment. One can use multiple
cameras, each observing a small portion of the display
surface, or pan one camera across the display in great detail.
Both approaches would require stitching together many
pieces of local information to yield a globally consistent
picture. Our algorithm can employ either approach. It
has complete freedom to zoom the camera to obtain point
and line matches with highest accuracy possible, and not
worrying about change of camera parameters during the
zoom and pan motions.

3.2 Alignment computation

We treat the problem of �guring out a set of projection
functions as a global minimization problem with constraints
derived from point and line matches. Note that we assume
that projectors are already roughly aligned. It is straightfor-
ward to obtain an initial guess for each projector's position
shifts, horizontal and vertical, based on the point match
data. Based on our assumption of coarse alignment, the
guess won't be too far from the actual projection functions.
Therefore we already have a good starting point that is very
close to the globally optimal solution for our problem.

3.2.1 A mathematical framework

As the �rst step, we formulate the projection from multi-
ple projectors in mathematical terms. Projection can be
thought of as a mapping between pixels in projector space
(x; y) and the illuminated dots (u; v) on the global display
space. This mapping, or the projection function, is normally
accomplished using a lens system. 1 Figure 4 is a conceptual
diagram of a typical lens system. The input signal from a
computer or video source is converted to illuminated pixel
on the imaging device, for example, LCD or DMD; light rays
emanating through or re
ected from the pixel travel through
the lens system and converge on the illuminated dot on the
screen.

(x, y)

(u, v)

(0, 0)

lens

projector space

display space

Figure 4: Conceptual diagram of a projection system

1The algorithm presented in this paper could in principle be
applied to curved display surfaces as well. In that case, a 2D
parametric coordinate system should be used for the display space.

A projection function can be generally decomposed into
two parts, the projective transformation P and the non-
linear distortion D 2

(u; v) = (Du(Pu(x; y); Pv(x; y));Dv(Pu(x; y); Pv(x; y)))

Our current experiments deal with only the projective
functions. But the method we employ should be extensible
to deal with non-linear distortions as well.

The projective transformation can be expressed by a 3x3
matrix using 8 free parameters (mij); i = 1::3; j = 1::3 [2]:

Pu(x; y) =
m11 � x+m12 � y +m13

m31 � x+m32 � y + 1

Pv(x; y) =
m21 � x+m22 � y +m23

m31 � x+m32 � y + 1
(1)

The radial distortion with respect to an optical center
(cx; cy) and a distortion parameter � is given as

Du(u; v) = u+ � � (u� cu) � d
2

Dv(u; v) = v + � � (v � cv) � d
2

where;

d =
p
(u� cu)2 + (v � cv)2

(u; v) = (Pu(x; y); Pv(x; y))

(cu; cv) = (Pu(cx; cy); Pv(cx; cy)) (2)

3.2.2 Match constraints

The constraints for the global minimization problems are
produced as follows, assuming (P i

u; P
i
v) is the projection

function for projector i. Each point match between a pixel
p1 = (x1; y1) from projector 1 and a pixel p2 = (x2; y2) from
projector 2 results in a Euclidean distance error Ep on the
display surface:

Ep(p1; p2) = (u1 � u2)
2 + (v1 � v2)

2 (3)

where (ui; vi) = (P i
u(xi; yi); P

i
v(xi; yi))

Each line match between two line segments li = p11; p12 and
li = p21; p22 produces a point-match error and an error based
on the angle between two line segments:

El(l1; l2) = max(Ep(p12; p21); (6 p11p12; p21p22)
2)

Note that the error term (6 p11p12; p21p22)
2) is also computed

in the global display space. The goal is to minimize the
maximum of the errors over all line and point matches:

E = max(Ep
max; E

l
max) (4)

3.2.3 Simulated annealing

We now have a well-de�ned multi-dimensional minimization
problem. Global minimization over a large number of
continuous variables has been studied for decades. Although
scientists have not found a general, one-cure-all solution,
several e�ective methods do exist. We chose simulated
annealing [7, 11] as the minimization method to solve the
alignment computation problem.

2This equation is only an approximation to an actual projection
device. It ignores the several distortion e�ects such as color disper-
sion, while assuming that light rays coming from a single point on the
image plane are focused on the same point on the screen.



Simulated Annealing is a generalization of a Monte Carlo
method for examining the equations of state and frozen
states of n-body systems [10]. It mimics the manner in
which metals recrystallize in the process of annealing: a
melt, initially at high temperature and disordered, goes
through a gradual cooling process. The system at any time
is approximately in thermodynamic equilibrium. As cooling
proceeds, the system becomes more ordered and approaches
a \frozen" ground state at the temperature of zero. The
initial temperature of the system must be reasonably high
and the cooling process suÆciently gradual so that the
system won't become quenched forming defects or freezing
out in meta-stable states (i.e. trapped in a local minimum
energy state).

The simulated annealing technique have seen successful
uses in many scienti�c computations with hundreds and even
thousands of continuous variables. Among several publicly
available implementations, we chose the one provided by
Numerical Recipes in C [11]. We wrote our own state
evaluation function that calculates the energy for a given
con�guration of the projection functions. The energy is the
error function that we just described in Equation 4. Figure 5
gives a sketch of the alignment computation using simulated
annealing.

1. guess an initial set of projection functions
based on the measurements

2. set initial temperature T = T0
3. set total number of annealing steps at N
4. evaluate an energy E for current con�guration
5. step = 0
6. loop until step = N
7. choose a random perturbation of

the projection functions
8. calculate the new energy E0

9. �E = E0 �E

10. accept the change with probability e��E=kT

11. T = T0 � (1�
step
N

)2

12. step = step+ 1
13.done: return the projection functions

Figure 5: Alignment computation using simulated annealing

The simulated-annealing computation requires represent-
ing each projection functions using a vector of continuous
variables. We discovered during our initial trials that an
arbitrary projective transformation matrix may not correctly
describe a realistic projection device. The reason is that a
projective matrix allows shear deformation that an actual
projector cannot produce. Therefore any attempt to cal-
culate the projective matrices directly may yield projection
mappings that do not correspond to reality. One way around
this problem is to �gure out a projector's extrinsic and
intrinsic parameters which can then be used to derive the
projective matrix. We model a projector with 9 parameters,
X, Y, Z positions of the projector, its rotations along the
three axises, its focal length, and its optical center (cx; cy).
From these parameters, we can uniquely derive a projective
function [2].

Given N projectors in the display wall system, alignment
computation amounts of minimizing the error expression 4
over either 9N continuous variables (or 10N if radial dis-
tortion is also included). The total degree of freedom in
this problem is quite reasonable. The results of automatic

alignment will be presented in Section 6.2.1 and on Color
Plate 1.

3.3 Computational re-alignment

Knowing the mapping function for a projector, we can apply
it to \correct" the image displayed by that projector. This
amounts to a re-sampling the image: given a projector's
mapping function (Pu; Pv), and an image source Is(u; v) =
(r; g; b), we obtain the intensity value Ip for a particular pixel
(x; y) using the formula

Ip(x; y) = Is(Pu(x; y); Pv(x; y)) (5)

Care must be taken while sampling the source image.
The image source is a discrete function, so is the projector.
In practice, one pixel in the image source is rarely mapped
exactly onto a pixel in the projector. If we simply pick one
pixel in the image source for each projector's pixel, notice-
able artifacts of a certain kind of \aliasing" will appear [6].
This is a well-known phenomenon that occurs re-sampling a
discretized signal. There is, however, a simple and e�ective
solution for anti-aliasing an image. A convolution kernel
can be used to \smooth" out the blockiness by averaging
neighboring pixels. In general, the bigger the convolution
kernel, the better the result. In practice, a 3x3 kernel, or
a bi-cubic sampling, is often suÆcient. Sampling can be
performed by the CPU. There also exist eÆcient ways to
sample an image using a projective transform. Raskar et
al described a method using the texture-mapping hardware
found on many graphics accelerators [13, 12].

3.4 Discussion

Our algorithm o�ers several advantages over other algo-
rithms reported recently. First, we obtain misalignment
information using an uncalibrated camera that observe
the point and line patterns on the projectors. No human
involvement is required to take misalignment measurement
other than placing the camera(s) in front of the display
wall. Second, since all the measurements that we take are
local and relative measurements, accurate measurements can
be easily obtained by zooming in the camera close to the
target. This allows us to always use the center �eld in the
camera for measurements, obviating the need to correct for
the camera's non-linear distortion. Our algorithm is free to
do this because it does not depend on camera calibration.
We are thus able to use a low-resolution camera to calibrate
a very high-resolution display wall.

The drawback of our approach is that we rely on a
global minimization technique that does not guarantee to
give a satisfactory answer. Although this situation has not
occurred in our experiments, we will look for a determin-
istic and more eÆcient method to calculate the projection
functions.

4 The Color Balancing Algorithm

The color characteristics of a projector depends on many
factors, the most signi�cant of which is the color temperature
of the lamp. As the lamp ages, its energy distribution
over the spectrum slowly changes, and it is very diÆcult
to bring the lamp temperatures among many projectors into
agreement. Thus, w1hen we display a single image tiled
across many projectors, the colors of di�erent regions of the



image don't match. To address this problem, we perform
digital color correction on the image source before it is sent
to the projectors for display.

We can break down the color balance problem into
two sub-problems: color uniformity and color conformity.
Color uniformity means that all projectors have nearly the
same color characteristics. Color conformity means that
the projector's color spectrum conforms to a standard color
spectrum such as speci�ed by the international standards
CIE�XY Z. In this paper, we tackle the �rst sub-problem,
color uniformity, because lack of color uniformity among
the projectors has the most signi�cant visual impact on the
quality of the image.

Our strategy is to map an (r; g; b) triple in an image
to another triple (r0; g0; b0), for each projector. In general,
given 8 bits for each color channel, this requires mapping
each of 224 color values into another 24-bit value. However,
we decouple the problem into the separate color channels,
so we treat each channel as a one-dimensional (luminance)
matching problem.

4.1 Luminance measurement

We use a single camera to measure the luminance curve
on each projector. We �x the camera's shutter speed and
exposure time so that the same luminance on di�erent
projectors induces the same reading in the camera. Figure 6
depicts the measurement process to obtain the luminance
curve for each projector, at a set of samples. Next we apply
quadratic interpolation to obtain the luminance response
curve for the entire input range [0::255] while smoothing out
sampling noise.

1. display black on the projector
2. focus camera FOV on the projector center
3. for each pure color channel (R, G, B) :
4. input x = x0
5. while x <= 255 :
6. display a pure color block x
7. measure luminance y(x)
8. x = x+ delta
10. return the observation data

Figure 6: pseudo-code for obtaining RGB luminance curves

4.2 Luminance matching

Given the measured luminance curves for a single color
channel on all projectors, we can �nd a \common" curve
that is within the luminance range on all projectors. More
speci�cally, given luminance curves y = Li(x); i = 1::N for
the N projectors, we calculate the common curve LL as
follows:

LL(x) =
x

255
� min(Li(x); i = 1::N)

+
255� x

255
� max(Li(x); i = 1::N) (6)

The rationale behind the changing weight between the
minimum and maximum luminance curve is that at the
lowest luminance end, it is possible to adjust all projectors
to match the brightest projector, and at the highest end,
adjust all projectors to match the dimmest projector.

After deriving a common luminance, we establish a
correction function for each color channel on each projector.
The correction function is essentially a lookup table T with
256 entries:

Tr(x) = L�1r (LLr(x))

Tg(x) = L�1g (LLg(x))

Tb(x) = L�1b (LLb(x))

(7)

For a given (r; g; b) triple, we will get the same color on all
projectors if they each display instead the translated triple
(Tr(r); Tr(g); Tr(b)).

Digital color correction involves substituting RGB triples
in an image with their corrected values from the lookup
table. This lookup can be done eÆciently if the projector
hardware or graphics card supports a separate lookup table
(or gamma correction table) for each color channel. We will
show the results of our automatic color-balancing algorithm
in Section 6.2.2.

5 Optical Edge Blending

In the regions where two (or four) projectors overlap, the
screen emits light accumulated from both (all) projectors.
Thus, even if the projectors were perfectly aligned, the
image is too bright in these regions. A simple strategy
for addressing this problem is to use edge blending, wherein
the contribution of each projector gradually falls o� across
the overlap region such that their total light contribution
is approximately correct for the given image. For example
in Figure 7 the region AB would be bright if each projector
contributed the full luminance; thus, our goal is for projector
1 to have full contribution at point B and zero contribution
at point A (and vice-versa for projector 2) with smooth
transitions in-between. The combined luminance resulting
from edge-blending is a smooth curve that adjoins the two
projectors together, even when they have slightly di�erent
luminance level.

The traditional method for edge-blending projection
devices is to alter the video signal or the image intensity
according to the blending curve. Unfortunately, it does
not work for commodity LCD projectors, which have a fair
amount of light leakage. When the projector is supposed
to display RGB (0, 0, 0), some amount of light is leaked
through the LCD chip to the screen, so that the overlapped
region between two projectors is twice as \bright" as the
non-overlapped region. It is not possible for the traditional
edge-blending technique to remove this gray band, because
the signal for RGB (0, 0, 0) cannot be reduced any further.
This problem exists not only for a pitch black image, but
also for RGB inputs in the low-luminance range.

We developed the optical edge blending that operates
directly on the light output from the projectors, hence
bypassing the light leakage problem. The method is based
on aperture modulation. It is well-known that placing an
opaque object between the lens and the screen can create
a gradient shadow. Figure 7 illustrates the idea of optical-
blending two projectors. A blend frame is placed in the free
space between the lens and the screen. For a point A on
the screen, all the light from the exit pupil of the projector
1 is blocked by the blend frame. Hence the luminance
contribution from projector 1 is zero. At the point B, all
the light from projector 1 passes unhindered to the screen.
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Figure 7: The conceptual diagram of optical blending

For points between A and B, the percentage of light from
projector 1 that gets focused on the screen is a gradual curve
from 0 to 100 %. Hence the name \aperture modulation."
Assume I(x; y) is the luminance distribution on the exit
pupil for a particular pixel, the general equation for the
blending curve isR R

visible pupil
I(x; y)dxdyR R

entire pupil
I(x; y)dxdy

(8)

This function can be calculated if the distribution I(x; y)
is known, or can be approximated by a constant or linear
function. In reality, the light distribution on the exit pupil
varies from pixel to pixel. The key point from Equation 8
is that the blending function is a smooth function. Fur-
thermore, one can easily prove, by means of Euclidean
geometry, that for image points aligned on the same vertical
(or horizontal) line in the projector's imaging space, the
unobstructed aperture is the same. This results in the same
blending factor for object points that lie on a vertical (or
horizontal) line.

6 Implementation and Results

We implemented our automatic alignment algorithm for a
2x4 multi-projector display wall. The following is a brief
description of the hardware and software components in our
setup.

6.1 Platform description

The display hardware includes Proxima 9200 LCD portable
projectors in a 2x4 matrix. Each projector is capable of
displaying true 1024x768 resolution. Adjacent projectors
overlap between 40 and 70 pixels. The total resolution of
the entire display surface is roughly 3800 pixels wide and
1500 pixels tall, spanning over an 18' by 8' black screen
made by Jenmar, inc. Each projector is attached on a
coarse-grain mechanical tables. The tables o�er full pose
adjustment with 6 degrees of freedom. They are normally
used for time-consuming manual alignment of the projectors.
But in our experiments, they provide us with an easy means
to \mis-align" the projectors with arbitrary rotations and
translations. Two projectors in a vertical column are placed
in an o�-the-shelf rack that costs roughly $100.

Each projector is driven by a 450 MHz Pentium-II PC
with an Intergraph graphics accelerator. The PCs are
interconnected by two networks: 100 Mb fast ethernet and

Myrinet. User-level Virtual-Memory-Mapped Communica-
tion over the Myrinet system-area network [4, 3] o�ers very
high-bandwidth and low-latency communication among the
PCs.

In front of the display wall, we set up a Canon VC-3 video
conferencing camera to measure the alignment patterns. The
VC-3 camera has motorized pan and tilt, and motorized
zoom and focus, all can be controlled through the serial port.
The camera is connected to a stand-alone PC via the serial
port for motion control. This PC also houses an Integral
Video Grabber card which digitizes each video frame from
the VC-3 camera into an array of RGB values in the PC's
physical memory.

6.2 Emperical results

As the basis for comparison, the �rst color plate shows
a picture of the displaywall without alignment and color
balance.

6.2.1 Computational alignment

number of annealing steps
1000 2000 5000 10000 50000

error (pixels) 1.32 1.24 1.15 1.23 1.09
time (mins) 1.2 2.4 4.0 8.7 43

Table 1: alignment computation time and accuracy (in pixels
and minutes)

We ran the alignment data collection algorithm for all
8 projectors. There are total 10 overlapped region. For
each overlapped region, we take 15 point match samples
and 6 line match samples, resulting in a total of 150 point
samples and 60 line samples. The data collection phase takes
roughly 33 minutes. A lot of the time is spent in panning
and tilting the camera to zoom onto a spot. The data
collection time can be reduced further by employing multiple
cameras, each responsible for a subarea of the display wall.
Since our alignment algorithm only collects local and relative
alignment information, there is no need to correlate data
collected from di�erent cameras. In other words, the data
collection phase can be trivially parallelized by using many
inexpensive cameras.

Obviously the accuracy of alignment computation de-
pends critically on the accuracy of the point and line
matches. Our alignment algorithm can in principle allow
arbitrarily accurate data gathering, simply because it uses
only relative geometric relationships among adjacent pro-
jectors. We can place or zoom a camera very close to the
display surface to increase the measurement de�nition. In
our experiments, we placed the Canon VC-3 camera at a
distance of 10 feet to the DisplayWall. At the camera's
highest zoom range, the image processing routine can easily
distinguish two adjacent pixels from a projector. Our current
point- and line-matching algorithm uses nearest-neighbor �t.
This means that the measurement error is at worst half a
pixel.

We then ran the simulated annealing algorithm on the
alignment data to derive the projection functions. Ta-
ble 6.2.1 shows the time and accuracy in the alignment com-
putation, as the total number of annealing steps increases.



Figure 8: Optical blending

The accuracy is expressed in terms of maximum error
between two points in a point match and the angle between
two lines in a line match (in degrees). The pixel-grain error
can be attributed to the error in the measurement. Due
to the nearest-neighbor �t in the point match, the worse
measurement error is half a pixel. In theory, this means our
�nal alignment computation should yield an error of that
magnitude. We are still investigating this problem. The
actual alignment result, shown in Figure 9 is quite good.

Figure 9: Aligning a grid: before and after pictures

The alignment computation time is spent mostly on
computing the error functions in the simulated annealing
algorithm. The time spent on each evaluation is proportional
to the amount of observation data. The total computation
time also depends on the number of steps in the annealing
process. The more steps taken, the more gradual the
annealing process is and usually the better the alignment

result. In practice, 5000 steps or 10000 steps are generally
suÆcient.

Color plate 1 shows the before and after pictures for
computationally aligning a map using 5000 steps in the
annealing process.

6.2.2 Color balancing and optical blending

We used a single camera to collect color luminance data for
each projector. Within the RGB range 0..256, we sample at
the increment of 5. It took roughly 14 minutes to collect the
data for all 8 projectors. The result of color balancing and
optical blending a map is shown in Color plate 2. Figure 8
shows our smoothly blended display wall with the optical
blending technique.

7 Conclusions

In this paper, we described our methods for aligning and
color-balancing a multi-projector display using computa-
tional and optical means. Our algorithms use an uncali-
brated camera to obtain misalignment and color imbalance
information. A computation process uses the data collected
to �gure out good correction functions to counter the e�ect
of physical misalignment and color imbalance. These cor-
rections are then applied to images themselves before they
are sent to the projectors. We implemented the automatic
alignment and color balancing algorithms for our 8-projector



display wall, with good results. We also devised an optical
edge blending method that can create smooth luminance
transitions between adjacent projectors. Unlike traditional
edge-blending technique, our optical method deals e�ectively
with the light leakage problem typically found on commodity
projectors.

Our alignment algorithm relies only relative measure-
ment that requires no camera calibration. It solves the
inherent tension between the relatively low resolution of
a camera and the very high resolution of a scalable dis-
play wall, by allowing the camera to freely zoom in on
a measurement target. The result is a highly accurate
computational alignment among projectors. In addition,
since no camera calibration is required, our algorithm can be
fully automated. Although our algorithm currently ignores
the radial distortion on a projector, the global minimization
technique can be applied to solving for radial distortion
parameters. We are currently do such experiments. There
is also a lot of room left to improve speed of alignment data
collection and alignment computation, as we haven't tried
to optimize these processes.

Our color-balancing algorithm balances multiple projec-
tor's color temperature using an inexpensive camera. It is
however, still at the preliminary stage. One of the problem
is the relative low accuracy of luminance measurement
on a commodity camera. We are currently working on
an iterative algorithm that will make this problem less
signi�cant in color balancing.

Although aperture modulation is a well-known technique
in the photography community, using it to edge-blend multi-
projector displays is new. Our experiments show that optical
edge blending works very well with commodity projectors.
We also developed a digital tuning technique to �ne-tune the
results of optical edge blending.

Besides improving the accuracy of our algorithms, we also
plan to integrate precise alignment and color balancing into
the graphics pipelines of existing displaywall applications
such as OpenGL, Virtual Display, High-De�nition MPEG
videos, and Multi-media playback [1].

A Proof of the 3x3 perspective representation

An ideal lens system is what is known as a pin-hole lens. In
such a lens system, the principle ray from the pixel source
(x; y) travels straight through a unique optical center, or the
pin hole, to its image point (u; v) on the screen.

We establish a global 3-dimensional coordinate system
(u, v, w) with its U-V plane co-incide with the display
surface. The W coordinate for a point on the display surface
is zero. A pixel (x; y) in the projector space can be expressed
in the global coordinate system as:

p

"
x0

y0

z0

#
=M 0 �

"
x� cx
y � cy
0

#
+

"
tx
ty
tz � f

#
(9)

where;M 0 = Rx �Ry �Rz � Sx � Sy (10)

Rx, Ry, and Rz are standard rotation matricies. Sx and Sy
are standard scaling matrices that convert the pixel units on
the image plane into proper units in the global coordinate
system SPACEs. We have separate scaling factors for X
and Y axises because the pixels on the image plane need not
be perfect squares. [tx; ty; tz]

T is the position of the optical
center in the global coordinate system. (cx; cy) is the center

of the projector space. It may not be the center of the LCD
or DMD chip if the projector provides key-stone correction.

According to the de�nition of an ideal lens system, the
three points, (x0; y0; z0), its image on the screen (u; v; w), and
the optical center (xo; yo; zo) are co-linear and hence satisfy
the following parametric line equation

u = xo + (x0 � xo) � �

v = yo + (y0 � yo) � �

w = zo + (z0 � zo) � �

Setting w to 0, we obtain an expression for � in terms of zo
and z0. Substituting � with this expression in the �rst two
equations gives us

u =
xo � z

0 � x � zo
z0 � zo

v =
yo � z

0 � y � zo
z0 � zo

(11)

According Equation 9, x', y', and z' are each represented by
an expression linear in x and y. Substituting x', y', and z'
result in something like

u =
m11 � x+m12 � y +m13

m31 � x+m32 � y +m33

v =
m21 � x+m22 � y +m23

m31 � x+m32 � y +m33

(12)

One can also show thatm33 is non-zero, because otherwise a
solution does not exist for pixel (0, 0). We can normalize the
matrix by dividing it with m33 without a�ecting the values
of u and v. This gives the projective transformation seen
Section 3. Note that our derivation takes into consideration
an image-generation plane that may tilt at an arbitrary angle
to the optical axis in the projector. Perfect alignment of the
image-generation with the optical axis is not possible due
both to manufacturing diÆculties and to the zoom motion
on some lenses.

B Perspective matrix calculation from basic parameters

The pose parameters are rotations, (rx, ry, rz), of the
projector around its optical center, translations of the optical
center, (tx, ty, tz), in the global coordinate system, the focal
length f , and the center of the projector space (cx, cy).
Given these parameters, one can write down a projective
matrix as follows:

m0
11 = tx � r31 � tz � r11 ; m0

12 = tx � r32 � tz � r12

m0
13 = tx � r33 � tz � r13) � f � (tx � r31 � tz � r11) � cx

� (tx � r32 � tz � r12) � cy

m0
21 = (ty � r31 � tz � r21 ; m0

22 = ty � r32 � tz � r22

m0
23 = (ty � r33 � tz � r23) � f � (ty � r31 � tz � r21) � cx

� (ty � r32 � tz � r22) � cy

m0
31 = r31 ; m0

32 = r32

m0
33 = r33 � f � r31 � cx � r32 � cy

mij = m0
ij=m

0
33 (13)

Where, rij is the element of a 3x3 rotational matrix R that
represents rotations rx, ry, and rz.



C Proof of the manual method

The following equations illustrate the calculations taken to
�gure out the matrix. Let us assume that (xi; yi); i = 1::4
represents the four measured locations for four pixels
(pix; p

i
y; i = 1::4). The unknown matrix is M ,

M =

"
m11 m12 m13

m21 m22 m23

m31 m32 1

#

u = x0=z0; v = y0=z0

Using equation [?], we establish 8 equations:

xi � (m31 � p
i
x +m32 � p

i
y + 1) = m11 � p

i
x +m12 � p

i
y +m13

yi � (m31 � p
i
x +m32 � p

i
y + 1) = m21 � p

i
x +m22 � p

i
y +m23

i = 1::4

This system of equations is linear inmij , and one can further
prove that it has a unique non-trivial solution. We thus
obtain M .
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Figure 10: Color Plates


