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Abstract
It is becoming increasingly common for routers to
compute on packets in addition to forwarding them,
thereby exposing the problem of how the router’s CPU
cycles are scheduled. To complicate matters, this
scheduling decision may be constrained by the de-
sire to differentiate the level of service given differ-
ent packet flows. This paper addresses the issue of
scheduling computations on a programmable router.
Its main contributions are to define a process archi-
tecture that allows computations to be scheduled in
a meaningful way, and to identify the key issues that
make this architecture difficult to implement in prac-
tice.

1 Introduction

Routers have always formed the backbone of the In-
ternet, but they have recently been asked to do more
than envisioned in their original design [4] and early
implementations [13]. For example, routers are be-
ing asked to differentiate the level of service given to
various classes of packets [5, 6], and they are being
engineered to achieve high performance through the
use of specialized hardware [12, 17]. A third trend is
to extend the set of functions that routers support be-
yond the traditional forwarding service. We see this
happening in several different arenas:

� Routers at the edge of the Internet are pro-
grammed to filter packets, translate addresses,
make level-n routing decisions, translate be-
tween different QoS reservations, thin data
streams, run proxy code, and support extensible
control functions.

� A new market in home routers is emerging,
where in addition to running firewall and NAT

code, the router is subsuming functionality that
cannot be supported on computationally-weak
consumer electronics devices.

� The distinction between routers and servers is
blurring as routers that sit in front of clusters
run application-specific code to determine how
to dispatch packets to the most appropriate node.

� In the limit, the active network research commu-
nity is designing an architecture that will allow
routers to run arbitrary code, thereby enabling
the deployment of application-specific virtual
networks.

This paper addresses a problem associated with the
trend to extend router functionality: how to schedule
computations on the router. Like any computing sys-
tem, a router must schedule its cycles in a meaningful
way. For example, it must decide when to apply its
cycles to forwarding a vanilla IP packet, as opposed
to using its cycles to re-write addresses, run a proxy,
process a control message, or execute a router exten-
sion. To complicate matters, we allow for the possibil-
ity that the router promises to forward certain packets
at some sustained bit rate, which clearly makes the is-
sue of scheduling a router’s CPU cycles more difficult.

Note that there are other issues with respect to pro-
grammable routers that this paper does not address.
Three are potential red herrings, and so are worth
mentioning. First, while there is significant debate
about who should be allowed to install a new func-
tion in a router—ranging from the router companies to
third party software vendors to end users—the impor-
tant point is that routers are being asked to compute
on packets (i.e., run code) in addition to switching
them. These computations must be scheduled. Sec-
ond, while a recent trend in router design is to im-
prove performance through the use of special-purpose



dedicated logic (e.g., ASIC technology), the fact re-
mains that any functionality not supported by the ded-
icated logic must be programmed on a reasonably
general-purpose processor, and this processor must be
scheduled. Third, we are using the term “router” in a
generic way to denote any system whose primary re-
sponsibility to is forward packets from one network
device to another. This does not imply that the fast
path through high-end routers at the core of the Inter-
net should be programmable.

Even though active/programmable/extensible
routers [1, 7, 15, 18, 20, 23] have received consid-
erable attention recently, it is certainly not fair to
say that conventional routers ignore the possibility
that there are multiple paths through the router,
some involving more computation than others. A
conventional commercial router may have as many
as half a dozen switching paths. Some Cisco routers,
for example, routinely use three paths: Cisco Express
Forwarding (the true fast path), Fast Switching (the
not quite so fast path) and Process Switching (the
slow path). Distributed router architectures increase
the number of paths, since some packets may be
processed centrally and some on line cards. What is
unique to the emerging situation is the diversity of the
computations being performed. On most commercial
routers, each path is carefully hand-tuned to forward
a packet within some predefined time frame, and
moving a function from one path to another is a non-
trivial endeavor, typically requiring several months of
testing and performance tuning. In other words, con-
ventional routers are vertically integrated, realtime,
embedded systems, where changes in the software
are extremely expensive. Such an environment is
stressed by the avalanche of new services people are
proposing to add to their routers, especially when
those services are added on the fly.

At the other end of the spectrum from embedded
systems, one could view a programmable router as no
different than a general-purpose computing system.
For example, a workstation running Unix is not an un-
common router implementation. The shortcoming of
this approach is that a general-purpose OS is not op-
timized to forward packets. One example that has al-
ready received attention is the fact that an I/O-bound
workstation can suffer from livelock—spending all of
its time servicing interrupts at the expense of running
any other functions [14]. In general, such systems do
poorly with tasks that must complete within tight cy-
cle budgets or at some prescribed rate.

This paper addresses the issue of scheduling com-
putations on a programmable router, with the goal of
easing the constraints under which new software is
added to a router without sacrificing the performance
of a vertically integrated system. It makes two contri-
butions. The first, modest contribution is to define a
process architecture for programmable routers. Sec-
tion 2 presents this architecture. The second, more
important contribution is to identify the subtle imple-
mentation issues that arise when this process architec-
ture is stressed under various workloads. Section 3
identifies several such issues and Section 4 reports ex-
periments that measure their impact.

2 Process Architecture

This section describes the router’s process architec-
ture, including an introduction to the scheduling strat-
egy we adopt. Although the architecture itself is fairly
straightforward, the discussion does serve to expose
the tradeoffs that become an issue in the next two sec-
tions. For the purpose of this section, it is sufficient
to think of the router as being implemented on a PC
with commodity interface cards; we return to the issue
of what impact the hardware configuration has on the
architecture (and vice versa) at the end of the section.

2.1 Processes

The simplest possible architecture implements all
router functionality in a single process. Such a pro-
cess executes the following loop:

READ: read a packet from an input port
CLASSIFY: select an output port
PROCESS: perform whatever process-
ing the packet requires
WRITE: write the packet to the output
port

where this single process services the various input
ports according to some policy (e.g., round robin).
This simple architecture is important because it rep-
resents the most efficient base case, but it has two se-
rious limitations. First, it processes packets in FIFO
order, and so is unable to differentiate the level of
service it gives different packet flows. Second, if the
PROCESS step is unable to complete in a small/fixed
amount of time, the process is not able to read packets
off the input ports at line speed, and thus risks having
packets dropped by the input port.
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Figure 1: Supporting Differentiated Service

Recognition of the first limitation has prompted the
architecture shown in Figure 1, where the key idea is
to segregate incoming packets into multiple queues.
Our architecture addresses the second limitation by
adding a third stage to the packet pipeline. The result
is shown in Figure 2, where for simplicity, we focus
our attention on a single input/output port pair. The
following discusses each stage in more detail.
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Figure 2: Supporting Differentiated Service and Vari-
able Processing

At the first stage, an input process (denotedI ) exe-
cutes the following loop:

READ: read a packet from the input port
CLASSIFY: classify the packet
ENQUEUE: enqueue the packet on the
appropriate queue

Although not shown in our simple router, we assume a
separate input process for each input port. This places
responsibility for selecting which input port to service
next with the process scheduler, as opposed to embed-
ding the policy in the input process.

At the third stage, an output process (denotedO)
associated with each output port performs the follow-
ing loop:

SELECT: select the queue for next
packet to transmit
DEQUEUE: dequeue the packet from
this queue
WRITE: write the packet to the output
port

In this case, the link scheduling algorithm is embed-
ded in theSELECT step of the output process, mean-
ing that this process has to run in order for a packet to
be selected for transmission.

The middle stage in the pipeline, corresponding to
processesF1 throughFn in Figure 2, performs what-
ever processing the packets require. We say each of
these processes implements someforwarding func-
tion F . In the simplest case, this forwarding function
manipulates the TTL and checksum fields of the IP
header and modifies the link-level header. In general,
any number of different functions might be applied to
a packet—vanilla IP forwarding, IP option processing,
control processing, proxy code, router extension, ac-
tive code, and so on. Each of these different forward-
ing functions has different processing requirements.
Table 1 gives a representative sample of forwarding
functions we have implemented, where “Active Pro-
tocol” corresponds to an active capsule running in the
ANTS active network environment [23] on our router.

Forwarding Function Per-Packet Cost (�s)
IP Fast Path 0.3
General IP 3.0
Transparent Proxy 10.7
Classical Proxy 12.8
Active Protocol 37.3

Table 1: Costs of various forwarding functions, mea-
sured in�sec, on a 450 MHz Pentium-II. These times
are independent of the costs of the input and output
processes.

There are two general questions about the processes
that implement these forwarding functions. The first
is why we need any processes at all; why not just ex-
ecute these functions as part of the input or output
processes? The problem with moving the forward-
ing function to the input process is that it may take
an arbitrary length of time to execute, thereby caus-
ing the input process to not keep up with link speeds.
Postponing this function to the output process suffers
from much the same problem: there may be an ar-
bitrarily long delay between when a packet is selected
for transmission and it can actually be sent, and packet
schedulers do not take such delays into account. The
packet scheduler assumes that the selected packet is
immediately available, and any delay in preparing the
packet may cause the link to become idle.

Once we have determined that we need a third pro-
cess in the pipeline, the second question is how many



different forwarding processes are required. Here
we have several options. One is to dispatch a pro-
cess for every packet. That is, the classifier run-
ning in the input process produceshpacket, func-
tion, queuei triples, and assigns a process to each
such triple. When the process runs, it appliesfunc-
tion to packet and enqueues the result in the speci-
fied queue. There are at least two problems with this
process-per-packetapproach. First, it results in a po-
tentially huge number of processes—tens or hundreds
of thousands per second—which is well beyond the
design of most thread packages. Second, rather than
having all messages contained in one message queue
or another, messages are “hidden” in the thread queue.
This makes it much more difficult to reason about the
system’s behavior.

At the other extreme, a single process could per-
form all the required packet processing. As before,
each classifier produceshpacket, function, queuei
triples, and enqueues them with this forwarding pro-
cess. The obvious problem is that packets belonging
to flows that have been promised a particular level of
service can be queued behind best effort packets. In
effect, this single forwarding process ignores the sep-
aration of flows achieved by the classifier. This ap-
proach should not be discarded too quickly, however,
because it works perfectly well for best effort flows
which can live with the FIFO queue that this forward-
ing process services.

We settle on a compromise approach that estab-
lishes a separate forwarding process for each flow.
In effect, this model isolates all theswitching paths
through the router. The input process dispatches each
packet to a single switching path that consists of
an input queue, a forwarding process, and an out-
put queue. The output process then determines from
which switching path a packet should be transmit-
ted next. Exactly what constitutes a flow is a policy
question. Certainly each QoS flow is treated as a dis-
tinct switching path—and thus has its own forwarding
process—even if it involves the same functionF as
some other path. On the other hand, multiple best ef-
fort flows that share the same forwarding function are
assigned to the same switching path.

Figure 3 illustrates an example set of switching
paths. It is representative of the cases we study in
the next two sections. To simplify this diagram, we
replace the process that implements each forwarding
function with a labeled edge that connects the input
queue to the output queue, and neither the input or out-
put processes are explicitly shown; they correspond
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Figure 3: Example Switching Paths

to the demux (classifier) and mux (packet scheduler)
points, respectively. Also, the output queues are la-
beled according to how the link scheduler treats its
packets—best effort (BE) or QoS—and we assume
the vanilla IP forwarding functionF0 and two non-
standard functionsF1 and F2. Thus, this simple
router—again focusing on a single input/output port
pair—includes a best-effort/vanilla switching path, a
QoS/vanilla path, a best-effort/non-standard path, and
a QoS/non-standard path. Note that the two best ef-
fort paths aggregates many end-to-end flows, while
the QoS paths carry a single end-to-end flow.

We conclude this discussion by noting that there is a
question of exactly where to draw the line between the
CLASSIFY step in the input process and the process-
ing done in forwarding process. The answer is that, by
definition, classification is that processing which can
be completed in a fixed number of cycles—selected so
the input process is able to match the link speed—and
packet processing is everything else. This means that
to implement application-level classification, which
may take an arbitrary length of time, the input process
partially classifies the packet and selects some func-
tion F to complete the classification. It also means
that the input process could implement the vanilla for-
warding function, cycle budget permitting, although
our scheduling framework argues for minimizing the
work done in the input process.

2.2 Scheduling Discipline

The process model just described exposes all policy
decisions to to the CPU scheduler. The task of the
scheduler is to choose processes for execution in a
manner that leads to desirable behavior along four di-
mensions: (1) efficient best effort forwarding which
makes good use of available resources; (2) different
qualities of service to flows that require more than
best effort; (3) robust behavior in the presence of over-
load, including packet flooding denial of service at-
tacks; and (4) support for switching paths of varying
computational costs.



We use a proportional share (PS) scheduler to meet
these goals. PS is a general scheduling discipline
that provides a cycle rate to a process; it abstracts the
main features of a class of algorithms, such as lottery
scheduling [22] and Weighted Fair Queueing [3]. The
essential characteristics of PS are:

� Each process reserves a cycle rate—e.g., 1 mil-
lion cycles-per-second (Mcps)—and is guaran-
teed to receive at least this rate when it is not
idle.

� Unused and unallocated capacity is fairly dis-
tributed to active processes in proportion to each
process’s reservation. An active process that re-
ceives extra cycles beyond its reservation is not
charged for them.

� An idle process cannot “save credits” to use
when it becomes active. Unused share is simply
lost.

� The guarantees made to processes provideisola-
tion between them—each process gets its rate no
matter what the other processes do.

Proportional sharing maps naturally onto our pro-
cess architecture, and accomplishes the varying goals
we have set for our router. First consider QoS flows,
where share assignment is straightforward given some
knowledge about processing costs. Every flow tra-
verses a pipeline of three processes (i.e., input, for-
warding, and output), and we need to set the process
shares so that the pipeline forwards data through the
system at the flow’s reserved rate. The processing
costs for reading a packet in the input process, and
sending it in the output process, are fixed and known
in advance. Therefore, we can determine the amount
that the shares of these processes need to be increased
to accommodate the packets of the new QoS flow.
If we assume that we know the cost function for the
flow’s forwarding process (e.g., how many cycles per
bit it requires) then the share of the forwarding pro-
cess is obvious too—for example, 1 Mbps network
rate times 10 cycles per bit equals 10 Mcps share for
the forwarding process. We believe that most standard
forwarding functions will have regular costs that can
be determined through off-line experimentation, as il-
lustrated in Table 1. More complex functions, and in
particular, those with data-dependent costs are prob-
lematic; more on this in Section 3.

Unlike QoS flows, no hard commitments are made
to best effort flows, but shares are still useful for pro-

ducing good system behavior. We observe that live-
lock and poor overload behavior are actually problems
of balance—one component of the system is receiving
more cycles than is desirable, with the result that other
components get too little. Our architecture can pro-
vide good best effort performance by assigning shares
to different pipeline stages based on the ideal balance
of the system in high load. That is, if on average it
takes 1.5�s to read a packet, 6�s to forward it, and
1.5�s to write it, then our system balance is 16.7% for
input, 66.7% for forwarding, and 16.7% for output.
Even in overloaded conditions, this share assignment
should provide a steady flow of packets through the
pipeline without suffering from livelock. Again, the
devil is in the details, as reported in Section 3.

It is important to keep in mind that a process re-
ceives its share only if it has work to do. For example,
each forwarding process shown in Figure 3 is allowed
to run only when its input queue is not empty and its
output queue is not full. We say a process that meets
these conditions iseligible. Section 3 discusses the in-
teraction between shares and eligibility under various
workloads.

2.3 Hardware Issues

The discussion up to this point has focused on a PC-
based router. However, we believe the process model
outlined in this section is applicable to a much wider
set of hardware architectures. We consider three pos-
sible configurations.

First, many high-speed routers interconnect the
ports with a high-speed switching fabric, with the PC
functioning as a control processor rather than being
directly in the forwarding path. They also employ
special-purpose hardware and offload the input and
output processes to that hardware. Like the input pro-
cess discussed above, however, these front-end de-
vices have a limited number of cycles that they can
apply to any given packet. While it is likely that clas-
sification can be downloaded to such a device, as well
as the IP fast path, most other computations must be
performed on the router’s control processor. A second
factor that limits what functions can be offloaded is
the programmability of these devices, which are often
implemented with custom ASICs. Even if a function
fits within the per-packet cycle budget, it may not be
possible to program the front-end device to perform
it. In any case, the situation on the control processor
is exactly the same as described above, the only dif-
ference being that the processor may be able to reduce
the classification time by taking advantage of work al-



ready done on the front-end device.

Second, a PC-based router that has programmable
line cards (e.g., those based on an Intel IXP1200
chip[11] or a RAMiX PMC694 module[19]) behaves
in much the same way: the programmable line card
performs classification and the subset of functionsF

that fit within its cycle budget, and the PC handles
all other functions. Unlike the ASIC-based configu-
ration, however, the interface card (which has to deal
with a collection of MAC chips) faces much the same
scheduling problem as the PC. As a consequence,
our process model applies to both programmable line
cards and the PC that controls them. A related issue
that arises in this setting in how processes on the line
cards interact with the processes on the main proces-
sor. One possibility is that the input and output pro-
cesses described in this section run on the line cards,
and only the forwarding functions run on the main
processor. This requires the intelligent line card to di-
rectly insert packets into the first set of queues on the
main processor. Alternatively, a trivial input process
still needs to read packets from the input device, clas-
sify them (perhaps based on a simple index already
produced by the line card), and insert them into the
appropriate queue for processing.

Third, an alternative to loading up the router
proper with additional functionality (e.g., proxies,
web caches, application-specific services) is to couple
a conventional router with a server. In other words,
the router forwards most packets by itself, but it di-
verts packets that require special treatment to a di-
rectly connected server. Again, this is just a variation
on the previous two configurations, where the process
model described above runs on the server. This raises
an interesting point, however. The issue we are ad-
dressing is broader than just IP routers—our process
model applies to any network device that perform I/O-
centric tasks, that is, reads a packet from an input de-
vice, perform some transformation on the packet, and
writes the result to an output device. For example, a
web server/cache/proxy receives packets on an input
port, parses the HTTP request and constructs a reply,
and sends a packet on an output port (usually the same
as the input port).

One can argue that in the limit the distinction be-
tween what’s the router and what’s the server will be-
come blurred, and that a router will simply consist of
multiple computing elements and multiple switching
elements [18]. The process model described in this
section applies to those computing elements that can
be programmed to support new functionality.

3 Implementation Issues

We have implemented the architecture described in
the previous section in the Scout operating system
[16]. Scout is designed around a communication-
oriented abstraction called a path. Our router uses
Scout paths to implement switching paths. This sec-
tion discusses our experiences implementing and tun-
ing the architecture.

3.1 Implementation Details

Scout supports early demultiplexing, so separating
the input process from the forwarding process was
straightforward. The only complication was that
Scout normally reads and classifies packets at inter-
rupt time. We modified Scout so this work is done in
a polling thread. On the output side, we added an out-
put process since Scout paths normally write directly
to the NIC’s transmit queue.

Each Scout path implements a single forwarding
function. Normally a thread pool is associated with
each path. In this case, the pool was limited to a sin-
gle thread, which corresponds to the forwarding pro-
cess in our architecture. The function implemented by
each path is constructed from a sequence of modules.
For example, the module-sequence ETH/IP/ETH im-
plements a general IP forwarding path, one that is able
to handle IP options, dissimilar network devices, and
so on. We also implemented a second, single-module
path that is optimized for a specific source/sink de-
vice pair. It changes the addresses in the frame header,
decrements IP’s TTL field, and incrementally recom-
putes the header checksum. These two paths (for-
warding functions) correspond to the second and first
rows, respectively, in Table 1. We primarily use the
fast path in the measurements reported in the next sec-
tion.

One of the optimizations exploited by the fast path
is to bypass the Scout message library. Scout mes-
sages facilitate standard packet processing such as
stripping and adding packet headers. Since the fast
path assumes a fixed-length IP header and the same
frame header on both input and output, the general-
purpose library is unnecessary.

The implementation uses the WF2Q+ [3] fair queu-
ing scheduler. There are actually two instances of this
scheduler. The first selects a process to execute based
on the cycle reservation made for each. The second
scheduler runs only when an output process executes,
and selects a packet to transmit on a link. It maintains
a queue of Scout paths, ordered by the WF2Q+ as-



signed virtual timestamp. The path with the smallest
timestamp is selected, and a packet from that path’s
output queue is selected for transmission.

Because Scout threads are non-preemptive, and
since they perform a simple action in our architecture
(i.e., move packets from one queue to another), we
can use thread continuations whenever a thread yields
or suspends. A thread that yields maintains no state; it
always resumes execution with the next packet in the
process’s input queue. This allows us to avoid saving
registers between runs of the same thread.

We use a Tulip driver from MIT that was tuned for
their Click router [15]. This driver places the card in
auto transmit mode; in this mode, the transmit process
on the device polls the DMA queue, saving I/O com-
mands. The driver also performs specialized buffer
management and prefetching.

3.2 Policy Issues

There are several policy issues regarding how a pro-
grammable router allocates its resources, including
what fraction of the router’s CPU cycles and link
bandwidth it is willing to set aside for QoS flows. We
highlight two additional issues.

The first issue is what share to give the input pro-
cesses, where the requirements of best effort and QoS
flows are in conflict. For the sake of best effort flows,
we want to assign input process shares based on the
ideal cycle distribution in overload. We do this to
avoid livelock. Should this rate be less than is required
to read and classify packets at line speed, QoS flows
are vulnerable to denial of service attacks. This is be-
cause the input process must run at line speeds; oth-
erwise, packets belonging to well-behaved QoS flows
may be dropped on the line card, thereby violating the
promises the router has made to the flow. It is not
clear how to assign a share to the input process to best
satisfy both kinds of flows.

The system designer must make a fundamental
tradeoff when choosing the input share. QoS flows
want conservative input shares to resist denial of ser-
vice attacks; best effort flows do not, since it means
the system will waste cycles reading in packets that
will be dropped later in the pipeline. Our choice is to
favor QoS flows by giving the input process a conser-
vative share. We describe how to temper this decision
in Section 3.3.

The second policy issue is the extent to which best
effort traffic should be aggregated versus isolated. As
described in Section 2, each unique forwarding func-
tion is assigned to a separate switching path (forward-

ing process). The alternative is that a single switch-
ing path services multiple forwarding functions rather
than being limited to just one. The latter approach
reduces the state the router must maintain, but the for-
mer approach makes it possible to assign each switch-
ing path a different processor share. For example, a
router might establish a policy that best effort packets
that require option processing should be segregated
from best effort packets without options, with the for-
mer receiving preferential treatment by the scheduler.
As another example, one could ensure that forward-
ing functions that process route updates receive a suf-
ficient share. This is effectively an attempt to differ-
entiate service, just as with QoS flows, but based on
functionality rather than bandwidth requirements.

3.3 Queue Estimator

The process architecture is designed to ensure that all
messages are buffered in explicit message queues, as
opposed to hidden thread queues. We expose these
message queues to allow for future scheduling algo-
rithms that may take queue lengths into account. Our
current framework uses them to decide process eli-
gibility, where a process is eligible to run only if its
input queue is not empty and its output queue is not
full. However, calculating the eligibility of an input
process is not straightforward since its input queue re-
sides on the device. The risk is that the input process,
which is essentially a polling thread, runs even though
there is no useful work for it to do. This is especially
troublesome if we give the input process a conserva-
tive share so as to ensure that it can keep up with pack-
ets arriving at line speeds.

One option is to exploit a NIC status register that
contains the number of packets buffered on the de-
vice. However, a process must read this register—we
do not want the scheduler itself doing device I/O—and
we must still decide when to schedule this process. In-
stead, our prototypeestimatesthe device queue length
based on previous observations. It does this by keep-
ing a simple weighted average of the packets read dur-
ing each execution of the polling thread. This estimate
is currently used as feedback for a batching mecha-
nism that will be discussed in the next section. The
point is that the state of all queues, including the re-
ceive queue on the device, is available to be incorpo-
rated into the scheduling decision.



3.4 Batching

Batching allows the system to spread the cost of a con-
text switch across multiple packets, resulting in higher
forwarding rates. Our system tries to batch packets at
all three stages of the process pipeline. The forward-
ing process is given a timeslice and allowed to send as
many packets as possible during that slice.1 The input
and output processes use a simple mechanism which
we call athrottle to achieve good batching behavior.
Below we explain how batching works in our router.

Bigger batches of packets become available for pro-
cessing if we reduce the period at which the packet
consumer runs. For example, assume that packets ar-
rive on a particular interface at a rate of 10 Kpps. If
the input process on that interface runs every 100�s, it
can read only one packet; if it runs every millisecond,
it can read ten. Since reading ten packets at a time
reduces the cost per packet of the context switch, the
input process can read packets at the same rate using
less share, leading to a more efficient system.

Proportional share algorithms already decouple
share and period. When a thread runs, its virtual time
is advanced by an amount proportional to its execution
time. The more its virtual time advances, the longer
the amount of time before it will be allowed to run
again. One option would be to vary the period of the
input thread using virtual time. We could advance its
virtual time by a minimum amount (i.e., the amount of
time it would take to read a target-sized batch of pack-
ets) to stretch its period so that it would find multiple
packets on the device when it runs.

We take another approach. Since we give an in-
put process a conservative share, we want both to ad-
just its period for better batching, and to give back
cycles it does not need to the system. We wrap both
of these functions into the throttle mechanism. The
throttle puts an input or output process to sleep after
it runs, varying the sleep time using feedback from
the estimator in Section 3.3. Each process has a batch
target range, [x; y], representing the number of pack-
ets it wants to batch when it runs. When the estimate
falls below the minimum thresholdx, we increase the
sleep interval of the input process; when it goes above
the maximum thresholdy, we decrease the sleep time.

1Note that a switching path is not preempted; whether or not
the timeslice has expired is checked once per path execution. For
the sake of this paper, we assume that only well-behaved functions
are admitted to the system. Untrusted functions could either run
in a preemptable process, or the system could kill a packet if it
exceeds a certain time limit. Both facilities could easily be added
to our architecture.

We cap the maximum sleep time of an input process so
that it will always poll the device at an acceptable rate.
We can imagine needing to tweak this algorithm as we
understand more about actual workloads (e.g., rapidly
increasing the polling rate in response to a single large
input queue), but this simple strategy has worked well
in the experiments we have run.

This throttle mechanism accomplishes two things.
First, it stretches out the period at which the process
runs for better batching. Second, it dynamically ad-
justs the actual execution rate of the process in re-
sponse to the workload. The throttle slows down the
input process to a rate commensurate with the packet
arrival rate, and its unused share is distributed fairly
throughout the system. So the throttle helps perfor-
mance through amortizing context switch overhead
for both input and output processes, as well as pre-
venting an input process from polling unnecessarily.

Our system batches at all stages of the process
pipeline. Though batching leads to better perfor-
mance, we must be careful because it can interact with
process eligibility in undesirable ways. With large
batch sizes, processes may be able to drain their input
queues when they run, thus becoming ineligible. The
result can be that, at any one time, only a few pro-
cesses are actually eligible to be scheduled; process
eligibility, rather than share, may then dominate the
system behavior. We are not aware of a general solu-
tion to this problem, other than experimentally trying
different batch sizes to see which works best.

3.5 Cycle and Link Rates

Our discussion describes the rate of a flow in terms
of packets per second, yet most QoS schemes provide
rates in terms of bits per second. We assert that most
QoS applications send packets of roughly equal size,
and so it is possible to translate a bit rate into a packet
rate. Our experience also suggests that the number
of cycles required to process each packet (or per byte
of data) can be accurately measured, and hence, it is
possible to compute a cycle rate. If these assumptions
hold, then it should be possible for a router to derive
the cycle rate from an RSVP-style bit rate reservation.
If not, then it may be necessary for the application
to explicitly state the cycle rate it requires, and if the
computation is data-dependent, this reservation may
need to be conservative.

An interesting question is whether we can do bet-
ter than make a conservative reservation for data-
dependent flows. For example, can an application just
reserve the average cycle rate its packets require, even



when the cycle requirements are highly variable from
packet to packet. The worry is that even though the
forwarding process receives its reservation over a long
interval, any given packet might arrive at the output
queue late, and hence forfeit its share of the link ca-
pacity. In the end, this is exactly the same problem
as the presence of jitter in the arrival rate of packets,
the effects of which can be mitigated with sufficient
buffering. In other words, as long a switching path’s
output queue is large enough, it can buffer packet pro-
duced during good times (when processing costs are
small), and therefore not go empty when processing
cost are large.

4 Experiments

This section reports on a series of experiments de-
signed to evaluate the effectiveness of our process ar-
chitecture. The experiments were run on the configu-
ration shown in Figure 4. It consists of our router, a
100Mbps switch, and three PCs. The machine run-
ning our prototype router has a450MHz Pentium-II
processor with a512KB L2 cache, and three Tulip
(21143 chip)100Mbps network interface cards. We
use the three PCs, labelled A, B, and C, as packet
sources.
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Figure 4: Experimental Setup

The reason for the switch, as opposed to directly
connecting the sources to the router, is that we di-
vert packets destined for the three PCs to a non-
existent sink. Otherwise, we found that packet recep-
tion interfered with packet transmission on the PCs
(which used 3COM cards), making our sources un-
predictable.

During the tests, each source PC generates a stream
of 64-byte IP packets at rates up to140Kpps. Using
all three sources, we can generate an aggregate maxi-
mum offered load of420Kpps. We measure the time
the router takes to forward a certain number of pack-
ets, yielding an average forwarding rate. While this ar-
tificial workload is clearly not representative of the In-
ternet at large, our experiments are designed to stress

the CPU rather than the network. It is for this reason
that our experiments emphasize switching small pack-
ets; a larger number of small packets place a greater
load on the CPU than fewer large packets.

4.1 Evaluating Overhead

We begin by evaluating the overhead introduced by
our process architecture, to determine whether or not
it is prohibitively expensive in practice. We measure
the relative overhead by plotting the offered load to the
router versus the resulting forwarding rate achieved by
the router. The parameters we chose to vary for this
series of experiments were:

Input Servicing Scheme This is the choice to use in-
terrupt driven input versus input device polling.

Number of ProcessesWe use one, two, or three pro-
cesses to forward the packets from input to out-
put. When we use one process, a single thread
handles input, forwarding, and output. When we
use two processes, we use an input thread and
a forward/output thread (this case allows differ-
ent forwarding functions but no link scheduling).
For three process experiments, each of the input,
forwarding, and output tasks are assigned to its
own thread. We assign an equal share of the pro-
cessor to each process.

Batching To reduce the overhead of context
switches, we can enable batching. With batching
enabled, each process attempts to handle as
many packets as possible up to an arbitrary limit
of 16 packets. Without batching, each process
will handle at most one packet before yielding
the processor.

Figure 5 summarizes the results of five experi-
ments. In each experiment, the source PCs in Figure 4
gradually increase their aggregate offered load from
0 to 420Kpps, as the router attempts to forward the
packets as best it can.

In the interrupt implementation, the router is able
to keep up with the sender up to48Kpps, after which
it begins to suffer from receive livelock. In contrast,
the polling implementations give a more desirable be-
havior: the forwarding rate increases up to a certain
point and them remains flat. In the flat portion of the
graph, the router drops more and more packets; how-
ever, the router does not waste time on the dropped
packets. These results simply reinforce those found in
[14].
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Figure 5: Impact of interrupt handling and context
switching on forwarding rate.

Maximum Max. Forwarding Rate
Processes Batch Size Kpps Normalized
1: I+F+O 16 294 1.00
2: I, F+O 16 286 0.97
3: I, F, O 16 272 0.93
3: I, F, O 1 227 0.77

Table 2: Maximum Forwarding Rates using Polling

Table 4.1 shows the relative maximum forwarding
rates using polling. The forwarding rates are from the
plateaus in Figure 5. The last column shows the for-
warding rates normalized to the single process with
batching case. From this table, we see that each addi-
tional process in the forwarding pipeline adds 3 to 4%
of overhead. The effects of batching are more signif-
icant, improving performance by approximately 16%.
Further analysis shows that we are batching on the
order of 10 packets at each stage. Comparing three
processes with batching (i.e., our proposed architec-
ture) to the single process case, we see that the overall
difference in performance is only 7%, which seems a
tolerable overhead for the increased functionality our
architecture provides.

Finally, micro-experiments indicate that in the three
process case, the input process spends1:6�s on each
packet, the forwarding process spends0:3�s on each
packet, and the output process spends1:4�s on each
packet. Note that if we assume two process stages—
an input process and a combined forwarding/output
process—a balanced system has almost exactly a 1:1

ratio. We use the two-process configuration in the next
subsection to focus on best effort flows, since the out-
put process is only required when we need to imple-
ment link scheduling.

Note that although absolute performance is not the
focus of this paper, the total 3.3�s forwarding time
for each packet did not come easily. We started with
a per-packet cost of over 11.7�s. The specialized
IP forwarding path shaved 2.7�s (this is the differ-
ence between the first two rows in Table 1), the driver
optimizations shaved 2.8�s, and bypassing Scout’s
general-purpose message library saved 2.9�s. Perhaps
most important of all, however, is that fact that our ar-
chitecture allowed us to implement context switches
as very inexpensive continuations. Having two full-
blown context switches on the forwarding path has the
potential to add 10�s or more to the forwarding time.

4.2 Best Effort Forwarding

We now focus on the performance of our prototype
when forwarding only best effort packets. We show
that our architecture achieves good best effort for-
warding rates, even when the system becomes imbal-
anced (i.e., the shares are not quite right). We test this
situation by varying the cost of the forwarding pro-
cess, where as just described, we know that the input
requires1:6�s to read and classify each packet.

In this experiment, packet flows from the three
sources traverse three different switching paths, de-
noted A, B, and C. Flow A uses a forwarding func-
tion that spends8:0�s on each packet, meaning that
it has an ideal share ratio of 1:5. The forwarding
functions for flows B and C delay their packets by an
additional8:0�s and 16:0�s, respectively, meaning
that their ideal share ratios are 1:10 and 1:15. The
fourth column of Table 3 shows the forwarding rate
that is achievable for these three flows, where the three
flows run serially (i.e., they are not competing with
each other). This table gives only the peak forward-
ing rate for each flow, which corresponds to the mea-
sured throughput rate at the maximum sending rate
of 140Kpps. The maximum forwarding rate of each
host’s packets are very close to what we would expect.
The system is allocating the CPU efficiently.

Next, instead of configuring the router to give each
flow its ideal share, we set the ratio to 1:10, meaning
that flow B is balanced, while flow A gives too much
weight to the forwarding process and flow C gives too
much weight to the input process. There are two sit-
uations where such an imbalance might arise in prac-
tice. One is that the amount of processing required



Table 3: Best effort throughput in Kpps

Flow Fwd Cost Ideal balance Balanced share 1:10 share w/o throttle 1:10 w/ throttle
A 8�s 1: 5 101Kpps 101Kpps 101Kpps

B 16�s 1:10 56Kpps 56Kpps 56Kpps

C 24�s 1:15 38Kpps 35Kpps 38Kpps

varies from packet to packet, so we can establish only
the average CPU allocation for a given flow. The sec-
ond is that we give the input process a conservative
cycle rate—perhaps for the sake of protecting QoS
promises—but it can’t effectively use this rate. Flow
C corresponds to this latter case.

The fifth and sixth columns of Table 3 show the re-
sults of the imbalance, the difference between the two
columns being that the fifth drops packets that demux
to a full queue (as we might do if we had QoS flows),
while the sixth uses a combination of eligibility and
the batching throttle to limit the rate at which the
input process runs (appropriate with no QoS flows).
Not surprisingly, flow B performs exactly as before,
since it is given the same share assignment. Though
the shares are out of balance for flow A, it is unaf-
fected, since the forwarding process’s unused share is
distributed upstream to the input process. However,
flow C’s throughput drops to35Kpps in the fifth col-
umn. The problem is that the input process is running
at a faster packet rate than the forwarding process and
packets are dropped off the tail of the forwarding pro-
cess’s input queue. Column six for flow C shows that
eligibility and throttling readjust the rate of the input
process to match the forwarding process.

This experiment doesn’t really demonstrate the im-
pact of assigning a conservative share to the input pro-
cess(es) in an effort to protect against a flood of best
effort traffic. To see the full effect, we configured
an experiment with three input ports, two of which
had no traffic arriving and one on which packets ar-
rive at full speed. We gave each input process a large
enough CPU share to receive packets at line speed,
and we set the processing rate for each packet to 6�s,
which fully utilizes the CPU. Without the queue esti-
mator, roughly a quarter of the CPU is wasted polling
idle input ports, thereby yielding a forwarding rate
of 91Kpps for the active port. With the estimator
enabled, the router was able to forward packets at
130Kpps, the maximum achievable rate for this con-
figuration.

4.3 Mixing Best Effort and QoS

We now describe an experiment in which we mix two
QoS flows with a best effort flow. We again us the
three sources depicted in Figure 4, with the flow from
source A arriving on port 1, the flow from B arriving
on port 2, and the flow from C arriving on port 3. In
this experiment flow B is routed to output port 1, while
both flows A and C are routed to port 2. Thus, A and
C compete for this output link. Also, flows B and C
are QoS flows with a90Kpps reservation. They are
using their entire reservation.
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Figure 6: Mix of Best Effort (A) and QoS (B,C)
Flows.

Figure 6 shows the forwarding rate for flows A, B,
and C, as the offered load on flow A increases. We
see that flows B and C meet their reservation despite
the increased load. We also see that as long as flow A
is under approximately50Kpps, none of its packets
are dropped. After this point, no more packets in flow
A can get through because we have saturated port 2
(140Kpps total), the outgoing link shared by flows A
and C.



4.4 CPU versus Link

Using same setup of hardware and flows as Sec-
tion 4.3, we explore the situation where the router
transitions from being link-bound to being CPU-
bound. We do this by fixing the arrival rate of best
effort flow A at50Kpps, which saturates the link that
A and C share. We then measure the performance
of all three flows as the processing time for flow A’s
packets increases. The system transitions from being
link-bound to being CPU-bound at just before 5�s on
thex-axis.

Figure 7 shows the forwarding rate for the flows
when we enable simple batching. As flow A’s cost
increases, it hogs the CPU while it works on a batch
of packets in the queue. Because flow A gets the CPU
in large bursts while it processes a batch of packets
from its queue, the output queues associated with QoS
flows B and C empty, causing them to become idle.
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Figure 7: Detrimental Effects of Simple Batching as
Processing Costs Increase.

In Figure 8, we turn off batching and do better: both
flows B and C are able to maintain their packet rate.
Obviously, A’s rate decreases as it spends more time
on each packet. The improvement comes from the fact
that the PS scheduler regains control at a finer granu-
larity. As we have seen, though, turning batching off
comes with a cost.

In Figure 9, we turn batching back on but we only
allow batching to process 16 packets or process for
30�s, whichever comes first. We see that QoS flows
B and C meet their reservation and that the aggregate
forwarding rate is higher than that in Figure 8.

In summary, the router makes a smooth transition
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Figure 8: No Batching

from being link-bound to being CPU-bound, while
preserving the rate requested by QoS flow, as long
as the PS scheduler gets a frequent enough opportu-
nity to re-schedule the processor. The batching throt-
tle provides this opportunity without sacrificing all the
performance advantages of batching.

4.5 Data-Dependent Processing

Finally, we experimented with the effect of data-
dependent processing costs on the router’s ability to
meet QoS promises. Specifically, we ran a QoS flow
at 50Kpps, first with a fixed processing cost of 8�s
per packet, and then with a processing cost distributed
uniformly between 4�s and 12�s per packet. In the
second case we reserved the average rate of 8�s per
packet. In both cases, the flow was able to maintain its
50Kpps rate, but other best effort traffic was affected.
When the QoS flow used a fixed 8�s per packet, a full-
speed best effort flow was able to achieve 127Kpps,
while competing with the variable cost flow slowed
the best effort flow down to 120Kpps. In effect, the ex-
pensive packets stole cycles from the best effort flow.

A second set of experiments evaluated the impact
of the output queue size. With two flows compet-
ing for the same output link, one a QoS flow run-
ning at 50Kpps and the other a best effort flow run-
ning as fast as possible, the best effort flow is able
to achieve 90Kpps when the QoS flow requires a
fixed 8�s of computation for each packet. This is
because 50+90Kpps=140Kpps, the maximum output
rate of the link. When the QoS flow’s cost is variable,
again uniformly distributed between 4�s and 12�s per
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Figure 9: Batching Throttle. Batching with a30�s
limit.

packet, both flows achieved the same rate. This is with
an output queue size of 128 packets. If the queue size
is set to 1 packet, then the best effort flow is able to
achieve 110Kpps and the QoS flow dips to 30Kpps.
This is because the best effort flow is able to send ex-
tra packets when the QoS flow’s queue is empty due
to a packet that requires extra processing.

Clearly we need to do additional experiments under
differing circumstances, but ultimately the required
queue size is a function of the behavior of the for-
warding process. In general, we need to better un-
derstand what applications can tell us about their for-
warding functions, and define a relationship to queue
sizes based on this information.

5 Related Work

There have recently been several efforts to define ex-
tensible architectures for network routers [1, 7, 15, 18,
20, 23], although none have directly addressed the is-
sue how the router should schedule these computa-
tions. Of these, our approach to scheduling would
apply most naturally to router plugins [7] and active
flows [20], both of which segregate work early. With
router plugins, for example, it would be very straight-
forward to run all the plugins that implement a partic-
ular flow in a single forwarding process. In contrast,
it is not clear how Click [15] modules would be effi-
ciently broken into processes since Click has no no-
tion of a per-flow switching path through the router.
Support for flow isolation seems to be the critical re-
quirement for our approach.

As mentioned in the introduction, the only work
that has addressed the issue of scheduling a router’s
CPU cycles is a study of livelock conducted by Mogul
and Ramakrishnan [14]; Druschel and Banga make
similar observations about network servers [8] and
Smith and Traw [21] discuss techniques for reduc-
ing the overhead of receiving interrupts. Our work
goes beyond the issue of livelock by also consider-
ing the implications of meeting QoS obligations. Our
use of a proportional share scheduler goes directly to
this point. Both our work and Mogul-Ramakrishnan
cite the importance of keeping the input-forwarding-
output pipeline balanced, but we offer a general ap-
proach that combines proportional share and eligibil-
ity.

There has been considerable work on packet
scheduling [3, 10], and some of the algorithms devel-
oped for this purpose have also been applied to CPU
scheduling [2, 9, 22]. However, none of these efforts
demonstrate how a programmable router might ex-
ploit these algorithms to balance concerns about guar-
antees versus efficiency when one has to worry about
scheduling cycles and bandwidth simultaneously. We
leverage this algorithmic work, and in fact, we use an
implementation of WF2Q+ [3] in our prototype.

6 Conclusions

This paper explores the design space for scheduling
the CPU on a programmable router. The router has
three overriding goals: (1) to maximize the throughput
of best effort packets while providing different levels
of service to QoS packets; (2) exhibit robust behav-
ior in the presence of varying workloads, including
packet flooding denial-of-service attacks; and (3) sup-
port switching paths of varying computational costs.
The strategy we propose first divides the forward-
ing path into a processing pipeline (thereby exposing
the critical scheduling decisions), and then applies a
combination of two mechanisms: a proportional share
scheduler and a batching throttle. Experiments with a
prototype implementation verify the effectiveness of
the resulting framework.

Although we have established a sound starting
point, much work remains to be done. For example,
we need to either verify our assertion that the cycle
rate required by QoS flows can be derived empirically
from a specified bit rate, or else develop a signalling
protocol by which an application reserves a particu-
lar cycle rate. We also need to experiment with the
router under a wider range of workloads, particularly



those involve data-dependent costs. Finally, we plan
to integrate the scheduling framework on a router ar-
chitecture that includes both PCs and programmable
line cards.
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