Scheduling Computations on a Programmable Router

Andy Bavier, Scott C. Karlin, Larry Peterson and Xiaohu Qie
Department of Computer Science
Princeton University

Abstract code, the router is subsuming functionality that
cannot be supported on computationally-weak

It is becoming increasingly common for routers to consumer electronics devices.

compute on packets in addition to forwarding them,

thereby exposing the problem of how the router's CPU e The distinction between routers and servers is
cycles are scheduled. To complicate matters, this  blurring as routers that sit in front of clusters
scheduling decision may be constrained by the de-  run application-specific code to determine how
sire to differentiate the level of service given differ- to dispatch packets to the most appropriate node.
ent packet flows. This paper addresses the issue of . ,

scheduling computations on a programmable router. ® !N the limit, the active network research commu-
Its main contributions are to define a process archi- N IS designing an architecture that will allow
tecture that allows computations to be scheduled in ~ Fouters to run arbitrary code, thereby enabling
a meaningful way, and to identify the key issues that ~ the deployment of application-specific virtual
make this architecture difficult to implement in prac- ~ NetWorks.

tice. This paper addresses a problem associated with the

trend to extend router functionality: how to schedule
1 Introduction computations on the router. Like any computing sys-

tem, a router must schedule its cycles in a meaningful
Routers have always formed the backbone of the Inway. For example, it must decide when to apply its
ternet, but they have recently been asked to do morgycles to forwarding a vanilla IP packet, as opposed
than envisioned in their original design [4] and earlyto using its cycles to re-write addresses, run a proxy,
implementations [13]. For example, routers are beprocess a control message, or execute a router exten-
ing asked to differentiate the level of service given tosjon. To complicate matters, we allow for the possibil-
various classes of packets [5, 6], and they are beingy that the router promises to forward certain packets
engineered to achieve high performance through thgt some sustained bit rate, which clearly makes the is-
use of specialized hardware [12, 17]. A third trend issue of scheduling a router's CPU cycles more difficult.
to extend the set of functions that routers support be- Note that there are other issues with respect to pro-
yond the traditional forwarding service. We see thisgrammable routers that this paper does not address.
happening in several different arenas: Three are potential red herrings, and so are worth
mentioning. First, while there is significant debate

e Routers at the edge of the Internet are pro- bout who should be all d to install ¢
grammed to filter packets, translate addressePOut Wno should be aflowed to install a hew func-

make leveln routing decisions, translate be- :lr?ndlna:outeft[—ranglng dfromtthe ré)uter conlﬁar_wles 0
tween different QoS reservations, thin data Ird party software vendors to end users—the impor-

streams, run proxy code, and support extensibléam point is that routers are being asked to c_ompute
control fimctions ’ on packets (i.e., run code) in addition to switching

them. These computations must be scheduled. Sec-
e A new market in home routers is emerging, ond, while a recent trend in router design is to im-
where in addition to running firewall and NAT prove performance through the use of special-purpose



dedicated logic (e.g., ASIC technology), the fact re- This paper addresses the issue of scheduling com-
mains that any functionality not supported by the dedputations on a programmable router, with the goal of
icated logic must be programmed on a reasonablgasing the constraints under which new software is
general-purpose processor, and this processor must bdded to a router without sacrificing the performance
scheduled. Third, we are using the term “router” in aof a vertically integrated system. It makes two contri-
generic way to denote any system whose primary rebutions. The first, modest contribution is to define a
sponsibility to is forward packets from one network process architecture for programmable routers. Sec-
device to another. This does not imply that the fastion 2 presents this architecture. The second, more
path through high-end routers at the core of the Interimportant contribution is to identify the subtle imple-
net should be programmable. mentation issues that arise when this process architec-
ture is stressed under various workloads. Section 3
Even though active/programmable/extensibleidentifies several such issues and Section 4 reports ex-
routers [1, 7, 15, 18, 20, 23] have received considperiments that measure their impact.
erable attention recently, it is certainly not fair to
say that conventional routers ignore the possibility .
that there are multiple paths through the router,2 Process Architecture
some involving more computation than others. A_ . . : , .
conventional commercial router may have as mang his ;ecﬂo_n desc_rlbes th? routers process architec-
as half a dozen switching paths. Some Cisco router ure, including an introduction to the scheduling strat-

for example, routinely use three paths: Cisco Expresggy we adopt. Although the architecture itself is fairly

Forwarding (the true fast path), Fast Switching (thestraightforward, the discussion does serve to expose

not quite so fast path) and Process Switching (théhe tradeoffs that become an issue in the next two sec-
slow path). Distributed router architectures increasd!oNS- For the purpose of this section, it is sufficient

the number of paths, since some packets may blo think of the router as being implemented on a PC

processed centrally and some on line cards. What i\g/ith commodity interface cards; we return to the issue

unique to the emerging situation is the diversity of the2f What impact the hardware configuration has on the

computations being performed. On most Commercia1’:1rchitecture (and vice versa) at the end of the section.
routers, each path is carefully hand-tuned to forward
a packet within some predefined time frame, and2.1 Processes
moving a function from one path to another is a non- , , _ _
trivial endeavor, typically requiring several months of The simplest possible architecture implements all
testing and performance tuning. In other words, confouter functionality in a single process. Such a pro-
ventional routers are vertically integrated, realtime,C€SS executes the following loop:
embedded systems, where changes in the software
are extremely expensive. Such an environment is READ: read a packet from an input port
stressed by the avalanche of new services people are CLASSIFY: select an output port
proposing to add to their routers, especially when =~ PROCESS: perform whatever process-
those services are added on the fly. ing the packet requires

WRITE: write the packet to the output

At the other end of the spectrum from embedded port

systems, one could view a programmable router as no
different than a general-purpose computing systemwhere this single process services the various input
For example, a workstation running Unix is not an un-ports according to some policy (e.g., round robin).
common router implementation. The shortcoming ofThis simple architecture is important because it rep-
this approach is that a general-purpose OS is not opgesents the most efficient base case, but it has two se-
timized to forward packets. One example that has alrious limitations. First, it processes packets in FIFO
ready received attention is the fact that an I/O-boundrder, and so is unable to differentiate the level of
workstation can suffer from livelock—spending all of service it gives different packet flows. Second, if the
its time servicing interrupts at the expense of runningPROCESS step is unable to complete in a small/fixed
any other functions [14]. In general, such systems d@amount of time, the process is not able to read packets
poorly with tasks that must complete within tight cy- off the input ports at line speed, and thus risks having
cle budgets or at some prescribed rate. packets dropped by the input port.
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Figure 1. Supporting Differentiated Service

Output Ports

In this case, the link scheduling algorithm is embed-
ded in theSELECT step of the output process, mean-
ing that this process has to run in order for a packet to
be selected for transmission.

The middle stage in the pipeline, corresponding to
processed’; throughF,, in Figure 2, performs what-
ever processing the packets require. We say each of
these processes implements sofosvarding func-
tion F. In the simplest case, this forwarding function
manipulates the TTL and checksum fields of the IP

Recognition of the first limitation has prompted the header and modifies the link-level header. In general,
architecture shown in Figure 1, where the key idea isany number of different functions might be applied to
to segregate incoming packets into multiple queuesa packet—vanilla IP forwarding, IP option processing,
Our architecture addresses the second limitation bgontrol processing, proxy code, router extension, ac-
adding a third stage to the packet pipeline. The resultive code, and so on. Each of these different forward-
is shown in Figure 2, where for simplicity, we focus ing functions has different processing requirements.
our attention on a single input/output port pair. TheTable 1 gives a representative sample of forwarding

following discusses each stage in more detail.
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Figure 2: Supporting Differentiated Service and Vari-

able Processing

At the first stage, an input process (denotgdxe-

cutes the following loop:

READ: read a packet from the in
CLASSIFY: classify the packet

Output Ports

put port

ENQUEUE: enqueue the packet on the

appropriate queue

functions we have implemented, where “Active Pro-
tocol” corresponds to an active capsule running in the
ANTS active network environment [23] on our router.

Forwarding Function Per-Packet Cosp)
IP Fast Path 0.3
General IP 3.0
Transparent Proxy 10.7
Classical Proxy 12.8
Active Protocol 37.3

Table 1. Costs of various forwarding functions, mea-
sured inusec, on a 450 MHz Pentium-II. These times
are independent of the costs of the input and output
processes.

There are two general questions about the processes
that implement these forwarding functions. The first
is why we need any processes at all; why not just ex-

Although not shown in our simple router, we assume &£cute these functions as part of the input or output
separate input process for each input port. This placedfocesses? The problem with moving the forward-
responsibility for selecting which input port to service ing function to the input process is that it may take
next with the process scheduler, as opposed to embedD arbitrary length of time to execute, thereby caus-

ding the policy in the input process.

ing the input process to not keep up with link speeds.

At the third stage, an output process (deno@d Postponing this function to the output process suffers
associated with each output port performs the followfrom much the same problem: there may be an ar-

ing loop:

SELECT: select the queue for next

packet to transmit

DEQUEUE: dequeue the packet from

this queue

WRITE: write the packet to the output

port

bitrarily long delay between when a packet is selected
for transmission and it can actually be sent, and packet
schedulers do not take such delays into account. The
packet scheduler assumes that the selected packet is
immediately available, and any delay in preparing the
packet may cause the link to become idle.

Once we have determined that we need a third pro-
cess in the pipeline, the second question is how many



different forwarding processes are required. Here
we have several options. One is to dispatch a pro- : - :
cess for every packet. That is, the classifier run- T2 T

ning in the input process producépacket, func- Tm—" -1
tion, queue) triples, and assigns a process to each : . Q08 :
such triple. When the process runs, it appliesc- ot pors T T vt Pors
tion to packet and enqueues the result in the speci-

fied queue. There are at least two problems with this
process-per-packetpproach. First, it results in a po-
tentially huge number of processes—tens or hundreds
of thousands per second—which is well beyond theo the demux (classifier) and mux (packet scheduler)
design of most thread packages. Second, rather thavints, respectively. Also, the output queues are la-
having all messages contained in one message quebeled according to how the link scheduler treats its
or another, messages are “hidden” in the thread queupackets—best effort (BE) or QoS—and we assume
This makes it much more difficult to reason about thethe vanilla IP forwarding function¥, and two non-
system’s behavior. standard functionsF; and F,. Thus, this simple

At the other extreme, a single process could perfouter—again focusing on a single input/output port
form all the required packet processing. As beforepair—includes a best-effort/vanilla switching path, a
each classifier producdpacket, function, queue) QoS/vanilla path, a best-effort/non-standard path, and
triples, and enqueues them with this forwarding pro-2 QoS/non-standard path. Note that the two best ef-
cess. The obvious problem is that packets belonginqirt paths aggregates many end-to-end flows, while
to flows that have been promised a particular level ofn® QO0S paths carry a single end-to-end flow.
service can be queued behind best effort packets. In We conclude this discussion by noting that there is a
effect, this single forwarding process ignores the Se|oquestion of exac';ly whgre to draw the line between the
aration of flows achieved by the classifier. This ap-CLASSIFY step in the input process and the process-
proach should not be discarded too quickly, howevering done in forwarding process. The answer is that, by
because it works perfectly well for best effort flows definition, classification is that processing which can

which can live with the FIFO queue that this forward- P& completed in a fixed number of cycles—selected so
ing process services. the input process is able to match the link speed—and

. acket processing is everything else. This means that
We settle on a compromise approach that estat{-) P g ything

lishes a separate forwarding process for each flonl implement application-level classification, which
! . o Mmay take an arbitrary length of time, the input process
In effect, this model isolates all th&@wvitching paths y frary 'leng 'me, nput b

through the router. The input process dispatches eaa}{?ﬁrt'a”y classifies the packet and selects some func-

acket to a sinale switchina path that consists o ion F' to complete the classification. It also means
P 9 9p that the input process could implement the vanilla for-

an input queue, a forwarding process, and an OUI\7\/arding function, cycle budget permitting, although

put queue. The output process then determines fro . A
which switching path a packet should be transmit-rgur scheduling framework argues for minimizing the

ted next. Exactly what constitutes a flow is a policyWork done in the input process.
question. Certainly each QoS flow is treated as a dis- . o
tinct switching path—and thus has its own forwarding2-2  Scheduling Discipline

process—even if it involves the same functihas  The process model just described exposes all policy
some other path. On the other hand, multiple best efgecisions to to the CPU scheduler. The task of the

fort'flows that share the same forwarding function are;cheduler is to choose processes for execution in a
assigned to the same switching path. manner that leads to desirable behavior along four di-
Figure 3 illustrates an example set of switchingmensions: (1) efficient best effort forwarding which
paths. It is representative of the cases we study imakes good use of available resources; (2) different
the next two sections. To simplify this diagram, we qualities of service to flows that require more than
replace the process that implements each forwardingest effort; (3) robust behavior in the presence of over-
function with a labeled edge that connects the inputoad, including packet flooding denial of service at-
queue to the output queue, and neither the input or outacks; and (4) support for switching paths of varying

put processes are explicitly shown; they correspondomputational costs.

E B.E.
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Figure 3. Example Switching Paths



We use a proportional share (PS) scheduler to meetucing good system behavior. We observe that live-
these goals. PS is a general scheduling disciplinéock and poor overload behavior are actually problems
that provides a cycle rate to a process; it abstracts thef balance—one component of the system is receiving
main features of a class of algorithms, such as lotterynore cycles than is desirable, with the result that other
scheduling [22] and Weighted Fair Queueing [3]. Thecomponents get too little. Our architecture can pro-
essential characteristics of PS are: vide good best effort performance by assigning shares

to different pipeline stages based on the ideal balance

e Each process reserves a cycle rate—e.g., 1 milof the system in high load. That is, if on average it

lion cycles-per-second (Mcps)—and is guaran-takes 1.ks to read a packet,/& to forward it, and

teed to receive at least this rate when it is notl.5;s to write it, then our system balance is 16.7% for

idle. input, 66.7% for forwarding, and 16.7% for output.
Even in overloaded conditions, this share assignment

should provide a steady flow of packets through the

tributed 1to active processes in proportion to eacrbipeline without suffering from livelock. Again, the
process’s reservation. An active process that regq. i is in the details, as reported in Section 3.

ceives extra cycles beyond its reservation is not It is important to keep in mind that a process re-

charged for them. ceives its share only if it has work to do. For example,
e An idle process cannot “save credits” to use®ach forwarding process shown in Figure 3 is allowed
when it becomes active. Unused share is simplyf© fun only when its input queue is not empty and its
lost. output queue is not full. We say a process that meets
these conditions igligible. Section 3 discusses the in-
e The guarantees made to processes pragola-  teraction between shares and eligibility under various
tion between them—each process gets its rate nworkloads.
matter what the other processes do.

e Unused and unallocated capacity is fairly dis-

_ , 2.3 Hardware Issues
Proportional sharing maps naturally onto our pro-

cess architecture, and accomplishes the varying goalEhe discussion up to this point has focused on a PC-
we have set for our router. First consider QoS flowspased router. However, we believe the process model
where share assignment is straightforward given someutlined in this section is applicable to a much wider
knowledge about processing costs. Every flow traset of hardware architectures. We consider three pos-
verses a pipeline of three processes (i.e., input, forsible configurations.
warding, and output), and we need to set the process First, many high-speed routers interconnect the
shares so that the pipeline forwards data through thports with a high-speed switching fabric, with the PC
system at the flow’s reserved rate. The processinfunctioning as a control processor rather than being
costs for reading a packet in the input process, andirectly in the forwarding path. They also employ
sending it in the output process, are fixed and knowrspecial-purpose hardware and offload the input and
in advance. Therefore, we can determine the amourdutput processes to that hardware. Like the input pro-
that the shares of these processes need to be increaseds discussed above, however, these front-end de-
to accommodate the packets of the new QoS flowvices have a limited number of cycles that they can
If we assume that we know the cost function for theapply to any given packet. While it is likely that clas-
flow’'s forwarding process (e.g., how many cycles persification can be downloaded to such a device, as well
bit it requires) then the share of the forwarding pro-as the IP fast path, most other computations must be
cess is obvious too—for example, 1 Mbps networkperformed on the router’s control processor. A second
rate times 10 cycles per bit equals 10 Mcps share fofactor that limits what functions can be offloaded is
the forwarding process. We believe that most standarthe programmability of these devices, which are often
forwarding functions will have regular costs that canimplemented with custom ASICs. Even if a function
be determined through off-line experimentation, as il-fits within the per-packet cycle budget, it may not be
lustrated in Table 1. More complex functions, and inpossible to program the front-end device to perform
particular, those with data-dependent costs are probt. In any case, the situation on the control processor
lematic; more on this in Section 3. is exactly the same as described above, the only dif-
Unlike QoS flows, no hard commitments are madeference being that the processor may be able to reduce
to best effort flows, but shares are still useful for pro-the classification time by taking advantage of work al-



ready done on the front-end device. 3 Implementation Issues

Second, a PC-based router that has programmable . . . .
line cards (e.g., those based on an Intel IXP120Qe have_ |mplem§nteq the architecture dgscrlbed n
chip[11] or a RAMiX PMC694 module[19]) behaves tN€ Prévious section in the Scout operating system
in much the same way: the programmable line cardlg]' Scout is designed around a communication-

performs classification and the subset of functighs oriented abstraptlon called a pth. Our route_r uses
that fit within its cycle budget, and the PC handlesSCOUt paths to implement switching paths. This sec-

all other functions. Unlike the ASIC-based COI’]ﬁgU- tion discusses our experiences |mplementlng and tun-

ration, however, the interface card (which has to deaind the architecture.

with a collection of MAC chips) faces much the same
scheduling problem as the PC. As a consequenc&.1 Implementation Details
our process model applies to both programmable Iin%1

cards and the PC that controls them. A related issug cO4t SUPPOItS early demultiplexing, S0 separating
that arises in this setting in how processes on the lind® INpUt process from the forwarghng process was
traightforward. The only complication was that

cards interact with the processes on the main proce%cout normally reads and classifies packets at inter
sor. One possibility is that the input and output pro- . i . . e
P y P put p upt time. We modified Scout so this work is done in

cesses described in this section run on the line cardé, . :
and only the forwarding functions run on the main & polling thread. On the output side, we added an out-

processor. This requires the intelligent line card to di-put process since Scout paths normally write directly

rectly insert packets into the first set of queues on théO the NIC's transmit queue.

main processor. Alternatively, a trivial input processf E?.Ch SIC\IOUt p?lth |r?r|]:)lerr(1jents Ia' single fo;wgrdl_?r?
still needs to read packets from the input device, clagunetion. Normally a thréad pool 1S associated wit
ach path. In this case, the pool was limited to a sin-

sify them (perhaps based on a simple index alread le thread, which corresponds to the forwarding pro-

produced by the line card), and insert them into th ; : C
appropriate queue for processing. cessin our.archltecture. The function implemented by
_ _ ) each path is constructed from a sequence of modules.

Third, an alternative to loading up the router por example, the module-sequence ETH/IP/ETH im-
proper with additional functionality (e.g., proxies, plements a general IP forwarding path, one that is able
web caches, application-specific services) is to couplg, handle IP options, dissimilar network devices, and
a conventional router with a server. In other words,gq on. We also implemented a second, single-module
the router forwards most packets by itself, but it di- path that is optimized for a specific source/sink de-
verts packets that require special treatment to a dijice pair. It changes the addresses in the frame header,
rectly connected server. Again, this is just a variationgecrements IP’s TTL field, and incrementally recom-
on the previqus two configurations, where the pProcesgytes the header checksum. These two paths (for-
model described above runs on the server. This rais§garding functions) correspond to the second and first
an interesting point, however. The issue we are adroys, respectively, in Table 1. We primarily use the
dressing is broader than just IP routers—our procesgyst path in the measurements reported in the next sec-
model applies to any network device that perform I/O-jgn.
centric tasks, that is, reads a packet from an input de- gpe of the optimizations exploited by the fast path
vic_e, perform some transformatior_1 on the packet, angl 1o bypass the Scout message library. Scout mes-
writes the result to an output device. For example, &ages facilitate standard packet processing such as
web server/cache/proxy receives packets on an '”p‘éftripping and adding packet headers. Since the fast
port, parses the HTTP request and constructs a replyath assumes a fixed-length IP header and the same
and sends a packet on an output port (usually the samgyme header on both input and output, the general-
as the input port). purpose library is unnecessary.

One can argue that in the limit the distinction be- The implementation uses the \A®+ [3] fair queu-
tween what'’s the router and what's the server will be-ing scheduler. There are actually two instances of this
come blurred, and that a router will simply consist of scheduler. The first selects a process to execute based
multiple computing elements and multiple switching on the cycle reservation made for each. The second
elements [18]. The process model described in thischeduler runs only when an output process executes,
section applies to those computing elements that caand selects a packet to transmit on a link. It maintains
be programmed to support new functionality. a queue of Scout paths, ordered by the AQF as-



signed virtual timestamp. The path with the smallesting process). The alternative is that a single switch-
timestamp is selected, and a packet from that path’sig path services multiple forwarding functions rather
output queue is selected for transmission. than being limited to just one. The latter approach
Because Scout threads are non-preemptive, aneduces the state the router must maintain, but the for-
since they perform a simple action in our architecturemer approach makes it possible to assign each switch-
(i.e., move packets from one queue to another), wéng path a different processor share. For example, a
can use thread continuations whenever a thread yieldsuter might establish a policy that best effort packets
or suspends. A thread that yields maintains no state; that require option processing should be segregated
always resumes execution with the next packet in thérom best effort packets without options, with the for-
process’s input queue. This allows us to avoid savingner receiving preferential treatment by the scheduler.
registers between runs of the same thread. As another example, one could ensure that forward-
We use a Tulip driver from MIT that was tuned for ing functions that process route updates receive a suf-
their Click router [15]. This driver places the card in ficient share. This is effectively an attempt to differ-
auto transmit mode; in this mode, the transmit processntiate service, just as with QoS flows, but based on
on the device polls the DMA queue, saving I/0O com-functionality rather than bandwidth requirements.
mands. The driver also performs specialized buffer
management and prefetching.

3.2 Policy Issues
y 3.3 Queue Estimator

There are several policy issues regarding how a pro-
grammable router allocates its resources, includin
what fraction of the router's CPU cycles and link
bandwidth it is willing to set aside for QoS flows. We

gI'he process architecture is designed to ensure that all

messages are buffered in explicit message queues, as

highlight two additional issues. opposed to hidden thread queues. We expose these
message queues to allow for future scheduling algo-

The first issue is what share to give the input pro-. .
cesses, where the requirements of best effort and Qorghms that may take queue lengths into account. Our

flows are in conflict. For the sake of best effort ﬂows’current framework uses them to decide process éli-

we want to assign input process shares based on t@éblllty, where a process is eligible to run only if its

ideal cycle distribution in overload. We do this to Nput queue is not empty and it§ qu't'put queue IS not
avoid livelock. Should this rate be less than is requireJu”' However, calculating the eligibility of an input

- - rocess is not straightforward since its input queue re-
to read and classify packets at line speed, QoS flows. . o .
v p P Q Sides on the device. The risk is that the input process,

are vulnerable to denial of service attacks. This is be- hich i iall llina thread thoudh
cause the input process must run at line speeds; otf)- ICh IS essentially a polling threéad, runs even thoug
ere is no useful work for it to do. This is especially

erwise, packets belonging to well-behaved QoS flow . . )
roublesome if we give the input process a conserva-

may be dropped on the line card, thereby violating the. . .
promises the router has made to the flow. It is no Ve shgr_e s0as to ensure thatit can keep up with pack-
S arriving at line speeds.

clear how to assign a share to the input process to begf
satisfy both kinds of flows. One option is to exploit a NIC status register that

The system designer must make a fundamentatontains the number of packets buffered on the de-
tradeoff when choosing the input share. QoS flows/ice. However, a process must read this register—we
want conservative input shares to resist denial of serdo not want the scheduler itself doing device I/O—and
vice attacks; best effort flows do not, since it meansve must still decide when to schedule this process. In-
the system will waste cycles reading in packets thastead, our prototypestimateshe device queue length
will be dropped later in the pipeline. Our choice is to based on previous observations. It does this by keep-
favor QoS flows by giving the input process a consering a simple weighted average of the packets read dur-
vative share. We describe how to temper this decisioing each execution of the polling thread. This estimate
in Section 3.3. is currently used as feedback for a batching mecha-

The second policy issue is the extent to which beshism that will be discussed in the next section. The
effort traffic should be aggregated versus isolated. Apoint is that the state of all queues, including the re-
described in Section 2, each unique forwarding func<eive queue on the device, is available to be incorpo-
tion is assigned to a separate switching path (forwardrated into the scheduling decision.



3.4 Batching We cap the maximum sleep time of an input process so
that it will always poll the device at an acceptable rate.

Batching allows the system to spread the cost of a cong/e can imagine needing to tweak this algorithm as we
text switch across multiple packets, resulting in higherynderstand more about actual workloads (e.g., rapidly
forwarding rates. Our system tries to batch packets ghcreasing the polling rate in response to a single large
all three stages of the process pipeline. The forwardinput queue), but this simple strategy has worked well
ing process is given a timeslice and allowed to send ag the experiments we have run.
many packets as possible during that slicehe input This throttle mechanism accomplishes two things.
and output processes use a simple mechanism whigkyst, it stretches out the period at which the process
we call athrottle to achieve good batching behavior. ryns for better batching. Second, it dynamically ad-
Below we explain how batching works in our router. jysts the actual execution rate of the process in re-

Bigger batches of packets become available for prosponse to the workload. The throttle slows down the
cessing if we reduce the period at which the packetnput process to a rate commensurate with the packet
consumer runs. For example, assume that packets airrival rate, and its unused share is distributed fairly
rive on a particular interface at a rate of 10 Kpps. Ifthroughout the system. So the throttle helps perfor-
the input process on that interface runs every19dt  mance through amortizing context switch overhead
can read only one packet; if it runs every millisecond,for both input and output processes, as well as pre-
it can read ten. Since reading ten packets at a timgenting an input process from polling unnecessarily.
reduces the cost per packet of the context switch, the Our system batches at all stages of the process
input process can read packets at the same rate usipipeline. Though batching leads to better perfor-
less share, leading to a more efficient system. mance, we must be careful because it can interact with

Proportional share algorithms already decouplegorocess eligibility in undesirable ways. With large
share and period. When a thread runs, its virtual timdvatch sizes, processes may be able to drain their input
is advanced by an amount proportional to its executiorgueues when they run, thus becoming ineligible. The
time. The more its virtual time advances, the longerresult can be that, at any one time, only a few pro-
the amount of time before it will be allowed to run cesses are actually eligible to be scheduled; process
again. One option would be to vary the period of theeligibility, rather than share, may then dominate the
input thread using virtual time. We could advance itssystem behavior. We are not aware of a general solu-
virtual time by a minimum amount (i.e., the amount of tion to this problem, other than experimentally trying
time it would take to read a target-sized batch of pack4different batch sizes to see which works best.
ets) to stretch its period so that it would find multiple
packets on the device when it runs. 3.5 Cycle and Link Rates

We take another approach. Since we give an in- , _ , _
put process a conservative share, we want both to adur discussion describes the rate of a flow in terms
just its period for better batching, and to give backOf Packets per second, yet most QoS schemes provide
cycles it does not need to the system. We wrap botikates in tgrmg of bits per second. We assert that most
of these functions into the throttle mechanism. TheQ0S applications send packets of roughly equal size,
throttle puts an input or output process to sleep aftefnd so itis possﬂgle to translate a bit rate into a packet
it runs, varying the sleep time using feedback fromrate. Our experience also suggests that the number
the estimator in Section 3.3. Each process has a batd] cycles required to process each packet (or per byte
target range,, y], representing the number of pack- of data) can be accurately measured, and hence, it is
ets it wants to batch when it runs. When the estimat®0SSible to compute a cycle rate. If these assumptions
falls below the minimum threshold, we increase the hold, then it should be possible for a router to derive
sleep interval of the input process; when it goes abovdhe cycle rate from an RSVP-style bit rate reservation.

the maximum thresholgl, we decrease the sleep time. If n0t, then it may be necessary for the application
to explicitly state the cycle rate it requires, and if the

Note that a switching path is not preempted; whether or noCOmMputation is data-dependent, this reservation may
the timeslice has expired is checked once per path execution. Fateed to be conservative.
the sake of this paper, we assume that only well-behaved functions Ap interesting question is whether we can do bet-

are admitted to the system. Untrusted functions could either ru - :
in a preemptable process, or the system could kill a packet if irtier than make a conservative reservation for data-

exceeds a certain time limit. Both facilities could easily be addeddependent flows. For example,_ canan applicat_ion just
to our architecture. reserve the average cycle rate its packets require, even




when the cycle requirements are highly variable fromthe CPU rather than the network. It is for this reason

packet to packet. The worry is that even though thehat our experiments emphasize switching small pack-

forwarding process receives its reservation over a longts; a larger number of small packets place a greater

interval, any given packet might arrive at the outputload on the CPU than fewer large packets.

gqueue late, and hence forfeit its share of the link ca-

pacity. In the end, this is exactly the same problemy 1 Evaluating Overhead

as the presence of jitter in the arrival rate of packets,

the effects of which can be mitigated with sufficient We begin by evaluating the overhead introduced by

buffering. In other words, as long a switching path’sour process architecture, to determine whether or not

output queue is large enough, it can buffer packet proit is prohibitively expensive in practice. We measure

duced during good times (when processing costs arte relative overhead by plotting the offered load to the

small), and therefore not go empty when processingouter versus the resulting forwarding rate achieved by

cost are large. the router. The parameters we chose to vary for this
series of experiments were:

4 Experiments Input Servicing Scheme This is the choice to use in-

_ _ _ _ terrupt driven input versus input device polling.
This section reports on a series of experiments de-

signed to evaluate the effectiveness of our process aNumber of ProcessesWe use one, two, or three pro-
chitecture. The experiments were run on the configu-  cesses to forward the packets from input to out-
ration shown in Figure 4. It consists of our router, a put. When we use one process, a single thread

100 Mbps switch, and three PCs. The machine run- handles input, forwarding, and output. When we
ning our prototype router has450 MHz Pentium-II use two processes, we use an input thread and
processor with &12 KB L2 cache, and three Tulip a forward/output thread (this case allows differ-
(21143 chip)100 Mbps network interface cards. We ent forwarding functions but no link scheduling).
use the three PCs, labelled A, B, and C, as packet For three process experiments, each of the input,
sources. forwarding, and output tasks are assigned to its
own thread. We assign an equal share of the pro-
( a ar )
8 @—> Switch L Router cessor to each process.
3 X ) 2 Batching To reduce the overhead of context
g @—» switches, we can enable batching. With batching
enabled, each process attempts to handle as
many packets as possible up to an arbitrary limit

Packet Sinks

of 16 packets. Without batching, each process
will handle at most one packet before yielding

Figure 4: Experimental Setup the processor

The reason for the switch, as opposed to directly Figure 5 summarizes the results of five experi-
connecting the sources to the router, is that we diments. In each experiment, the source PCs in Figure 4
vert packets destined for the three PCs to a nongradually increase their aggregate offered load from
existent sink. Otherwise, we found that packet recep® to 420 Kpps, as the router attempts to forward the
tion interfered with packet transmission on the PCeackets as best it can.

(which used 3COM cards), making our sources un- In the interrupt implementation, the router is able
predictable. to keep up with the sender up 48 Kpps, after which

During the tests, each source PC generates a stredtrbegins to suffer from receive livelock. In contrast,
of 64-byte IP packets at rates up 0 Kpps. Using  the polling implementations give a more desirable be-
all three sources, we can generate an aggregate makiavior: the forwarding rate increases up to a certain
mum offered load o#20 Kpps. We measure the time point and them remains flat. In the flat portion of the
the router takes to forward a certain number of packgraph, the router drops more and more packets; how-
ets, yielding an average forwarding rate. While this arever, the router does not waste time on the dropped
tificial workload is clearly not representative of the In- packets. These results simply reinforce those found in
ternet at large, our experiments are designed to stre$$4].



SO T T T 1T ratio. We use the two-process configuration in the next

300 - Polling, 1 Process —__ subsection to focus on best effort flows, since the out-

Polling, 2 Process put process is only required when we need to imple-
ogg | Folling, 3 Process =7/ ] ment link scheduling.
Note that although absolute performance is not the
- focus of this paper, the total 3,8 forwarding time

Polling, 3 Process —,
w/o Batching

@
a
<
Q
I
@
g 200 - . . .
S for each packet did not come easily. We started with
8 .
2 150 [~ . a per-packet cost of over 1L3. The specialized
% IP forwarding path shaved 2.8 (this is the differ-
% 100 B ence between the first two rows in Table 1), the driver
= » optimizations shaved 2.8, and bypassing Scout's
g S0 /w}géﬁhilnprow‘s 7 general-purpose message library saveg2.®erhaps
) D, 1 1 lg 1 1 most important of all, however, is that fact that our ar-
0 50 100 150 200 250 300 350 400 chitectur_e aIIowegI us to i_mple_ment context switches
Aggregate Offered Load (Kpps) as very inexpensive continuations. Having two full-

Figure 5: Impact of interrupt handling and context Plown context switches on the forwarding path has the

switching on forwarding rate. potential to add 10s or more to the forwarding time.

4.2 Best Effort Forwarding

Maximum | Max. Forwarding Rate
Processes Batch Size | Kpps Normalized We now focus on the performance of our prototype
1 [+F+O 16 204 1.00 when forwarding only best effort packets. We show
2.1, F+O 16 286 0.97 that our architecture achieves good best effort for-
3 ILFO 16 272 0.93 warding rates, even when the system becomes imbal-
3 .FO 1 257 0.77 anced (i.e., the shares are not quite right). We test this

situation by varying the cost of the forwarding pro-
Table 2: Maximum Forwarding Rates using Polling cess, where as just described, we know that the input
requiresl.6 us to read and classify each packet.
In this experiment, packet flows from the three
sources traverse three different switching paths, de-

Table 4.1 shows the relative maximum forwardingnoted A, B, and C. Flow A uses a forwarding func-
rates using polling. The forwarding rates are from thetion that spends.0 s on each packet, meaning that
plateaus in Figure 5. The last column shows the forit has an ideal share ratio of 1:5. The forwarding
warding rates normalized to the single process withfunctions for flows B and C delay their packets by an
batching case. From this table, we see that each addidditional 8.0 s and 16.0 us, respectively, meaning
tional process in the forwarding pipeline adds 3 to 4%that their ideal share ratios are 1:10 and 1:15. The
of overhead. The effects of batching are more signiffourth column of Table 3 shows the forwarding rate
icant, improving performance by approximately 16%.that is achievable for these three flows, where the three
Further analysis shows that we are batching on th@lows run serially (i.e., they are not competing with
order of 10 packets at each stage. Comparing thregach other). This table gives only the peak forward-
processes with batching (i.e., our proposed architecng rate for each flow, which corresponds to the mea-
ture) to the single process case, we see that the overafiired throughput rate at the maximum sending rate
difference in performance is only 7%, which seems &f 140 Kpps. The maximum forwarding rate of each
tolerable overhead for the increased functionality ouhost’s packets are very close to what we would expect.
architecture provides. The system is allocating the CPU efficiently.

Finally, micro-experiments indicate that in the three  Next, instead of configuring the router to give each
process case, the input process spen@lgs on each flow its ideal share, we set the ratio to 1:10, meaning
packet, the forwarding process spefdsus on each that flow B is balanced, while flow A gives too much
packet, and the output process spehds:s on each weight to the forwarding process and flow C gives too
packet. Note that if we assume two process stages-much weight to the input process. There are two sit-
an input process and a combined forwarding/outputiations where such an imbalance might arise in prac-
process—a balanced system has almost exactly a 1tice. One is that the amount of processing required



Table 3: Best effort throughput in Kpps

Flow | Fwd Cost | Ideal balance | Balanced share| 1:10 share w/o throttle | 1:10 w/ throttle
A 8 us 1: 5 101 Kpps 101 Kpps 101 Kpps
B 16 us 1:10 56 Kpps 56 Kpps 56 Kpps
C 24 us 1:15 38 Kpps 35 Kpps 38 Kpps

varies from packet to packet, so we can establish onl¢.3  Mixing Best Effort and QoS
the average CPU allocation for a given flow. The sec-
ond is that we give the input process a conservativ . . . . :

) e now describe an experiment in which we mix two
cycle rate—perhaps for the sake of protecting Qo

promises—but it can't effectively use this rate. Flow oS flows with a _best _effor t flow. We again us the
C corresponds to this latter case. three sources depicted in Figure 4, with the flow from

source A arriving on port 1, the flow from B arriving
on port 2, and the flow from C arriving on port 3. In

this experiment flow B is routed to output port 1, while

sults of the imbalance, the difference between the tW(Both flows A and C are routed to port 2. Thus, A and
columns being that the fifth drops packets that demu>6: compete for this output link. Also, flows B ’and C

to a full queue (as we might do if we had QOS flows), 510 505 flows with #0 Kpps reservation. They are
while the sixth uses a combination of eligibility and using their entire reservation.

the batching throttle to limit the rate at which the
input process runs (appropriate with no QoS flows).

The fifth and sixth columns of Table 3 show the re-

Not surprisingly, flow B performs exactly as before, 250 x x w w w w w
since it is given the same share assignment. Though —X
the shares are out of balance for flow A, it is unaf- Aggregate
fected, since the forwarding process’s unused share is 200 7
distributed upstream to the input process. However, g
flow C’s throughput drops t85 Kpps in the fifth col- g 150 1 |
umn. The problem is that the input process is running g
at a faster packet rate than the forwarding process and % Flow B
packets are dropped off the tail of the forwarding pro- 5 199 AN _
cess’s input queue. Column six for flow C shows that &~ F— & * =& —&—&&——8—=
eligibility and throttling readjust the rate of the input e Flow C
process to match the forwarding process. 50 - %
Flow A
This experiment doesn't really demonstrate the im- 0 1 1 1 1 1 1 1

pact of assigning a conservative share to the input pro- 0 40 60 80 100 120 140

cess(es) in an effort to protect against a flood of best Flow A: Offered Load (Kpps)

effort traffic. To see the full effect, we configured Figure 6: Mix of Best Effort (A) and QoS (B,C)
an experiment with three input ports, two of which s

had no traffic arriving and one on which packets ar-

rive at full speed. We gave each input process a large

enough CPU share to receive packets at line speed, Figure 6 shows the forwarding rate for flows A, B,
and we set the processing rate for each packet$y) 6 and C, as the offered load on flow A increases. We
which fully utilizes the CPU. Without the queue esti- see that flows B and C meet their reservation despite
mator, roughly a quarter of the CPU is wasted pollingthe increased load. We also see that as long as flow A
idle input ports, thereby yielding a forwarding rate is under approximatel30 Kpps, none of its packets

of 91Kpps for the active port. With the estimator are dropped. After this point, no more packets in flow
enabled, the router was able to forward packets af can get through because we have saturated port 2
130Kpps, the maximum achievable rate for this con{140 Kpps total), the outgoing link shared by flows A
figuration. and C.

20



4.4 CPU versus Link 250 T T T

Using same setup of hardware and flows as Sec-

tion 4.3, we explore the situation where the router 200 m ]

transitions from being link-bound to being CPU- Q Aggregate

bound. We do this by fixing the arrival rate of best £ 150 - i

effort flow A at50 Kpps, which saturates the link that g

A and C share. We then measure the performance %

of all three flows as the processing time for flow As 5 100 - Flow B~ .

packets increases. The system transitions from being g S 'EFI ow g" T i

link-bound to being CPU-bound at just beforesson i

the z-axis. 50 - 7
Figure 7 shows the forwarding rate for the flows Flow A

when we enable simple batching. As flow A's cost . R ‘

increases, it hogs the CPU while it works on a batch % 10 20 30 40 50 6

of packets in the queue. Because flow A gets the CPU Flow A: Additional Processing Delay (usec)

in large bursts while it processes a batch of packets Figure 8: No Batching

from its queue, the output queues associated with QoS

flows B and C empty, causing them to become idle.
from being link-bound to being CPU-bound, while

250 1 x w w w preserving the rate requested by QoS flow, as long
as the PS scheduler gets a frequent enough opportu-
nity to re-schedule the processor. The batching throt-
tle provides this opportunity without sacrificing all the
performance advantages of batching.

200

150 Aggregate

4.5 Data-Dependent Processing

100 Finally, we experimented with the effect of data-

dependent processing costs on the router’s ability to
meet QoS promises. Specifically, we ran a QoS flow
at 50Kpps, first with a fixed processing cost @fs8
per packet, and then with a processing cost distributed
uniformly between gs and 12s per packet. In the
0 10 20 30 40 50 €0 second case we reserved the average rate.ofp@r
Flow A: Additional Processing Delay (usec) packet. In both cases, the flow was able to maintain its
Figure 7. Detrimental Effects of Simple Batching as50Kpps rate, but other best effort traffic was affected.
Processing Costs Increase. When the QoS flow used a fixeg8 per packet, a full-
speed best effort flow was able to achieve 127Kpps,
In Figure 8, we turn off batching and do better: bothwhile competing with the variable cost flow slowed
flows B and C are able to maintain their packet ratethe best effort flow down to 120Kpps. In effect, the ex-
Obviously, As rate decreases as it spends more timpensive packets stole cycles from the best effort flow.
on each packet. The improvement comes from the fact A second set of experiments evaluated the impact
that the PS scheduler regains control at a finer granwf the output queue size. With two flows compet-
larity. As we have seen, though, turning batching offing for the same output link, one a QoS flow run-
comes with a cost. ning at 50Kpps and the other a best effort flow run-
In Figure 9, we turn batching back on but we only ning as fast as possible, the best effort flow is able
allow batching to process 16 packets or process foto achieve 90Kpps when the QoS flow requires a
30 us, whichever comes first. We see that QoS flowsfixed 8us of computation for each packet. This is
B and C meet their reservation and that the aggregateecause 50+90Kpps=140Kpps, the maximum output
forwarding rate is higher than that in Figure 8. rate of the link. When the QoS flow’s cost is variable,
In summary, the router makes a smooth transitioragain uniformly distributed betweemnd and 12s per

Forwarding Rate (Kpps)

a
o




250 ‘ ‘ ‘ ‘ ‘ As mentioned in the introduction, the only work
that has addressed the issue of scheduling a router's
200 L i CPU cycles is a study of livelock conducted by Mogul
and Ramakrishnan [14]; Druschel and Banga make
g Aggregate similar observations about network servers [8] and
< 150 . Smith and Traw [21] discuss techniques for reduc-
Q " .. .
B ing the overhead of receiving interrupts. Our work
2 Flow B goes beyond the issue of livelock by also consider-
S0 o o o 4 ing the implications of meeting QoS obligations. Our
§ Flowc use of a proportional share scheduler goes directly to
- this point. Both our work and Mogul-Ramakrishnan
%0 ] cite the importance of keeping the input-forwarding-
Flow A output pipeline balanced, but we offer a general ap-
0 ! 1 , proach that combines proportional share and eligibil-
0O 10 20 30 40 5 60 ity.
Flow A: Additional Processing Delay (usec) There has been considerable work on packet
Figure 9: Batching Throttle Batching with a30 us  scheduling [3, 10], and some of the algorithms devel-
limit. oped for this purpose have also been applied to CPU

scheduling [2, 9, 22]. However, none of these efforts

packet, both flows achieved the same rate. This is witl€monstrate how a programmable router might ex-
an output queue size of 128 packets. If the queue sizdloit these algorlthr_ns to balance concerns about guar-
is set to 1 packet, then the best effort flow is able t?NtEES versus efficiency when one has to worry about
achieve 110Kpps and the QoS flow dips to 30Kpps_schedullng.cycles gnd _bandW|dth S|multaneously. We
This is because the best effort flow is able to send ex€verage this algorithmic work, and in fact, we use an
tra packets when the QoS flow's queue is empty dudMPlementation of WFQ+ [3]in our prototype.
to a packet that requires extra processing.

Clearly we need to do additional experiments under6 Conclusions
differing circumstances, but ultimately the required

queg_e size Is a fur|1ction B tlhe behavélor oLthe for'This paper explores the design space for scheduling
warding process. In general, we nee to ettgr UNhe CPU on a programmable router. The router has
derst_and wha_t appllcatlons_ can tel us abo_ut their for’[hree overriding goals: (1) to maximize the throughput
warding functions, and define a relationship to AUEUSf best effort packets while providing different levels

sizes based on this information. of service to QoS packets; (2) exhibit robust behav-
ior in the presence of varying workloads, including
5 Related Work packet flooding denial-of-service attacks; and (3) sup-

port switching paths of varying computational costs.

There have recently been several efforts to define exFhe strategy we propose first divides the forward-
tensible architectures for network routers [1, 7, 15, 18ing path into a processing pipeline (thereby exposing
20, 23], although none have directly addressed the ighe critical scheduling decisions), and then applies a
sue how the router should schedule these comput&ombination of two mechanisms: a proportional share
tions. Of these, our approach to scheduling wouldscheduler and a batching throttle. Experiments with a
apply most naturally to router plugins [7] and active prototype implementation verify the effectiveness of
flows [20], both of which segregate work early. With the resulting framework.

router plugins, for example, it would be very straight- Although we have established a sound starting
forward to run all the plugins that implement a partic- point, much work remains to be done. For example,
ular flow in a single forwarding process. In contrast,we need to either verify our assertion that the cycle
it is not clear how Click [15] modules would be effi- rate required by QoS flows can be derived empirically
ciently broken into processes since Click has no nofrom a specified bit rate, or else develop a signalling
tion of a per-flow switching path through the router. protocol by which an application reserves a particu-
Support for flow isolation seems to be the critical re-lar cycle rate. We also need to experiment with the
quirement for our approach. router under a wider range of workloads, particularly



those involve data-dependent costs. Finally, we plafil2] N. McKeown. A Fast Switched Backplane for a Giga-
to integrate the scheduling framework on a router ar-

chitecture that includes both PCs and programmable
line cards.
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