
MimdRAID: Low Latency Secondary Storage�

Randolph Y. Wangy Thomas E. Andersonz Yuqun Cheny

Arvind Krishnamurthyx Kai Liy Xiang Yuy

Abstract

Disk arrays can provide scalable bandwidth with
increasing number of disks, but they do not ad-
dress latency. In this paper, we study how to im-
prove secondary storage read latency by systemat-
ically increasing the ratio between disk heads and
usable capacity. The most direct technique is to
build \faster" disks by altering disk geometry. In
addition, as an alternative to building such disks,
we also describe how we can emulate these faster
disks using multiple conventional disks. We show
that all these techniques are governed by a common
principle that the overhead-independent part of the
latency improves by a factor of the square root of
the amount of extra resources. We evaluate some
of these latency reduction techniques on a proto-
type implementation which we call MimdRAID. On
a 12-disk system, for random reads, we achieve a
2� improvement in latency and 21� improvement
in throughput compared to a single drive. This is
80% to 95% better than the throughput achieved on
a conventional mirrored system.

1 Introduction

In this paper, we set out to answer a simple ques-
tion: how do we minimize the latency of small reads
to disk?

Although considerable e�ort in disk array re-
search [5, 21, 30] has resulted in vast bandwidth
improvement, low latency remains an elusive goal.
More recently, novel logging techniques promise to
dramatically lower the write latency [4, 29]. How-
ever, high read latency remains a major weakness
of secondary storage systems.

�This work is supported in part by the Scalable I/O
project under the DARPA grant DABT63-94-C-0049 and by
the National Science Foundation under grant CDA-9624099.

yDepartment of Computer Science, Princeton University,
frywang,yuqun,li,xyug@cs.princeton.edu.

zDepartment of Computer Science and Engineering, Uni-
versity of Washington, Seattle, tom@cs.washington.edu.

xDepartment of Computer Science, Yale University,
arvind@cs.yale.edu.

The performance of small synchronous disk reads
impacts the performance of important applications
such as persistent object stores [14] and database
applications [27, 28]. There are three existing ap-
proaches to improve read latency: careful data
placement exempli�ed by Unix FFS [19] and reorga-
nization [18], aggressive prefetching such as \trans-
parent informed prefetching" [3, 13, 22], and aggres-
sive caching such as \cooperative caching" [6, 7].
These techniques work best when one can accurately
predict the access pattern, either statically or dy-
namically. We are interested in the complementary
question of how to improve performance in the ab-
sence of accurate predictions.

1.1 Technology Trends

The gist of our technique is systematically trad-
ing o� capacity for lower latency. Several technol-
ogy trends have simultaneously enabled and neces-
sitated this approach.

The key trend is the phenomenal growth of disk
areal density. At an annual rate of 60% [11], this
growth has resulted in a dramatic improvement in
disk capacity, bandwidth, and cost.

This trend has several implications. Since
disk latency has been improving at only 10% per
year [17], disks are becoming increasingly unbal-
anced in terms of the relationship between capacity
and latency. A similar phenomena is happening to
the memory subsystem [23]. To address this imbal-
ance, Wood and Hill proposed the so called Con-

verse Amdahl's Dictum: each megabyte of memory
should be accompanied by one MIPS of processing
power [31]. In other words, we can achieve bet-
ter cost/performance by increasing the processing
to memory capacity ratio. We believe that a simi-
lar insight applies to secondary storage systems: in-
stead of blindly conforming to form factors, we can
achieve a more balanced system by increasing the
disk head to capacity ratio.

Database vendors today have already recognized
the importance of building a balanced secondary
storage system. For example, in order to achieve
high performance on TPCC [28], vendors con�gure

1

systems based on the number of disk heads instead
of capacity. To achieve D� the bandwidth, the
heads form a D-way mirror, a D-way stripe, or a
combination of the two (as was done in Petal [15]).
What is not well understood is how we can system-
atically translate the excess capacity into improved
latency, which can in turn lead to improved through-
put, reducing the number of heads required.

Another important technology trend is the rela-
tionship between memory and disks. The areal den-
sity of memory has been improving at a steady rate
of 40% per year [11], a rate that is far behind that
of the growth in disk density (60%), which has ben-
e�ted signi�cantly from recent innovations in disk
sensing and recording technology. This disparity
also manifests itself in terms of cost per megabyte:
the gap between memory and disk is roughly two
orders of magnitude today and growing.

A naive answer to the disk read latency problem
is that it will be addressed in time by the growing
memory caches. However, �le system implementors
are consistently surprised by the low cache hit rate
despite the increasing amounts of memory [1]. We
believe that the widening gap between memory and
disk costs can only make this problem worse. The
upside of this growing disparity is that it presents
an opportunity for the development of a range of
storage alternatives that can �ll the gap between
memory and disk in terms of cost/performance.

1.2 Background

A number of recent RAID systems are designed
with the intent to study the tradeo� between capac-
ity and performance. We highlight two such systems
that have inspired our work, while deferring the rest
of the related work to a later section.

Petal is a network RAID that exports virtual disk
interfaces to network clients [15]. To provide bet-
ter small write performance, better load balance,
and easier crash recovery, Petal chooses mirroring
instead of a RAID-5 organization. The HP Au-
toRAID system makes the tradeo� between capac-
ity and performance more explicit by incorporating
both mirroring and RAID-5 into a two-level hier-
archy [30]. The mirrored upper level provides ad-
vantages similar to those of Petal at the expense of
consuming more storage, while the RAID-5 lower
level is more frugal in its use of disk space.

We believe that these systems represent steps
in the right direction in their explicit recognition
of the tradeo� between capacity and performance.
However, a large number of questions remain unan-
swered. The primary advantage of mirroring ex-
ploited by these systems is its low write latency;

how can we extract low read latency by exploiting
this tradeo�? Are there techniques other than mir-
roring that can accomplish this goal? Why do we
have to stop at two copies? How can we build bet-
ter disks that are more latency-friendly? What is
the relationship amongst these di�erent latency re-
duction techniques? In short, we believe Petal and
AutoRAID represent two interesting design points
in a vast design space that beckons a systematic ex-
ploration.

1.3 Contributions

MimdRAID is a low latency secondary storage
system that systematically trades o� capacity for
performance. During its design, we have made the
following contributions. We have designed a num-
ber of latency reduction techniques that exploit ex-
cess capacity. Two of these, which we call splitting
and replicated splitting, o�er throughput and sim-
plicity advantages that traditional mirroring does
not possess. We have identi�ed and quanti�ed
how disk geometry can be altered to improve disk
latency. We show that all our latency reduction
techniques share a simple rule-of-thumb, which we
call the Square Root Rule: speedup of the overhead-
independent part of the latency equals

p
x, where

x can be any one of the following: the number of
excess disks, the reduction of platter area, or the
number of heads per surface. By combining split-
ting and rotational replication, we can achieve com-
parable latency improvement as mirroring with far
fewer replicas, while delivering super-linear scale-up
in throughput as we increase the number of disks.

To evaluate some of these latency reduction
techniques, we have implemented a prototype
MimdRAID system. In the process, we have devel-
oped a calibration method that provides accurate
prediction of disk head positions, a crucial require-
ment for most of our latency reduction techniques.
On a 12-disk system, we achieve a 2� improvement
in latency and 21� improvement in throughput for
random small reads.

The remainder of the paper is organized as fol-
lows. Section 2 presents a range of latency reduc-
tion techniques. We provide simple analytical mod-
els and analyze the advantages and disadvantages
of each approach. Section 3 validates the Square
Root Rule using simulations. The simulations shed
light on cases that are too complex to model ana-
lytically or cases that are impossible to implement.
Section 4 describes our prototype MimdRAID im-
plementation. We explain how we perform disk head
position calibration. We compare the latency and

2

throughput results of a range of strategies. Sec-
tion 5 describes some of the related work. Section 6
concludes.

2 Latency Reduction Techniques

In a well-constructed RAID system, large I/O
bandwidth scales linearly as we increase the num-
ber of disks. What is not well understood is how
latency improves in response to the addition of re-
sources. There are three main contributing factors
to disk latency: seek delay, rotational delay, and
overhead. In this section we consider the �rst two
factors. We would like to understand, for example,
how much improvement one can expect if we double
the number of disks, halve the diameter of disk plat-
ters, or double the number of heads per surface. We
use simple analytical models to study how to best
take advantage of the extra resources and evaluate
the di�erent alternatives.

2.1 Using Extra Disks

Disks are cheap. The simplest form of introduc-
ing extra resources into the system is to add more
disks. The challenge is how to e�ectively turn ex-
tra disks into low read latency. Mirroring systems
such as Petal [15] and AutoRAID [30] represent an
important data point. In this section, we explore
alternatives other than simple mirroring and how
the latency improvement scales as we increase the
number of extra disks beyond two. We �rst explore
a number of techniques that reduce seek distance;
then we study how to reduce rotational delay; and
�nally, we combine the seek and rotation reduction
techniques.

2.1.1 Techniques for Reducing Seek Dis-

tance

We start by de�ning the following abstract problem
statement: suppose the maximum seek distance on a
single disk is S, the total amount of data in question
�ts on a single disk, but we are given D disks. Sup-
pose we perform random seeks. The challenge is to
devise di�erent ways the D disks can be e�ectively
employed to reduce seek distance. We would like to
know the average seek distance of these alternatives.
We use seek distance to simplify our presentation.
Of course, seek latency is not a simple linear func-
tion of seek distance [25]. We examine seek latency
in later sections.

As a base case, it can be shown that the average
seek distance for random reads on a single disk S0

A A A

CB CB

CB BB CC

(a)

(b)

(c)

Figure 1: Techniques for reducing seek distance. Capital
letters represent a portion of the data. To the left of the
arrows, we show how data is (logically) stored on a single
disk. To the right, we show di�erent ways that data on the
single disk can be distributed on two disks: (a) mirroring,
(b) splitting, and (c) replicated splitting.

is1:

S0 =
S

3
(1)

Mirroring

Mirroring can reduce seek distance because we can
choose the disk head that is closest to the target sec-
tor in terms of seek distance (shown in Figure 1(a)).
Assuming that we do not enforce identical layout on
the D replicas, we can prove that the average seek
distance on a D-way mirror Sm is:

Sm =
S

2D + 1
(2)

We can achieve slightly better result than Equa-
tion (2) if we insist that all replicas have identical
layout. Such a requirement, however, would pro-
hibit write optimization techniques that rely on data
location independence.

Splitting

Unlike mirroring, splitting involves no data replica-
tion. Figure 1(b) illustrates a two-way split. Data
on the original single disk is partitioned into two
disjoint sets: B and C. We store B on the outer
edge of the �rst disk and C on the outer edge of
the second disk. The space in the middle of these
two disks is simply discarded! As a result, the disk
heads are restricted within a smaller region. This
is called disk splitting because the single large disk
is in e�ect split into two smaller disks. Discarding
space in the middle of the disk is a key feature that
distinguishes splitting from other data distribution

1In the interest of brevity, we omit all the proof details in
this paper. Interested readers can �nd them in the technical
report.

3

techniques. Otherwise, splitting is identical to strip-
ing. We can prove that the average seek distance Ss
is:

Ss <
S

3D
(3)

Note that we have used the inequality \<" in For-
mula (3). This is because in reality, the outer tracks
on a disk store more data than the inner ones. As a
result, the di�erence between Ss and S0 should be
a factor that is larger than D.

Splitting by itself does not provide reliability in
the face of disk failures. There are two ways of ad-
dressing this issue. The �rst is a combination of
mirroring and splitting: when D > 2, we replicate
the data once while splitting D � 1 ways. This is
based on the observation that it usually does not
take D copies to provide su�cient protection; two
are su�cient. The second possible solution to re-
liability is to use the center of the disks to store
secondary copies, copies that exist solely for relia-
bility considerations. For example, in Figure 1(b),
we will store a copy of C in the center of the �rst
disk and a copy of B in the center of the second
disk. This is analogous to mirroring in that each
disk contains a complete replica of all data. The
disadvantage of this approach is that during peri-
ods of mixed reads and writes, the writes will force
some of the disk heads into the secondary copies
at the center of disks, thus degrading performance
of reads to the primary copies on these disks. We
therefore assume the �rst approach.

It is easy to see that splitting is strictly better
than mirroring. One reason is that splitting should
o�er better latency than mirroring. The di�erence
between Sm of Equation (2) and Ss of Formula (3)
increases as we increase the number of disks D.

Perhaps the even more important reason to pre-
fer splitting to mirroring is that splitting provides
better write throughput. In order to deliver the full
bene�t of seek distance reduction using D mirrored
disks, we must perform D physical writes for every
single logical write. Of course, some of these writes
can propagate in the background; but reads to data
whose propagation has not completed cannot enjoy
the full bene�t of latency reduction o�ered by a D-
way mirror. A high degree of replication also com-
plicates implementation due to the e�ort in main-
taining consistency of the replicas. For splitting,
only one (if reliability is not a concern) or two (if
reliability is a concern) writes need to occur, so la-
tency improvement is achieved without sacri�cing
write throughput.

Replicated Splitting

(c)(b)(a)

Figure 2: Techniques for reducing rotational delay. (a)
Randomly placed replicas. (b) Evenly spaced replicas. (c)
Replicas placed on di�erent tracks.

Splitting, as discussed in the last section, reduces
seek distance by not using the center of the disks.
Our next technique uses this space to further im-
prove latency. Under replicated splitting, as shown
in Figure 1(c), we replicate the data within each
disk a number of times. Assuming constant track
capacity, and depending on the number of copies
we make (which is less than D), we can prove that
the average seek distance of replicated splitting Srs
falls within the following bound:

S

4D
< Srs <

S

3D
(4)

The upper bound is simply Ss. The lower bound
requires more explanation. Intuitively, replicated
splitting can further reduce seek distance beyond
splitting because for most of the time, there is an
identical copy of the target sector on each side of the
disk head so that the head can choose the closer one.
As we increase the number of copies, the average
seek distance quickly approaches the lower bound
when there is always a copy in either direction. In
practice, we have found that making more than two
copies provides virtually no additional bene�t.

As disk drives acquire more intelligence in the
future, it is possible that such propagations can be
controlled by the embedded controller inside the
drive without outside intervention. Such an opti-
mization can take advantage of the \free" band-
width between the head and the platters with-
out consuming valuable interconnect bandwidth and
RAID controller processing. Unlike this intra-drive

propagation, traditional mirroring relies on inter-

drive propagation, which cannot avoid crossing the
interconnect between disks.

2.1.2 Techniques for Reducing Rotational

Delay

Reducing seek distance alone is not su�cient. An-
other important contributing factor to latency is ro-
tational delay. The general approach is to replicate
data at di�erent rotational positions. By choosing
a replica that is rotationally closer than others, this
approach has the e�ect of emulating a disk that

4

spins faster. Of course, this assumes that the ro-
tational position of the disk head is available to the
entity that chooses the target sector. Replication
for reducing rotational delay can of course increase
seek distance by pushing data farther apart. We
ignore this e�ect for the time being in this section.

In the following discussions, we assume that the
full rotational delay on a single disk is R and we
replicate data D times. As a base case, the average
rotational delay on a single disk R0 is simply half of
a full rotation:

R0 =
R

2
(5)

Random Rotational Replication

A naive approach is to place replicas at random ro-
tational positions. There are several scenarios under
which this arrangement can occur. One is a mir-
rored system whose spindles are not synchronized.
Another is when we schedule the writes of di�er-
ent replicas at di�erent times at \convenient" but
random rotational positions either on a single disk
(shown in Figure 2(a)) or on di�erent disks. Using
D rotational replicas, we can prove that the average
rotational delay Rr to the �rst such replica is:

Rr =
R

D + 1
(6)

It is easy to see why random rotational replication

may not be the best way of placing the extra copies.
For example, in Figure 2(a), the two random repli-
cas partition a track into two di�erently sized arcs.
The probability of the disk head's falling in the
larger arc is larger than in the smaller one. There-
fore, the probability of incurring the longer delay is
also larger.

Even Rotational Replication

To address the shortcoming of random rotational
replication, under even rotational replication, we
place the D replicas 360=D degrees apart from each
other. This can be done on a mirrored system
whose spindles are synchronized or on a single disk
when we carefully place the replicas (shown in Fig-
ure 2(b)). We can prove that the average rotational
delay Re under this approach is:

Re =
R

2D
(7)

Intuitively, Re is simply scaling down R0 linearly
by a factor of D. This is so because even rotational
replication e�ectively shortens the length of a track.
For a larger replication factor D, the di�erence be-
tween random and even rotational replication is al-
most a factor of two.

Rotational Replication on Di�erent Tracks

Figures 2(a) and (b) have illustrated the concept
of rotational replication by making copies within
the same track. Unfortunately, this decreases the
bandwidth of large I/O. For example, under even
rotational replication (shown in Figure 2(b)), dur-
ing large sequential reads, we are forced to switch
tracks D times more frequently than without repli-
cation. Today, on a state-of-art disk, a track switch
is roughly 0.5-1 ms while the full rotational delay is
about 6 ms. Under these conditions, a high degree
of rotational replication may signi�cantly degrade
large I/O bandwidth.

In addition to bandwidth, replicating within a
track may also negatively impact read latency. A
higher degree of rotational replication e�ectively re-
duces the length of a track, thus increasing the like-
lihood of track switches (depending on the nature
of locality).

To avoid unnecessary track switches, we place
the replicas on di�erent tracks, within the same
cylinder (shown in Figure 2(c)), elsewhere on the
same disk, or on di�erent disks whose spindles are
synchronized.

2.1.3 Combining Techniques for Reducing

Both Seek and Rotational Delay

In the past sections, we have discussed techniques
for reducing seek distance and rotational delay in
isolation. Now we consider the combined e�ect. The
combined e�ect, however, is more complex than it
might �rst appear: choosing a replica that is clos-
est in seek distance may not result in the optimal
rotational delay. Also, the total latency is not neces-
sarily a sum of the seek delay and rotational delay;
instead, they may overlap. We consider two alter-
natives in this section. We defer their quantitative
evaluation until later sections. Here we consider a
number of issues qualitatively.

Inter-disk and Intra-disk Approaches

The �rst alternative is mirroring on disks whose
spindles are carefully synchronized out of phase.
This reduces both seek distance (as shown by Equa-
tion (2)) and rotational delay (as shown by Equa-
tion (7)). We consider this the inter-disk approach
because the replicas are on di�erent disks.

The second alternative is a combination of split-
ting (or replicated splitting) (as shown by Equa-
tion (3) or (4)) and rotational replication (as shown
by Equation (7)). We call this the intra-disk ap-
proach. If we choose to use replicated splitting,
then there are two types of replicas. The purpose

5

S

R

S0

R0
A

B

S

R

S0

R0A

B

Figure 3: The two dimensions involved in latency: seek
distance on the x-axis and rotational delay on the y-axis.
In order to halve the \distance" between two random sec-
tors A and B, in general, we must halve the \distance"
in each dimension.

of replicas that are in the same cylinder is to reduce
rotational delay. The purpose of replicas that are
in cylinders that are far apart on the same disk is
mainly seek distance reduction, although they can
also be carefully placed in such a way that they con-
tribute to rotational delay reduction as well. Both
of these types of replicas are within the same disks,
hence the name intra-disk approach.

The First Square Root Rule

Both the inter-disk and intra-disk approaches share
a number of common elements. One is that there
exists a tension between reducing rotational delay
and reducing seek distance. For example, if we raise
the degree of replication within a cylinder to reduce
rotational delay, we push data belonging to di�erent
cylinders farther apart from each other, raising seek
distance.

Figure 3 shows that there are two dimensions
contributing to the total latency: seek distance and
rotational delay. In order to improve the overall
latency by a certain factor, we must at least improve
each dimension by the same factor. This leads to our
�rst rule of thumb.

Rule 1 By using D disks, we can improve the

overhead-independent part of random read latency

by a factor of
p
D.

Of course, when there is locality, we can do bet-
ter than Rule 1: the contribution of rotational de-
lay may be greater than that of seek distance when
locality exists. By devoting an extra disk to the di-
mension that can o�er the most gain as we increase
the number of disks, we can best take advantage of
the resources.

Advantages of the Intra-disk Approach

The intra-disk approach inherits the advantages of
disk splitting compared to mirroring as discussed in
Section 2.1.1. In order to achieve a factor of

p
D

improvement, the intra-disk approach requires onlyp
D rotational replicas while the inter-disk case re-

quires D replicas. Consequently, propagating repli-
cas is less costly under the intra-disk approach.

An even more important di�erence is the
throughput of queued requests that can be re-
ordered. Under the intra-disk approach, all repli-
cas exist on a single drive; so scheduling is trivial:
requests are simply sent to the drive that is solely
responsible for the data. Each drive queues requests
locally and performs scheduling locally. A good lo-
cal scheduler considers both seek distance and ro-
tational replicas to maximize throughput. Further-
more, each drive is only responsible for a subset of
the data, so we can reduce the amount of head move-
ment by avoiding having to pass over the remainder
of the data.

In contrast, under mirroring, any request can
be scheduled for any individual drive queue so the
global scheduling is complicated. Furthermore, be-
cause each disk contains all the data, a naive lay-
out policy or scheduling algorithm will result in a
greater amount of head movement than the intra-
disk approach as the head has to pass over the entire
data set as opposed to a subset.

Traditionally, the best throughput one can hope
for with a mirrored system is linear scale-up as we
increase the number of disks. In contrast, because
the latency of individual requests improves as we
add disks to an intra-disk system, we can achieve
super-linear scale-up.

2.2 Altering Disk Geometry

Much of disk drive design is based on ad hoc his-
toric reasons such as form factors. As disk capacity
rapidly increases, disks are becoming increasingly
unbalanced in the relationship between capacity and
latency. The techniques of using extra disks to re-
duce latency are in e�ect emulating faster disks us-
ing existing slow disks. A more direct and more
cost-e�ective approach to balancing capacity with
lower latency is to simply build \better" drives to
start with so we do not have to resort to either repli-
cation or discarding space. As array manufacturers
such as HP [30] and EMC [2] explore intermediate
storage levels between RAID-5 and memory, there
is an added incentive for us to seriously examine the
implication of \faster" drives.

2.2.1 Reducing Disk Diameter

By using only a portion of the disk, splitting is in
e�ect emulating a smaller disk using a large disk. A
more direct approach is to simply reduce the disk

6

diameter. Reducing disk diameter has an immedi-
ate e�ect on both maximum seek distance and rota-
tional speed. The e�ect on seek distance is obvious.
There are also secondary bene�ts such as the fact
that a smaller arm can be made more rigid and is
easier to control. The e�ect on rotational speed,
however, is less obvious and requires more explana-
tion.

Constraints on the Increase of Rotational

Speed

There are two possible obstacles to increasing rota-
tional speed: the �rst is the maximum rate at which
the internal data channel electronics is able to lift
bits o� the platter; the second is power consump-
tion. We consider each of these constraints in turn.

Today, the drive data channels are running near
200 MHz. Some of the internal clocks run at twice
that rate. Fast clock rates are needed to keep up
with the rapid linear bit density growth [10]; about
half of today's areal density growth is devoted to the
linear bit density growth, while the remaining half
is devoted to track density growth. The implication
of the high linear bit density is that given a partic-
ular generation of technology, the internal data rate
is the constant. A corollary is that the linear veloc-
ity must be kept constant as we vary the rotational
speed. In other words, a reduction of diameter can
be matched by an increase of the same factor in ro-
tational speed without exceeding the allowable data
rate.

The second possible constraint is power con-
sumption. Interestingly, power is proportional to
the 4.6th power of diameter but only the 2.8th
power of rotational speed [10]. Consequently, this
is a lesser constraint than the internal data rate.
In other words, if we increase the rotational speed
while maintaining the same data rate, for a smaller
disk the power consumption of the new drive will be
less.

The Second Square Root Rule

Suppose we decrease the platter capacity by a fac-
tor of C. Given the same areal density, the plat-
ter area also decreases by a factor C. As a result,
the diameter decreases by a factor of

p
C. This re-

duces maximum seek distance by a factor of
p
C.

At the same time, the internal data rate constraint
discussed above allows us to increase the rotational
speed by a factor of

p
C . We summarize this in our

second rule of thumb.

Rule 2 By reducing the platter capacity by a factor

of C, we can improve the overhead-independent part

Figure 4: Increasing the number of heads per surface.

of random read latency by a factor of
p
C.

Unlike the use of extra disks, however, reduc-
ing diameter does not allow us to exibly devote
more resources to one of the seek and rotational
dimensions: each dimension always gains an equal
improvement of

p
C given a C-fold reduction of ca-

pacity.
Although it is impossible to dynamically adjust

the amount of improvement that each dimension re-
ceives, it is possible to do so statically by adjust-
ing the inner and outer radius of the platters while
maintaining constant area. A larger inner radius re-
sults in fewer tracks and better seek characteristics
at the expense of slower rotational speed, while a
smaller inner radius has the opposite e�ect. The
optimal radius under the power and data rate con-
straints is a subject of our current research.

2.2.2 Increasing the Number of Heads per

Surface

The techniques that we have examined so far all
involve increasing the number of spindles for the
same amount of usable capacity. We now turn to
the most direct and potentially most cost-e�ective
way of building a more \balanced" drive: increasing
the number of heads per surface. Figure 4 shows
this approach. Each head is mounted on its own
independent arm. The arms are spaced in such a
way that they cannot collide. The size of the inner
radius of the platter limits the number of heads that
we can place on a single surface.

Although such a drive can amortize the cost of
the components such as the spindle and the power
supply over a larger number of heads, due to the
data rate constraint discussed earlier, each arm in
such a drive is likely to need its own data channel.

To provide reliability, we can complement these
more expensive drives with cheaper conventional
drives that are write-only secondary drives. Using
write-optimized techniques such as those that per-
form writes to free sectors that are closest to the
head position [4, 29], we can easily achieve very low
write latency even on a conventional drive.

7

The Third Square Root Rule

Increasing the number of heads per surface is very
much like employing extra disks. In fact, we can
show that a D-way mirroring system with synchro-
nized spindles can emulate the behavior of a disk
with D heads per surface by carefully choosing the
rotational positions of the replicas. We summarize
this in our third rule of thumb.

Rule 3 By placing H heads on each surface, we can

improve the overhead-independent part of random

read latency by a factor of
p
H.

This approach also a�ords us the largest degree
of freedom in terms of choosing which one of the
seek and rotational dimensions we would like to de-
vote more resources to. Recall that when we use
extra disks to reduce latency, we adjust the amount
of resource we devote to each dimension by changing
the number and placement of replicas. Also recall
that when we reduce platter capacity to reduce la-
tency, we can only make such adjustments statically
by changing the platter inner radius. When we em-
ploy multiple heads per surface, all we need to do
for such adjustments is to change the positioning of
the heads.

2.3 Summary and Discussion of La-
tency Reduction Techniques

We have examined a number of latency reduction
techniques. The �rst set of techniques use extra
disks to accomplish this goal. The second set of
techniques shift the balance between capacity and
latency by altering disk geometry. These techniques
form a spectrum in terms of their ease of adoption
and cost-e�ectiveness.

2.3.1 Cost-e�ectiveness

The technique of using extra disks is the least cost-
e�ective because replication and discarding space
are both wasteful. Maintaining replicas also intro-
duces complexity. Reducing platter diameter is less
wasteful because no bits are wasted; but this tech-
nique results in an increase of both the number of
heads and spindles for the same amount of capac-
ity, so it is more costly than the third technique
of just adding heads. We note that there does not
exist a single \perfect" drive that has the \right"
diameter and \right" number of heads per surface.
Instead, there may exist one \right" drive for every
cost/performance speci�cation.

An alternative to these techniques is to simply
buy more memory to address low memory cache

hit rates. This strategy is clearly viable if we have
enough money to buy extra memory to signi�cantly
raise the cache hit rate. However, when operating
under regimes where we cannot a�ord the large sum
of money required to buy extra memory to raise the
cache hit rate, but we can still signi�cantly increase
the number of the disk heads, our techniques are
better.

This phenomenon can be explained by Amdahl's
Law, which states that the performance improve-
ment to be gained from using some faster mode of
execution is limited by the fraction of the time the
faster mode can be used. Although memory is much
faster, the large cost gap between disk and memory
dictates that only a small fraction of the accesses can
enjoy this speedup. In contrast, when spent on extra
disk heads, the same amount of money allows one
to speed up a larger fraction of the accesses, achiev-
ing a larger overall performance gain. Of course,
more disk heads also result in other bene�ts such as
better write throughput.

2.3.2 Ease of Adoption

The easiest to implement is reducing seek distance
using splitting or replicated splitting. If we can ac-
curately predict the position of a disk head at any
instant, the second practical technique that we can
incorporate is even rotational replication. In Sec-
tion 4.1, we show how this can be done without
hardware support in the drive. The third in line in
terms of feasibility is reducing disk diameter. There
is considerable resistance to any change to estab-
lished form factors, although once in a while, we do
see diameter reductions, albeit in an ad hoc way.
For example, we have recently seen the emergence
of 2.5-inch drives that spin at 12,000 RPM. The last
technique of increasing number of heads per surface
is likely to face the most resistance. Large drives
previously employed this technique to devote sep-
arate heads to di�erent cylinder groups to reduce
seek time. Their popularity has died down, partly
due to the cost sensitive nature of the desktop mar-
ket. As drive capacity continues its rapid increase,
and as we develop new software techniques that can
take advantage of the extra heads (such as using
them for reducing rotational delay and fast write
techniques [4, 29]), we believe that this approach is
becoming more attractive.

3 Simulations

In this section, we perform simulations to accom-
plish two goals. One is to validate the Square Root

8

Diameter 3.5 inch
Capacity 4.55 GB

Average sectors per track 212
Cylinders 6962
Heads 6

Spindle speed 10,025 RPM
Interface Ultra2 SCSI

Single track seek 0.8 - 1.1 ms
Maximum seek 12.2 - 13.2 ms

Table 1: Parameters of the Seagate ST34502LW (Cheetah
9LP).

Rules that we have intuitively motivated for random
reads in the last section. The second is to study the
e�ectiveness of our latency reduction techniques on
real world disk access traces. We present results
from micro-benchmarks on a prototype implemen-
tation in Section 4.

3.1 Simulators

As a simulation platform, we use a modi�ed ver-
sion of DiskSim, a disk simulation environment built
at the University of Michigan [8]. We modi�ed the
simulator to evaluate our various latency reduction
techniques as well as to identify the software en-
hancements required by a disk controller module.
For techniques that replicate data, the simulator
identi�es the various replicated blocks and chooses
the closest copy. The primary source of complica-
tions is the use of variable density disk regions that
are commonly referred to as zones or bands. Our
simulation modules use a variety of book-keeping
data structures to help us identify the various phys-
ical copies of a given logical block without having to
maintain explicit space-ine�cient disk maps. The
choice of the closest copy is made using seek pro-
�les obtained from actual measurements so as to
closely mimic the access latencies of disks. As val-
idation, our simulator accurately predicts the mea-
surements from our prototype implementations for
random work loads.

The disks that we simulate are the Seagate
ST34502 (Cheetah 9LP). We de�ne overhead as the
part of the latency that cannot be improved by the
use of extra disks. This includes host processing,
SCSI command processing, bus arbitration, transfer
times, and the mechanical delay incurred in order
to accelerate and decelerate the arm for long dis-
tance seeks2. We have experimentally determined

2According to the seek model developed by Ruemmler and
Wilkes [25], a seek pro�le can be roughly approximated by

that this overhead is about 2.7 ms for a single sec-
tor read on the Cheetah 9LP, shown by the bottom
line labeled \0" in Figure 5. Of this 2.7 ms, about
1.5 ms is due to the acceleration and deceleration of
the arm, which is not likely to dramatically improve
in the future, while the remainder is more amenable
to optimization by disk manufacturers.

3.2 Techniques Simulated

We simulate �ve latency reduction techniques.
\Unsynchronized mirroring" uses mirrored disks
whose spindles are not synchronized. The tracks
at the same relative position within di�erent disks
share the same content but the rotational positions
of the replicas are random with respect to each
other.

\Synchronized mirroring" uses mirrored disks
whose spindles are synchronized. The replicas on
di�erent disks share the same track number and are
evenly spaced from each other rotationally. In both
mirroring schemes, we greedily choose a disk head
that is closest to a replica of the target sector.

The \intra-disk" approach uses a combination of
replicated splitting and rotational replication. We
perform splitting at cylinder granularity and evenly
distribute the disks to the seek and rotational di-
mensions.

We simulate two additional techniques that alter
disk geometry: reducing platter size and increasing
heads per surface. Other than these two parame-
ters, we retain all other characteristics of the Chee-
tah 9LP. For the technique of reducing platter size,
retaining the seek pro�le of the Cheetah 9LP is a
conservative assumption since smaller drives usually
have smaller and more rigid arms that have better
seek pro�les.

3.3 Random Read Latency

Figure 5 shows the latency of the random read
benchmark. The curve labeled \4" shows the la-
tency predicted by the Square Root Rule (2:7 +
6:2=

p
D ms). All techniques are remarkably close

to each other in their latency and the Square Root
Rule is a very accurate prediction. Although split-
ting is a more e�ective way of reducing seek dis-
tance than mirroring, the mirroring latency is close
to that of the intra-disk approach because an addi-
tional disk in a mirrored system can improve both

two parts. Below a small threshold distance, the seek delay
is linear with respect to the square root of the seek distance;
beyond that threshold, the seek delay is linear with respect
to the seek distance. The y-intercept of the second part is
largely due to acceleration and deceleration of the arm.

9

0

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12

La
te

nc
y

(m
s)

Disks

1. Mirroring (unsynchronized)
2. Reducing platter size
3. Mirroring (synchronized)
3. Multiple heads per surface

4. Square root function
5. Splitting + rotational replication

0

1 2 3 4 5

0. Overhead

Figure 5: Latency of random reads. When reducing plat-
ter size, the x-axis denotes the number of disks required
to obtain the same capacity as the 4.55 GB Cheetah 9LP.
When increasing heads per surface, the x-axis denotes the
number of heads per surface.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8 10 12

La
te

nc
y

(m
s)

Disks

3. Mirroring (synchronized)
3. Multiple heads per surface
4. Reducing platter size
5. Splitting + rotational replication

1. Mirroring (unsynchronized)

1 2 3 4 5

2. Square root function

Figure 6: Latency of �le system trace \hplajw".

seek and rotation while the intra-disk approach re-
quires separate disks devoted to each dimension. Al-
though the intra-disk approach has the best latency,
the performance di�erence is small enough that its
attractiveness will only become evident in later sec-
tions. Similarly, although the techniques that alter
disk geometry do not perform better than other ap-
proaches with the same number of disk heads, their
main attractiveness is their simplicity and cost ef-
fectiveness.

3.4 File System Latency

We next study the e�ectiveness of the latency re-
duction techniques on a �le system workload, which
should contain a fair amount of locality. We use the
\hplajw" trace 3 collected at HP Labs [24]. The

3We have used the week-long version on the HPL web site.
We are obtaining results from the longer version and the rest
of the trace set.

week-long trace records all disk accesses on a single
user workstation. The danger of relying on this disk
level trace is that such traces are sensitive to the
particular �le system implementation and technol-
ogy limitations at the time when the trace was taken
(such as cache size and disk capacity). Nonetheless,
we believe that the locality pattern demonstrated
in this trace is still largely relevant. We ignore the
writes in the trace and only consider the read la-
tency, assuming that the replicas, if there are any,
are propagated in the background.

The \hplajw" trace contains activity on two
disks, but the accesses to one is insigni�cant so we
focus our attention on the dominant disk. The disk
traced is small and we only use about 1=6 of the
cylinders on the Cheetah disk. This has the e�ect of
performing a 6-way split before we apply any other
latency reduction techniques. Still, the data spans
enough cylinders to make seek reduction potentially
worthwhile, although the rotational delay is a more
important consideration.

Figure 6 shows the read latency from this trace.
As a result of the 6-way split and locality in the
reference, the one disk latency is only half of that
of random reads. The latency improvement of
all techniques, however, still closely follows the
Square Root Rule, shown by the curve labeled \2"
(1 + 3:3=

p
Dms). The overhead (as de�ned in Sec-

tion 3.1) of roughly 1 ms is signi�cantly lower that
the 2.7 ms seen in the random read case because
the disk head never seeks very far in this case. The
anomaly for curve \5" at three disks occurs because
we cannot evenly distribute three disks along the
seek and rotational dimension. Although using all
disks for rotational reduction does not always result
in the best performance, it does with three disks.

3.5 Transaction Processing Latency

The third case we study is a TPCC disk I/O
trace, also from HP Labs4. The trace contains 4.25
million records, about half of which are reads. The
trace contains activities on 38 disks, most of which
share the load evenly. Similar to the disks used in
the \hplajw" trace, these disks are much smaller
than the Cheetah 9LP. In our simulations, however,
we still devote an entire Cheetah disk to each disk
that appears in the trace.

Figure 7 shows the latency results. (We defer
the throughput study to Section 4.3.) Although we
conjecture that the TPCC benchmark has less lo-
cality than the �le system trace, the simulation re-
sults are similar. This is because the approach of

4This is an unaudited run.

10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8 10 12

La
te

nc
y

(m
s)

Disks

1 2 3 4

3. Mirroring (synchronized)
4. Splitting + rotational replication

1. Mirroring (unsynchronized)
2. Square root function

Figure 7: Latency of the transaction processing bench-
mark TPCC.

substituting the small disks with the large Cheetah
disks (and using only a small portion of each disk)
has drastically reduced the average seek distance.
Had we �lled the Cheetah disks, we would expect
the result to be closer to Figure 5. The result of the
TPCC run also largely obeys the Square Root Rule.

4 Implementation and Experimental

Results

In this section, we describe the prototype
MimdRAID implementation and report the experi-
mental results. The main goals of these experiments
are: 1) to validate the First Square Root Rule, 2)
to evaluate the various latency reduction techniques
that utilize extra disks, and 3) to explore the feasi-
bility of accurate tracking of the disk head position
for the purpose of rotational delay reduction.

For the techniques that require propagation of
replicas in the background, we have not imple-
mented such propagations. We expect the cost of
such propagations to be masked by a combination
of idle time between accesses and extra resources (in
the forms of extra disks, heads, and/or interconnect
bandwidth) that are devoted to propagating repli-
cas so that it does not severely interfere with user
operations. These issues are subjects of our current
research.

The experiments are performed on a Pentium
II 300 that runs Windows NT 4.0 service pack 5.
Attached to the host, using an Adaptec 2940U2W
SCSI card, are four Seagate ST34502 (Cheetah 9LP)
disks, whose key parameters are shown in Table 1.

Currently, our implementation consists of a set of
user level libraries that are not yet integrated with
the operating system or any �le system. As a result,
we are only able to evaluate the di�erent latency

reduction techniques with micro-benchmarks. We
are also in the process of implementing fast write-
anywhere techniques [29] using the disk head track-
ing mechanism described in the next section. The
write implementation is not yet complete.

4.1 Tracking the Disk Head Position

With the exception of disk splitting, all other la-
tency reduction techniques that use extra disks rely
on the ability to accurately predict the disk head
location at any time. With this knowledge, we can
choose the closest alternative target sector among
several possible choices. Without this knowledge,
for mirroring, instead of choosing the closest replica
to read, the controller can only issue a number of
requests for the same data to a number of disks in
parallel and return the requested data to the host
as soon as the �rst response from the disks arrives.
Unfortunately, by wasting the work done by the re-
maining disks, this approach greatly reduces avail-
able throughput. Therefore, being able to predict
the precise locations of the disk heads is crucial for
both intra-disk and inter-disk approaches.

In order to predict the disk head position at ar-
bitrary times, we need three pieces of information.
The �rst is the current rotational position of the
head. The second is the current track number of the
head position. The third is the amount of time re-
quired for executing various operations such as track
switches, seeks, reads, and writes.

Obtaining the rotational position of the disk
head is the most di�cult. Previous proposals that
depend on the knowledge of head positions have re-
lied on hardware support [4, 29]. Unfortunately, this
level of support is rarely available from commodity
drives. We have developed a software-based calibra-
tion method.

Our head tracking algorithm correlates the disk
head position with the time stamp taken immedi-
ately after the completion of a read request that
is delivered to the disk surface. In order to mini-
mize operating system involvement, we directly is-
sue SCSI commands using either a user level SCSI
interface or a loadable kernel module. To ensure
that the request goes to the disk surface instead
of being absorbed by the cache, we use the direct-
media access feature supported by most SCSI disks.

Suppose a track has B sectors, a full rotational
delay is R, and the SCSI command overhead is Os.
We pick an arbitrary sector as the reference sector.
Our algorithm consists of the following steps:

� Measure the rotational delay R by repeatedly
reading the reference sector.

11

� Read the reference sector and record the time
stamp t1 upon completion of the read. We can
calculate the time stamp t0 immediately before
the head is about to perform the read as:

t0 = t1 �Os � R

B

� At any given time t, the rotational position of
the head is given by:

360� � (t� t0)�R � b t�t0
R

c
R

where \b c" is the oor function.
� Periodically, we re-calibrate the head position by
reading the reference sector and re-taking the
time stamps t1 and t0. We also recompute the
rotation speed by noting the di�erence between
the actual time stamp t1 and its predicted value
t0
1
and adjusting the rotational speed accord-

ingly.
Our experiments show that periodic re-

calibration at an interval of two minutes yields
a maximum error of only 1% (3.6 degrees) for
the 10,000-RPM Seagate Cheetah 9LP. This is
encouraging, not only because of the high degree
of accuracy, but also because of the negligible
overhead involved in reading one reference sector
every two minutes. A variation of this approach
is to keep track of the location and timing of the
actual disk requests and use this information to
calibrate the head location. We have not found the
need to try this method due to the success that we
have had with our current approach.

Once we have developed an algorithm for track-
ing the rotational position of the disk head, the re-
maining two tasks are relatively simple. Finding out
which track the disk head is on reduces to the prob-
lem of obtaining the logical to physical block map-
ping. We need to obtain per-zone information in-
cluding the number of cylinders in the zone, number
of tracks per cylinder, number of sectors per track,
and track skew. This information is obtained by a
combination of issuing the SCSI \MODE SENSE"
command and empirical measurements that are sim-
ilar to those proposed by Worthington [32]. The
process is further simpli�ed on the Seagate disks by
the fact that bad sectors do not appear to disturb
the global mapping.

The last piece of information that we need for
accurate prediction of head positions is the timing
of track switch, seek, read, and write operations.
Our experiments on the Cheetah 9LP suggest that
our predictions are within a range of � 100 �s of the
expected value for short seeks and � 200 �s for long

0

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12

La
te

nc
y

(m
s)

Disks

1

2

3

7

0

4 5

1. Mirroring (seek only)
2. Rotation only
3. Splitting (seek only)

5. Replicated splitting

4. Mirroring (both)

6. Replicated splitting +

7. Sqaure root function

0. Overhead

6

 (both)

 rotational replication

Figure 8: Random read latency.

seeks. Considering that a full rotational delay is 6
ms on these disks, this is satisfactory for the degree
of rotational replication that we are interested in.

4.2 Latency Reduction Techniques Im-
plemented and Latency Results

We �rst describe the latency reduction tech-
niques that we have implemented and we examine
the latency of a random read benchmark. The aver-
age latency of randomly reading a sector on a Chee-
tah 9LP disk is 8.8 ms (shown in the upper left
hand corner of Figure 8). The bottom line labeled
\0" shows the overhead as de�ned and measured in
Section 3.1.

The �rst strategy that we implement is to read
the replica with the shortest seek distance in a mir-
rored system. If the disk head position cannot be
tracked, this strategy obtains the best performance
out of a mirrored system and serves as the base-
line for comparison. The latency is shown by the
top curve (labeled \1"), which closely follows Equa-
tion (2) of Section 2.1.1. The curve stops at four
disks because this was the number of Cheetahs that
we had at the time of the experiment.

The second strategy is even rotational replica-
tion on adjacent tracks (without any seek distance
reduction). For aD-way rotational replication, each
disk contains 1=D of the original content. The la-
tency is illustrated by the curve labeled \2". This is
an intra-disk replication strategy so we could sim-
ply use just one disk to study the e�ect of multiple
disks. However, there is a limit on how accurately
we can predict the precise head location, especially
after a long distance seek. This in turn limits the
number of rotational replicas that we can e�ectively
take advantage of. In our implementations, we stop
at six disks.

The third strategy is disk splitting, shown by the

12

curve labeled \3", which closely follows Equation (3)
of Section 2.1.1. No replication is involved and we
simply use only 1=D of the disk capacity for aD-way
split (as shown in Figure 1(b)). This strategy has
no e�ect on rotational delay. By concentrating on
only one of the seek and rotation dimensions, the
overall performance gain of any one of these �rst
three strategies is limited because they are limited
by the dimension that they ignore. We next turn
our attention to techniques that address both of the
seek and rotation dimensions.

Under the fourth strategy, we choose the replica
that is closest to the current disk head position in
a mirrored system by considering both the seek and
rotational distance. Indeed, the seek and rotational
delay may partially overlap. The latency of this im-
plementation is illustrated by the curve labeled \4",
which also stops at four disks, the number of disks
that we had at the time of the experiment. In our
implementation, the disk spindles are not synchro-
nized and the replicas are made at random locations
with respect to each other, an approach that is con-
sistent with our strategy of performing writes to free
sectors closest to the head position. We expect to
achieve some additional performance gain on reads
if we perform writes to evenly spaced rotational po-
sitions while keeping the spindles synchronized.

The �fth strategy is replicated splitting. Com-
pared to simple splitting, the di�erence is that this
strategy replicates the data (from the outer tracks)
in the \discarded" space in the middle (as shown in
Figure 1(c)). We choose the copy that is closest to
the disk head. The resulting latency is shown by
the curve labeled \5". The performance is better
than that of simple splitting due to both seek and
rotational reductions. Detailed measurements show
that the bene�t derived from rotational reduction is
more signi�cant.

The attraction of replicated splitting is that it
can take advantage of the space that is \discarded"
by simple splitting. However, although the replicas
are at di�erent rotational positions, they are neces-
sarily separated by a long seek distance. Partially
because of this reason, our experiments suggest that
making more than two replicas does not signi�cantly
improve performance. At a high degree of splitting,
the latency is again dominated by a large rotational
delay.

This leads to the sixth (and �nal) strategy. On
the Cheetah 9LP, as soon as we reduce delay in one
of the seek and rotational dimensions, the other be-
comes more dominant. Therefore, we attempt to
evenly distribute the disks to these two dimensions.
For example, with four disks, we perform a two-way

split and a two-way even rotational replication. We
denote this as a 2� 2 con�guration. With six disks,
we use a 3 � 2 con�guration. The curve labeled
\6" shows the resulting latency. As a comparison,
the curve labeled \7" shows the latency predicted
by the First Square Root Rule (2:7 + 6:1=

p
D ms).

The latency points that exhibit slightly larger de-
viations from the square root curve are those that
we cannot evenly distribute the disks along the two
dimensions. For example, when given three disks,
we have to settle for a 3� 1 con�guration that has
a disproportionally large rotational delay. Overall,
we are pleased to see that our implementation has
achieved a close approximation to the latency result
predicted by the Square Root Rule.

4.3 Throughput

Traditionally, in a well designed RAID, as we in-
crease the number of disks, the latency experienced
by each request remains constant; so the overall
throughput increases linearly. In contrast, as we
increase the number of disks in MimdRAID, the la-
tency experienced per request decreases according
to the Square Root Rule; so the overall throughput
should achieve super-linear speedup. In this section,
we study these e�ects.

4.3.1 Disk Head Scheduling

Three factors determine the throughput. One is the
organization of data. The second is the disk head
scheduling policy. The third is the length of the
scheduling queue that contains disk requests that
can be reordered. We examine three strategies while
varying the length of the reorder queue for each.

We label the �rst strategy as \mirroring". Un-
der this strategy, we store data in a D-way mirror.
The RAID controller evenly distributes k (random)
incoming requests to each of the disks at a time. We
maintain a queue of length k for each disk on the
host and schedule these requests using an elevator
algorithm.

We label the second strategy as \splitting". Un-
der this strategy, we store 1=D of the data on the
outer tracks of each of the D disks. Because there
is no redundancy, the RAID controller simply dis-
tributes a read request to the disk that is solely re-
sponsible for that data. We employ the same eleva-
tor algorithm for each disk's queue.

We label the third strategy as \intra-disk". Un-
der this strategy, we use a combination of splitting
and inter-track rotational replication. For example,
12 disks form a \4 � 3 con�guration": four disks
devoted to the seek dimension using splitting, and

13

0
500

1000
1500
2000
2500
3000
3500
4000

2 4 6 8 10 12
Disks

0
500

1000
1500
2000
2500
3000
3500
4000

2 4 6 8 10 12
Disks

0
500

1000
1500
2000
2500
3000
3500
4000

2 4 6 8 10 12
Disks

Requests/s Requests/s Requests/s

(a) (b) (c)

3. Intra-disk
2. Splitting
1. Mirroring

3

2

1

3

2

1

3

2

1

Figure 9: Throughput of random reads. The reads are queued and potentially scheduled out of order. (a) The per
drive reorder queue contains 4 requests. (b) The reorder queue contains 16 requests. (c) The reorder queue contains 64
requests.

three disks devoted to the rotational dimension us-
ing rotational replication. The RAID controller dis-
tributes a read request to the only disk that is re-
sponsible for the data. We use a variant of the eleva-
tor algorithm for each disk's queue: the disk services
the read requests in the same order as it would un-
der the conventional elevator algorithm but chooses
the closest rotational replica for each request. Note
that \splitting" is a special case of \intra-disk" if
we set the number of rotational replicas to one. In
our experiments, we have chosen integer solutions
for the two dimensions that are close to

p
D.

4.3.2 Throughput Results

We subject the three strategies to the single sector
random read benchmark. We show the throughput
comparisons with various queue length conditions
in Figure 9. The line labeled \1" shows the linear
increase in throughput expected of mirroring as we
increase the number of disks while keeping the per
request latency a constant. The throughput also in-
creases as we increase the scheduling queue length.
This occurs because we are able to serve more re-
quests with each seek stroke as the queue lengthens.

The line labeled \2" shows the super-linear rise
of throughput as we increase the number of disks us-
ing the splitting strategy. Because of the restriction
on head movement and the way data is partitioned,
during each elevator stroke, each head only passes
over a subset of the entire data set. In contrast, in
order to serve these same requests on a single eleva-
tor stroke, each head under the mirroring strategy
would have had to pass over the entire data set, in-
curring a longer overall seek distance. The through-
put of splitting also increases with a longer queue
length for the same reason that it improves under
mirroring. The throughput di�erence between split-
ting and mirroring, however, narrows under heav-
ier queueing. This is because mirroring can better

amortize the long seek distance under such condi-
tions and the e�ects of other latency components
such as rotational delay become more prominent in
both approaches.

It is worth noting that it is possible to emulate
the behavior of splitting in a mirrored system by
partitioning data and restricting head movement in
a way that is similar to splitting; by carefully di-
recting requests to maximize locality, mirroring ef-
fectively becomes splitting.

The line labeled \3" shows the super-linear
throughput scale-up of the intra-disk strategy. This
strategy has the best performance: it achieves a
21� speedup with 12 disks, which is approximately
80% to 95% better than mirroring under various
queueing conditions. Unlike the two previous strate-
gies, which become dominated by rotational delays
at a large number of disks, the intra-disk approach
evenly distributes the disks along the seek and ro-
tational dimensions. As a result, the performance
gap between this strategy and the others widens as
the number of disks increases.

It is also worth noting that the intra-disk
scheduling algorithm can be emulated on a mirrored
system with synchronized spindles. In terms of data
layout, there is a natural one-to-one correspondence
between a replica in the intra-disk approach and a
replica in the synchronized mirroring approach. In
terms of disk head placement, we can emulate an
\x � y" intra-disk con�guration on a mirrored sys-
tem by restricting head movement to a small num-
ber of cylinders. As a result, the aggregate of the
local head schedules under an intra-disk system can
be emulated with an equivalent global schedule. As
a side-e�ect of this study we have developed an
e�ective head scheduling algorithm for a mirrored
system to improve latency and throughput. Main-
taining and scheduling the global queue, however, is
more complex than queueing and scheduling locally
on each drive.

14

5 Related Work

In Section 1.2, we have briey described the HP
AutoRAID [30] as an example system that system-
atically trades o� capacity for performance. As
with RAID-1 systems, however, its primary focus
is solving the small write problem of RAID-5. Al-
though mirrored systems can improve read perfor-
mance by dynamically balancing the load, they have
not aggressively sought low read latency. In order
to achieve the low read latency goal, we have taken
the mirrored approach further in a number of direc-
tions: exploring alternatives other than inter-disk
mirroring, exploring alternatives that can take ad-
vantage of more than doubling the amount of re-
sources, exploring the implication of altering disk
geometry, and quantifying the di�erence among all
these alternatives.

The HP Ivy project [16] is a simulation study of
how a high degree of replication can improve read
performance. Our study di�ers from Ivy in several
signi�cant ways. First, Ivy only explores reducing
seek distance and leaves rotational delay unresolved.
Second, Ivy only examined mirroring. Section 2.1.1
discusses the advantages of disk splitting compared
to mirroring. Indeed, the Ivy study shows that prop-
agating the replicas in order to maintain a high de-
gree of replication may result in signi�cant increase
of disk queue length, thus undoing some of the bene-
�ts of mirroring. The third di�erence is a feature of
Ivy that we intend to incorporate into MimdRAID
in the future: Ivy dynamically chooses the candi-
date and the degree of replication by observing ac-
cess patterns. We are currently researching a wide
range of access patterns that can be used to dynam-
ically tune MimdRAID behavior. These include the
read/write ratio to guide the placement of writes
using di�erent logging techniques, the relative con-
tribution of seek and rotation to the total latency
to guide which of these two dimensions should re-
ceive more resources, and the frequency and nature
of accesses to guide the number and placement of
replicas.

Ng examines intra-track replication as a means
of reducing rotational delay [20]. Section 2.1.2 has
explained that a disadvantage of this approach com-
pared to inter-track replication is that it degrades
large I/O bandwidth due to more frequent track
switches.

The importance of reducing rotational delay has
long been recognized. Seltzer and Jacobson inde-
pendently examined a number of disk scheduling al-
gorithms that take rotational position into consider-
ation [12, 26]. Although these techniques are useful

for the local scheduler on the individual drives, it
is less clear how these techniques can be extended
for replicated splitting, rotational replication, and
mirrored systems. These are subjects of our current
research.

The history of multi-headed disks dates back to
drums (or �xed-head disks), a technology that is
no longer viable due to its high cost. Multi-headed
disks, however, survived long after the demise of
drums. Each head is responsible for a subset of the
cylinders to reduce seek distance. However, we are
not aware of approaches that used multiple heads
to improve rotational delay.

One of our goals of studying the impact of alter-
ing disk geometry is to understand how to con�g-
ure a storage system given certain cost/performance
speci�cations. The \attribute-managed storage"
project [9] at HP shares this goal, although its fo-
cus is at the disk array level as opposed to individual
drive level.

6 Conclusion

The vast performance and cost gap between
DRAM and disk presents an opportunity for exam-
ining cost e�ective storage alternatives to �ll this
gap. In this paper, we have demonstrated how we
can construct a low latency secondary storage sys-
tem by systematically increasing the ratio between
disk heads and usable capacity. The techniques in-
clude using extra disks, reducing platter size, and in-
creasing the number of heads per surface. We show
that these techniques share a Square Root Rule,
which states that the overhead-independent part of
the latency improves by a factor of the square root
of the amount of extra resources.

We have developed a number of latency reduc-
tion techniques that takes advantage of extra ca-
pacity. Our latency reduction techniques include
splitting, which reduces seek distance without main-
taining replicas, replicated splitting, a variant of
splitting that reduces latency even further by using
the space wasted by splitting, and inter-track rota-
tional replication to e�ectively reduce rotational de-
lay. A D-way intra-disk system that combines split-
ting and rotational replication can provide slightly
better latency than a D-way mirror with only

p
D

replicas. Furthermore, as a result of reducing la-
tency per request, an intra-disk system can achieve
super-linear scale-up in throughput as the number
of disks increases, signi�cantly outperforming a con-
ventional mirrored system.

15

References

[1] Baker, M., Hartman, J., Kupfer, M., Shirriff, K.,
and Ousterhout, J. Measurements of a Distributed
File System. In Proc. of the 13th Symposium on Oper-
ating Systems Principles (Oct. 1991), pp. 198{212.

[2] Brant, W. A., and Nielson, M. E. Disk based cache
interfacing system and method. U.S. Patent 5805787
issued to EMC Corporation, March 1998.

[3] Chang, F., and Gibson, G. A. Automatic I/O Hint
Generation Through Speculative Execution. In Proc. of
the Third Symposium on Operating Systems Design and
Implementation (February 1999).

[4] Chao, C., English, R., Jacobson, D., Stepanov, A.,
and Wilkes, J. Mime: a High Performance Parallel
Storage Device with Strong Recovery Guarantees. Tech.
Rep. HPL-CSP-92-9 rev 1, Hewlett-Packard Company,
Palo Alto, CA, March 1992.

[5] Chen, P., Lee, E., Gibson, G., Katz, R., and Patter-
son, D. RAID: High-Performance, Reliable Secondary
Storage. ACM Computing Surveys 26, 2 (June 1994),
145{188.

[6] Dahlin, M., Wang, R., Anderson, T., and Patter-

son, D. Cooperative Caching: Using Remote Client
Memory to Improve File System Performance. In Proc.
of the First Symposium on Operating Systems Design
and Implementation (November 1994), pp. 267{280.

[7] Feeley, M. J., Morgan, W. E., Pighin, F. P., Kar-

lin, A. R., Levy, H. M., and Thekkath, C. A. Imple-
menting Global Memory Management in a Workstation
Cluster. In Proc. of the 15th ACM Symposium on Oper-
ating Systems Principles (December 1995), pp. 201{212.

[8] Ganger, G. R., Worthington, B. L., and Patt, Y. N.

The DiskSim Simulation Environment Version 1.0 Refer-
ence Manual. Tech. Rep. CSE-TR-358-98, Department
of Electrical Engineering and Computer Science, Febru-
ary 1998.

[9] Golding, R., Shriver, E., Sullivan, T., and Wilkes,

J. Attribute-managed Storage. In Workshop on Model-
ing and Speci�cation of I/O (October 1995).

[10] Grochowski, E. Personal Communication, IBM Al-
maden Research Center, March 1999.

[11] Growchowski, E. Emerging Trends in Data Storage
on Magnetic Hard Disk Drives. Datatech (Fall 1998),
11{16.

[12] Jacobson, D. M., and Wilkes, J. Disk Scheduling
Algorithms Based on Rotational Position. Tech. Rep.
HPL-CSP-91-7rev1, Hewlett-Packard Company, Palo
Alto, CA, February 1991.

[13] Kimbrel, T., Tomkins, A., Patterson, R. H., Ber-
shad, B., Cao, P., Felten, E. W., Gibson, G., Kar-

lin, A. R., and Li, K. A Trace-Driven Comparison
of Algorithms for Parallel Prefetching and Caching. In
Proc. of the Second Symposium on Operating Systems
Design and Implementation (October 1996), pp. 19{34.

[14] Lamb, C., Landis, G., Orenstein, J., and Weinreb,

D. The ObjectStore Database System. Communications
of the ACM 34, 10 (October 1991), 50{63.

[15] Lee, E. K., and Thekkath, C. E. Petal: Distributed
Virtual Disks. In Seventh International Conference on
Architectural Support for Programming Languages and
Operating Systems (October 1996), pp. 84{92.

[16] Lo, S.-L. Ivy: A Study on Replicating Data for Per-
formance Improvement. Tech. Rep. HPL-CSP-90-48,
Hewlett-Packard Company, Palo Alto, CA, December
1990.

[17] Mashey, J. R. Big Data and the Next Wave of InfraS-
tress. Computer Science Division Seminar, University
of California, Berkeley, October 1997.

[18] Matthews, J. N., Roselli, D. S., Costello, A. M.,
Wang, R. Y., and Anderson, T. E. Improving the
Performance of Log-Structured File Systems with Adap-
tive Methods. In Proc. of the 16th ACM Symposium on
Operating Systems Principles (October 1997), pp. 238{
251.

[19] McKusick, M., Joy, W., Leffler, S., and Fabry, R.

A fast �le system for UNIX. ACM Transactions on
Computer Systems 2, 3 (Aug. 1984), 181{197.

[20] Ng, S. W. Improving disk performance via latency re-
duction. IEEE Transactions on Computers 40, 1 (Jan-
uary 1991), 22{30.

[21] Patterson, D., Gibson, G., and Katz, R. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In In-
ternational Conference on Management of Data (June
1988), pp. 109{116.

[22] Patterson, R. H., Gibson, G. A., Ginting, E.,

Stodolsky, D., and Zelenka, J. Informed Prefetch-
ing and Caching. In Proceedings of the ACM Fifteenth
Symposium on Operating Systems Principles (Decem-
ber 1995).

[23] Perl, S. E., and Sites, R. L. Studies of Windows NT
Performance Using Dynamic Execution Traces. In Proc.
of the Second Symposium on Operating Systems Design
and Implementation (October 1996), pp. 169{184.

[24] Ruemmler, C., and Wilkes, J. UNIX Disk Access
Patterns. In Proc. of the Winter 1993 USENIX (Jan.
1993), pp. 405{420.

[25] Ruemmler, C., and Wilkes, J. An Introduction to
Disk Drive Modeling. IEEE Computer 27, 3 (March
1994), 17{28.

[26] Seltzer, M., Chen, P., and Ousterhout, J. Disk
Scheduling Revisited. In Proc. of the 1990 Winter
USENIX (Jan. 1990), pp. 313{323.

[27] Transaction Processing Performance Council.
TPC Benchmark B Standard Speci�cation. Waterside
Associates, Fremont, CA, Aug. 1990.

[28] Transaction Processing Performance Council.
TPC Benchmark C Standard Speci�cation. Waterside
Associates, Fremont, CA, August 1996.

[29] Wang, R. Y., Anderson, T. E., and Patterson, D. A.
Virtual Log Based File Systems for a Programmable
Disk. In Proc. of the Third Symposium on Operating
Systems Design and Implementation (February 1999).

[30] Wilkes, J., Golding, R., Staelin, C., and Sullivan,

T. The HP AutoRAID Hierarchical Storage System. In
Proc. of the 15th ACM Symposium on Operating Sys-
tems Principles (December 1995), pp. 96{108.

[31] Wood, D. A., and Hill, M. D. Cost-e�ective Parallel
Computing. IEEE Computer 28, 2 (February 1995), 69{
72.

[32] Worthington, B. L., Ganger, G. R., Patt, Y. N.,

and Wilkes, J. On-Line Extraction of SCSI Disk Drive
Parameters. In Proc. of the 1995 SIGMETRICS (May
1995).

16

