
The Role of Virtual Time in Real-time Scheduling

Andy Bavier and Larry Peterson
Department of Computer Science

Princeton University

Tech Report TR-611-99

March 3, 2000

Abstract

The BERT scheduler is designed to schedule a mix of best effort and real-time processes. BERT is based
on manipulating how tasks run in the fair queueing fluid model and tracking the changes using virtual
time. This paper makes two contributions. First, it builds on results in real-time scheduling to show two
properties of BERT: (1) important real-time tasks are schedulable with regard to their finish times in the
fluid model, and (2) unimportant tasks have bounded workahead. BERT relies on these two properties
when making scheduling decisions. Second, it draws attention to the thread that connects the fluid model
and the BERT implementation:virtual time. Virtual time is a multifaceted and powerful abstraction,
and we use our results for BERT to argue that it can form the basis for designing, implementing, and
analyzing new real-time scheduling algorithms.

1 Introduction

The BERT scheduler is designed to schedule a mix of best effort and real-time processes [1]. BERT consists
of two layers: (1) a theory-based core, and (2) a number of optimizations and approximations for a more
efficient implementation. The work in [1] empirically demonstrates the real-time capabilities of BERT. In
this paper, we strengthen the foundation of BERT by focusing on its theoretical core, which we call WFQ-
Stealing.

The work presented here builds on the results of Figueira and Pasquale [6]. In that paper, the authors
propose a general analytic framework for theschedulabilityproblem of a real-time scheduling discipline—
that is, can the scheduler run all tasks before their deadlines. We use their approach to analyze WFQ-
Stealing.

This paper makes two contributions. The first is specific to BERT: we show schedulability results for
WFQ-Stealing and bound its workahead. These results support our claims about the real-time behavior of
the BERT algorithm. The second is more general: we try to convince the reader that there is more to the
idea ofvirtual time than meets the eye. Virtual time is in fact a stepping-stone between a mathematical
description of the system, and the real-time scheduling algorithm that approximates it. As such, it provides
a framework for creating, implementing, and analyzing new real-time schedulers. The results we establish
for WFQ-Stealing will provide one example of the power of virtual time.

The paper is laid out as follows. We begin by presenting background on Weighted Fair Queueing and
WFQ-Stealing. Section 3 establishes a schedulability result for WFQ-Stealing, demonstrating its real-time
behavior. Section 4 derives a bound on the amount of time a task in WFQ-Stealing can work ahead (i.e.,

1



receive service in advance of when it should according to the ideal system). The BERT algorithm relies
on knowing this bound. Section 5 shows how we can add constraints to WFQ-Stealing to give it better
real-time behavior. Section 6 ties all these results together, showing how to create a hybrid system that
merges bounded workahead and better schedulability. The BERT algorithm runs in this hybrid system, and
Section 7 argues that the enhancements which BERT adds to WFQ-Stealing preserve the system properties.
Finally, Section 8 explores the role of virtual time in the creation and analysis of WFQ-Stealing.

2 Background

This section defines terminology used throughout the paper. The terms we use are similar to those found in
[6], except they have been re-shaped to apply to scheduling the CPU rather than the network link. We also
review Weighted Fair Queueing and WFQ-Stealing.

2.1 Definitions

Assume that we have a system with a CPU of rateRCPU , running a set of processes which may change over
time. Each process generates a sequence oftasks. The system assigns individual tasks (1) an eligibility time,
and (2) an execution deadline. The eligibility time (also called a request time) is the earliest the task can
start executing, while the deadline is the maximum allowable completion time for the task. The system runs
an Earliest Deadline First (EDF) scheduler, which selects the piece of eligible task with the lowest deadline
to run.

Tasks are numbered in the order that they are submitted—for example, theith task belonging to process
P would beti;P . LetEi;P be the execution time (i.e., in cycles) of taskti;P . The eligibility time of this task
is Si;P and the deadlineFi;P (think: start and finish times).

The system ispreemptiveif a new task can be selected to run as soon as it becomes eligible. In a
nonpreemptivesystem, tasks runs to completion and the system can schedule a new task only after the
current one finishes.

The eligible task sequenceis the sequence of tasks that become eligible for execution over time. The
sequence isschedulableif the system can complete all tasks before their deadlines. The sequence isÆ-
schedulableif the system can guarantee that the amount by which any task’s completion time exceeds its
deadline is bounded by a constantÆ; that is, if F̂i;P is theactual finish time of a taskti;P , then the system
is Æ-schedulable ifF̂i;P � Fi;P + Æ for all tasks. It may seem that aÆ-schedulable system is not that useful
since there is no guarantee that it can meet all task deadlines. However, note that such a system still has a
real-time property, and later we will discuss how to build a real-time scheduler from such a system.

Table 1 summarizes these definitions, as well as additional notation that will be introduced in later
sections.

2.2 Weighted Fair Queueing

Weighted Fair Queueing [4] (also known as Packetized General Processor Sharing (PGPS) [9]) is an algo-
rithm originally proposed to allocate link bandwidth in a packet network; subsequent work extended WFQ
to scheduling the CPU [7, 10]. The idea of WFQ is that each processP makes a reservationRP of some
slice of the CPU. As a process generates individual tasks, they are giventimestampsbased on the process’s

2



RCPU rate of the CPU
RP reserved rate of processP
CP cycles received by processP
ti;P ith task generated by processP
Fi;P execution deadline (i.e., fluid model finish time) of taskti;P
F̂i;P actualfinish time of taskti;P
Si;P eligibility time (i.e., fluid model start time) of taskti;P
Ei;P execution time of taskti;P
VFi;P virtual finish time ofti;P
VSi;P virtual start time ofti;P
Di;P actualdeadline/timing constraint ofti;P
Wi;P workahead of taskti;P
� duration (in virtual time) of a bout of stealing

VRP the virtual restart time of processP (i.e., when stealing ends)

Table 1: Summary of Notation

reservation and its previous workload. WFQ then executes the tasks in order of increasing task timestamps.
The result is that each process receives the CPU share it has reserved.

The behavior of WFQ is defined with reference to a fair queueingfluid model(i.e., GPS). In the fluid
model, each process receives its reservation continuously, down to an infinitely fine level. A process may
actually receive service faster than its reservation, because the fluid model distributes the reservations of
idle processes to active ones in proportion to the latter’s reservations (e.g., an active process with twice the
reservation of another will get twice the unused cycles).

At the heart of WFQ is the concept ofvirtual time. If a processP makes a reservation ofRP , the virtual
finish time of taskti;P is the real time it would finish if the task had a dedicated CPU of rateRP . That
is, virtual time on a real CPU can be thought of as real time on a virtual CPU. WFQ gives each taskti;P a
timestamp of its virtual finish timeVFi;P ; the ready queue is then ordered by these virtual timestamps. An
important feature of virtual time is that executing tasks in order of virtual timestamps makes them finish in
the same order as in the fluid model. One of our goals in this paper is to demonstrate the power of virtual
time for real-time scheduling algorithms.

There can be discrepancies between the service that a process receives in the fluid model versus a WFQ
system: at any point in time a process may have actually received slightly more or less service in WFQ than
it has in the fluid model. In a preemptive WFQ system, all tasks complete by the time they would in the
fluid model—i.e., it is schedulable according to fluid model deadlines (this follows from the discussion in
[6]). A nonpreemptive WFQ system cannot guarantee that a task completes by its fluid model finish time;
however, it has been shown that the system isÆ-schedulable whereÆ is equal to the duration of the longest
piece of work allowable in the system [9].

2.3 WFQ-Stealing and BERT

The BERT scheduler was proposed in [1] to schedule a mix of best effort and real-time processes. BERT
groups processes along two dimensions: real-time vs. best effort, and important vs. unimportant. BERT

3



uses an innovation calledstealingto take cycles from unimportant processes and give them to an important
real-time process whose reservation is too small to meet a deadline.

WFQ-Stealing forms the theoretic core of the BERT scheduler. WFQ-Stealing was developed within
the context of the fair queueing fluid model: stealing is defined as pausing one process in the fluid model
and diverting the cycles it would have received to another process (this will be described in more detail in
Section 3). WFQ-Stealing works by tracking the modifications in the fluid model using virtual time, and
changing the virtual timestamps in the system accordingly. We will show that this approach is sufficient to
guarantee that WFQ-Stealing has provable real-time properties.

BERT layers optimizations on top of WFQ-Stealing to make the implementation more efficient. First,
BERT uses the WF2Q+ scheduling algorithm to approximate WFQ, since WF2Q+ is much simpler. Second,
BERT implements optimizations to allow an important real-time process to steal fairly and efficiently from
all unimportant processes at once. Section 7 lists the conditions met by these enhancements which ensure
that our analysis of WFQ-Stealing remains valid for BERT.

As originally described, the BERT scheduler is nonpreemptive. However, there is no requirement that
this be the case. In this paper we will analyze nonpreemptive WFQ-Stealing, but a similar analysis of a
preemptive version is straightforward using the results of [6].

3 Schedulability

This section establishes a schedulability result for a WFQ-Stealing scheduler. The intuition behind our result
is simple: WFQ is much like EDF, and WFQ-Stealing is much like WFQ except with slightly different
deadlines. Therefore, we can analyze WFQ-Stealing from the standpoint of EDF.

Figueira and Pasquale establish a very powerful result in [6]: If the eligible task sequence is schedulable
under some (preemptive or nonpreemptive) policy, then it isÆ-schedulable under nonpreemptive deadline-
oriented scheduling. The term “deadline-ordered” means that the system executes the eligible task set Ear-
liest Deadline First (EDF). In this result, the value ofÆ is the longest task run-time allowable in the system
(i.e., the longest interval between scheduling decisions). What this means is that if there is some way to
schedule the eligible task set, then nonpreemptive EDF will finish each task no later than the maximum task
run-time after its deadline.

Of course, in this system it is possible for tasks to miss their deadlines. However, it is important to
note that this system still exhibits quantifiable real-time behavior. Furthermore we can establish theÆ-
schedulability property foranyscheduler if we can show two things:

1. There exists a way to schedule eligible tasks to meet all deadlines.

2. The eligible task set is executed using nonpreemptive EDF.

The rest of this section demonstrates that WFQ-Stealing satisfies these two conditions, and is therefore
Æ-schedulable.

3.1 Mathematical Foundation

In Section 2 we summarized the fair queueing fluid model and virtual time. The two are intertwined, and the
manner in which they are related is important for establishing theÆ-schedulability of WFQ-Stealing. Next
we define them mathematically in order to tease out this relationship.

4



First consider the definition of how a task receives service in the fluid model. LetRP be the reserved
rate of processP , andti;P be a task generated by the process. Also, letA be the set of all active processes,
that is, all those processes with outstanding tasks. IfCP is the total amount of cycles received by processP

so far, then the rate at which its current task runs is:

dCP
dt

=
RP

P
q2ARq

RCPU (1)

This simply states that a task gets a rate proportional to its reserved rate divided by the rates of all active
tasks. Since the fluid model assumes that

P
q2ARq � RCPU (i.e., the sum of all reservations is less than

the CPU rate), taskti;P is guaranteed to receive a rate of at leastRP .
The actual rate received by a task in the fluid model can vary, depending on the set of active processes.

One advantage of virtual time is that it can simplify the fluid model. With respect to virtual time, taskti;P ’s
rate is always equal toRP . This means that virtual time itself speeds up and slows down as the set of active
processes changes. Letv be the current virtual time;v changes at the rate:

dv

dt
=

RCPU
P

q2ARq
(2)

Since
P

q2ARq � RCPU , this means thatdv=dt � 1; in other words, virtual time flows at least as
quickly as real time. Also, combining Eqs. 1 and 2, it is easy to see thatdCP =dv = RP . Since taskti;P
receives service at a constant virtual rate, we know the virtual time at which it will finish. IfEi;P is the
execution time of the task and it begins to run in the fluid model at virtual timeVSi;P , then the virtual finish
time of the task,VFi;P , is:

VFi;P = VSi;P +
Ei;P

RP
(3)

3.2 WFQ-Stealing Analysis

In [6], the authors reproduce the well-known result that WFQ (called PGPS in [6]) isÆ-schedulable using
their analytic framework. We use a similar approach to show the same result for WFQ-Stealing.

WFQ-Stealing, like WFQ, assigns a virtual timestamp to each task representing its virtual finish time
in the fluid model. It then executes the tasks EDF. The difference is in the timestamps assigned to tasks.
WFQ-Stealing modifies the timestamps of WFQ to give some tasks more cycles than they have reserved
in order to meet their real-time deadlines. However, the critical point is that both WFQ-Stealing and WFQ
are tracking the flow of service in the fluid model using virtual time. Next we describe WFQ-Stealing
mathematically, and then we show that simulating the fluid model with virtual timestamps is sufficient to
establish theÆ-schedulability of WFQ-Stealing.

WFQ-Stealing is defined in the fluid model itself. Consider two processes, a high-priority processH and
a low-priority oneL. Normally, the processes run as in the WFQ fluid model, according to their reserved
rates. When processH steals from processL, the cycles thatL would receive in the fluid model are diverted
to processH. If L was idle when the stealing began,L is considered active (i.e.,L 2 A) for the duration of
stealing. Formally, whenH is stealing fromL,

dCL
dt

= 0

5



dCH
dt

=
RH +RL
P

q2ARq
RCPU

Stealing changes the way that cycles are distributed in the fluid model, which in turn affects the finish
times of tasks. In order for WFQ-Stealing to track the fluid model, it must know the new virtual finishing
times of tasks belonging toH andL. First we consider the task belonging toH. Applying the definition of
virtual time, we see that during stealing:

dCH
dv

= RH +RL

During stealing, processH receives a constant virtual rate equal to the combined rates of bothH andL.
If processH steals from processL for a period of� units of virtual time, it can be calculated that taskti;H
has the new virtual finish timeVF 0

i;H :

VF 0

i;H = VSi;H +
Ei;H

RH
�
�RL

RH
(4)

That is, the effect of stealing for a virtual time period of� is to decrease the virtual finish time of the task
by �RL=RH . Since virtual time flows faster than real time, this means the real finish time in the fluid model
decreases by at least this much; the BERT algorithm relies on this behavior.

Next we turn attention to processL. AssumeL is active and a tasktj;L is running when stealing starts.
The task is paused for� units of virtual time, and then continues to run at its normal rate. It is easy to see
that:

VF 0

j;L = VSj;L +
Ej;L

RL
+ � (5)

Eqs. 4 and 5 summarize the results presented in [1]. That work also deals with special cases, such asL is
idle but submits a task during�, which we omit here.

WFQ-Stealing’s fluid model is more complex than that of WFQ. However, the fact that we can calculate
virtual finishing times for all work is enough to establish that a nonpreemptive WFQ-Stealing scheduler is
Æ-schedulable. To explain why, we note two facts. First, the fluid model represents a way to schedule all
tasks to meet a certain set of deadlines, namely the task finish times in the fluid model. Second, ordering
tasks by virtual finish times is equivalent to ordering them by their real finish times in the fluid model (this
follows fromdv=dt > 0). Therefore, nonpreemptive WFQ-Stealing is a deadline-oriented service discipline
with a schedulability test, and so it isÆ-schedulable with regard to fluid model finish times. Figueira and
Pasquale use a similar argument for WFQ in [6]. In fact, the above reasoning applies toanyscheduler that
assigns virtual timestamps to track a fluid model (this is also implied in [6]). This is a powerful result for
designing new real-time scheduling algorithms, as we will discuss later.

4 Bounding Workahead

The previous section demonstrated that a task in a system using WFQ-Stealing will finish no later thanÆ

after its finish time in the fluid model. However, work may actually finish before its fluid model finish time
too. In the WFQ literature, this is referred to asworkahead—the task receives a chunk of service in the
WFQ system before it would be received in the fluid model (see [3] for a full discussion of the differences

6



between the fluid model and WFQ). Workahead presents a small problem for WFQ-Stealing, since it is not
possible to steal cycles from a process that has already used them. We briefly discuss workahead next.

WFQ-Stealing takes cycles from processL and gives them to processH, thereby allowing a task be-
longing toH to meet a real-time deadline. If the stealing interval lasts for� ticks of virtual time, the result
is that�RL cycles are stolen fromL. However, it may be the case that other processes are stealing fromL.
We account for the cumulative effects of stealing with the concept of thevirtual restart time, which is the
virtual time at which a process once more receives cycles in the fluid model. LetVRL be the virtual restart
time ofL. In order for stealing to work, it must be the case that, if the current virtual time in the fluid model
is v, then:

VF 0

i;H � max(v; VRL) + � (6)

This means that processLmust have at least� of virtual run-time available to it before the virtual finish time
of taskti;H . WFQ-Stealing performs this test before stealing from a task.

The variableVRL above represents one source of cycles unavailable for stealing—those that have al-
ready been stolen by other tasks. Workahead represents another. Workahead is different in that it represents
a discrepancy between the fluid model and the algorithm that tracks it. In the fluid model, tasks receive their
reservations over any interval, no matter how small. In nonpreemptive WFQ-Stealing, one task runs—has
exclusive use of the CPU—and then another, and so on. So at any time, the amount of cycles that a task has
received in the fluid model may be more or less than in the WFQ-Stealing discipline.

We can think of working ahead as “borrowing” cycles (in contrast to stealing them). When a task is
running, it receives an effective rate ofRCPU ; when the task is sitting on the ready queue, its effective rate
is 0. Therefore, a process borrows cycles belonging to other processes when one of its tasks is using the
CPU; when it is not using the CPU other tasks borrow from it. In the long haul, it all evens out.

WFQ-Stealing must deal with workahead since it is not possible to steal these borrowed cycles. One
approach is to look at the actual workahead of the task to be stolen from when determining whether or not
to steal. Another is toboundthe possible workahead of the task, and then to account for these cycles in the
test of Eq. 6; that is, not steal cycles that might be “owed” to other tasks. BERT takes this latter approach.

More formally, workahead is defined as the difference between the virtual time when a task actually
completes and its virtual finish time in the fluid model. So for taskti;P , its workaheadWi;P when it
completes at virtual timev0 would be:

Wi;P = VFi;P � v0

Recall that the Figueira and Pasquale result referred to theeligible task sequence; the key to bounding
workahead is incorporating an eligibility test for each task based on when it starts to run in the fluid model.
Let VSi;P be the virtual start time of taskti;P . At virtual timev, the task is eligible to run ifVSi;P � v; this
simply means that the task is running in the fluid model.

The workahead bound falls out directly from the mathematical definitions of workahead and eligibility.
A taskti;P cannot start to run until it is eligible, so the virtual timev0 that it can finish is:

v0 � VSi;P +Ei;P =RCPU

Substituting into the definition of workahead,

Wi;P � VFi;P � VSi;P �Ei;P=RCPU (7)

7



Stealing from a task changes its virtual finish time, as we saw in Eq. 5. If taskti;P has been paused for
� virtual time units, substituting forVFi;P � VSi;P in the above, we get:

Wi;P � Ei;P =RP �Ei;P =RCPU + �

Wi;P � Ei;P (1�RP=RCPU ) + �

The possible workahead is related to the task run time. So, we can bound the maximum possible worka-
head for a process if we know the maximum task run-time for that process. IfEmax;P is the maximum run
time of a task for processP , then the boundWmax;P becomes:

Wmax;P � Emax;P (1�RP =RCPU ) + �

We have bounded the workahead for WFQ-Stealing—in fact, it is the known workahead for WFQ [3]
with the addition of�. This result is not surprising, since the bound follows simply from the mathematical
definitions of workahead and eligibility. We wanted to quantify the workahead of a task to ensure that we
did not try to steal unavailable cycles. The� represents time stolen from the task, and our check of Eq. 6
already subtracts this from the available capacity (using the virtual restart time). Therefore, we only need to
account for the WFQ workahead; this means that, before stealing cycles fromH to give toL, WFQ-Stealing
must verify that:

VF 0

i;H � max(v; VRL) +Emax;L(1�RL=RCPU ) + � (8)

This test is in fact used by the BERT algorithm when determining the amount of cycles that are available for
stealing. It is valid because of the workahead bound for WFQ-Stealing established above.

5 Doing Better than Æ-Schedulable

Section 3 established that a nonpreemptive WFQ-Stealing system isÆ-schedulable. In this section we present
our motivation for getting rid ofÆ—making the system strictly schedulable—and then explain how to do so.

We use WFQ-Stealing as the foundation of BERT, a real-time scheduler. To explain how, we distinguish
between three different quantities for a taskti;P : its fluid model finish time,Fi;P ; the virtual finish time of
the task,V Fi;P ; and its actual deadline,Di;P . The virtual timestamp determines the order of execution of
tasks, and the task may finish up toÆ afterFi;P . However, as long as the task finishes execution beforeDi;P ,
it meets its deadline.

The fact that WFQ-Stealing isÆ-schedulable is annoying in one respect: theÆ. For a particular task, we
can place an upper bound on its finish time in the fluid model. In order for the task to be assured of meeting
its deadline in WFQ-Stealing, it must be the case that its actual deadline is at leastÆ after its maximum fluid
model finish time (i.e.,Di;P � Fi;P + Æ). This means that the process may have to make a conservative
reservation, but this can lead to underutilization of the system.

For example, consider a system with a 1GHz CPU in which the longest that a task can run isÆ = 10ms.
Suppose a process in this system generates tasks of run-time 10 million cycles with deadlines33ms apart,
and suppose each task becomes eligible33ms before its deadline. This process uses 300 million cycles per
second (Mcps), so assume that the process makes this reservation. Based on the process reservation andÆ,
each task may take up to43ms to complete after it becomes eligible (i.e.,33ms + Æ), and thus can miss

8



its deadline. However, the process can get the service it needs if it makes a reservation of 435Mcps. This
corresponds to a reserved rate of 10 million cycles every23ms, and so a task of10ms duration will finish
within 33ms (23ms + Æ) after it becomes eligible. Therefore, a process in aÆ-schedulable system can still
get the service it requires at a fine granularity through making a conservative reservation, but we want to
avoid this if we can.

To allow better system utilization, we would like to setÆ = 0. Figueira and Pasquale provide a result that
we can apply here too: in a nonpreemptive system where it isnot possiblefor a task to become eligible while
another one is running, the system is strictly schedulable. An example of such a system would be one in
which (1) new tasks can enter the system only at a scheduling point between tasks, and (2) all tasks become
eligible upon entering the system. Note that the original WFQ algorithm already conforms to condition (2),
and condition (1) simply changes the arrival times of tasks. The lack ofÆ in the schedulability result for
such a system does not mean that tasks finish earlier in this constrained system, it simply means that there
is a closer correlation between fluid model and actual finish times.

Referring back to our example, in the constrained system the process can make a reservation of 300Mcps
and meet all task deadlines as long as the tasks are generated at scheduling points. Chances are that the
process does this already; that is, the process generates the next task when the last one completes. In
this system, all tasks finish by their fluid model finish times, and there is no need to make a conservative
reservation.

6 A Hybrid System

BERT schedules both real-time and best effort processes, and each process can be either important or unim-
portant. Important real-time processes are allowed to steal from unimportant processes in order to meet their
real-time deadlines. This means that our main concern with the important real-time processes is schedula-
bility (i.e., getting rid ofÆ) while for the unimportant processes it is limiting workahead (so we can steal
from them).

In Section 4, we saw that we could limit the workahead of WFQ-Stealing by introducing an eligibility
test. Section 5 discussed how we could constrain the system to make it strictly schedulable. In this section,
we describe a hybrid system, one in whichsomeprocesses (i.e., important real-time) are strictly schedulable,
while others(i.e., unimportant processes) have their workahead limited. The BERT scheduler runs in this
hybrid system.

The idea here is simple: we start with the constrained system of Section 5. To it, we add the eligibility
test of Section 4, but only for the unimportant tasks. To demonstrate that this does what we want, we need
to establish three points:

1. The eligible task sequence is schedulable

2. The workahead of the unimportant real-time work is bounded

3. The important real-time work strictly is schedulable

We argue each point in turn.
First, we have seen that the fluid model provides a schedulability test, showing how it is possible to

schedule the eligible task sequence to meet deadlines. Since we define “deadlines” in this case to mean task
finish times in the fluid model, this is almost trivially true. The only instance in which it wouldnot be true

9



is if an ineligible task could run in the fluid model. By definition, a task is eligible when it has started to run
in the fluid model and so this cannot happen.

Second, Section 4 demonstrates that the workahead bound of a task follows directly from the mathe-
matical definitions of workahead and eligibility. The intuition is that if a task cannot be scheduled until
the virtual time reaches some value, then it cannot work ahead more than a certain amount. This behav-
ior is independent of other tasks. Incidentally, the tasks to which we apply the schedulability test are only
Æ-schedulable, since they can become eligible when another task is running.

Third, the schedulability of the tasks for which the eligibility test isnot performed is not affected by
performing the test for other tasks. The effect of performing the eligibility test on a task is simply that
this task may executelater than it would if it had been instantly eligible. This means that a task which is
always eligible can only executeearlier if other tasks are tested for eligibility. Since the system in whichall
tasks are immediately eligible is strictly schedulable, then so are the important real-time tasks in the hybrid
system.

7 BERT Optimizations

At this point, we have a theoretical foundation for BERT. A nonpreemptive WFQ-Stealing system in which
tasks are admitted only at scheduling points, and eligibility testing is done for unimportant tasks, has two
provable properties: (1) the tasks for which we perform the eligibility test have limited workahead, and
(2) the others actually finish by the times they would in the fluid model. BERT assumes that these two
properties are true when it makes a decision to steal. However, as mentioned in Section 2, BERT contains
some enhancements to make WFQ-Stealing more efficient. As a final step, we argue that the differences
between WFQ-Stealing and the BERT algorithm preserve these system properties.

First, BERT does not implement WFQ, but rather uses the WF2Q+ scheduling algorithm [2] to approx-
imate it. The main difference between the two algorithms is that WF2Q+ estimates the virtual time of the
fluid model, whereas WFQ actually simulates the fluid model and so knows the exact virtual time. WF2Q+
is much less complicated to implement than WFQ, and has less computational overhead. As shown in [2],
however, WF2Q+ has the sameÆ-schedulability and workahead bound as WFQ. Most important with regard
to our analysis of WFQ-Stealing, WF2Q+ is defined such thatdv=dt � 1, yet the virtual time estimated by
WF2Q+ is never greater than the actual WFQ virtual time. WF2Q+ has similar properties to WFQ and so
can be substituted with no ill results.

Second, BERT’s optimizations allow an important real-time process to steal from asetof unimportant
processes without having to change the timestamps of each individual task. The optimizations work by
associating a set of variables with the group of unimportant processes; stealing changes the values of these
variables. The actual timestamps attached to unimportant tasks are not changed by stealing, but the new
virtual finish time of an unimportant task can be calculated from its timestamp and the new variables. The
point is that these optimizations maintain the same virtual finish times for tasks as WFQ-Stealing does.
They allow BERT to track the fluid model in the same way as WFQ-Stealing, and so the results we have
established for WFQ-Stealing apply to BERT.

10



8 The Power of Virtual Time

What is virtual time? Is it (1) an implementation device, (2) a mathematical abstraction, or (3) something
more fundamental? The answer is all of the above. This section uses our analysis of WFQ-Stealing to
illustrate the power of virtual time for the design, implementation, and analysis of new real-time scheduling
algorithms.

As mentioned in Section 2, the idea of virtual time is closely tied to the abstract representation of a
resource. Consider a processP with a reservationRP . The virtual finishing time of its taskti;P is thereal
time at which the task would finish if the process had sole possession of a CPU of rateRP . That is, the
flow of virtual time for the process corresponds to real time on a virtual resource. Now here is a key insight:
when stealing from processP , WFQ-Stealingmultiplexesother processes ontoP ’s virtual CPU. Once we
have removed processP ’s exclusive access to the virtual CPU, the possibilities for multiplexing processes
onto it are vast—stealing to meet important real-time deadlines, as BERT does, represents only one. The
point is, virtual time represents a virtual resource that we can manipulate.

The fluid model gives us a context for reasoning about exactlyhow this manipulation is to take place.
In it, we can mathematically describe how service should be redistributed, and which tasks are affected.
Changes in the fluid model then ripple over to influence the virtual finish times of tasks. The fluid model
allows us to describe how we want to multiplex processes, and virtual time lets us quantify the effects.

Virtual time also gives us the ability to implement the system that we have mathematically described via
the fluid model. We have shown in Section 3 that ordering tasks by virtual finishing times is equivalent to
assigning each task its real finish time in the fluid model as a deadline, and then running the system EDF. So
virtual time is the key to making a real system that approximates the mathematical model in its behavior. As
other sections show, virtual time is also useful for quantifying the differences between the real system and
the fluid model representation.

Finally, virtual time can be a tool in analyzing the behavior of other proposed algorithms—for example,
the SMART [8] and Borrowed-Virtual-Time [5] schedulers. Both of these algorithms are based on virtual
time and involve mechanisms that change the timestamps of tasks. As should be clear from our analysis of
WFQ-Stealing, such manipulations affect the fluid model, which in turn can influence the resulting algo-
rithm’s ability to meet real-time deadlines. Elaboration of this analytical framework is intended for future
work.

In summary, virtual time is a multifaceted and powerful abstraction. It allows us to represent a virtual
resource that we can manipulate in any number of ways. Together with the fluid model, it gives us the
ability to describe how we want to use the resource and to quantify the effects. Then it provides the basis
for constructing a real-time algorithm from this description. Finally, it is an analytic tool with which we can
figure out what some complex scheduling algorithms actually do.

9 Conclusions

This paper has shown two results specific to the BERT scheduler. First, a nonpreemptive WFQ-Stealing
scheduler isÆ-schedulable with respect to tasks finish times in the fluid model. This makes it a strong
foundation for building a real-time scheduler such as BERT. Second, it is possible to create a system in
which some (important real-time) processes are strictly schedulable, while other (unimportant) processes
have bounded workahead. BERT runs in such a system, and uses these schedulability and workahead results

11



when stealing from tasks to meet real-time deadlines.
However, the results of this paper reach beyond BERT. Our analysis of WFQ-Stealing has demonstrated

the relationship between the fluid model, virtual time, and implementing a real-time algorithm with provable
schedulability. It is conceivable that this relationship can anchor a methodical approach to designing real-
time scheduling algorithms such as BERT, as well as provide an analytic framework for understanding some
current virtual-time-based algorithms. We hope to expand on both method and framework in future work.

References

[1] A. Bavier, L. Peterson, and D. Mosberger. BERT: A scheduler for best effort and realtime tasks.
Technical Report TR-602-99, Department of Computer Science, Princeton University, Mar. 1999.

[2] J. C. R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms. InProceedings of the
SIGCOMM ’96 Symposium, pages 143–156, Palo Alto, CA, Aug. 1996. ACM.

[3] J. C. R. Bennett and H. Zhang. WF2Q: worst-case fair weighted fair queueing. InProceedings of IEEE
INFOCOM’96, pages 120–128, San Francisco, CA, Mar. 1996.

[4] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queuing algorithm. In
Proceedings of the SIGCOMM ’89 Symposium, pages 1–12, Sept. 1989.

[5] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT) scheduling: supporting latency-sensitive
threads in a general-purpose scheduler. InProceedings of the 17th ACM Symposium on Operating
System Principles, Dec. 1999.

[6] N. R. Figueira and J. Paquale. A schedulability condition for deadline-ordered service disciplines.
ACM Transactions on Networking, 5(2):232–244, Apr. 1997.

[7] P. Goyal, X. Guo, and H. Vin. A hierarchial CPU scheduler for multimedia operating systems. In
Proceedings of the Second Symposium on Operating Systems Design and Implementation, pages 107–
122, Seattle, WA, Oct. 1996.

[8] J. Nieh and M. Lam. The design, implementation and evaluation of SMART: A scheduler for multime-
dia applications. InProceedings of the Sixteenth Symposium on Operating System Principles, pages
184–197, Oct. 1997.

[9] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow control in integrated
services networks: the single-node case.ACM Transactions on Networking, 1(3):344–357, June 1993.

[10] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E. Gehrke, and C. G. Plaxton. A proportional
share resource allocation algorithm for real-time, time-shared systems. InProceedings of the 17th
IEEE Real-Time Systems Symposium, pages 288–299, Dec. 1996.

12


