
 1

Design And Implementation Of An Island-Based File System

Minwen Ji and Edward W. Felten
Department of Computer Science, Princeton University

{mji, felten}@cs.princeton.edu

Abstract
Reliability, availability and scalability are major
concerns in the design of distributed file systems. We
have built an island-based file system (IFS) called
Archipelago to solve these problems by failure isolation
and low-cost consistency maintenance. The building
blocks of IFS are smaller self-contained file servers
called islands. The main idea underlying island-based
design is the one-island principle: as many operations as
possible should involve exactly one island. The one-
island principle improves partial reliability and
availability because each island can function
independently of other islands’ failures. It allows IFS to
scale efficiently with the system and workload sizes
because consistency across islands can be maintained at
a low cost. The data distribution strategies in existing file
systems cannot satisfy the one-island principle without
sacrificing load balance and scalability. We designed a
new strategy in which data is distributed to islands at
directory granularity by hashing the pathnames of
directories. Certain metadata is replicated across islands
in such a way that islands are self-contained and the cost
for maintaining consistency across replicas is minimized.

We evaluated the data distribution strategy in IFS by
statistical analysis of the access patterns and contents of
existing file systems in use. We studied partial
availability, load balance, replication cost and
consistency cost in web access logs, UNIX file system
call traces, snapshots of file system contents, and
Windows NT file access traces. The results confirmed
the assumptions we made in the design. In addition, we
compared data loss of IFS and typical non-IFS in case of
partial failures in analytic models. The IFS model has a
significantly lower data loss ratio than non-IFS, at the
cost of replicating a small amount of metadata.

We designed three protocols in Archipelago, the
rebalance, consistency and recovery protocols, to make
the island-based design a viable solution. We have
implemented Archipelago on a cluster of PCs running
Windows NT 4.0 connected by Ethernet. The
consistency and recovery protocols are tested with
randomized failure injections. The performance
measured in micro benchmarks and operation mixes
shows little overhead of the consistency protocol on one-
island operations; in one case, the speedup with 16
islands achieves 98.3% efficiency. A trace-driven study
of the online reconfiguration of a web server running on
Archipelago shows that data migration in the rebalance
protocol is made transparent to the web server and

imposes a performance penalty of only 4.5%.

1. Introduction
Reliability, availability and scalability are major
concerns in the design of distributed file systems. An
increasingly popular class of applications, the Internet
servers, requires improved partial reliability and
availability as opposed to the traditional all-or-nothing
mode. Typical Internet servers, e.g. web servers, cache
servers, email servers and news servers, serve a large
number of independent clients who access a relatively
small portion of the entire contents individually. In case
of partial failures, those servers will prefer to remain
available to as many clients as possible, rather than to go
offline as a whole. This access pattern also implies that
the goal of scaling the servers is to meet the needs of
increased number of workloads or clients, rather than to
improve the performance for individual clients. The large
scale of these applications, typically tens to hundreds of
PC’s per site, requires that the overhead for maintaining
shared state across loosely-coupled machines be kept
low. Those servers need to be dynamically reconfigured
to adapt to the changing requirements of workloads, and
the reconfiguration needs to be made transparent to
clients in terms of both functionality and performance.
Locality and load balance are shown to be two important
but conflicting issues in those servers [3].

The state-of-the-art file systems, i.e. cluster file systems
built on top of shared virtual disks [1][5], use data
redundancy in the virtual storage layer for high
reliability, and distributed lock management for
consistency across replicas. To our knowledge, no
existing redundancy scheme can prevent a virtual storage
server from failing with arbitrary multiple physical
failures; those systems do not address the damage control
in case of such a failure. Distributed lock management
introduces considerable communication and
synchronization overhead for certain access patterns.
Those systems cannot provide locality due to the
transparency of the storage layer. On the contrary, the
traditional mounted file systems [9] [8] have independent
local file servers as building blocks, hence provide
failure isolation and locality, and require little
consistency maintenance across individual servers.
However, they cannot scale well due to the manual
partition of data and load imbalance across servers.

We designed an island-based file system (IFS) called
Archipelago to solve these problems by failure isolation
and low-cost consistency maintenance. The building

 2

blocks of IFS are smaller self-contained file servers
called islands. An island is self-contained in the sense
that it contains all the metadata and functions it needs to
access the data stored in it. The main idea underlying
island-based design is the one-island principle: as many
atomic operations as possible should require the
participation of exactly one island. By atomic operation
we mean a basic file system interface function such as
creating a file or reading file attributes. The one-island
principle promises the following benefits:
• Failure isolation: The one-island principle

improves partial reliability and availability by failure
isolation because each island is self-contained and
hence can function independently of other islands’
failures. In other words, the failure of 1 out of n

islands in IFS renders only
n

1
 data inaccessible. In

non-self-contained systems, the data in a surviving
server will be inaccessible if any server containing a
piece of metadata needed to access the surviving
data fails.

• Low consistency cost: The one-island principle
allows IFS to scale efficiently with the system and
workload sizes because consistency across islands
can be maintained at a low cost.

• Low reconfiguration cost: Reconfiguration
(addition or removal of islands, or dynamic load
balancing) requires a minimal amount of data to be
migrated between islands, rather than a full
rearrangement of all data. Therefore, reconfiguration
has little impact on client performance and can be
made transparent to clients.

However, the one-island principle has several challenges.
Certain state needs to be replicated across islands for
them to function independently of each other’s failure.
The storage required for such replication should be kept
low. Cross-island communication and synchronization is
occasionally necessary to keep replicated state
consistent, and should be minimized. An efficient
algorithm is needed to determine which island a client
should contact for each operation. It is undesirable to
have a client visit multiple islands, e.g. for recursive
name lookups, because this violates the one-island
principle. Load needs to be balanced across islands,
which distinguishes IFS from a mounted file system.

We designed a new data distribution strategy for IFS:
data is distributed to islands at directory granularity
(rather than block, file or sub tree granularity) by
hashing the pathnames of the directories to island
indices. Directory granularity is fine enough to allow
load balance; most file system operations involve a
single directory and hence satisfy the one-island
principle. A hash function can be computed on the client
machines without contacting any servers and pathnames
are the only information that a client can possibly have
without contacting any servers. A hash function

inherently provides locality because it has a consistent
mapping from directories to islands as far as the function
itself does not change. We use a combination of
universal hashing [10] and extendible hashing [11] to
achieve load balance and low reconfiguration cost, i.e.
locality can be traded for load balance at a low cost when
necessary. We call the file system running inside each
island the internal file system. An internal file system can
be an instance of any existing file system such as a local
file system, a mounted file system, a replicated file
system or a cluster file system. Inside each island, we
store directories in a skeleton hierarchy. The skeleton
hierarchy in an island contains the directories hashed to
this island index and their ancestor directories up to the
root, and is stored in the unmodified internal file system
as a normal tree. This way, islands can function
independently of others’ failures and we can leverage the
functions of the internal file systems. The consequence
of storing data in skeleton hierarchies is the replication of
the attributes of ancestor directories that will be needed
when a descendent is being looked up.

We evaluated the data distribution strategy in IFS by
statistical analysis of the access patterns and contents of
existing file systems in use. In particular, we studied
partial availability, load balance, replication cost and
consistency cost in web access logs, UNIX file system
call traces, snapshots of file system contents, and
Windows NT file access traces. The results show that the
majority of web clients access only 1 to 2 distinct
directories; therefore, they are likely to survive a
temporary partial failure in IFS in spite of the fact that a
partial failure causes a random set of directories to be
inaccessible. The storage needed for replicating the
attributes of ancestor directories accounts for 0.3% to
7.7% of total storage. Load imbalance (average load per
island divided by standard deviation of load) resulted
from the hashing algorithm in IFS is 0.0001 to 0.0279.
On average only 0.2% operations involve multiple
islands (we call them cross-island operations) and need a
consistency protocol. We also compared in analytic
models the data loss in IFS in case of partial failures to
that of cluster file systems (CFS’s) built on top of shared
virtual disks [20][1][5]. The IFS model has a
significantly lower data loss ratio than CFS’s under
various comparable redundancy schemes, e.g. 20.4 times
lower with 32 non-redundant storage servers, at the cost
of replicating the attributes of ancestor directories.

We designed three protocols in Archipelago, the
rebalance, consistency and recovery protocols, to make
the island-based design a viable solution. A rebalance
protocol is used for fast, fault-tolerant and transparent
reconfiguration of the system, i.e. addition or removal of
islands, or dynamic load balancing. A consistency
protocol is used for the atomicity and serialization of
cross-island operations in the face of failures. A recovery
protocol is used for islands to recover from various

 3

combinations of failures back to consistent states.

We have implemented Archipelago on a cluster of PCs
running Windows NT 4.0 connected by Ethernet. The
consistency and recovery protocols are tested with
randomized failure injections. The performance
measured in micro benchmarks and operation mixes
shows little overhead of the consistency protocol on one-
island operations; in one case, the speedup with 16
islands achieves 98.3% efficiency. A trace-driven study
of the online reconfiguration of a web server running on
Archipelago shows that data migration in the rebalance
protocol is made transparent to the web server and
imposes a performance penalty of only 4.5%.

The rest of the paper is organized as follows. Section 2
analyzes data loss models. Section 3 gives the basic
system design. Section 4 discusses replication cost.
Sections 5 describes hashing algorithms for load balance.
Section 6 presents statistical results. Sections 7, 8 and 9
describe in details the rebalance protocol, consistency
protocol and recovery protocol, respectively. Section 10
discusses other design issues. Section 11 reports the
implementation status. Section 12 discusses the
correctness testing. Section 13 and 14 present the
performance measurements in micro benchmarks,
operation mixes and the trace-driven study of an online
reconfiguration. Section 15 references related work.
Section 16 draws conclusions and proposes future work.

2. Analytical models for data loss
In this section, we shall compare the permanent or

temporary data loss in IFS in case of partial failures to
that of a typical class of non-IFS, cluster file systems
(CFS) built on top of shared virtual disks [20][1][5]. We
model the data loss due to independent storage server
failures in comparable configurations of IFS and CFS,
see Figure 1 for an example.

We make the following assumptions in the analytic
models. Data is randomly distributed across multiple
storage servers at block granularity in CFS since physical
block location in the shared virtual disks is transparent to
CFS. Data is randomly distributed across islands at
directory granularity in IFS. The CFS model does not
replicate ancestor directories; therefore, the
inaccessibility of a directory implies the inaccessibility
of all its descendents. We also assume whole file
accesses, i.e. the inaccessibility of a part of a file causes
the whole file to be counted as lost. We assume that the
directory hierarchy is a complete tree of height h. This is
a conservative assumption because as the hierarchy gets
more irregular, more files will have longer pathnames
and hence have more chances to be inaccessible in CFS.
Each directory has d sub directories and f files, and the
directory itself has a fixed size equal to the block size bs,
hence fits in a single server. Each file also has a fixed
size fs. We ignore the impact of lost inodes in CFS, i.e.
we assume that they are replicated everywhere. In a
model with s storage servers, there are s such trees, and
the root of each tree is a sub directory of the root in the
entire system.

We compare the data loss ratios in IFS and CFS under
various redundancy schemes, which are based on the
non-redundant model below.

2.1 Non-redundant model
In this model, each island in IFS runs on a single storage
server. With the failure of 1 out of s servers, non-

redundant IFS permanently or temporarily loses
s

1
 data,

0

0.2

0.4

0.6

0.8

1

0 32 64 96 128

 Servers (s)

D
at

a
lo

ss
 r

at
io

R(s)
1/s

Figure 2. Data loss ratios in non-redundant IFS (1/s)
and CFS (R(s)) with the loss of 1 out of s servers,
and the ratio of R(s) to 1/s.

0
5

10
15
20
25
30

0 32 64 96 128

Servers (s)

R
(s

)*
s

Figure 1. Mirrored IFS and CFS configurations in
data loss models. Storages with the same labels
contain the replicas of the same data.

Data 0 Data 0 Data 1 Data 1

Storage
Server

Storage
Server

Storage
Server

Storage
Server

Data 0 Data 0 Data 1 Data 1

Storage
Server

Storage
Server

Storage
Server

Storage
Server

Island Island

CFS CFS

 4

according to the self-contained property of islands.

We compute the data loss ratio with the failure of 1 out
of s storage servers in non-redundant CFS as follows.
The amount of data in a tree of height i (a tree with a
single node is of the height 0) is

fsf
d

d
bs

d

d
iT

ii

⋅⋅
−
−+⋅

−
−=

+

1

1

1

1
)(

1

.

The expected probability of a file being inaccessible is

−−= bs

fs

s
F)

1
1(1 .

The expected amount of data loss in the tree of height i is

))1(()
1

1()(
1

)(fsFfiLd
s

iT
s

iL ⋅⋅+−⋅⋅−+⋅= .

That is, if the root of a tree happens to be stored in the

failed server (with the probability
s

1
), the whole tree will

be inaccessible; otherwise, (with the probability)
1

1(
s

−)

the amount of data loss will be the sum of the expected
amount L(i-1) of data loss in each of the d sub trees plus
the expected number Ff ⋅ of lost files times the file size

fs. Similarly, the amount of data loss in a system with s
servers and s sub trees of height h in the root directory is

)()
1

1()(
1

)(hLs
s

hTs
s

sTL ⋅⋅−+⋅⋅= .

The data loss ratio is
shT

sTL
sR

⋅
=

)(

)(
)(. See Appendix A

for the complete solution to L(h). We choose a set of
typical parameters based on previous studies of file
system contents [44] [42]: h=8, d=2.5, bs=4096, f=10,
fs=98304. That is, on average, each server stores 2542
directories and 10166 files, or about 1 GB data.

Figure 2 shows the data loss ratios in non-redundant IFS

(
s

1
) and CFS (R(s)) with the failure of 1 out of s storage

servers as a function of s, and the ratio of R(s) to
s

1
, i.e.

ssR ⋅)(. IFS significantly reduces the data loss ratio at

the cost of replicating ancestor directories.

We also analyzed the sensitivity of R(S) to other
parameters within practical ranges; the results show that
R(S) increases with h (height of the tree), d (number of
sub directories per directory), f (number of files per
directory) and fs (file size), and decreases with bs (block

size). With the failures of k servers, IFS loses
s

k
 data

and CFS loses)(sRk ⋅ data.

2.2 Redundancy schemes with grouping

Many existing redundant storage systems are divided
into groups and data redundancy is applied within
groups, but not across groups. It results either from the
nature of the redundancy scheme, such as mirroring
pairs, or from performance optimization, such as RAID-5
striping groups [5] [43]. A CFS running on a shared
storage system with s redundancy groups can be
compared to an IFS with s islands, each of which runs on
a single redundancy group of the same scheme. See
Figure 1 for a mirrored example. If we treat each group
as a single server, we can use the non-redundant model
to compute the data loss with the failure of a group in
both systems. Since the mean time to failure of a group is
reduced by the same factor in both systems, the ratio of
data loss in CFS to data loss in IFS is still ssR ⋅)(.

2.3 Redundancy schemes without grouping
In general, IFS can achieve as high reliability as CFS
with an arbitrary redundancy scheme by being
configured as a single island with a storage system of the
same redundancy scheme. The actual gain in reliability
needs to be analyzed on a case-by-case basis. Below we
compare the data loss in IFS running on mirrored storage
with that of CFS running on shared chained-declustering
storage [7].

In this model, each system has s⋅2 storage servers. In
IFS, each of s islands runs on top of 2 mirrored servers;
in CFS, the replica of the data in each server is evenly
distributed to the other servers. With the failures of 2 out

of s⋅2 servers, IFS loses
s

1
 data with the probability

1

1

−s
 (if the 2 failed servers happen to be in the same

island); CFS loses
2

1

s
 storage with the probability 1.

Interpreting R(s) as the data loss ratio with the loss of
s

1

storage, the expected data loss ratios of IFS and CFS are

ss

1

1

1 ⋅
−

 and)(2sR , respectively. It is worth noting that

the data loss ratio of CFS running on mirrored storage is

)(
1

1
sR

s
⋅

−
 and)(2sR >)(

1

1
sR

s
⋅

−
. That is, chained-

declustering has a higher expected data loss ratio than
mirroring.

2.4 Partial availability for applications
The models in previous sections show that, in
comparable redundancy schemes of IFS and CFS, with
the failures of the same number of servers, IFS has a
significantly lower data loss ratio than CFS, at the cost of
replicating ancestor directories. In other words, if the
data is permanently lost, IFS will cause a lower cost for
reconstructing the data at application level or manually;

 5

if the data loss is only temporary, IFS maintains a higher
availability.

If a client application needs to access multiple directories
or files and any of the directories or files is lost, the
application will fail as a whole. The availability of IFS
with partial failures depends on the number n of distinct
directories applications access. For example, with the
failure of 1 out of s islands in non-redundant IFS, the
expected probability that an application will not be

affected is n

s
)

1
1(− . The availability of CFS depends on

the accessibility of the directories and files applications
access and all their ancestor directories; therefore, the
partial availability of CFS is always no higher than that
of IFS.

We are going to collect the histograms of users and
accesses by the numbers of distinct directories they
involve in our statistical analysis. See Section 6.

3. System overview
Figure 3 gives an overview of Archipelago in a typical
configuration. An island consists of a server process
running on top of an internal file system. Client
applications view the Archipelago as a single system and
access it through local file system switches and stubs.
Islands and clients are connected by commodity
networks such as Ethernet and can be geographically
distributed.

3.1 Directory granularity
Our first design decision concerns the granularity to use
in data distribution. It should both allow load balance
and satisfy the one-island principle

The obvious granularity choices are bytes, blocks, files,
directories and sub trees. Although byte and block

granularities are good for even distribution of data, they
are not candidates for IFS because most file system
operations involve multiple bytes or blocks, hence
violate the one-island principle. Sub tree granularity, as
used in mounted file systems, is self-contained and
requires little state sharing across servers. However, sub
trees cause load imbalance as some sub trees grow faster
than others. Few existing systems distribute data at file
granularity, but some distribute cached data or metadata
at file granularity [3] [4] [19]. File granularity can
potentially achieve better load balance than sub tree
granularity because files are smaller than sub trees.
Every file system operation that involves a single file
satisfies the one-island principle. However, some
frequent operations like “ls” or “dir” involve multiple
files in a directory, which led us to choose the directory
granularity instead.

3.2 Hashing pathnames
Our second design choice concerns how directories are
assigned to islands or how a client decides which island
to contact for each operation. The one-island principle
implies that the client should go directly to the island that
can satisfy the client’s request.

We decided to distribute directories to islands by hashing
the full pathnames of directories to island indices. We
chose hashing because a hash function can be computed
on the client machines without contacting any servers
and hence satisfies the one-island principle. We chose to
hash the pathname instead of a low-level integer
identifier like an inode number because the client always
knows the pathname but it might not know the inode
number without contacting a server. A hash function
inherently provides locality because it has a consistent
mapping from directories to islands as far as the function
itself does not change.

The potential problems with hashing are load imbalance
(where too many directories are hashed to a single
island) and high reconfiguration cost (because naïve
hashing results in a fixed mapping from directories to
islands). To address these problems, we use a
combination of universal hashing [10] and extendible
hashing [11]. We will describe the algorithms in more
detail in Section 5.

3.3 Skeleton hierarchy
Having decided to distribute data at directory granularity
by hashing the pathnames, we faced the third design
choice: how to store directories inside an island.

We decided to store directories in a skeleton hierarchy in
the internal file system with the cost of replicating
ancestor directories as necessary. The skeleton hierarchy
in an island contains the directories hashed to this island
and their ancestor directories up to the root. See Figure 4
for an illustration. The skeleton hierarchy is stored in the

Archipelago

NTFS

RAID

Archipelago

NFS

Archipelago

Replicated
FS

Archipelago

Cluster FS

Virtual
Disks

Commodity Networks

Figure 3. Overview of Archipelago. Shaded boxes
are islands or servers and non-shaded boxes are
clients.

Applications

FS Switch

Client Stub

Applications

FS Switch

Client Stub

Applications

FS Switch

Client Stub

Applications

FS Switch

Client Stub

 6

Figure 4. Skeleton hierarchy. Figure (a) without the
directories and files inside the dashed rectangle is the
image of the directory owner of root directory /. (b)
(c) and (d) are the images of the internal file systems
in three other islands. / is replicated in all islands. /b
is replicated in its parent owner (a), directory owner
(c) and the directory owner of its sub directory /b/f. /a
and /b/f are replicated only in their parent owners and
directory owners because they are leaf directories.
Shaded directories in the figure represent replicas
that contain only attributes and partial contents or no
contents.

/

a b

f c d e

g h

(a) Image of the entire system

/

a

c d

(d) Directory owner of /a

/

b

f e

(c) Directory owner of /b

/

b

f

g h

(b) Directory owner of /b/f

 Directory File
Partial
directory

unmodified internal file system as a normal tree.
Therefore, IFS can inherit most functions from its
internal file systems, such as metadata structures, disk
allocation, I/O scheduling, caching, locking, security,
recovery, etc.

The alternative is to store directories in a flat table
indexed by the pathnames [4]. However, it will be hard
to control accesses using directory security attributes
because accesses no longer pass the recursive permission
checks of ancestor directories.

The consequence of storing data in skeleton hierarchies
is the replication of ancestor directories. The next section
explains why the replication cost is low.

4. Replication and consistency
Directories are stored in skeleton hierarchies inside
islands with replicated ancestor directories. We introduce
two terms, directory owner and parent owner, to help us
explain the replication in IFS. The directory owner of a

directory is the island to which the directory is hashed.
The parent owner of a file or directory is the directory
owner of its parent directory. A file resides in exactly
one island, its parent owner. A directory, however, will
be replicated in two islands at the time of creation, its
directory owner and its parent owner (unless the two
owners happen to be the same). A non-leaf directory, one
that has sub directories, will be replicated in all the
owners of its descendent directories. Figure 5 gives an
illustration of the directory and parent owners.

However, only the directory attributes, not the directory
contents, need to be replicated. Directory attributes
include name, size, security, time stamps, read-only tag,
compressed tag, etc. Directory contents are the lists of
names and addresses of sub directories and files. Adding
or removing files in a directory owner does not affect
other replicas of the directory since they modify the
contents, but not the attributes. Changes to directory
attributes will, however, affect other replicas. Therefore,
we want to replicate only those attributes that are needed
when a descendent of the directory is being looked up.

We divide directory attributes into two categories, static
attributes and dynamic attributes, based on their access
patterns. A static attribute is more frequently read than
written, and a dynamic attribute is more frequently
written than read. We apply read-one-write-all policy to
static attributes and read-one-write-one policy to
dynamic attributes. Attributes such as name, security,
read-only tag and compressed tag are static. Updates to
static attributes of non-leaf directories will be broadcast
to all islands so that read requests for these attributes

Figure 5. Directory owner and parent owner. This is
an image of the internal file system in an island that
is the directory owner of the highlighted directories
or the parent owner of the shaded files and
directories. Partial directories are replicas that
contain only attributes and partial contents or no
contents.

/

u var

adm

 Directory
Partial
directory

bob

log

mail

courses

 File

gpa 126 a b

sm lq

 7

satisfy the one-island principle. A cross-island protocol
is needed for the atomicity and serialization of those
operations in the face of partial failures. Attributes such
as size and time stamps are dynamic. To avoid the cost
of keeping dynamic attributes consistent across replicas,
we do not replicate these attributes, but read and write
them in a single island, the directory owner. Therefore,
there is no consistency problem with dynamic attributes.

The following operations in IFS involve multiple islands
and require a cross-island protocol:
• CreateDir and RemoveDir (coordinated by the

directory owner and involving the parent owner):
when a directory is created or removed, it is created
or removed in both the directory owner and parent
owner. (A directory is replicated in other islands on
demand and removed when it becomes empty.)

• SetDirAttr (coordinated by the directory owner and
involving all islands): when the static attributes of a
non-leaf directory are changed, the change is made
in all islands that have a replica of the directory.

• SymLinkDir and DeleteLinkDir (coordinated by the
parent owner of the symbolic link and involving all
islands): when a symbolic link to a directory is
created or deleted, it is created or deleted in all
islands. See Section 10 for details.

• RenameDir (coordinated by the directory owner and
involving multiple islands): when a non-leaf
directory is renamed, all subdirectories might be
hashed to different islands, and hence need to be
migrated to their new owners. See Section 10 for
details.

We are going to find the answers to the following
questions in our statistical analysis of the access patterns
and contents in the existing file systems in use (see
Section 6):
• What is the upper bound of the storage required for

the replication of static directory attributes?
• Can the consistency of IFS be maintained at a low

cost? (By “low consistency cost” we mean
minimized number of cross-island operations that
need a consistency protocol, rather than optimized
performance for individual operations of this type.)

5. Hashing, load balance and rebalance
The goals of our hashing algorithm are fast directory-to-
island mapping, load balance and low reconfiguration
cost. We take two steps in hashing a pathname to an
island: first, hashing the pathname to a bucket (an integer
value) with a universal hash function; second, hashing
the bucket to an island with an extendible hashing table.

5.1 Universal hashing
Universal hash functions were presented by Carter and
Wegman [10] and have the property of input independent
distribution. We chose the function they called3H for our

first step of hashing because it can hash a bit string to an

integer bucket by boolean operations in expected time
linear in the string length.

We shall quantitatively analyze the directory and
workload distributions as the result of the universal hash
function as follows. Assuming that objects O are to be
distributed to units U, we define the imbalance OUI as

the standard deviation of objects O in units U divided by
the average objects in each unit. OUI is 0 if the

distribution is perfectly even. Let B be the number of
buckets, D be the number of directories, W be the
workload, and S be the number of islands. Theoretically,
the imbalance in directory distribution across buckets is

D

B
I DB

1−= (see Appendix B) and can be made small

if we choose the number B of buckets to be much smaller
than the number D of directories in the file system. The
imbalance in workload distribution across buckets is

12 +⋅= WDDBWB III , where WDI is the imbalance in

workload distribution across directories. See Appendix B
for derivations. A universal hash function does not have
control on the workload distribution across directories.
Therefore, for load balance purpose it is not sufficient to
simply assign a bucket to each island, i.e. to make

WBWS II = .

5.2 Extendible hashing
We use a second step of hashing to assign buckets to
islands so that workload is balanced across islands.

We use a variation of the standard extendible hashing
structure [11] as follows. The 3H hash function is

configured to generate values over a relatively large
range, e.g. 32-bit binary integers. An extendible hash
table is constructed to map the 3H values to island

indices. The size of the table is ScH log2 ⋅≥ , where c is
a constant and c>1 so that the average number of table
entries per island is large enough to balance the
workload. H grows with the number S of islands. The
hash table is indexed by the highest Sc log⋅ bits of the

3H values and each table entry is assigned to an island.

Initially, each island is assigned an equal number of table
entries. As load imbalance increases or islands are added
to or removed during system reconfiguration, the table
entries are reassigned to islands to rebalance the load.
(Note that table entries will not be reassigned when
islands leave or join the system due to failures and
recoveries.)

We use a greedy algorithm that attempts to balance both
workloads (as first priority) and table entries (as second
priority) across islands. We define an overloaded island
as one whose workload is above average or one that is to
be removed from the system, and an underloaded island
as one whose workload is below average or one that is

 8

newly added to the system. For each overloaded island,
remove its table entries until no more entries can be
removed without underloading the island. Sort the entries
removed from the overloaded islands in descending order
of their workloads. For each entry in the sorted order,
assign it to the least loaded island and updates the
workload of the island accordingly.

The reassignment is monotonic since entries will only be
moved from overloaded islands to underloaded islands.
Therefore, only a minimal amount of data needs to be

migrated for load rebalance, e.g. only
S

1
 data needs to

be migrated when an Sth island is added to the system.
Migration can be done in parallel in all islands since we
need not worry about an island becoming full during the
migration. The rebalancing algorithm will be scheduled
to run when the load imbalance exceeds a threshold so
that no island will become full during normal operations.
Since the greedy algorithm attempts to evenly distribute
table entries across islands in addition to workloads, the
imbalances in directory, file and byte distributions across
islands are suppressed.

We use the number of bytes that have been accessed
since the last rebalance as the measure of actual
workload. This can be recorded as the system is running,
and requires space for a counter per hash table entry.
Since the hash table size H in our algorithm is a constant
factor of the number S of islands, the space required for
the workload measurement of the entire system is O(S).
The hash table is replicated in all islands and clients,
requiring O(S) space on each machine. Both space
requirements are small.

The rebalancing algorithm will work well as far as no

table entry contains more than
S

1
 of total workloads.

Otherwise, the hot spot has to be removed either
manually or by using a scalable or replicated internal file
system [1] [41].

We are going to find the answers to the following
questions in our statistical analysis (see Section 6):
• How evenly in practice can the universal hash

function we chose distribute pathnames to buckets,
considering the fact that pathnames extensively
share common prefixes?

• How evenly in practice can the extendible hashing
algorithm distribute workload to islands in spite of
hot spots?

6. Statistical analysis
In this section, we study the partial availability, load
balance and consistency cost by collecting statistics from
existing file systems in use. Although the IFS design was
motivated by the access patterns of Internet services, we
evaluated it in a more generic context.

6.1 Partial availability for applications
As discussed in the previous section, the availability of
IFS with partial failures depends on the number of
distinct directories client applications access.

We computed the histograms of clients and requests by
the distinct directories they touched from the access logs
of the web server running on our site. We assume that
IFS acts only as a content provider to the web server, i.e.
accesses to control information or executables of the web
server itself do not count in our statistics. We grouped
the HTTP requests into clients by the hostnames or IP

Figure 6. Histograms of clients and requests by
distinct directories in the web traces. Accesses to
more than 24 directories account for 0.4% clients and
19.3% requests, and are omitted in the graph for
readability.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 5 9 13 17 21

Distinct Directories

P
er

ce
n

ta
g

es
 (

x1
00

%
) Clients

Requests

Figure 7. Expected availability for data, clients and
requests in the web traces with the failure of 1 out of
s islands. The x axis is the number s of islands. The y

axis is (1-1/s) for data and ∑ −⋅ nsnp)/11()(for

clients and requests, where n is the number of distinct
directories and p(n) is the percentage of clients or
requests in each category of n.

0

0.2

0.4

0.6

0.8

1

1 17 33 49 65 81 97 113

Islands

E
xp

ec
te

d
 A

va
ila

b
ili

ty

Data

Clients

Requests

 9

addresses in the requests, and within each client, we
grouped requests into directories by the URLs in the
requests and maintained a counter for the total number of
requests. We computed the histograms from two months’
traces, July 1998 (137248 clients and 1304975 requests
in total) and January 1999 (166804 clients and 1297428
requests in total). We kept the distinct directories and
total number of requests for each client up to an hour,
updated the histograms and cleared all clients’ records in
the end of each hour, and restarted recording for the next
hour. The histograms were cumulated for the two
months. See Figure 6. The results show that the largest
portion (48.3%) of clients accessed only 1 distinct
directory in an hour and the largest portion (17.9%) of
requests were issued by clients who accessed 2 distinct
directories in an hour. Requests are more scattered across
categories because larger categories tend to have more
accesses and hence weigh more. We computed the
histograms for other time windows ranging from 30
minutes to 8 hours, but there was no significant
difference across time windows.

Figure 7 shows the expected availability of IFS for data,
clients and requests, respectively. Since the majority of
web clients access a small number of distinct directories,
the expected availability for this class of clients is high in
spite of the fact that a partial failure in IFS causes a
random set of directories to be inaccessible.

We also computed the histograms of application groups
and file system calls by the distinct directories they
touched from the file system traces taken on a file server
in Hewlett-Packard Labs for the week starting September
24, 1999, which consisted of 5,995,712 pathname-based
low-level file system calls such as open(). The users of
that file server are 5 to 10 researchers who access files
through applications like emacs, g++, netscape and shells
on UNIX workstations. We grouped file system calls by
process ids and divided process ids into “application
groups” by the fork() system calls. Each application
group is associated with a window or session manager,
but some are finer-grained because we do not know
about the fork() events that happened before the tracing
program started. In the traces we used, 183,915 fork()
events were recorded and 5,170 groups were identified.
We computed the histograms for the time windows
ranging from 1 minute to 1 hour. We use the overall
histogram of application groups below since there was
no significant difference across time windows. Similar to
the web traces, the largest portions, 26.2% and 14.8%, of
application groups accessed 1 and 2 distinct directories,
respectively; different from the web traces, more groups
accessed a larger number of distinct directories, e.g.
17.3% groups accessed more than 24 directories. As time
window increases, more file system calls were counted in
larger categories of distinct directories. For example, in 5
to 10 minute windows, the largest portion (17.6%) of
calls were in the category of 1 distinct directory; in the 1-

hour windows, the largest portion (44.4%) of calls were
in the category of 7801 distinct directories. The users of
those application groups will be affected by a lasting
partial failure in IFS, for IFS was not designed for that
class of users.

6.2 Replication cost and load distribution
We took snapshots of five UNIX and Linux file systems
in use, using the shell command "ls -l -A -R /". The five
systems provide file services to a web server (“web”), a
research project (“project”), a CD-ROM image server
(“cdroms”), a department (“department”) and a
university (“university”), respectively. Most of the
systems consist of multiple partitions that are mounted
together via NFS. For our statistical studies, we
pretended that each system is a single file tree stored in
IFS.

Replication cost: We computed the upper bound of the
replication storage, i.e. storage for replicating all non-
leaf directory attributes and all symbolic links to
directories in all islands. Let D be the number of
directories, F be the number of files, I be the inode size
in bytes, and T be the total number of bytes for directory
and file contents. Then the storage required for the entire
system without replication, the net storage, is

TFDI ++⋅)(bytes. Let S be the number of islands, N

be the number of non-leaf directories, Q be the number
of symbolic links to directories, and L be the size of a
symbolic link. Then the upper bound of the replication
storage is)1()()1(−⋅⋅++−⋅⋅ SQLISNI .

 Web Pro-

ject
Cd-
roms

Depart
ment

Univer
-sity

Directo-
ries (D)

5938 16233 25195 178662 178974

Files
(F)

104186 222958 228326 3377478 1653946

Contents
(T) (GB)

4.74 11.01 14.55 105.9 51.27

DirLinks
(Q)

183 450 1010 3339 35698

Non-
leaves(N)

1863 4189 10102 46639 45427

Islands
(S)

1 3 4 31 15

Rep.
(GB)

0.000 0.036 0.130 5.815 4.809

Rep.
(percent)

0.0% 0.3% 0.8% 4.7% 7.7%

Table 1. Replication cost. Each column is an existing file
system in use. Row "Rep. (GB)" shows the upper bound
of the replication storage, computed as

)1()()1(−⋅⋅++−⋅⋅ SQLISNI . Row "Rep. (percent)"

 10

shows the percentage of the upper bound of replication
storage to the total storage. The net storage is computed
as TFDI ++⋅)(. The replication storage in the web

system is zero because there is only one island for the
web file system.

Based on existing system configurations, we assumed
that the capacity of each island was roughly 4 GB, hence
the number of islands for each file system is the total
number of bytes in the system divided by 4 GB. We
computed for each system the upper bound of replication
storage with I=4KB and L=1KB. See Table 1. The
percentage of replication storage to total storage ranges
from 0.3% to 7.7%. Given the decreasing costs for
storage devices nowadays, the replication cost is
insignificant.

Load imbalance: With the same snapshots of the five
file systems, we computed the load imbalances described
in Section 5 and Appendix B, and compared them with
their theoretical expectations. Since the access logs of the
five systems are not all available to us, the number of
bytes, instead of accessed bytes, was used as the measure
of workload in our study. See Table 2.

To compare DBI with its theoretical expectation
D

B 1−

and across different systems, we fixed the number B of
buckets or extendible hash table entries to be 256. The
directory distribution across buckets is very close to its
theoretical expectation. The byte distribution across
buckets is less close to its expectation probably because
of the inaccurate assumption of pairwise independency
between directory workloads. (See Appendix B.) The
byte distribution across directories is determined by the
usage of the systems and is considerably uneven. The
second step of hashing, i.e. the extendible hash table, was
designed to balance the workload, i.e. the number of
bytes in our study, across islands. The number of islands
for each system is the same as in Table 1. Table 2 shows
that bytes are evenly distributed across islands. The
extendible hashing algorithm is independent of the
inputs; therefore, it can also evenly distribute actual
workload across islands if the input is the actual
workload recorded in real systems.

 Web Project Cdroms Depart
-ment

Univer
-sity

DBI 0.21 0.13 0.10 0.04 0.04

DBI 0.19 0.13 0.10 0.04 0.04

WDI 5.93 15.56 17.58 11.95 17.70

WBI 1.14 2.03 1.76 0.48 0.71

WBI 1.23 1.94 1.81 0.68 0.71

WSI 0 0.0004 0.0001 0.0279 0.0087

Table 2. Load imbalances in five file systems. DBI is

the imbalance in directory distribution across buckets;

WDI is the imbalance in byte distribution across

directories; WBI is the imbalance in byte distribution

across buckets; WSI is the imbalance in byte

distributions across islands. The imbalance value is 0 if
the distribution is perfectly even. WSI is 0 in the web

system because there is only one island for the web
system. The shaded row of DBI is the theoretical

expectation
D

B 1−
 of DBI ; the shaded row of WBI is

the theoretical expectation 12 +⋅ WDDB II of WBI .

Hot spots: Table 3 shows the hot spots in various
distributions in terms of largest/average sizes. We
observed the following properties in all five systems: the
largest directory, one that contains the most bytes, has
81.30% to 99.99% of its bytes stored in a single file,
which in turn is the largest file in the entire system; the
largest file is small compared to the entire system, hence
it does not prevent a good overall load balance across
islands. It is worth noting that the relatively high
imbalance in the departmental file system is due to the
fixed number 256 of hash table entries: the largest table

entry accounts for more than
S

1
 of total bytes. In our

implementation, the table size grows with the number of
islands.

 Web Project Cdroms Depart
-ment

Univer
-sity

DBH 1.68 1.47 1.30 1.11 1.12

WDH 243.1 1843.6 939.1 5703.3 3077.1

WBH 10.76 29.56 13.47 9.54 6.50

WSH 1 1.0003 1.0002 1.0385 1.007

Table 3. Hot spots. DBH is the largest/average bucket

size in directories; WDH is the largest/average directory

size in bytes; WBH is the largest/average bucket size in

bytes; WSH is the largest/average island size in bytes.

The value is 1 if the distribution is perfectly even. WSH

is 1 in the web system because there is only one island
for the web system.

6.3 Operation breakdown
We shall analyze the expected consistency cost of IFS
below. By “low consistency cost” we mean minimized
number of cross-island operations that need a
consistency protocol, rather than optimized performance

 11

for individual operations of this type.

Previous studies of file system traces indicated that the
cross-island operations are rare. Traces taken on the
Sprite system [39] show that setattr, rmdir and mkdir
account for only 0.7%, 0.03%, and 0.02% of total
operations, respectively. The SPEC SFS or LADDIS
benchmark [12] generates an operation mix based on
NFS client workload studies, which consists of 1%
setattr operations, 1% remove operations and 2% create
operations. Recent traces taken on NFS clients [38]
consist of 0.092% chmod, 0.015% chown, 0.003%
symlink, 0.015% readlink, 0.013% rename, 0.013%
mkdir, and 0.012% rmdir. The majority of the operations
in all those studies are reading attributes, reading files,
writing files and reading directories, which account for
84% to 96% of total operations. Some of the operations
in those studies, e.g. setattr and chmod, were not
recorded for files and directories separately; therefore,
the percentages of those operations on directories will be
even lower than reported.

It is well known that file access patterns are always
specific to the operating systems where the traces were
taken. Since we implemented IFS on Windows NT as
opposed to UNIX, in which the Sprite and NFS traces
were taken, we felt it important to study the file access
patterns in NTFS. We chose 7 workstations running
Windows NT 4.0 and collected statistics on operations
by running a trace program on each workstation. The
users of the workstations include three graduate students,
a software engineer, a home user and several lab users.
The trace programs were run for 2 to 7 days and
collected 30,391 to 480,385 total events.

The trace program forks a thread to wait on each file
system related event such as FileAdded through the
NTFS event notification interface
ReadDirectoryChangesW [40]. The events are not
necessarily one-to-one mapped to file system operations,
and there is no detailed documentation on the mapping.
Hence we present the raw events in Table 4 and infer the
operation breakdown with the empirical rules: reads to
files and directories are not detected if the reads hit in
cache; writes to files and directories are not detected
until the cache is flushed; an attribute-change event
comes with a name-change, size-change, or security-
change event; reading attributes as well as reading
contents changes last access time if it does not hit in
cache.

Table 4 shows that, on average, one-island operations
account for 99.8% of total operations. The slow
operations in IFS, e.g. setting directory attributes,
renaming directories, creating symbolic links to
directories, are rare. Therefore, the amortized cost for
keeping replicated state consistent across islands is low
in IFS.

No. Events Average Standard

Deviation
1 Total Events 244408 140571
2 FileAdded 3.34% 1.70%
3 FileRemoved 2.38% 1.70%
4 FileRenamed 0.41% 0.31%
5 DirAdded 0.04% 0.07%
6 DirRemoved 0.03% 0.07%
7 DirRenamed 0.00% 0.00%
8 FileAttrModified 26.8% 10.8%
9 FileWritten 35.5% 11.3%
10 FileAccessed 16.3% 8.60%
11 FileSecurityModified 0.03% 0.04%
12 DirAttrModified 0.07% 0.07%
13 DirWritten 1.23% 1.59%
14 DirAccessed 13.9% 17.8%
15 DirSecurityModified 0.00% 0.00%
16 FileLinkModified 0.16% 0.08%
17 FileLinkRead 0.09% 0.10%
18 DirLinkModified 0.00% 0.00%
19 DirLinkRead 0.001% 0.002%

Table 4. Percentages of file system events in NTFS
traces. Row 1 (Total events) shows the total number of
events in each trace. Rows 2 through 19 show the
percentage of each event. Shaded events correspond to
cross-island operations in IFS. The FileLinkModified
(row 16) and DirLinkModified (row 19) events include
creating, removing, writing and setting attributes on
symbolic links to files and directories, respectively. The
FileLinkRead (row 17) and DirLinkRead (row 19) events
are resolving symbolic links to files and directories,
respectively. The column "Average" shows the
percentage of each event averaged over all traces. The
column "Standard Deviation" shows the standard
deviation of the percentages of each event in each trace.
Events not shown in the table have zero percentages.

Given the probabilities of one-island (P1), two-island
(P2) and all-island (Pa) operations, where P1+P2+Pa=1,
we can predict the speedup efficiency at large scale with
a simple model. Assuming that each local operation and
RPC takes the same amount of time, the estimated
speedup efficiency with n servers is 1/(1+overhead-per-
operation), where overhead-per-operation is the average
number of server-to-server RPCs per operation and
equals (2-1)*2*P2+(n-1)*2*Pa. (The factor 2 results
from the two-phase commit protocol. See Section 8.)
Two-island operations include CreateDir, RemoveDir,
ReadFileLink and ReadDirLink; all-island operations
include SetDirAttr, SetDirSecurity, SymLinkDir and
RenameDir. Some operations, e.g. SetDirSecurity and
SymLinkDir, did not show up in our statistical
experiments; we inferred their percentages from other
statistics [38]. The resulting percentages are
P1=99.768%, P2=0.161% and Pa=0.071%. From the

 12

speedup efficiency model above, we know that, with the
efficiency higher than 50%, the system can scale up to
702 islands.

The rest of the paper describes the protocol design,
implementation and performance measurements of
Archipelago.

7. Rebalance protocol
When load imbalance across islands exceeds a threshold
as the system ages or when islands are permanently
added to or removed from the system, hash table entries
need to be reassigned to islands and data needs to be
migrated between islands to rebalance the load. (Note
that rebalance will not be invoked when islands leave or
join the system due to failures and recoveries.) We
describe the protocol in details below.

An island is designated as the coordinator in each
rebalance. Each island has a unique identifier ranging
from 0 to n-1, where n is the number of islands in the
current configuration. If no islands are added or removed
during a rebalance, island 0 is the coordinator. Only the
highest numbered islands can be removed from or added
to the system during a reconfiguration. If r islands
(numbered n-r through n-1) are to be removed, island n-r
will be the coordinator; if a islands (numbered n through
n+a-1) are to be added, island n+a-1 will be the
coordinator. Given the current configuration and its own
identifier, a coordinator always knows which other
islands are to be added or removed.

The rebalance is committed in two phases. Each
configuration is associated with a version number, and
each committed rebalance increases the version number
by 1. First, the coordinator attempts to collect workload
statistics from all islands, each island logs a “preparing
rebalance” message in permanent storage. If any island is
inaccessible, the coordinator aborts and notifies the
system administrator; otherwise, the coordinator
constructs a new hash table that rebalances the workload
across the islands in the new configuration, and publishes
the new configuration file including the new hash table
and increased version number at a well-known location.
Second, the coordinator sends a “committing rebalance”
message to all islands including the added or removed
ones, and then all islands load the new configuration file
from the well-known location.

Once the rebalance is committed, each island checks
whether it is the source or destination of the monotonic
data migration by comparing the old and new hash
tables. The destination islands simply log a “rebalance
completed” message and return to normal state. Each
source island forks a thread, called the migrator, to
migrate the directories that are no longer hashed to its
own index to their new owners. Migration can be done in
parallel in all islands since we need not worry about an

island becoming full during the migration. The migration
will be resumed as necessary with the information
recorded in the log, should an island crash during the
rebalance. When it finishes, the migrator logs the
“rebalance completed” message and exits.

There are two forms of migration during the rebalance:
background migration and on-demand migration. The
migrators move data in the background. If a new owner
receives a request for a file that has not been migrated
yet, it issues a request to the old owner to move the file
immediately. We call this on-demand migration. This is
a better approach than waiting for the migrator in the old
owner to initiate the movement because waiting could
lead to deadlock. However, on-demand migration can
cause three types of race conditions: (1) the migrator
could not find a file because that file had already been
migrated on demand; (2) the migrator tries to move a file
but the file has already been created in the destination
island by on-demand migration; (3) a file could not be
moved because it was in use by another thread. To cope
with the on-demand migration, the migrator repeatedly
scans the internal file system, detects the race conditions
and temporarily skips the suspect directories and files.
The same error detection scheme applies to situations
where destination islands crash during the rebalance.
Client accesses during migration will not directly cause
race conditions because clients are never allowed to
access files or directories in their old owners once the
rebalance is committed. They can only access files or
directories in their new owners after the files or
directories have been migrated either in background or
on demand.

The hash table is replicated on all clients’ machines as
well as in all islands, along with the version number. The
table size is proportional to the number of islands.
Clients’ copies of the hash table are updated lazily: each
request from a client carries the client’s current version
number, and a client will be asked to load the new
configuration file from the well-know location when its
version number is found to be out of date. Islands act as
clients when they communicate with each other;
therefore, the same scheme applies to islands that crash
or disconnect from the coordinator before they receive
the “committing rebalance” messages: upon first contact
to any updated island, the out-of-date islands are forced
to load the new configuration file.

A rebalance will be invoked when the load imbalance
exceeds a threshold so that no island could become full
during normal operations. We expect that a reasonable
threshold can be set so that the rebalance occurs at a
nondisruptive frequency, e.g. once every month.

8. Consistency protocol
Since certain states, e.g. static directory attributes, are
replicated across island, a cross-island protocol is

 13

necessary to keep the replicas consistent.

A typical approach to maintaining consistency on
replicated data is to acquire globally exclusive locks on
an object before making changes to the object. To avoid
deadlocks and to handle partial failures and network
partitions, such a locking protocol needs to be used in
combination with other mechanisms such as timeout
[28], majority consensus [1] and/or versioning [16], and
could be quite complicated to implement.

The island-based design eases the consistency
maintenance in two ways:
• The majority of operations involve a single island,

hence do not require a cross-island protocol for
consistency.

• All cross-island operations on the same object are
coordinated by a single island, hence
synchronization can be done with centralized control
per object, which eases the protocol design.

• The single coordinator property of the protocol
ensures that no conflicting updates will occur even
in the face of network partitions.

The lack of conflicting updates in the face of network
partitions in Archipelago largely relaxes the
synchronization constraint. We designed and
implemented a protocol that guarantees serialization as
well as atomicity of cross-island operations, and was
easy to implement. We handle node crashes and network

partitions in a generic way, i.e. we always assume the
worst case for safety purpose. Therefore, we do not need
to determine the precise type of failure. Although some
measures are overkill for one of the failure types, they do
not hurt the overall performance because failures are
much rarer than normal operations. Correctness and
hence simplicity are more critical in the design of such a
protocol.

8.1 Atomicity
The basic consistency guarantee our system provides is
the atomicity of the cross-island operations, i.e. clients
would never observe the intermediate state of any
operation. In other words, once a client observes the
result of a cross-island operation in an island, it would
always observe the result of that operation in other
involved islands afterwards. (One-island operations are
guaranteed by the internal file systems to be atomic.)

We use a vector of logical clocks for the atomicity of
cross-island operations. Each island has its own logical
clock and each cross-island operation coordinated by this
island increases the clock by 1, or generates a new clock
value. Each island or client maintains a vector of all
islands’ clocks. Each request (through a remote
procedure call or RPC) to an island carries the sender’s
current clock vector for synchronization with the
receiver’s vector before the RPC is processed, and
returns the receiver’s vector to the sender after the RPC
is completed. We say vector V2 is equally or more up-to-
date than vector V1, or V2>=V1, if and only if
V2[i]>=V1[i], 0<=i<n, where n is the number of islands.

Let island a be the coordinator of a cross-island
operation, v be the new clock value generated by the
operation and the identifier for the operation itself, island
b be any other island involved in the operation v, c be a
client, d be any island, Va, Vb, Vc and Vd be the clock
vectors of a, b, c and d, respectively. We maintain the
following invariants in the usage of the clock vectors for
the atomicity of v:
1. Operation v locally committed in a Ø Va[a]=v; and

operation v locally committed in b Ø Vb[a]=v. That
is, the local commit of an operation and the update
of the coordinator’s clock are atomic in each island.

2. Vc[a]=v Õ b has already been notified of operation
v. That is, a coordinator does not release the new
clock value to a client until it has notified all
involved islands of the operation, i.e. until the
operation is either outstanding or committed in all
involved islands.

3. c’s request that carries Vc (Vc[a]=v) can be
processed in d Õ operation v is not outstanding in d.
Based on invariants 1 and 2, this invariant means
that once a client observes the result of an operation
in at least one island, it will always observe the
result of that operation in other involved islands
afterwards.

Figure 8. Synchronization of an RPC client c’s clock
Vc[a] with the island d’s clock Vd[a], where 0<=a<n.
Op Vc[a] is the cross-island operation that generated
Vc[a].

Reject RPC and
return error

Vd[a]:=Vc[a]

Time out?

Is op Vc[a]
outstanding

in d?

Vd[a]>=
Vc[a]?

Is Vc[a]
alerted?

Is d
involved in
op Vc[a]?

Yes,
wait

Yes

Yes

Yes

a confirmed not

No

No

No

No

Otherwise

 14

Invariant 1 is maintained by guarding the local commit
of an operation and the update of the coordinator’s clock
in each involved island with a local lock in that island.
Invariant 2 is maintained by a two-phase commit
protocol [23]: the coordinator notifies all involved
islands of the operation in phase 1, then locally commits
the operation and updates the clock, and asks involved
islands to commit the operation in phase 2. Invariant 3 is
maintained by the clock synchronization shown in Figure
8, which is an extension to Lamport’s algorithm [22].
Because of invariant 2, an island can determine whether
it is involved in an operation during the clock
synchronization without contacting the coordinator of
that operation if no network partition is present.

The three invariants above guarantee that an island will
never expose the intermediate state of any operation to
clients and does not require an involvement checking
with the coordinator for each operation that the island
has not seen but a client has, if no network partition is
present.

If any involved island is inaccessible due to either an
island crash or network partition during phase 1 of the
commit, the coordinator updates its clock with an alerted
bit set, which will be propagated to the clients together
with the clock. During the clock synchronization with a
client, an island must ask for a confirmation from the
coordinator about its involvement in an alerted operation
that it has not seen but the client has. Therefore, a
network partition, if there is any, can be detected and the
RPC will be rejected to avoid inconsistency. If the
coordinator crashed or disconnected from an involved
island after phase 1, the operation will be outstanding in
the involved island till the coordinator reconnects. This
type of failure will be detected by a timeout in the clock
synchronization in the involved server. See Figure 8.

8.2 Serialization
All the one-island operations on the same object are done
in the same island, hence are serialized in the internal file
system. All the cross-island operations on the same
object are coordinated by the same island, hence can be
serialized by a local mutex in that island unless an
involved island failed.

The serialization in case of failures is guaranteed by
write-ahead, append-only logging [14]. The coordinator
always writes a record with its clock vector to disk
before it locally commits a cross-island operation. Only
after the operation is committed in all involved islands,
the record can be removed from the log. We always keep
the last record on disk even if it has been committed until
a new one overwrites it for two reasons. First, it is
important for an island to “remember” its latest clock
after it recovers so that operations in this island before
and after the crash carry consistent clocks. Second, this

scheme saves us two extra writes to disk per operation,
one for recording the latest clock, the other for marking
the new end of file.

When an island b is reconnected, the coordinator a sends
to b a list of operations that involved b but have not been
committed on b. The operations will be committed in b
in ascending order of their clocks (V[a]’s), i.e. in the
same order as if b had not been disconnected from a.
Note that b needs not know about the one-island
operations on the same objects that were done while it
was disconnected from a because it would not have
known those operations even if it had not been
disconnected.

If a client thread issues at most one request at a time, all
the operations by the same thread are naturally serialized
unless an involved island failed. If the coordinator for an
operation failed, the client stub will return an error but
will not leave the system in an inconsistent state, i.e. it is
in a fail-stop mode. If an involved island d other than the
coordinator a failed, the client will observe the operation
as completed and proceed with successive operations.
When it recovers, d will receive the lists of operations to
commit from all surviving islands. Consecutive
operations by the same thread are guaranteed to have
ascending clock vectors because, with the logical clock
synchronization (Figure 8), the clock vectors in all
islands and clients never decrease and always increase
upon cross-island operations, even with network
partitions. That is, d will be able to commit the
operations by the same client thread in the same order as
if it had not failed, by sorting the operations from all
islands in the ascending order of their clock vectors.

If two clients, c1 and c2, interact with each other by
accessing the same object in the file system at time t1
and t2 (t1<t2) and receive the clock vectors V1 and V2
respectively, then V1<=V2 because the vectors are issued
by the same island. Therefore, c1’s operations before t1
(with vectors <V1) and c2’s operations after t2 (with
vectors>V2) can be serialized during a failure recovery.

Clients that do not interact through accesses in the file
system might have concurrent clock vectors. We say two
vectors V1 and V2 are concurrent if and only if there
exist i and j, i!=j and 0<=i,j<n, such that V1[i]<V2[i] and
V1[j]>V2[j]. During a failure recovery, concurrent
vectors will be sorted with a simple tie resolution rule
consistent across all islands, which does not necessarily
reflect the real-time ordering. The reordering of
concurrent operations would not be observable and could
not cause problems as far as the file system was
concerned [22].

To summarize, the consistency protocol guarantees the
following serializations for cross-island operations:
1. All operations on the same object are serialized, i.e.

 15

clients observe them in the same order in all islands.
2. All operations by the same client thread are

serialized, i.e. clients observe them in the same order
in all islands.

3. Operations by different clients can be serialized if
the clients interact with each other by accessing the
same object(s) in the file system.

In addition, the ordering relations of operations are
transitive, i.e. if operation 1 is observed to happen before
2 and 2 before 3 then 1 is observed to happen before 3,
because the ordering relations of clock vectors are
transitive, i.e. if V1<V2 and V2<V3 then V1<V3.

9. Recovery protocol
A recovery protocol is designed for islands to recover
from various combinations of failures back to consistent
states. Table 4 shows the possible failures for an
individual island and how the island can be recovered
from those failures. We assume that each island stores its
log and data in the same internal file system and that no
data or log was lost after the island is recovered from a
self failure. If the internal file system loses data during a
failure, human intervention will be required to
reconstruct the data.

Failures Definitions Examples Recoveries
Self
Failures

Any failures
that stop the
island itself
from
functioning

Software
failures,
machine
crashes, disk
failures,
power
failures

Rerun
software,
reboot
machines,
repair disks,
restore power

Peer
Failures

Any failures
that make
other islands
inaccessible
from this
island

Self failures
of other
islands,
network
partitions

Recover
other islands,
repair
networks

Table 4. Possible failures and recoveries for an
individual island.

Figure 9 shows the state transitions of an island in
response to the possible failures and recoveries. An
island can be in one of the 5 states, normal, failed,
restarted, hidden and isolated. Each state is distinguished
from others by the types of requests the island is allowed
to process in that state. The types of requests an island
receives include client requests (from the clients),
coordinator requests (from the coordinators of cross-
island operations), recovery requests (from the
recovering or reconnecting islands), etc. If a client
request is rejected due to a disallowing state in the island,
the client stub will keep resending the request till the
island transits to an allowing state.

In the normal state, an island processes all requests.
When an involved island is found to be inaccessible
during a cross-island operation, the coordinator island
sets the alerted bit in its clock and still processes all
requests. The alerted island needs to keep the partially
committed operations in its on-disk log till they are
committed in all involved islands; if the involved islands
are inaccessible for a long time, the on-disk log might fill
the internal file system. The island does not need to
transit to a new state in this case because the situation of
full disks is handled by the internal file system, i.e. any
client requests that require new space, for data or for log,
will fail in the internal file system. A record in the log
can be deleted once the operation has been committed in
all involved islands. When there is no more partially
committed record in the log, the alerted bit is cleared
from the clock.

A self failure in any state causes the island to transit to
the failed state, in which no requests, of course, are
processed.

As discussed briefly in the previous section, a failed or
disconnected island will exchange logs with other islands
upon reconnection to those islands. The following
invariants are maintained in the state transitions of a

Figure 9. State transitions of an island in response to
various failures and recoveries. The types of requests
accepted in each state are listed in parenthesis. Each
transition is labeled with the event that triggers the
transition. “Reconnected” is the event that the
recovering island has reconnected to and exchanged
logs with all other islands, and has committed all
operations in logs in ascending order of their clock
vectors.

Restarted
(None)

Normal
(All)

Hidden
(Recovery,

coordinator)

Isolated
(Recovery)

Failed
(None)

Reconnected

Self failure

From any state

Self
recovery

Peer failure

Peer failure
and message
queue filled

Data
structures
initialized

Peer
recovery
and
reconnected

 16

recovering island r:
1. No operations in logs can be committed in r until all

logs from other islands have been received and
operations in all logs have been sorted in ascending
order of their clock vectors (with a tie resolution rule
for concurrent vectors). That is, operations serialized
in real time will be committed in r in the same order
as if r had not failed.

2. No client requests or requests that indirectly affect
clients’ view of the system state will be processed in
r until all operations in logs have been committed in
r. That is, the inconsistent state of r, if there is any,
is invisible to clients.

When it is recovered, an island transits from the failed
state to the transient restarted state, in which it initializes
necessary data structures such as the hash table while
rejecting all requests. It automatically transits to the
hidden state after all data structures are initialized. In the
hidden state, it attempts to reconnect to other islands and
to synchronize replicated state with other islands using
the logs. The island sends to all other islands the lists of
cross-operations in its log that involved the receiver,
receives from other islands the lists of operations that
involved itself, and stores them in a message queue. To
tolerate failures during recovery, a retransmitted log
replaces any outstanding or logged operations received
from the same island earlier. In the hidden state, the
island rejects all client requests since it might be in an
inconsistent state. It accepts requests from other
recovering or reconnecting islands so that both can make
progress. It also accepts requests from the coordinators
of new cross-island operations, but stores them in the
message queue instead of committing them
synchronously to reserve the ordering. If the message
queue becomes full, the island transits from the hidden
state to the isolated state, in which it deletes the new
operations from the message queue to make room for old
operations and accepts no more coordinator requests.
(Note that the buffer for keeping outstanding operations
in the normal state will never be filled because there is at
most one outstanding operation per island in the buffer.)

When all other islands have reconnected and exchanged
logs with it, the island commits all the operations stored
in the message queue in the ascending order of their
clock vectors. If it is in the isolated state, it needs to ask
for the new operations from other islands that it has
rejected. After it commits all involving operations, it
transits to the normal state. Then it checks in the log
whether any data migration for rebalance or for renaming
directories was in progress at the time it failed and
resumes the migrators as necessary.

10. Other design issues
Archipelago inherits most functions from its internal file
systems, such as metadata structures, disk allocation, I/O
scheduling, caching, locking, security, recovery, etc.;

therefore, we are not concerned about all the low-level
details in file system design and implementation.
However, certain functions in internal file systems need
to be extended to adapt to a distributed environment.

10.1 Symbolic links and renaming directories
Symbolic links in Archipelago are implemented as files
containing a pathname to a file or directory. Symbolic
links to files are easy to manage because they cause at
most a redirection from the owner of the symbolic link to
the owner of the target file. However, a pathname with
symbolic links to directories will not be hashed to the
proper island. To solve this problem, we replicate all
symbolic links to directories in all islands. Upon
receiving a request for a file or directory that is not found
locally, an island checks whether any components of the
pathname are symbolic links to directories, without
contacting other islands. If none of them is, it returns an
error; otherwise, it redirects the request to the real owner
after resolving the symbolic links. Similar to the
replication of static directory attributes, the replication of
symbolic links to directories does not require much
space, and the creation, modification and deletion of
symbolic links, which will involve all islands, are rare
operations. See Section 6.

Renaming a directory in Archipelago is an expensive
operation because all the subdirectories below the
renamed directory are likely to be hashed to different
islands. We try to hide the latency of such an operation
by using a symbolic link and a thread similar to the
migrator described in Section 7. A symbolic link is
created with the new directory name, pointing to the old
directory, a migrator thread is forked, and then the
rename operation returns as if it is completed. The
migrator recursively moves subdirectories and files from
their old owners to their new owners in the background.
If a request arrives for a file that has not been moved yet,
the symbolic link in the pathname will be resolved and
the file will be migrated on demand. If a directory is
renamed again before the migration completes, accesses
to this directory will require multiple symbolic link
resolutions. The symbolic links will be removed after the
migration completes.

10.2 Security, caching and heterogeneity
We designed and implemented a security model in
Archipelago, using the security facilities available in
existing file systems and communication protocols,
namely access control lists, permission bits,
authentication and impersonation. A client is
authenticated with its credentials when a connection to
an island is established. A thread is forked in an island
upon each request from the client. The thread extracts
the client's credentials from the authenticated connection
and impersonates the client when it processes the
request. In this way, file accesses in the request are
checked with the client’s credentials against the access

 17

control in the internal file systems.

Server-side caching is done in the internal file systems
automatically. Archipelago inherently provides locality
by hashing, i.e. client requests will always be sent to the
server that might have cached the requested data in
memory, as far as rebalance is not in progress. Most of
the client-side caching protocols in previous work [8]
[24] can be adopted in Archipelago. We have not
implemented a client-side caching protocol, but we do
not expect the island-based design to add any difficulty
to the implementation.

In a heterogeneous environment, differences in the
internal file systems, such as file attributes and
authentication protocols, make the implementation of an
integrated file system considerably challenging [25]; but
previous work has demonstrated the viability of
providing file services across platforms [26].

11. Implementation
We have implemented a prototype of Archipelago on a
cluster of Pentium II PCs running Windows NT 4.0.
NTFS [16] is used as the internal file system. NTFS uses
extensive caching and name indexing for better
performance and logs metadata changes for local
recoverability. An access control list is associated with
each file or directory to check access rights. NTFS can
be configured to run on a group of disks with parity
striping for high reliability.

An Archipelago server runs on each machine and forms
an island. Each client accesses files through a local stub,
which forwards the request to a server through Windows
remote procedure call (Win32 RPC). The tasks of the
server include authenticating clients, validating clients’
versions of the hash table, synchronizing clients’ clock
vectors, and processing clients’ requests in the internal
file system. The functions of the stub include hashing a
pathname to an island, updating local copies of the hash
table, synchronizing the clock vectors with servers,
maintaining secure RPC connections to servers,
tolerating network failures and making file locations
transparent to clients.

The server is implemented as a user-level process. The
stub is implemented as a dynamic link library (DLL) that
intercepts file system calls. Therefore, client-to-server
and server-to-server communications can take advantage
of user-level networking in the future [27]. All file
system calls on NT go through a system DLL,
kernel32.dll, and we replace this DLL with our own,
which forwards a call to the stub DLL if the file is in
Archipelago, or to the original kernel32.dll otherwise.
We have tested the feasibility of the intercepting
approach; however, due to the large number of functions
in kernel32.dll, it requires more debugging effort to
make the new kernel32.dll work with existing

applications seamlessly. In our experiments (Section 13),
we linked the benchmark programs directly with the
client stub DLL without the new kernel32.dll for ease in
running the benchmarks. It is expected to have little
impact on the performance results since a call wrapper in
an additional DLL takes little time compared to regular
file system operations, disk accesses and
communications.

The server and stub are implemented in C++, and consist
of 3088 and 5415 lines of code, respectively. The server
program is linked with the stub library for code reuse
purpose. In addition, there are 24042 lines of
automatically generated C code for RPC and system call
interception. The amount of manually written code in
Archipelago is small; therefore, the system is relatively
easy to test and maintain.

12. Correctness testing
We do not attempt to theoretically prove the correctness
of our consistency and recovery protocols. The basic
algorithms, i.e. logical clock synchronization, two-phase
commit and logging, have been widely used in existing
systems. The correctness of our system relies mostly on
the details in implementation, which are hard to model or
check using existing tools [30] [36]. Instead, we use a
randomized test engine to test the correctness of
Archipelago in the face of failures. The test engine is
extended from a model checker based on the input/output
automata (IOA) [29], which was originally developed in
Hewlett-Packard Labs [35]. We extended the tool so that
it checks the real implementation of a system, rather than
a simulation written in IOA style. Unlike the tools that
exhaustively search the state space [30] [36], the
randomized testing tools cannot prove that a system is
correct. Instead, it helps identifying incorrect parts of a
system by injecting various combinations of events to the
system and analyzing the results. Such events typically
could not possibly be experienced in real workloads or
manual tests in a short time.

The test engine consists of three components,
terminators, network partitioner and clients. The
terminators are independent threads or processes, one for
each island in Archipelago. Each terminator injects crash
or reboot events to its associated island at intervals
randomly chosen within specified ranges. It simulates a
crash of the island by killing the server process of that
island, and the reboot of the island by forking a new
server process for that island. The network partitioner is
an independent thread that simulates network partitions
between islands. At random intervals, it randomly
chooses a pair of islands and sends a message to both
islands to tear down or to reestablish the connections
between them. Since multiple pairs can be disconnected
this way, this simple form of simulation can generate
complicated partitions. The clients are multiple threads
that share the same set of objects (files, directories and

 18

symbolic links) in Archipelago. Each client repeatedly
does a randomly chosen operation with specified
frequencies on a randomly chosen object. The number of
clients is set to be the same as the number of islands in
each test.

The IOA formal language has an interface for defining
models for safety and liveness checking [29]. A safety
model specifies a property that must hold at any time,
while a liveness model specifies an event that must
eventually occur. A prototype of the interface was
implemented in the original tool, but we have not ported
it to the test engine yet. Instead, we check the safety of
the protocols by manually inserting assertions to key
parts of the code and observing the results. A few
examples of the assertions are: there is at most one
outstanding operation coordinated by each island at any
given time; there is no gap and no overlap in the clocks
of the operations in the same island; the island i always
has a more or equally up-to-date clock V[i] than any
other islands or clients; etc.. These assertions have been
surprisingly helpful in our preliminary experiments.
Liveness assertions such as that an island will eventually
transit from the failed state to the normal state in the
recovery protocol will be added once the system has
passed the simpler tests.

The test engine takes parameters such as the lower and
upper bounds of various event intervals, and the relative
frequencies of operations. We selected the intervals in
such a way that they both allow a sufficient number of
client operations in each state of the system, and allow
the overlap of various independent events to exercise the
recovery protocol. We exaggerated the frequencies of
cross-island operations from real workloads by two
orders of magnitude to exercise the consistency protocol.
We tested Archipelago with 4 islands in the randomized
test engine. For an early stage of correctness testing, it is
preferable to run all 4 server processes on the same
machine because it significantly eases debugging. Table
5 shows the parameters and results in testing
Archipelago in the randomized test engine for the first 2
days.

Events Parameters

(% or seconds)
Results

CreateDir 3.2279 % 1565
CreateFile 2.8244 % 1369
DeleteFile 1.9206 % 974
DeleteLinkDir 0.8070 % 221
ReadDir 11.2169 % 5273
ReadFile 13.1536 % 8162
RemoveDir 2.4209 % 1469
ResolveLinkDir 7.3434 % 530
SetDirAttr 5.6488 % 2609
SetFileAttr 21.9819 % 14970
SymLinkDir 0.8070 % 227

WriteFile 28.6475 % 16394
Crash 60 to 120 sec 28
Reboot 8 to 16 sec 24
Partition 15 to 30 sec 7
Reconnection 2 to 4 sec 4

Table 5. Parameters and results in testing Archipelago in
the randomized test engine for the first 2 days. The
parameters are the specified frequencies for normal
operations and the specified lower and upper bounds of
intervals for failure/recovery events. For example, each
time a client randomly chooses an operation, the
probability that CreateDir is chosen is 3.2279%; the
terminator waits for an interval randomly chosen from 60
to 120 seconds each time before it kills the server
process. The results are the actual numbers of successful
operations or events in the test. The actual numbers are
different from the specified values due to randomization,
race conditions between clients and simulated failures.
After surviving through 28 node crashes and 7 network
partitions, Archipelago failed one of the assertions and
caused the test engine to halt. The operations
SymLinkDir, ResolveLinkDir and DeleteLinkDir are
creating a symbolic link to a directory, reading the
directory entries in a symbolic link to a directory and
deleting a symbolic link to a directory, respectively.

We found 14 non-obvious bugs in the protocols during
the first 2 days of testing Archipelago. As expected, the
bugs are all at implementation detail level and do not
invalidate the overall protocol designs. These bugs could
not be repeated in normal states or simple forms of
failures. An example of the bugs we found is following.
The coordinator of a cross-island operation crashed after
it notified the involved islands of the operation, but
before it logged the operation on disk. Therefore, the
operation was aborted in the coordinator, but the
involved islands saw a second operation with the same
clock from the same coordinator later. The assertion of at
most one outstanding operation per island failed. The fix
was to clear the relevant buffers of outstanding
operations upon reconnection of two islands.

Both the development of the test engine and the
correctness checking of Archipelago are in a very early
stage. The preliminary results are encouraging, hence we
are continuing to invest more time in this aspect.

13. Performance
In this section, we present the results of running micro
benchmarks and operation mixes on Archipelago in
various configurations. The 23 machines used in our
experiments have Pentium II 300 MHz processors, 128
MB main memories and 6.4 GB Quantum Fireball IDE
hard disks for use by Archipelago. The PCs are
connected by an Intel Express 510T Ethernet 100Mbps
24-port switch and run in full-duplex mode. The PCs run
Windows NT Workstation 4.0 and the hard disks for

 19

Archipelago are formatted in NTFS.

13.1 Micro benchmarks
The set of micro benchmarks consists of 9 phases and
each phase exercises one of the file system calls:
CreateDir, SetDirAttr, CreateFile, SetFileAttr, ReadDir,
WriteFile, ReadFile, DeleteFile and RemoveDir. The
basic data set for the micro benchmarks is a project
directory that consists of 90 directories, 646 files and
77.2 MB of data in files. We duplicated the directories
40 times, the files 6 times and the contents 2 times,
respectively. The 9 resulting phases are: create 3600
directories, set 3600 directory attributes, create 3876 files
with pre-allocated space in 540 directories, set 3876 file
attributes, read 6634 directory entries, write 154.4 MB
data in 1292 files or 180 directories, read 154.4 MB data
in 1292 files, delete 3876 files, and remove 3876
directories. The transferred block size in the WriteFile
and ReadFile phases is 64 KB or the file size, whichever
is smaller. With the data set inflated, the results of the
micro benchmarks are reasonably stable. Each test was
run more than 3 times and the results shown in this
section are the averages.

Other operations, such as moving a file and reading a

symbolic link, were implemented with the operations in
these micro benchmarks; hence, we did not include them
in the tests. We did not intentionally flush the file cache
in NTFS during the tests because we would like to treat
NTFS, the internal file system, as a functional black box.
However, the amounts of data in the WriteFile and
ReadFile phases were large enough to overflow the
cache.

Single client performance
We ran the micro benchmarks with a single client in 5
cases: directly on NTFS (1), in the same address space as
an Archipelago server (2), on a separate machine from an
Archipelago server (3), with two Archipelago servers, all
on separate machines (4), and with the consistency
protocol turned on in case 4 (5). Figure 10 shows the
bandwidth in WriteFile and ReadFile and the response
times in other operations, all measured at the client side.

The difference between case 1 and 2 is the overhead of
computing hash functions. This overhead is low
compared to the operation time itself. The difference
between case 2 and 3 is the communication (RPC) time
between the client and the server. We used Win32 RPC
on top of TCP/IP on 100 Mbps switched Ethernet. In our
experiments, the average round-trip RPC latency for
small messages (~256 bytes) is 0.48 ms and the average
one-way large data (64 KB) transfer rate in RPC is 8.67
MB/s. The performance decreased from case 2 to case 3
by an amount comparable to the RPC overhead. The
difference between case 3 and case 4 is that the cross-
island operations CreateDir, RemoveDir and SetDirAttr

0
1
2
3
4
5
6
7
8
9

0 4 8 12 16

Servers

S
p

ee
d

u
p

CreateDi
r
CreateFil
e
DeleteFil
e
ReadDir

ReadFile

Remove
Dir
SetDirAtt
r
SetFileAt
tr
WriteFile

Ideal

Figure 11. Speedup of throughputs on private data as
a function of the number of servers. Number of
servers = number of clients = number of private data
sets. The speedup is calculated as the absolute
throughput divided by the throughput with 1 server.
The dotted line represents the speedup with 100%
efficiency.

0

1

2

3

4

5

C
re

at
eD

ir

S
et

D
ir

A
tt

r

C
re

at
eF

ile

S
et

F
ile

A
tt

r

R
ea

d
D

ir

W
ri

te
F

ile

R
ea

d
F

ile

D
el

et
eF

ile

R
em

o
ve

D
ir

Operations

L
at

en
cy

 (
m

s)
 o

r
B

an
d

w
id

th
 (

M
B

/s
)

Case 1 Case 2 Case 3 Case 4 Case 5

Figure 10. Single client performance. A single client
runs the micro benchmarks in 5 cases: directly on
NTFS (1), in the same address space as an
Archipelago server (2), on a separate machine from
the server (3), with two servers (4), and with the
consistency protocol turned on in case 4 (5),
respectively. The y-axis is the bandwidth in
megabytes/second for the WriteFile and ReadFile
operations, and the latency in milliseconds for the
other operations. Both numbers are measured at the
client side. Note that higher columns for the
WriteFile and ReadFile represent better performance
while lower columns for the other operations
represent better performance.

 20

involve 1 island in case 3 and 2 islands in case 4.
Therefore, the response times for those operations were
increased from case 3 to case 4 except RemoveDir.
Operations such as ReadFile and RemoveDir were faster
in case 4 because there was more total cache space in
case 4. The difference between case 4 and case 5 is the
overhead of the consistency protocol. The consistency
protocol slows down the cross-island operations but does
not have a noticeable impact on one-island operations.
The response times of CreateFile are larger than those of
CreateDir in all cases because the client pre-allocated
space for each file in the CreateFile phase.

Scalability on private data
There are multiple clients in this set of tests, each
running an instance of the micro benchmarks on its own
private data set. Before each phase, all clients are
synchronized at a barrier. Each server ran on a separate
machine and 1 to 3 clients ran on the same machine. The
number of clients was configured to be the same as the
number of servers. Given the 23 machines connected by
the 24-port Ethernet switch, we scaled the number of
servers and clients up to 16 each. We have tested
Archipelago with 25 servers on an Ethernet hub and
expect the system to be able to scale to larger
configurations. In this paper we present only the results
of scaling from 1 to 16 servers.

We measured throughput at the server side, i.e. the total
number of bytes requested divided by the time for all
servers to complete, for WriteFile and ReadFile, and the
total number of requests divided by the time for all
servers to complete for other operations. To compare the
scalability across operations, we calculated the speedup
as the absolute throughput divided by the throughput
with 1 server. The 1 server case is the same as case 3 in
Figure 10. Figure 11 shows the speedup of throughputs
on private data as a function of the number of servers.
Most operations scale linearly with the number of
servers, but at a less than ideal slope. The overhead
results from load imbalance and communications.

The directory, file and byte operations are distributed
across 3600, 540 and 180 directories, respectively. The

load distribution is expected to be less than ideal due to
the small size of the data sets (compared to the size of an
entire file system). We calculated the load imbalance as
the largest load divided by the average load of servers.
See Figure 12. We expect the operations to scale better in
real systems with the rebalance protocol, which will be
studied in Section 14.

Figure 13 shows the average server-to-server RPCs per
request measured in the tests. The two-phase commit
protocol was turned off in this set of tests; therefore, the
actual numbers of RPCs will be doubled with the
protocol turned on. One-island operations do not show
up in Figure 13 because they require no server-to-server
RPCs. The number of RPCs for SetDirAttr grows
linearly with the number of servers; therefore, the
speedup curve for SetDirAttr in Figure 11 is nearly flat.
The numbers of RPCs for CreateDir and RemoveDir are
nearly constants; therefore, these two operations do scale
with the number of servers, but slower than the one-
island operations.

Impact of the consistency protocol
We turned on the consistency protocol, i.e. clock
synchronization, two-phase commit and logging, and
reran the micro benchmarks. As expected, the protocol
does not have noticeable impact on the one-island
operations. Figure 14 shows the throughputs of two
cross-island operations, CreateDir and SetDirAttr.
(RemoveDir is similar to CreateDir.) The protocol
increases the RPCs between servers for cross-island
operations by a factor of 2 and requires a log write per
successful cross-island operation. As expected, the
consistency protocol brings considerable overhead to
cross-island operations. The throughput of SetDirAttr
does not scale with or without the consistency protocol.
The throughput of CreateDir scales at roughly the same
rate with or without the protocol.

13.2 Operation mixes
We ran a new benchmark of randomized operation mixes
to measure the overall scalability of Archipelago. The
new benchmark is similar to the SPEC SFS or LADDIS
benchmark [12], but with the extensions to shared

0
2
4
6
8

10
12
14
16

0 4 8 12 16
Servers

R
P

C
s/

R
eq

u
es

t

CreateDir
RemoveDir
SetDirAttr

Figure 13.
Number of server-
to-server RPCs per
request as a
function of the
number of servers.
Operations that do
not show up in this
figure have zero
server-to-server
RPCs.

1

1.2

1.4

1.6

1.8

0 4 8 12 16
Servers

L
ar

g
es

t/
A

ve
ra

g
e

Directories
Files
Bytes

Figure 12. Load
imbalances. The y-
axis is the largest
number of
directories, files or
bytes stored in a
server divided by the
average number over
all servers. The y-
value is 1 if load is
perfectly balanced.

 21

objects, hierarchical directory structures, randomized
pathnames, variable file sizes and scalable workloads.
Since Archipelago is implemented on top of NTFS, the
operation mix in our benchmark uses NTFS API and is
based on the operation breakdown we measured on
Windows NT workstations. See Section 6.

We ran the benchmark with 1 to 16 clients and servers on
1 to 16 machines. Each client runs on the same machine
as a server, but accesses random files, directories and
symbolic links across the entire system. The pre-created
data set includes 2000 shared directories, 2000 shared
files, 100 shared symbolic links, and the same numbers
of private objects per client. The client repeatedly does
an operation that is randomly chosen at specified
frequencies. For each operation, the client randomly
chooses an object, either from the existing shared or
private objects, or by generating a new name in an
existing directory, depending on the operation. The
WriteFile operation writes a random number (chosen
from 0 to 1 MB) of bytes to the file; both WriteFile and
ReadFile operations transfer up to 8KB per request so
that the operation time is comparable to those of other
operations. Each client maintains lists of the shared
objects and its private objects, but does not synchronize
with other clients on the creation and deletion of the
objects in the shared directories. Therefore, an operation
on a shared object might fail if it conflicts with a
previous operation on the same object from another
client. After the data set is pre-created, all clients run the
randomized operation mix for 10 minutes. The
throughput is calculated as the total number of successful

operations by all clients divided by 10 minutes.

We ran the benchmark with two different operation
mixes. Mix 1 exaggerates the cross-island operations and
mix 2 is closer to the measured breakdown. The mixes
cover a number of typical operations from each category,
i.e. one-island, two-island and all-island. Uncovered
operations in the measured breakdown are replaced by
operations in the same category, e.g. the operation of
reading a symbolic link to a file counts for 0.09% in our
measured breakdown and is replaced in the mix with the
same number of operations that read a symbolic link to a
directory. We recorded the actual client operations and
server-to-server RPCs in the benchmarks, and estimated
the speedups of the overall operation mix accordingly.
Table 6 shows the recorded operation mixes and Figure
15 shows both the measured speedups and estimated
speedups. Assuming that each local operation and RPC
takes the same amount of time, the estimated speedup
with n servers is n/(1+overhead-per-operation), where
the overhead-per-operation is the total number of server-
to-server RPCs divided by the total number of successful
client operations.

 Mix 1 (%) Mix 2 (%)
CreateDir 0.9297 0.0522
CreateFile 4.0314 3.5661
DeleteFile 2.7731 2.4353
DeleteLinkDir 0.9850 0.0128
ReadDir 14.4505 15.6528
ReadFile 14.1343 15.2778
RemoveDir 0.7543 0.0162

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16
Servers

S
p

ee
d

u
p

1

2

3

4

Figure 15. Speedup of throughputs of randomized
operation mix. Curves 1, 2, 3 and 4 are actual
speedup of operation mix 1 (see Table 3), estimated
speedup of operation mix 1, actual speedup of
operation mix 2, and estimated speedup of operation
mix 2, respectively. The speedup is calculated as the
absolute throughput (requests/sec) divided by the
throughput of 1 server. The throughput of 1 server is
75.6 requests/sec in operation mix 1 and 80.1
requests/sec in operation mix 2, respectively.

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16

Servers

R
eq

u
es

ts
/m

s
Create
Dir

SetDirA
ttr

Create
Dir(C)

SetDirA
ttr(C)

Figure 14. Impact of the consistency protocol on
cross-island operations. The curves CreateDir and
SetDirAttr are the throughputs (requests/ms) in the
experiment in Figure 11. The curves CreateDir(C)
and SetDirAttr(C) are the throughputs in the same
benchmark but with the consistency protocol
turned on. The curves Delays-C and Delays-S are
the average delays per request for CreateDir and
SetDirAttr with the protocol turned on,
respectively.

 22

ResolveLinkDir 1.7205 0.1014
SetDirAttr 1.0383 0.0713
SetFileAttr 26.6085 29.2835
SymLinkDir 1.0089 0.0109
WriteFile 31.5656 33.5194
Successful 45360 to 309960 48042 to 756120
Total 48042 to 325534 48043 to 780260

Table 6. Operation mixes. The actual numbers of
operations generated in the benchmarks are slightly
different from the specified frequencies due to
randomization and failed requests. Each percentage in
this table is the number of successful requests on each
operation divided by the total number of successful
requests, averaged over 1 to 16 clients and servers. The
total numbers of requests grow with the numbers of
clients and servers for the fixed 10 minutes period; the
ranges are shown in the last two rows in the table. See
Table 2 for explanations for certain operations.

Operation mix 1 scales at a less than ideal slope due to
the relatively large number of cross-island operations.
For example, with 16 servers, the average overhead-per-
operation is 0.8. The difference between the estimated
speedup and measured speedup is due to the assumption
of equal RPC processing times and local operation times.
Load is well balanced across servers in both operation
mixes; the largest/average requests per server are below
1.1 in all cases. Operation mix 2 is closer to the
measured breakdown, i.e. contains a smaller number of
cross-island operations; it scales nearly ideally in both
estimated and measured throughputs. It is worth noting
that mix 2 scales better than the pure one-island
operations in Section 13.1 because considerable load
imbalance is present in that benchmark due to the small
number of working directories.

14. Case study: Online reconfiguration of a web

server
We simulated on top of Archipelago the web server
running on our site and measured the performance of
online reconfiguration. The file system that the web
server originally runs on consists of 5934 directories,
103,426 files and 4.74 GB of contents. It was first copied
to an Archipelago with two islands. We added and then
removed two islands to the system and studied the
performance of data migration and its impact on the
performance of web accesses. The hardware used in this
set of tests is the same as in previous tests. Table 7 shows
the statistics in the addition and removal of two islands
without client accesses.

The web server was a Netscape Enterprise Server 3.5.1
running on Solaris 2.6. The hardware for the web server
was a Sun Ultraserver-2 with 256 MB of memory and 1
Gbps fiber network connection. The web server kept
access logs, which include pathnames of accessed pages,
time stamps, client IP addresses, etc. We used the access

log for trace-driven study.

Reconfiguration Addition Removal
Time (minutes) 26.04 26.03
Migrated (GB) 2.58 2.58
Migrated (files) 52152 52134
Migrated (dirs) 2964 2954
Bytes Before(GB) 2.52, 2.64, 0, 0 1.29, 1.29, 1.29, 1.29

Bytes After (GB) 1.29, 1.29, 1.29, 1.29 2.58, 2.58, 0, 0

Table 7. Statistics in the addition and removal of two
islands without client accesses. The row "Time" shows
the elapsed time in minutes since the reconfiguration
started till the migration of data was completed in all
islands. The next three rows show the migrated bytes,
files and directories during the reconfiguration,
respectively. The last two rows show the byte
distribution across four islands before and after the
reconfiguration, respectively. (We use the number of
bytes as the measure for server loads for simplicity in
these experiments.)

We simulated the web server with 16 threads on separate
machines, reading the access log and issuing requests to
Archipelago as clients. The absolute time stamps in the
log were ignored and the traces in the log were
consumed as fast as possible. Each thread issued 3000
requests in each test and the overall consumed traces in
each test were taken from 00:01:34 to 18:01:48 on March
1, 1999. 699 MB of data in 48000 files were accessed in
each test, of which 86 MB of data and 7218 files were
distinct.

We ran the simulation in 5 different cases relevant to the
addition of two islands and measured the impact of data
migration on client performance. The migration was
expected to affect client accesses in three ways. First, the
background migrators compete with the clients for
resources like disk and network bandwidths. Second,
when the clients try to access files in the new islands,
some files have to be migrated on demand from the old
islands. Third, on-demand migration causes race
conditions.

In addition to running the simulation before and after the
reconfiguration, we ran the simulation in 3 cases during
the reconfiguration to separate the impacts of different
sources. First, we ran the simulation in the beginning of
the reconfiguration to see the impacts of both
background migration and on-demand migration.
Second, we ran the simulation again, later in the same
reconfiguration; since all the requested files had been
migrated on demand in the first simulation, the
slowdown in this case came solely from the migrators’
competition. Third, we reran the reconfiguration and
simulation with the migrators disabled to see the
slowdown solely from on-demand migration. Table 8
shows the results of the simulated web accesses in the

 23

five cases.

The results show that the migrators had a minor impact
on the client performance. In case 4 (migrators only), the
migrators consumed only 7% of the overall disk
bandwidth and imposed a performance penalty of only
4.5%. The percentages are dependent on the relative
numbers of migrators to clients, i.e. 2 to 16 in this case.
Client bandwidth was nearly halved by on-demand
migration because the amount of data transferred to
satisfy a request was doubled. The disadvantage of
disabling migrators is that the first accesses to files in the
new islands will always require on-demand migration
and will see a significant performance drop.
Additionally, without migrators, a system administrator
cannot tell when exactly the migration is completed.
Therefore, enabling migrators is a good idea.

We also recorded the number of race conditions caused
by on-demand migration. The race conditions were
detected and tolerated by the migrators and were
transparent to the clients. The race conditions in case 4
occurred when the migrators initiated on-demand
migration for directory attributes replication. The
numbers of race conditions were relatively small
compared to the number of files migrated on demand.
With on-demand migration, the system reconfiguration
was made transparent to the clients.

Cases Clients
(MB/s)

Migrators
(MB/s)

Migrated
files

Race
conditions

1 3.94 0 0 0
2 4.52 0.36 7191 84
3 5.68 0 7218 42
4 9.05 0.68 0 8
5 9.48 0 0 0

Table 8. Results in the simulated web accesses. The five
cases are before the addition of two new islands (1), with
both background migrators and on-demand migration
(2), with on-demand migration only (3), with background
migrators only (4) and after the addition of two new
islands (5). The columns "Clients" and "Migrators" show
the aggregate bandwidths of clients and migrators,
respectively. The clients’ bandwidth is the total number
of bytes accessed by 16 threads during the simulation
divided by the simulation time. The migrators’ bandwidth
is the total number of bytes read and written by the 2
migrators during the simulation divided by the
simulation time. The column "Migrated files" shows the
number of files migrated on demand during the
simulation. The column "Race conditions" shows the
number of race conditions during the simulation due to
on-demand migration.

The measured impacts of background migrators and on-
demand migration in the reconfiguration tests also apply
to the cases of renaming directories (Section 10) because

these two procedures share most of the code.

15. Related work
In terms of failure isolation, consistency cost, locality
and leveraging functions in local file systems,
Archipelago is comparable to wide area file systems such
as Andrew [8], Sprite [24] [33], JetFS [16], NFS [9] and
CIFS [15]. However, in those systems, data is manually
partitioned to servers at sub tree granularity. Therefore,
those systems do not share load balance and scalability
with IFS. Mounted file systems, such as NFS, do not
provide location-transparent name spaces. Others do but
use a combination of name caching, location hints,
replicated name services, recursive lookup and/or
multicast for name lookups. In IFS, name lookups are
done by hash functions on client machines without
contacting any servers. Both wide area systems and IFS
can leverage functions in local file systems.

IFS is designed to match the scalability, load balance and
easy management of cluster file systems such as
Frangipani [1] and xFS [5]. Those systems were
designed to take advantage of the aggregate bandwidth
of storage servers connected by fast networks and the
addition of servers can improve the performance of
individual clients. IFS is designed for larger
environments where islands communicate through
commodity networks. The goal of scaling IFS is to meet
the needs of increased number of workloads or clients.

Many systems, such as global memory systems [6],
distributed file systems [5] [7] [16] [18] [21], parallel file
systems [4] [19], web or proxy servers [2] [3] [13], and
database systems [11], use hash-based techniques for
distributing or locating data. Global Memory System [6],
xFS [5] and Petal [7] use multi-level maps to translate
virtual addresses to physical addresses. The two steps of
hashing in IFS differ from those multi-level maps in that
inputs to the hash functions in IFS are pathnames while
the maps in those systems are keyed by integral
addresses. Several parallel file systems, such as Vesta [4]
and Galley [19], locate the metadata, but not data, of a
file by hashing the pathname. The Locality-Aware
Request Distribution (LARD) [3] switches between a
hash function and a load-based distribution for locality
and load balance in cluster-based network servers with
shared storage and read-mostly accesses. Archipelago
consistently uses hashing and the hashing algorithm itself
is reconfigurable based on loads. It can essentially
achieve the same locality and load balance as LARD, but
for a more generic system structure and access pattern.
The work in [18] distributes and migrates files across
servers to minimize the cost/performance ratio. Although
a similar hash-based distribution is used, the record-
structured and key-accessed files in that system are
largely different from the files and directories in IFS and
other file systems. The idea of monotonic migration in
IFS was inspired by the work on consistent hash

 24

functions for web caching [2]. A consistent hash function
is one that changes minimally as the range of the
function changes. However, we used an extendible hash
table instead of a consistent hash function in our system
because it was not clear how a consistent hash function
can evenly distribute workload, as opposed to number of
buckets, across islands.

Hive [37] is an operating system for large-scale shared-
memory multiprocessors with independent kernels called
cells. The multi-cellular structure in Hive was designed
to improve reliability and scalability. We used the same
principle in designing our distributed file system.
However, our methods are distinct from those in Hive
because the problem areas are largely different.

Storage systems such as Petal [7] use background
processes during reconfiguration to migrate data blocks
from old storage servers to new ones. We expect the
bandwidth in their migration to be higher than the
bandwidth of the migrators in Archipelago because there
is little overhead associated with metadata operations at
the disk block level. On the other hand, it is easier to
control the interaction between the migrators and clients
in Archipelago given the information available at file
system level.

Some replicated file or storage systems, such as Locus
[31] and Bayou [32], use a version vector per replica or a
logic clock per operation to detect conflicting updates in
case of network partitions, and reconcile the conflicts
when detected. Archipelago uses a version vector per
island to detect and prevent inconsistency in case of
network partitions, and no reconciliation is needed
because no conflicting updates will possibly occur in the
island-based design.

Recovery protocols were addressed in distributed file
systems that use extensive client caching. Calypso [34]
and Sprite [33] use distributed state among the clients to
reconstruct the before-crash state of a recovering server,
and guarantee data consistency and congestion control
during the recovery. Archipelago resembles those
systems in that it also uses distributed state (logs in
surviving servers), guarantees consistency and handles
message queue overflow during recovery; it differs in
that the protocol is designed to update the recovering
server with the state that the rest of the system reached
after it crashed; therefore, it needs to address the
additional issue of operation serialization.

16. Future work and conclusion
We designed an island-based file system for improved
failure isolation and consistency cost by enforcing a one-
island principle in the data distribution. We evaluated the
design by analytic modeling and statistical analysis on
the access patterns and contents in various existing
systems in use. We implemented Archipelago, a

prototype of the island-based file system, with a
consistency protocol and a recovery for high availability
and reliability, and a rebalance protocol for dynamic load
balance and low-cost reconfiguration. We built a
randomized test engine to test the correctness of the
protocols, and studied the performance of Archipelago in
micro benchmarks, operation mixes and trace-driven
simulations.

We are considering extensions to the hashing of
directories. Ideally, we would like to have an adaptive
hashing algorithm that determines the height of a sub tree
or the granularity of a file to hash based on the current
state of load balance and access patterns. We are also
going to improve the performance of all-island
operations like SetDirAttr by replacing the 2*n unicast
messages and 2*n replies with 2 broadcast or multicast
messages and 2*n replies, where n is the number of
islands.

We draw the following conclusions:
• Data loss in case of partial failures can be reduced

by replicating a small amount of metadata across
islands.

• The majority of web clients are likely to survive a
partial failure in IFS.

• Data distribution at directory granularity eases the
consistency maintenance across islands.

• A universal hash function can evenly distribute
directories to buckets; however, an extendible
hashing algorithm is necessary to dynamically
balance the actual workload across islands.

• The island-based design makes it easy to maintain
the consistency of the distributed file system, in
terms of protocol design as well as amortized cost.

• Performance can scale efficiently with the system
size, if and only if cross-island communications are
minimized; the overall performance scales
efficiently as estimated.

• Background migration of data during an online
reconfiguration has a minor impact on client
performance, and the reconfiguration can be made
transparent to clients by on-demand migration.

References
[1] C. A. Thekkath, T. Mann, and E. K. Lee, “Frangipani: A

Scalable Distributed File System”, in Proceedings of the
16th ACM Symposium on Operating Systems Principles,
Octobor 1997.

[2] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy, "Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot
Spots on the World Wide Web", in Proceedings of the 29th
ACM Symposium on Theory of Computing, May 1997.

[3] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum, "Locality-Aware Request
Distribution in Cluster-Based Network Servers", in
Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and

 25

Operating Systems, October 1998.
[4] P. F. Corbett, and D. G. Feitelson, "The Vesta Parallel File

System", in ACM Transactions on Computer Systems,
Vol. 14, No. 3, August 1996.

[5] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.
Patterson, D. S. Roselli, and R. Y. Wang, "Serverless
Network File Systems", in Proceedings of the 15th ACM
Symposium on Operating Systems and Principles,
December 1995.

[6] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H.
M. Levy, and C. A. Thekkath, "Implementing Global
Memory Management in A Workstation Cluster", in
Proceedings of the 15th ACM Symposium on Operating
Systems and Principles, December 1995.

[7] E. K. Lee, and C. A. Thekkath, "Petal: Distributed Virtual
Disks", in Proceedings of the 7th International Conference
on Architectural Support for Programming Languages and
Operating Systems, October 1996.

[8] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West,
"Scale and Performance in A Distributed File System", in
ACM Transactions on Computer Systems, Vol. 6, No. 1,
February 1988.

[9] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B.
Lyon, "Design and Implementation of the Sun Network
File System", in Proceedings of USENIX Summer
Technical Conference, Summer 1985.

[10] J. L. Carter, and M. N. Wegman, "Universal Classes of
Hash Functions", in Journal of Computer and System
Sciences 18, 1979.

[11] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong,
"Extendible Hashing - A Fast Access Method for Dynamic
Files", in ACM Transactions on Database Systems, Vol. 4
No. 3, 1979.

[12] B. E. Keith, and M. Wittle, "LADDIS: the Next
Generation in NFS File Server Benchmarking", in
Proceedings of USENIX Summer Technical Conference,
June 1993.

[13] L. Fan, P. Cao, J. Almeida, and A. Broder,
"Summary Cache: A Scalable Wide-Area Web Cache
Sharing Protocol", in Proceedings of ACM SIGCOMM,
February 1998.

[14] R. Hagmann, "Reimplementing the Cedar File System
Using Logging and Group Commit", in Proceedings of the
11th ACM Symposium on Operating System Principles,
November 1987.

[15] Microsoft, the Common Internet File System
(CArchipelago) specification reference, 1996.

[16] B. Gronvall, A. Westerlund, and S. Pink, "The
Design of a Multicast-based Distributed File System", in
Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation, February 1999.

[17] H. Custer, “Inside the Windows NT File System”,
Microsoft Press, 1994.

[18] R. Vingralek, Y. Breitbart, and G. Weikum, "Distributed
File Organization with Scalable Cost/Performance", in
Proceedings of ACM SIGMOD, May 1994.

[19] N. Nienwejaar, and D. Kotz, "The Galley Parallel File
System", in Proceedings of the International Conference
on Supercomputing, July 1996.

[20] M. Devarakonda, A. Mohindra, J. Simoneaux, and
W. H. Tetzlaff, “Evaluation of Design Alternatives
for a Cluster File System”, in Proceedings of USENIX
Winter Technical Conference, Winter 1995.

[21] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,
E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri, E.
Riedel, D. Rochberg and J. Zelenka, “File Server
Scaling with Network-Attached Secure Disks”, in
Proceedings of ACM SIGMETRICS, June 1997.

[22] L. Lamport, “Time, Clocks, and the Ordering of
Events in a Distributed System”, in Communications
of the ACM, July 1978.

[23] J. Gray, “Notes on Database Operating Systems”, in
Operating Systems: An Advanced Course, 1978.

[24] M. N. Nelson, B. B. Welch, and J. K. Ousterhout,
"Caching in the Sprite Network File System", in ACM
Transactions on Computer Systems, February 1988.

[25] A. Watson, and P. Benn, "Multiprotocol Data Access:
NFS, CIFS, and HTTP", Technical Report 3014, Network
Appliance, May 1999.

[26] H. C. Rao, and L. L. Peterson, "Accessing Files in an
Internet: the Jade File System", in IEEE Transactions on
Software Engineering, IEEE, Vol. 19 No. 6, June 1993.

[27] http://www.viarch.org
[28] T. Mann, A. Birrell, A. Hisgen, C. Jerian, and G.

Swart, “A Coherent Distributed File Cache with
Directory Write-Behind”, in ACM Transactions on
Computer Systems, Vol. 12, No. 2, May 1994.

[29] N. Lynch, and M. Tuttle, “An Introduction to
Input/Output Automata”, CWI-Quarterly, 2(3),
September 1989.

[30] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang,
"Protocol Verification as a Hardware Design Aid",
in Proceedings of IEEE International Conference on
Computer Design: VLSI in Computers and
Processors, 1992.

[31] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton,
B. J. Walker, E. Walton, J. M. Chow, D. Edwards,
S. Kiser, and C. Kline, “Detection of Mutual
Inconsistency in Distributed Systems”, in IEEE
Transactions on Software Engineering 9(3), May
1983.

[32] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser,
“Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System”, in
Proceedings of the 15th ACM Symposium on Operating
Systems and Principles, December 1995.

[33] M. Baker, and J. K. Outsterhout, “Availability in the
Sprite Distributed File System”, in ACM Operating
Systems Review, 25, 2, April 1991.

[34] M. Devarakonda, B. Kish, and A. Mohindra,
“Recovery in the Calypso File System”, in ACM
Transactions on Computer Systems, Vol. 14, No. 3,
August 1996.

[35] R. Golding, J. Wilkes, and A. Veitch, private
communications, August 1999.

[36] E. M. Clarke, O. Grumberg, and D. E. Long, “Model
checking and abstraction”, in Proceedings ACM
Symposium on Principles of Programming
Languages, January 1992.

[37] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D.
Teodosiu, and A. Gupta, "Hive: Fault Containment for
Shared-Memory Multiprocessors", in Proceedings of the

 26

15th ACM Symposium on Operating Systems and
Principles, December 1995.

[38] D. Roselli, and T. E. Anderson, "Characteristics of File
System Workloads", Technical Report UCB//CSD-98-
1029, 1998, and personal communications, April 1999.

[39] K. W. Shirriff, and J. K. Ousterhout, "A Trace-Driven
Analysis of Name and Attribute Caching in A Distributed
System", in Proceedings of USENIX Technical
Conference, 1992.

[40] Microsoft Corporation, “Platform SDK: Windows Base
Services: Files and I/O”, in MSDN Library Visual Studio
6.0, 1998.

[41] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams, "Replication in the Harp File System",
in Proceedings of the 13th Symposium on Operating
Systems Principles, October 1991.

[42] J. R. Douceur and W. J. Bolosky, “A Large-scale
Study of File-system Contents”, in Proceedings of
ACM SIGMETRICS, May 1999.

[43] P. Chen, E. Lee, G. Gibson, R. Katz, and D.
Patterson, “RAID: High-Performance, Reliable
Secondary Storage”, ACM Computing Surveys,
June 1994.

[44] T. F. Sienknecht, R. J. Friedrich, J. J. Martinka, P.
M. Friedenbach, “The Implications of Distributed
Data in a Commercial Environment on the Design of
Hierarchical Storage Management”, Performance
Evaluation, 1994.

Appendix A: Data loss in non-redundant CFS model
Given the parameters s (number of storage servers), h
(directory tree height), d (number of sub directories per
directory), bs (block size), f (number of files per
directory), and fs (file size), the data loss in a single
directory tree with the loss of 1 out of s servers is

),)
1

1(1()
1

1()),
1

1((

)1(

)1),
1

1(()(

)1(

)1,
1

1()(
)(

−−⋅⋅⋅−⋅−⋅+

−⋅

+−⋅⋅⋅+
−

−⋅

+−⋅⋅+⋅⋅
=

bs

fs

h

s
fsf

s
h

s
dQ

ds

h
s

dQfsfd

ds

h
s

Qfsfbsdd
hL

where
1

1
),(

−
−=

x

x
yxQ

y

.

Appendix B: Expected load imbalances
Assuming that objects O are to be distributed to units U,
we define the imbalance OUI as the standard deviation

of objects O in units U divided by the average objects in
each unit. OUI is zero if the distribution is perfectly

even. Let B be the number of buckets, D be the number
of directories, W be the workload, and S be the number
of islands. We define the variables ijx as

===∀
 otherwise. 0,

;bucket

 tohashed is directory if 1,
,..1,..1 j

i
xBjDi ij

The bucket size is ∑
=

=
D

i
ijj xY

1

, the expected bucket size

is
B

D
]E[Y j = , and the variance (square of standard

deviation) of bucket size is

).
1

1(

)1()
1

()
1

1(
]])[[(

1

22

2

1

11

BB

D

B

B
BBxExE

]Var[x]xVar[]Var[Y

D

i
ij

D

i
ij

D

i
ij

D

i
ijj

−=

−⋅+−
=−=

==

∑∑

∑∑

==

==

The second step of derivation above is based on the

property of universal hash functions that ijx 's are

pairwise independent. The others are by definitions. The
imbalance in directory distribution across buckets is

D

B

YE

YVar
I

j

j
DB

1

][

][−== .

We define iw as the workload in directory i and

∑
=

=
D

i
iwW

1

. The workload in a directory does not

include the loads in its sub directories, hence we can
assume that iw 's are pairwise independent. The expected

directory workload is
D

W
wE i =][, the variance of

directory workload is][][21

2

i

D

i
i

i wE
D

w

wVar −=
∑

= , and

the imbalance in workload distribution across directories

is 1
2

1

2

−⋅=
∑

=

W

w

DI

D

i
i

WD . The workload in bucket j is

∑
=

⋅=
D

i
iijj wxZ

1

, the expected bucket workload is

B

W
ZE j =][, the variance of bucket workload is

,

][][][

2
1

2

1

2

11

B

w

B

w

wxVarwxVarZVar

D

i
i

D

i
i

D

i
iij

D

i
iijj

∑∑

∑∑

==

==

−=

⋅=⋅=

 27

and the load imbalance across buckets is

2
1

2

)1(
W

w

BI

D

i
i

WB

∑
=⋅−= . We substitute

2
1

2

W

w
D

i
i∑

= with

D

IWD 12 +
 and get 12 +⋅= WDDBWB III .

