
Safe Garbage Collection = Regions + Intensional Type Analysis

Daniel C. Wang Andrew W. Appel

Department of Computer Science
Princeton University

Princeton, NJ 08544 USA

Tech Report TR-609-99

October 19, 1999

Abstract

We present a technique to implement type-safe garbage
collectors by combining existing type systems used for
compiling type-safe languages. We adapt the type systems
used inregion inference[16] and intensional type analy-
sis [8] to construct a safe stop-and-copy garbage collec-
tor for higher-order polymorphic languages. Rather than
using region inference as the primary method of storage
management, we show how it can be used to implement
a garbage collector which is provably safe. We also in-
troduce a new region calculus with non-nested object life-
times which is significantly simpler than previous calculi.
Our approach also formalizes more of the interface be-
tween garbage collectors and code generators. The effi-
ciency of our safe collectors are algorithmically competi-
tive with unsafe collectors.

1 Introduction

We present a technique to implement type-safe garbage
collectors by combining existing type systems used for
compiling type-safe languages. We adapt the type systems
used inregion inference[16] andintensional type analysis
[8] to construct a safe stop and copy garbage collector for
higher-order polymorphic languages. Our approach has
all the benefits of traditional tracing garbage collection as
well as the benefits that come with type safety.

Tracing garbage collectors perform two potentially un-
safe operations:

• Traverse arbitrary runtime values to identify live ob-
jects.

• Explicitly allocate and deallocate memory.

Tracing an arbitrary value is similar to other type-
dependent functions such as pretty-printers and polymor-

phic equality functions. There are several efficient tech-
niques for implementing type-dependent functions that
preserve type safety[14, 13].

There are also several well studied type systems that
allow one to verify the safety of explicit memory man-
agement in higher-order polymorphic languages[16, 1, 4].
Often these systems are represented as alternatives to tra-
ditional garbage collection techniques.

Contributions. We show how to use a simple type sys-
tem to implement a provably safe garbage collector. The
collector is safe in the sense that a correct program will
not “go wrong” after the garbage collector runs. This lets
us build systems whose memory utilization is as good as
existing safe systems, but whose safety does not rely on
the correct implementation of a trusted tracing garbage
collector.

We adapt the ideas and type systems from the work on
regions[16, 1, 4]. The basic idea is that a mutator always
allocates in a fixed region. When the collector is invoked,
it copies all the live data from one region into a newly
allocated region. The regions act as the semi-spaces of a
stop-and-copy collector. We use intensional type analysis
to assign a type to our copy function that guarantees our
collector has performed a deep copy of the live data. The
older region can then be safely deallocated. This approach
requires regions with non-nested life-times.

We introduce a new region calculus,λρ, with non-
nested object life-times. Our new calculus is simpler
and more expressive than existing calculi with non-nested
life-times, because we are willing to perform checks at
runtime when deallocating regions. Furthermore, we de-
scribe how to use several existing type systems and type
based compilation techniques so we can apply our safe
garbage collection approach to higher-order polymorphic
languages. Our approach also formalizes much more of

1

the interface between garbage collectors and code gener-
ators.

Correctness vs. Safety. Rather than attempt to guaran-
tee correctness, we are interested in providing the follow-
ing safety guarantees:

• No live values are reclaimed prematurely.

• The types of objects are preserved by the collector.

After the garbage collector is run, we assure that the pro-
gram will not “go wrong” because of type errors or be-
cause memory was reclaimed prematurely. Most correct-
ness proofs of garbage collection guarantee that live val-
ues before the collection are somehow isomorphic to the
live values after collection[6].

Requirements. It is easy to implement a safe garbage
collector by simply implementing a collector that never
reclaims memory. It is obvious that a realistic system must
have other desirable properties. In particular we are in-
terested in a safe automatic memory management system
with a small trusted computing base (TCB), that allows
separate compilation, and with performance and memory
utilization as good as existing unsafe systems.

static
regions

tracing
gc

our
approach

memory utilization ? + +
separate compilation − + +
small TCB + − +
real time properties + ? ?

Table 1: Summary of Tradeoffs

Regions vs. Tracing GC. Because the work on regions
is quite new the efficiency and scalability of region infer-
ence has not been sufficiently demonstrated. Traditional
tracing garbage collectors have existed for several decades
and their efficiency and scalability properties are well un-
derstood. Intuitively tracing garbage collectors have more
information since they are able to examine program state
at runtime. The biggest advantage to the static approach,
taken by region inference, is that the trusted primitives
are much simpler, and therefore easier to implement cor-
rectly. Systems that rely on tracing collectors take the en-
tire garbage collector to be a trusted “primitive”.

All static approaches require some sort of global analy-
sis to get good memory utilization, making separate com-
pilation difficult. However, because the underlying run-
time system’s primitives are simple, they have good real-
time properties, since each primitive is a constant-time op-

eration. Table 1 summarizes the tradeoffs between these
two approaches in comparison to ours.

Problems Using Current Regions Systems. The stan-
dard Tofte-Talpin region system [16, 3] is not sufficiently
expressive to implement collectors directly. In particu-
lar the Tofte-Talpin requirement that all region lifetimes
be nested in a stack-like way interferes with standard
tail-call optimizations. Tofte-Talpin extend their system
with a static storage-mode analysis to allow for something
similar to standard tail-call optimizations[3]. However,
storage-mode analysis is not expressive enough to imple-
ment a general-purpose garbage collector.

Outline. In the next section we formally describe a
novel region calculus and discuss how to use it to imple-
ment what amounts to a trivial garbage collected system
and we compare our system to other variants of the Tofte-
Talpin region systems.

The remaining sections describe issues of scanning val-
ues, how to deal with closures and how to preserver
pointer sharing. Appendix A sketches a proof of sound-
ness for our region calculus.

2 The λρ Calculus

s,t ::= int | s
∆→ t | ∀ρ.s | (sat ρ) | Ans

∆ ::= {} | {ρ1, . . . ,ρn}
e ::= x | n | (+1 e) | (−1 e) | (if0 e e1 e2) |

(λx : s.e) | (e1 e2) | (Λρ.e) | (e [ρ]) |
(letr ρ in e) | (only ∆ e) |
(put[ρ] e) | (get[ρ] e) |
(µ f : s.e) | (exit e)

Figure 1: Abstract Syntax forλρ

We begin with an informal account ofλρ, a region calcu-
lus based on the translation of a Tofte-Talpin region sys-
tem into an simple variant of the polymorphic lambda cal-
culus described by Banerjee et al. [2]. Figure 2 contains
the abstract syntax ofλρ.

The types ofλρ are very similar to the type system of a
standard polymorphic typed lambda calculus. The calcu-
lus above allows for polymoprhism only over region vari-
ablesρ. Ans is the return type of continuations. Function
types are annotated with an effect set (∆), which describes

2

the set of region variables that a function of that type may
access. Values of type(t at ρ) represent values allocated
in regionρ.

The terms ofλρ are the terms of a simple polymorphic
lambda calculus, where we replace type abstraction with
region abstraction. A term of the form(put[ρ] e) takes a
region variable and an expression and allocates/boxes the
value of the expression in the given region resulting in a
value of type(t at ρ) wheret is the type of the expression,
e. The(get[ρ] e) takes a boxed value of type(t at ρ) and
unboxes the value to a value of typet.

The region variables in theput andget terms act as
capabilities. Our type system guarantees that the regions
used by these terms will be live. The(letr ρ in e) term
introduces and allocates a new region and evaluates its
body with a fresh region bound to the region variableρ.

Early Deallocation. The(only ∆ e) term is our exten-
sion to a standard region calculus to support non-nested
life-times. It acts as a static assertion that its body can
be evaluated using the set of regions bound to the region
variables in∆, which is a subset of the region variables
currently in scope. It does not introduce any new region
variables. In order to safely deallocate regions it must be
the case that we do not return from the evaluation ofe.
Our typing rules enforces this property by requiringehave
the typeAns.

At runtime implementations will dynamically mark re-
gions mentioned in∆ as live and reclaim unmarked re-
gions. The set of regions,∆, acts as the root set of a
very simple garbage collector for regions. The garbage
collector for regions is significantly simpler than a nor-
mal garbage collector since it is reclaiming whole regions.
Regions do not need to be scanned for references to other
objects, since each region can be though of as an atomic
“pointer free” object.

Rather than just deallocating the most recent region on
our stack of regions before the call, theonly expression
implicitly deallocates any region which is not needed for
the future computation. Our calculus organizes the set of
live regions not as a stack, but as a set of regions which
allows for arbitrary allocation/deallocation policies.

Our type system simply keeps track of which regions
need to be syntactically live for a given expression to suc-
cessfully complete. The cost ofonly is linearly propor-
tional to the number of region variables statically in scope.
In a typical system the number of such variables should be
a very small bounded number. Since deallocation occurs
at garbage collection points, which are infrequent, the ex-
tra cost ofonly should not effect overall performance.

2.1 Operational Semantics ofλρ

The formal operational semantics are described by Figure
2.1 in the style of Wright and Felleisen [19] and is simi-
lar in spirit to the more detailed operational semantics of
Morrisett, Felleisen and Harper [10]. We first identify a
syntactic subset of terms that denote ground values, which
includes values that reside in a region(put[ρ] v). Evalua-
tion contexts,E, are a subset of expressions with “holes”.
E[e] represents an evaluation context with the hole,[],
replaced bye. Notice that the set of evaluation contexts
with the holes filled by an expression is equivalent to the
set of expressions. A set of region variables paired with
an expression is a program,P.

Our region context acts very much like the “capability
context” of Crary et al.[4]. We will assume that bound
region variables are uniquely named and that substitution
preserves this property. Because of this assumption we
can blur the distinction between a region variable and the
dynamic region value itself, since every region variable is
unique.

The reduction rules rewrite programs to programs. All
are standard except for the rules that manipulate the re-
gion context. Rather than model a heap directly our op-
erational model abstracts away the details of an explicit
heap. Ther get put rule requires that we have a region in
the current region context to read a boxed value. Ther letr
rule introduces a new region into the region context. The
r only rule replaces the current context with a new one
and continues evaluating the expression. Ther dealloc
rule non-deterministically removes regions which are no-
longer needed by the current program. Appendix B for-
mally defines the notion of a free region variable.

A region is syntactically dead when it is not a free re-
gion variable of the program being evaluated. For well
typed programs we can prove it is safe to always apply
the dealloc rule after evaluating the body of ar letr ex-
pression, since our typing rules prevent a region variable
from escaping the lexical scope of aletr expression.

Ther only rules replaces the current region context with
a new one which must be a subset of the current region
context because of our typing rules. Those regions that
are not in the set∆′ can be safely deallocated. Even with
r dealloc rule ther only rule is not redundant. Since our
type system guarantees that body of theonly never re-
turns we can ignore any free region variables in the sur-
rounding control context and just continue evaluating the
body with the region variables,∆′, mentioned explicitly in
theonly expression.

2.2 Static Semantics ofλρ

Figure 2.2 describes the static semantics ofλρ. Again we
assume that all bound region variables are uniquely named

3

v ::= n | (λx : s.e) | (Λρ.e) | (put[ρ] v) | (exit v)
E ::= [] | (+1 E) | (−1 E) | (if0 E e1 e2) |

(E e) | (v E) | (E [ρ]) |
(put[ρ] E) | (get[ρ] E) | (exit E)

P ::= 〈∆, e〉

r succ 〈∆, E[(+1 n)]〉 7−→ 〈∆, E[n+1]〉
r pred 〈∆, E[(−1 n)]〉 7−→ 〈∆, E[n−1]〉
r if then 〈∆, E[(if0 n e1 e2)]〉 7−→ 〈∆, E[e1]〉 wheren = 0
r if else 〈∆, E[(if0 n e1 e2)]〉 7−→ 〈∆, E[e2]〉 wheren 6= 0
r app 〈∆, E[((λx : s.e) v)]〉 7−→ 〈∆, E[e[x := v]]〉
r rho app 〈∆, E[((Λρ.e) [ρ′])]〉 7−→ 〈∆, E[e[ρ := ρ′]]〉
r fix 〈∆, E[(µ f : s.e)]〉 7−→ 〈∆, E[e[f := (µ f : s.e)]]〉
r exit 〈∆, E[(exit v)]〉 7−→ 〈∆, (exit v)〉
r get put 〈∆, E[(get[ρ] (put[ρ] v))]〉 7−→ 〈∆, E[v]〉 whereρ ∈ ∆
r letr 〈∆, E[(letr ρ in e)]〉 7−→ 〈∆∪{ρ}, E[e]〉
r only 〈∆, E[(only ∆′ e)]〉 7−→ 〈∆′, e〉
r dealloc 〈∆, e〉 7−→ 〈∆\{ρ}, e〉 whereρ 6∈ FRV(e)

N.B. Assume that all bound region variables are uniquely named and that substitution preserves this property.

Figure 2: Operational Semantics

∆;Γ ` x : Γ(x)
t var

∆;Γ ` n : int
t const

∆;Γ ` e : int
∆;Γ ` (+1 e) : int

t succ ∆;Γ ` e : int
∆;Γ ` (−1 e) : int

t pred

∆;Γ ` e : int ∆;Γ ` e1 : s ∆;Γ ` e2 : s
∆;Γ ` (if0 e e1 e2) : s

t if0

∆′;Γ,x : s` e : t ∆′ ⊆ ∆
∆;Γ ` (λx : s.e) : s

∆′→ t
t lam

∆;Γ ` e1 : s
∆′→ t ∆;Γ ` e2 : t ∆′ ⊆ ∆

∆;Γ ` (e1 e2) : s
t app

∆∪{ρ};Γ ` e : s
∆;Γ ` (Λρ.e) : ∀ρ.st rho abs

∆;Γ ` e : ∀ρ.s ρ′ ∈ ∆
∆;Γ ` (e [ρ′]) : s[ρ := ρ′]

t rho app

∆∪{ρ};Γ ` e : s ρ 6∈ FRV(s)
∆;Γ ` (letr ρ in e) : s

t letr

∆′;Γ ` e : Ans ∆′ ⊆ ∆
∆;Γ ` (only ∆′ e) : Ans

t only

∆;Γ ` e : s ρ ∈ ∆
∆;Γ ` (put[ρ] e) : (sat ρ)

t put
∆;Γ ` e : (sat ρ) ρ ∈ ∆

∆;Γ ` (get[ρ] e) : s
t get

∆;Γ, f : s` e : s
∆;Γ ` (µ f : s.e) : s

t fix ∆;Γ ` e : s
∆;Γ ` (exit e) : Ans

t exit

N.B. Assume that all bound region variables are uniquely named and that substitution preserves this property.

Figure 3: Static Semantics

4

and that substitution preserves this property. The judg-
ment∆;Γ ` e : smeans under region context∆ and typing
contextΓ expressione has types. These typing rules are
similar to the “naive” rules of the Crary et al. calculus that
ignore issues of region aliasing, where∆ act as a static
capability context. Because of our implicit deallocation
approach region aliasing does not result in unsoundness.

2.3 Examples

Figure 4 shows how a simple program is progressively re-
fined to arrive at a fully region explicit version. The orig-
inal program is a simple program that counts down from
10 and exits. From the original program we can derive a
version that assumes integers are actually boxed values,
and we can make the boxing and unboxing explicit. We
can translate the program with explicit boxing and unbox-
ing into an equivalentλρ program. Inλρ the boxed integer
type is represented as the type(int at ρ). Thebox and
unbox primitives are translated intoput andget expres-
sions respectively. Thecnt function itself takes the region
where to box the value as aregion parameter. Finally,
we account for the space of the closure needed to hold
the actual functioncnt, and place the closure in a sepa-
rate region from the integer argument. Leaving us with a
program similar to an example from Crary et al.[4].

Notice the type of the functioncnt in the final version is
annotated with the effect set{ρ,ρ1}. It reads its argument
from regionρ and reads regionρ1 since it must access its
own closure allocated inρ1. We refer toρ as aregion
parametersince it is bound by a region abstraction and
not aletr.

All though our operational model is not detailed enough
to argue formally about space usage, we can informally
reason about the space usage of the final program. On
each iteration ofcnt it puts a new integer in regionρ2

until it terminates with the value(put[ρ2] 0). Notice that
after each iteration the old argument is garbage, but we
never reclaim any of the space used by the old arguments
because they are allocated in regionρ2, but on exit region
ρ2 is still live, since we return a boxed value as the result
of the program. If we allocate each argument in a fresh
region we can then free the old region which contains the
old argument. Figure 5 demonstrates this optimization.

Free Early. Figure 5 (a) is a more space efficient ver-
sion that copies the old argument into a new region,ρ′,
and then implicitly frees the old region where the old argu-
ment was allocated. Sinceρ is a region parameter bound
by a region abstraction, at runtime it may be aliased to an-
other region variable, so we cannot statically determine
whether it is safe to free the region associated withρ.
However, since it is not mentioned in the set of regions

in theonly expression it may be freed if at runtime it has
not been aliased toρ1 or ρ′. We know statically it cannot
be aliased toρ′, but it maybe aliased toρ1. In this case
we will discover at runtime that it is safe to deallocate the
region bound toρ.

Region Aliasing. Figure 5 (b) demonstrates the case
when we cannot free the region associated to the region
parameterρ, because on the first iteration ofcnt region
parameterρ will be aliased toρ1 which is needed to store
the closure ofcnt. Because of our implicit deallocation
approach our operational semantics will not get “stuck”
even in the presence of this aliasing. On the subsequent
iterations ofcnt the region parameterρ will be bound to a
region which can be safely deallocated.

The optimization performed above is a kind of gener-
alized tail-call optimization, which cannot be expressed
in the standard Tofte-Talpin region calculus. Implementa-
tions of the Tofte-Talpin system are able to achieve some-
thing similar through storage mode analysis. However,
storage mode analysis is unable to perform the specific op-
timization above, which is key to implementing a garbage
collector with regions as we shall see. We can perform
this optimization in more expressive region calculi, but in
order to do so we must reason statically about aliasing to
avoid unsoundness. In the presence of aliasing even these
more expressive systems would simply forbid our final ex-
ample, even though aliasing is only a problem for the first
iteration.

3 Implementing a Realistic System

So far we have presented a novel region calculus that
has several properties useful in the implementation of a
garbage collector. Unfortunately, there are several other
details that need to be addressed. Here we briefly address
the remaining issues.

3.1 Invoking the Garbage Collector

The previous examples represent the basic approach to
implementing a garbage collector on top of regions. Fig-
ure 6 fleshes out the idea in more detail. A compiler will
transform a source level program into a region-annotated
version in CPS form where at each potential garbage col-
lection point there is a test of some counter to see if we
should invoke the collector and copy the argument of the
current continuation into a new region and free the old re-
gion, otherwise continue with the old region. Notice the
use of region polymorophism for the continuationk, and
that the typing of the conditional is dependent onk having
a return type ofAns.

5

(let cnt =
(µ cnt : int→ Ans.
(λn : int.
(if0 n (exit n)
(cnt (−1 n))))) in

(cnt 10))

(let cnt =
(µ cnt : boxedint→ Ans.
(λn : boxedint.
(let n′ = (unbox n) in
(if0 n′ (exit n)
(cnt (box (−1 n′))))))) in

(cnt (box 10)))

(a) Original Program (b) Explicit Boxing/Unboxing

(letr ρ′ in (let cnt =

(µ cnt : (∀ρ.(int at ρ)
{ρ}→ Ans).

(Λρ.(λn : (int at ρ).
(let n′ = (get[ρ] n) in
(if0 n′ (exit n)
((cnt [ρ]) (put[ρ] (−1 n′)))))))) in

((cnt [ρ′]) (put[ρ′] 10))))

(letr ρ1 in (letr ρ2 in (let cnt =

(µ cnt : ((∀ρ.(int at ρ)
{ρ,ρ1}→ Ans) at ρ1).

(put[ρ1] (Λρ.(λn : (int at ρ).
(let n′ = (get[ρ] n) in
(if0 n′ (exit n)
(((get[ρ1] cnt) [ρ]) (put[ρ] (−1 n′))))))))) in

(((get[ρ1] cnt) [ρ2]) (put[ρ2] 10)))))

(c) Translation intoλρ (d) Accounting for Closures

Figure 4: Simple Region Program

(letr ρ1 in (letr ρ2 in (let cnt =

(µ cnt : ((∀ρ.(int at ρ)
{ρ,ρ1}→ Ans) at ρ1).

(put[ρ1] (Λρ.(λn : (int at ρ).
(let n′ = (get[ρ] n) in
(if0 n′ (exit n)
(letr ρ′ in (only {ρ′,ρ1}
(((get[ρ1] cnt) [ρ′]) (put[ρ′] (−1 n′))))))))))) in

(((get[ρ1] cnt) [ρ2]) (put[ρ2] 10)))))

(letr ρ1 in (let cnt =

(µ cnt : ((∀ρ.(int at ρ)
{ρ,ρ1}→ Ans) at ρ1).

(put[ρ1] (Λρ.(λn : (int at ρ).
(let n′ = (get[ρ] n) in
(if0 n′ (exit n)
(letr ρ′ in (only {ρ′,ρ1}
(((get[ρ1] cnt) [ρ′]) (put[ρ′] (−1 n′))))))))))) in

(((get[ρ1] cnt) [ρ1])))(put[ρ1] 10))

(a) Without Region Aliasing (b) With Region Aliasing

Figure 5: Space Efficient Region Program

6

. . .

(let copy: ∀ρ.∀ρ′(sat ρ)
{ρ,ρ′}→ (sat ρ′) = . . . in

(let k : ∀ρ.(sat ρ)
{ρ}→ Ans = . . . in

(let x : (sat ρ) = . . . in
(if0 limit
(letr ρ′ in
(let x′ : (sat ρ′) = (((copy[ρ]) [ρ′]) x) in
(only {ρ′} ((k [ρ′]) x′))))

((k [ρ]) x)))))

Figure 6: Invoking Garbage Collection

3.2 Intensional Polymorphism

In our example above we invoke a region-polymorphic
copy function that takes a boxed value in regionρ and
copies it intoρ′. Depending on the source language, the
approach we have outlined so far may or may not be sat-
isfactory. In particular we will need a copy function for
each different type of continuation argument. Also the
type ofcopyonly guarantees a shallow copy of the value;
if the type of the continuation argument,s, contains ref-
erences toρ, than our fragment above would not be well
typed. Ideally, we would like one universal copy function
with the following intensional type[8].

gc copy: ∀α.∀ρ.∀ρ′.α {ρ,ρ
′}→ (α[ρ′ := ρ])

Intensional type analysis allows for the definition of prim-
itive recursive functions from types to types. In the type
of gc copywe use intensional type analysis to substitute
one region variable for another. Intensional type analy-
sis is usually expressed with aTyperec type constructor
that encodes a primitive recursive function by structural
induction on the structure of types. Here we simply use
standard substitution notation, a trivial use ofTyperec,
for clarity. The type ofgc copyguarantees every value in
regionρ is copied into regionρ′. Intensional type analysis
can also be used to deal with closures.

3.3 Closures

So far we have ignored the issues of how to scan closures
in a type-safe way. Many type-based compilers use exis-
tential types to abstract the type of the record containing
free variables in a closure[9].

∃α.〈α,〈α,int〉 → int〉

Unfortunately, this abstraction prevents us from properly
scanning and copying closures. Depending on the calcu-
lus, intensional type analysis may or may not be able to in-
spect the structure of the closure. In practice, type-based

compilers do not actually enforce this abstraction, since
exact garbage collectors need this information. Typically
the compiler emits a pointer map describing the structure
of the closure so that an exact collector can properly scan
the closure. The pointer map is external to the under-
lying typed intermediate language, and typically there is
no way to verify that it actually corresponds to the actual
type of the closure. Tolmach presents a closure conver-
sion technique that represents closures in an “interpreted
style” due to Reynolds[18]. His approach avoids existen-
tials and uses standard algebraic types with an explicit dis-
patch function to handle closures. See Figure 7.

Tolmach argues that this approach has several benefits,
besides keeping the type system simple. In particular this
transformation amounts to a simple type based closure
analysis. Tolmach also outlines several other optimiza-
tions and a method that maintains separate compilation
that make this approach seem extremely attractive. How-
ever, his separate compilation approach has some perfor-
mance penalties.

The interpreted style of closure conversion amounts
to encoding the information that is traditionally passed
through pointer maps, directly in the type system. This
makes a previous implicit interface between the compiler
and garbage collector explicit. If we take the existential
approach with a sufficiently powerful intensional analysis
the runtime type information passed by the compiler will
substitute for pointer maps. It’s not clear which approach
to closures will be more appropriate in practice.

All garbage collectors we have described have been
“tagless” in that the compiler does not need to tag every
value with extra type information. However, because we
are using intensional type analysis the compiler must be
passing runtime type information. The garbage collector
is using the same information to implement its scanning
functions. We can obtain a truly tagless system if we are
able to monomorphize our code and pay a code blowup
cost.

3.4 Pointer Sharing

In practice a realistic garbage collector needs to handle
cyclic graphs and preserve pointer sharing to guarantee
termination, deal with references, and avoid potentially
exponential space blow ups.

Using a Hash Table. Sharing is preserved by usingfor-
warding pointers, which turns a naive copy function into
one that memoizes its arguments by mutating objects in-
place. The in-place update overwrites live reachable data
which complicates reasoning about soundness. A sim-
pler approach whose soundness is obvious, is to avoid de-
structive update and use a hash table that hashes point-

7

let
val y = 1
val f =

if e then (fn x:int => x)
else (fn x:int => y)

in f 1
end

datatype clos =
C1 of unit | C2 of int

fun apply (C1 _) x = x
| apply (C2 y) x = y

let
val y = 1
val f =

if e then (C1 ())
else (C2 y)

in apply f 1
end

Figure 7: Interpreted Style of Closure Conversion

empty : ∀ρ.〈〉 {ρ}→ (ρ at (ρd, ρr) map)

insert : ∀α.∀ρ.∀ρd.∀ρr .〈(ρ at (ρd, ρr) map), (α at ρd), (α at ρr)〉
{ρ,ρd,ρr}→ 〈〉

lookup : ∀α.∀ρ.∀ρd.∀ρr .〈(ρ at (ρd, ρr) map), (α at ρd)〉 {ρ,ρd,ρr}→ (α at ρr) opt

Figure 8: Trusted Hash Table Primitives

ers to pointers. This requires no modifications to our
type system other than the addition of a new primitive
(ρd, ρr) map which maps pointers to values in regionρd

to pointers values in regionρr .
Figure 8 provides the interface to the hash table. The

empty primitive takes no arguments and creates and
empty hash table in regionρ, all the other primitives will
allocate any needed space for this hash table in this region.
The insert function adds a new entry in the hash table for
boxed values of typeα. Our lookupfunction searches the
table for an entry with the same pointer value as its sec-
ond argument returning the either pointer bound to it or
its third argument or a special value if it is not found. Im-
plementing a garbage collector that preservers sharing is
simply a matter of programming.

Update with Extra Space. The hash table approach re-
quires no serious modifications to our existing typing sys-
tem and the soundness is quite obvious. However, it adds
a significant amount of extra code to the trusted comput-
ing base. It also has some potential performance penalties
in terms of time and space. We can get better performance
in terms of time if we simply allow for null pointers and
update of values. Figure 9 provides a signature for the
new primitives.

A boxed value of typeα in regionρ that may be null
has the type ((α at ρ) opt). The constantnull is the null

nil : ∀α.∀ρ.(α at ρ) opt
value : ∀α.∀ρ.(α at ρ)→ (α at ρ) opt

getVal : ∀α.∀ρ.〈(α at ρ) opt, (α at ρ)〉 → (α at ρ)

update : ∀α.∀ρ.〈(α at ρ), α〉 {ρ}→ 〈〉

(α, ρ) obj≡ 〈(α at ρ) opt, α〉

Figure 9: Forwarding with Options and Update

pointer and the primitivevalueinjects a non-null pointer
into theopt type. ThegetVal primitive tests for a null
pointer and returns the value if it is not null or its second
argument if it is null. The update primitive destructively
updates a pointer with a new value.

Given these primitives we can define an(ρ, α) obj
which is actually an abbreviation for the pair
〈(α at ρ) opt, α〉. An unboxed integer which maybe
forwarded to regionρ would have type(int, ρ) obj. A
boxed integer object in regionρ′ which may be forwarded
to regionρ would have type((int at ρ′), ρ) obj. We
also need to change the type of ourgc copy function to

8

have the following intensional type

gc copy: ∀α.∀ρ.∀ρ′.∀ρ′′.α {ρ,ρ
′,ρ′′}→ (α[ρ,ρ′ := ρ′,ρ′′])

whereα[ρ′′,ρ′ := ρ′,ρ] denotes the simultaneous substi-
tution ofρ andρ′ with ρ′ andρ′′ respectfully.

The mutator code only looks at the second component
of this pair while the first component can be used by the
garbage collector to store forwarding pointers. Whenever
an object is created the mutator and collector should ini-
tialize the first field to null. This correctness requirement
is not captured in the type system. Unfortunately this ap-
proach requires that mutator code be run in the lexical
scope of the region that will contain forwarded objects
in the future, so both the current allocation space and the
future allocation space must be statically live at the same
time, but since the future allocation space will contain no
objects, there need not be any significant space penalty.

4 Conclusions

Efficiency From an algorithmic standpoint the ap-
proaches outlined above are competitive with traditional
unsafe collectors. However, we currently are not able to
safely encode collection algorithms that replace pointers
to values in one region with pointers to values in another.
Our approach does not require any more type information
than tag-free approaches[17]. The only extra cost is the
scanning required for implicit deallocation of regions.

Interface to Garbage Collectors. Most garbage col-
lectors are very closely tied to a particular code genera-
tor that maintains data-representation invariants that the
garbage collector needs to operate safely. Changes in
data-representations used by the code generator may re-
quire changes to garbage collectors and vice versa. Mis-
matches between the code-generator and garbage collec-
tor are the source of many hard-to-track down bugs in
practice.

Also notice that the traditional distinction between
the mutator and collector disappears. The collector is
just a term that is indistinguishable from the any other
term in the language. Optimizing compilers can per-
form optimizations on a whole program that includes the
collector. Along with reducing thetrusted computing
base(TCB) our approach allows one to formalize many
data-representation invariants explicitly in a well defined
type system, such that any type-preserving transformation
maintains garbage collector safety.

Being able to formalize these invariants has a very big
software engineering advantage since more bugs can be
caught early on in the development cycle. These invari-
ants can be used to aid the generation of Proof Carry-

ing Code (PCC) and Typed Assembly Language (TAL)
[12, 11], opening the potential of system that can verify
the safety of an entire program, without assuming the ex-
istence of a trusted garbage collector. Currently these sys-
tems use conservative collectors to reclaim storage.

Unlike, other region calculi, ours does not make any
a priori assumptions about which values are boxed and
unboxed. Values of typeint are unboxed integers while
values of type(int at ρ) are integers boxed in regionρ.
This explicit distinction also simplifies our proofs, since
the core calculus closely resembles standard typed lambda
calculi. This approach also demonstrates that is is easy to
extend existing typed lambda calculi used in compilers
with a notion of regions.

Implicit Deallocation. One reason Aiken et al. [1] and
Crary et al. [4] require a much more complicated static
analysis is that they are trying to guarantee statically that
it is safe to explicitly deallocate a region. This is undecid-
able because ofregion aliasing, which causes regions that
are statically distinct to become, at run time, aliased to the
same value. Both systems try to address the region alias-
ing problem with conservative static approaches. Crary et
al. track “uniqueness” information. Aiken et al. solve a
system of constraints over program control flow. These
approaches allow for deallocation to be a cheap constant
time operation. Our system is immune to the problems
associated with region aliasing, because our implicit ap-
proach will only deallocate regions which are known to
be syntactically dead at run time.

Related Work. The system described by Aiken et al.[1]
is expressive enough to implement our idea but requires
global analysis to guarantee safety. The system of Crary
[4] is also sufficiently expressive, and does not require a
global analysis to verify safety. However, their type sys-
tem is much more complicated. If we were to use the
Crary system we would be left with a small runtime TCB
but a much more complicated static checker to verify the
static safety properties.

To improve memory utilization of a region-based sys-
tem, one can integrate a trace-based garbage collector
with region managed memory [7]. Moreover an id-
iom seen in some region schemes refered to asdouble
copying[15] is basically an explicit two-space copying
garbage collector implemented on top of a safe region-
based scheme. Adding a collector to a region system
improves memory utilization, but it does not allow us to
maintain a small TCB.

There exists a safe runtime variant of regions that uses
dynamic reference counting [5] which has all the bene-
fits of static regions as well as good separate compilation
properties. However it requires a change in programming

9

model and leaves the burden of deallocation to the pro-
grammer. Explicit regions provide a simple safe and effi-
cient manual allocation mechanism to the programmer.

Future Work. Because our types track the location of
an object, updating a pointer to a value in one region with
a pointer to a value in another is an unsound operation. We
are investigating approaches that will allow this so we can
remove the overhead of having to reserve space for for-
warding pointers, since many unsafe garbage collectors
perform this optimization. Being able to update pointers
in this way is also important for implementinggenera-
tional collectionschemes. Ideally a sound type system
that can handle the above will allow us to encode many of
the pointer/non-pointer store invariants needed to imple-
ment write barriers for generational systems. We intend to
implement a prototype system using the techniques out-
lined so far to better understand the performance proper-
ties of the various approaches.

References

[1] A IKEN, A., FÄHNDRICH, M., AND LEVIEN,
R. Better static memory management: Improv-
ing region-based analysis of higher-order languages.
In Proceedings of the ACM SIGPLAN’95 Confer-
ence on Programming Language Design and Imple-
mentation (PLDI)(La Jolla, California, 18–21 June
1995), pp. 174–185.SIGPLAN Notices30(6), June
1995.

[2] BANERJEE, A., HEINTZE, N., AND RIECKE, J. G.
Region analysis and the polymorphic lambda cal-
culus. In Proceedings, Fourteenth Annual IEEE
Symposium on Logic in Computer Science(Trento,
Italy, 2–5 July 1999), IEEE Computer Society Press,
pp. 88–97.

[3] BIRKEDAL , L., TOFTE, M., AND VEJLSTRUP, M.
From region inference to von Neumann machines
via region representation inference. InProceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages(Jan. 1996),
ACM Press, pp. 171–183.

[4] CRARY, K., WALKER, D., AND MORRISETT, G.
Typed memory management in a calculus of capa-
bilities. In Principles of Programming Languages
(San Antonio, TX, Jan. 1999), pp. 262–275.

[5] GAY, D., AND AIKEN, A. Memory manage-
ment with explicit regions. InProceedings of
the ACM SIGPLAN’98 Conference on Program-
ming Language Design and Implementation (PLDI)

(Montreal, Canada, 17–19 June 1998), pp. 313–323.
SIGPLAN Notices33(5), May 1998.

[6] GUTTMAN , J., RAMSDELL, J., AND WAND, M.
Vlisp: A verified implementation of scheme.Lisp
and Symbolic Computation(94).

[7] HALLENBERG, N. Combining garbage collection
and region inference in the ML Kit. Master’s the-
sis, Department of Computer Science, University of
Copenhagen, 1999.

[8] HARPER, R., AND MORRISETT, G. Compiling
polymorphism using intensional type analysis. In
Principles of Programming Languages(San Fran-
cisco, Jan. 1995).

[9] M INAMIDE , Y., MORRISETT, G., AND HARPER,
R. Typed closure conversion. InPrinciples of Pro-
gramming Languages(1996), pp. 271–283.

[10] MORRISETT, G., FELLEISEN, M., AND HARPER,
R. Abstract models of memory management. In
Functional Programming and Computer Architec-
ture (San Diego, 1995).

[11] MORRISETT, G., WALKER, D., CRARY, K., AND

GLEW, N. From System F to typed assembly lan-
guage. InPOPL ’98: 25th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages(Jan. 1998), ACM Press, pp. 85–97.

[12] NECULA, G. Proof-carrying code. In24th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages(New York, Jan. 1997),
ACM Press, pp. 106–119.

[13] SHAO, Z. Flexible representation analysis. InPro-
ceedings of the 1997 ACM SIGPLAN International
Conference on Functional Programming(Amster-
dam, The Netherlands, 9–11 June 1997), pp. 85–98.

[14] TARDITI , D., MORRISETT, G., CHENG, P.,
STONE, C., HARPER, R., AND LEE, P. TIL: A
type-directed optimizing compiler for ML. InPro-
ceedings of the ACM SIGPLAN ’96 Conference on
Programming Language Design and Implementa-
tion (Philadelphia, Pennsylvania, 21–24 May 1996),
pp. 181–192.SIGPLAN Notices31(5), May 1996.

[15] TOFTE, M., BIRKEDAL , L., ELSMAN, M., HAL -
LENBERG, N., OLESEN, T. H., SESTOFT, P., AND

BERTELSEN, P. Programming with reigons in the
ML Kit (for version 3). Tech. Rep. DIKU-TR-98/25,
University of Copenhagen, December 1998.

10

[16] TOFTE, M., AND TALPIN, J.-P. Implementation
of the typed call-by-value lambda-calculus using a
stack of regions. InProceedings from the 21st an-
nual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages(1994).

[17] TOLMACH, A. Tag-free garbage collection using
explicit type parameters.LISP Pointers 7, 3 (July-
Sept. 1994), 1–11.

[18] TOLMACH, A., AND OLIVA , D. P. From ML to
Ada: Strongly-typed language interoperability via
source translation.Journal of Functional Program-
ming 8, 4 (July 1998), 367–412.

[19] WRIGHT, AND FELLEISEN. A syntactic approach to
type soundness.Information and Computation (for-
merly Information and Control) 115(1994).

A Type Soundness ofλρ

A well typed program is in astuckstate if from〈∆, e〉
there does not exist〈∆′, e′〉 such that〈∆, e〉 7−→ 〈∆′, e′〉
ande is not a value.

Theorem 1 (Type Soundness)If ∆;Γ ` e : s and
〈∆, e〉 7−→∗ 〈∆′, e′〉 then〈∆′, e′〉 is not a stuck state.

Proof: (Sketch) By Subject Reduction and Progress
Lemmas.

Lemma 1.1 (Subject Reduction)If ∆;Γ ` e : s and
〈∆, e〉 7−→ 〈∆′, e′〉 then∆′;Γ ` e′ : s

Proof: (Sketch)

Case r get put 〈∆, E[(get[ρ] (put[ρ] v))]〉 7−→
〈∆, E[v]〉 whereρ ∈ ∆
By assumption∆;Γ ` E[(get[ρ] (put[ρ] v))] : t. By
induction on the typing derivation and inspection of the
t put rule∆;Γ ` E[v] : t.

Case r letr 〈∆, E[(letr ρ in e)]〉 7−→ 〈∆∪{ρ}, E[e]〉
By assumption∆;Γ ` E[(letr ρ in e)] : t. By induction
on the typing derivation and inspection of thet letr typing
judgement we conclude that∆∪{ρ};Γ ` E[e] : t.

Case r only 〈∆, E[(only ∆′ e)]〉 7−→ 〈∆′, e〉
By assumption∆;Γ ` E[(only ∆′ e)] : Ans. By induction
of the typign derivation and inspection of thet only rule
∆′;Γ ` e : Ans.

Case r dealloc 〈∆, e〉 7−→ 〈∆ \ {ρ}, e〉 where ρ 6∈
FRV(e)
By assumption∆;Γ ` e : t and sinceρ 6∈ FRV(e). Since
ρ 6∈ FRV(e) then∆\{ρ};Γ ` e : t by context strengthen-
ing.

All other cases are standard.

Lemma 1.2 (Progress)If ∆;Γ ` e : s then either:

• There exists〈∆′, e′〉 such that〈∆, e〉 7−→ 〈∆′, e′〉, or

• e is a value.

Proof: (Sketch) By structural induction on expressions.

B Free Region Variables

FRV(int) = {}

FRV(s ∆→ t) = FRV(s)∪FRV(t)∪∆
FRV(∀ρ.s) = FRV(s)\{ρ}

FRV((sat ρ)) = FRV(s)∪{ρ}

FRV(Ans) = {}
FRV(x) = {}
FRV(n) = {}

FRV((+1 e)) = FRV(e)
FRV((−1 e)) = FRV(e)

FRV((if0 e e1 e2)) = FRV(e)∪FRV(e1)∪FRV(e2)
FRV((λx : s.e)) = FRV(e)∪FRV(s)

FRV((e1 e2)) = FRV(e1)∪FRV(e2)
FRV((Λρ.e)) = FRV(e)\{ρ}
FRV((e [ρ])) = FRV(e)∪{ρ}

FRV((letr ρ in e)) = FRV(e)\{ρ}
FRV((only ∆ e)) = FRV(e)∪∆
FRV((put[ρ] e)) = FRV(e)∪{ρ}
FRV((get[ρ] e)) = FRV(e)∪{ρ}
FRV((µ f : s.e)) = FRV(e)∪FRV(s)
FRV((exit e)) = FRV(e)

11

