
Dynamic Join and Departure in Shared Object Middlewares

Yuanyuan Zhou and Kai Li
Computer Science Department

Princeton University, Princeton, NJ 08544, U.S.A.
{yzhou, li}@cs.princeton.edu

phone: (609)258-1795
FAX: (609)258-1771

Abstract

Collaborative applications are increasingly being
deployed to support interactions among widely
distributed users. Replication of state that enables
interaction among distributed users can be used to
provide acceptable repsonse time in the presence
of high communication latencies. Recent research
has suggested using shared objects as the mid-
dleware for developing collaborative applications
to minimize communication traffic. One of the
key issues in using shared objects middleware to
support collaborative applications is to allow nodes
to dynamically join and departure. This paper
presents four methods to manage distributed object
directories in the presence of dynamic join and
departure operations in shared objects middleware:
full redistribution, master, indexed hashing and on-
demand indexed hashing. We have compared these
four schemes with four criteria: even distribution,
memory overhead, number of messages and algo-
rithm complexity. Among these four schemes, the
two indexed hashing schemes on average are better
than the other two schemes.

1 Introduction

The advent of the World Wide Web functionality
by using Java, Plugins, ActiveX, etc., has enabled
a range of collaborative applications such as shared
whiteboards, calendars and editors, to be deployed
to support interactions among widely distributed
users. The interactive nature of such applications
requires that the effect of a user’s operation is seen

by all the participants in a timely fashion. The
challenge arises in how to provide fast interactive
response time in a wide-area distributed environ-
ment, where high latencies are common.

Distributed users in collaborative applications
interacts via shared state, a set of shared objects.
Recent research [15, 17] has suggested that replica-
tion of shared objects has the potential to reduce
response time by performing operations on the local
copies of shared objects. In addition, replication
can also reduce communication traffic by batching
and propagating local updates to other users on
demand. However, it introduces the problem of
replica consistency. A natural solution to this prob-
lem is to extend conventional distributed shared
virtual memory or shared objects systems (DSM)
to support collaborative applications on the wide
area network.

Shared virtual memory [14] or shared object
approaches [1, 2] can provide a shared single ad-
dress space on a network of computers without
physically shared memory. These systems maintain
memory coherence transparently to applications.
Although shared memory is an attractive program-
ming model, it has not been used for distributed
collaborative applications because of lacking the
ability to allow nodes to dynamically join and
departure.

Dynamic join and departure are indispensable
operations for distributed collaborative applica-
tions. Since collaborative applications such as
multiple-party conferencing, editing and gaming
require the ability to allow participants to dy-
namically join or withdraw, the shared objects

1



middleware needs to provide such support.
The key issue in implementing dynamic join

and departure operations is to deal with the di-
rectory information. The state-of-the-art conven-
tional DSM systems all use distributed directories
to maintain memory consistency. Upon a user
departure, the directory information on the leaving
participant needs to be transferred to remaining
participants to avoid losing information. When
a user joins, it needs to have a way to access
the directory information correctly and efficiently.
A good strategy to implement dynamic join and
departure should keep the directory information
evenly distributed to avoid communication bottle-
necks.

This paper presents four methods to manage
distributed object directories in the presence of
dynamic join and departure operations with shared
object middlewares: full redistribution, master,
indexed hashing and on-demand indexed hashing.
The full redistribution scheme can maintain even
distribution, but the join and departure operations
are expensive and requires many messages. The
master approach can reduce the complexity and
the number of messages for join and departure
operations, but it requires more memory and does
not have the even distribution property. The two
indexed hashing schemes work better than the
other two schemes when all factors are considered.
Compared with the basic indexed hashing scheme,
the on-demand scheme can reduces the number of
messages for join operations with the cost of the
uneven distribution and possible 3-hop messages for
locate operations.

2 Background

Shared object middlewares maintain memory co-
herence mostly at object granularity [14]. They use
directories to keep track of the information about
each object in the shared object space. An ob-
ject can be marked shared-read or exclusive-write.
To implement the sequential consistency [13], for
example, each object can have multiple copies if
it is marked shared-read whereas it can have only
one exclusive copy if it is marked exclusive-write.
Read and write accesses trigger state transitions

and object movements to maintain the replica
consistency.

The core data structure in shared object mid-
dlewares is the directory. It contains an entry for
each object to maintain memory consistency among
distributed replicas. For sequential consistency,
each entry consists of the following fields:

• state: indicates whether the object is null,
shared-read, or exclusive-write.

• owner or home: indicates which location has
(or possibly has) the most up-to-date copy of
the object.

• copyset: keeps track which locations have a
shared-read copy.

For relaxed consistency models, each entry will
also contain information such as vector timestamps,
write notices and so on. A coherence operation
(such as a read or write access ) will read and/or
modify the entry associated with the shared object.
Consider the sequential consistency protocol as an
example, when reading an object in the null state,
a participant will use the directory entry to find out
where to get a copy and add itself into the copy-
set. Before writing to an object in the shared-read
state, a participant will access the directory entry
to invalidate all the read copies of the object and
change the state of the object to write-exclusive
state. If the entry is not in the local memory, it
will read or modify the entry in the remote location
using messages.

The directory can be centralized, fully replicated
or distributed. Although the centralized approach,
which keeps a single copy of the directory on one
location, is simple, it requires lots of messages going
to the central location, causing a bottleneck. The
fully replicated approach requires more memory
resources and broadcast hardware to be efficient.
Therefore, it is not practical for collaborative ap-
plications on a wide area network. The preferred
approach is to distribute entries among multiple
locations, because it can balance network traffic
and remote services, and reduce memory overhead.
A previous paper provides detailed comparisons
of various approaches in conventional DSM sys-
tems [14].

2



A common way to locate a distributed directory
entry for a shared object is to use a simple hashing
function:

locate(b) = b mod n.

where b is the object number (or address) and
n is the number of participants in the system.
This approach assumes that each participant in
the system has a unique id between 0 and n − 1.
This approach takes constant time to find out the
location holding the entry for the given shared
object, requiring at most one message. It requires
no extra memory space for the directory because
each entry only has one copy. It can evenly
distribute all directory entries among participants
in the absence of dynamic join and departure. Most
of conventional DSM systems use this approach.

3 The Problem

The question addressed in this paper is how to
manage distributed directories in the presence of
dynamic join and departure with shared object
middlewares. When a user departs, all entries
located in this user’s machine need to move to other
participants. When a user joins, it needs to offload
some entries from the old participants in order to
avoid the situation where all entries are merged into
a small set of participants after a series of joins and
departures.

Obviously, a straightforward approach with the
simple hashing scheme described in Section 2 does
not work for dynamic join and departure operations
without modifications. For example, initially we
have participant 0,1,2, and 3 . If participant 2
departs, not only all entries on participant 2’s
machine need to be transferred to the others,
but some entries on the remaining participants
also need to be redistributed because the hash
function locate(b) = b mod 4 has been changed to
locate(b) = b mod 3. The entry for the object 7,
which was initially at participant 3 according to
the old hash function, now hashes to participant
1 according to the new hash function. The same
situation occurs when a user joins. Therefore, we
need to consider solutions to take care of three
operations: locate, join and departure.

To evaluate a method, we consider four factors:

• Even distribution Whether the directory
entries are evenly distributed implies how well
the network traffic and the workload of re-
mote services are balanced. In practice, a
conventional DSM system with a centralized
directory performs substantially worse than a
distributed approach.

• Number of messages. Shared object mid-
dlewares use message passing to transfer data
and control information among distributed
users. Since wide-area distributed environ-
ment has high latencies, it is important to re-
duce the number of messages when performing
operations.

• Memory overhead. System memory over-
head has significant impact on the scalability
of the middleware. If the system data struc-
ture occupies too much memory, it will limit
applications’ problem sizes, and it might also
degrade the overall performance by polluting
the cache and/or the physical memory.

• Complexity of the algorithm. In a shared
object middleware, the locate operation is
a frequent operation. It is used each time
a coherence operation is invoked; it is very
important to keep the access time as little as
possible. Although join and departure opera-
tions are not as frequent as locate operations,
it should be fast because it determines the
responsiveness of an application.

We ignore the amount of data sent for each
operation in this paper. The main reason is that
how much data to be transferred varies with differ-
ent consistency protocols and different applications.
The amount of data transferred dominates the
amount of directory entries.

4 Solutions

This section presents four solutions to manage
distributed directories in the presence of dynamic
join and departure operations with shared object

3



middlewares: full redistribution, master , indexed
hashing, and on-demand indexed hashing.

For convenience, we use the following notations:

• m: the number of directory entries.

• n: the number of participants.

4.1 Full Redistribution Scheme

The full redistribution scheme fixes the problem of
the old hashing algorithm for dynamic join and
departure operations by reshuffling the entries ac-
cording to the new hash function after a participant
joins or departs. It first rehashes all the entries
using the new hash function. If the new location
for an entry is different from the old location, the
entry will be moved to the new location using
messages. In a real implementation, all entries from
the same old location to the same new location can
be packed and sent together with one large message.
Figure 1 shows the directory distribution before
and after participant 2 joins. Entry 3 is initially
at participant 1 before the join operation and it is
moved to participant 0 after participant 2 joins in.
Departure operations work in a similar way.

This simple modification can keep the directory
entries distributed evenly among all participants in
the presence of joins and departures. Each locate
operation still takes constant time and requires at
most one message. The main drawback of this
scheme is the intensive overhead for dynamic join
and departure operations because a full reshuffling

... ...

... ... ...

user 0 user 1

0 1

2 3

0 1 2

3 4 5

user 0 user 1 user 2

3,.. 4,.. 2,.. 5,...

before user 2 joins

after user 2 joins

Figure 1: A example of a join operation in full
redistribution scheme(arrows indicate messages,
numbers on arrows indicate the entries sent by
messages)

is expensive and requires a lot of messages. The
analytical complexity and number of messages are
summarized in the following simple theorem.

Theorem 1 The full redistribution scheme has
the complexity of Θ(m) and requires Θ(n2) total
number of messages for join and departure opera-
tions.

Proof The complexity part is obviously true
since all the entries in the directory have to be
rehashed. One can prove that the scheme requires
Θ(n2) total number of messages by showing that
at least one entry needs to be transfered between
any two participants. Suppose n1 and n2 are any
two arbitrary participants and n1 ≥ n2, then object
(n1 − n2)n+ n1 is initially rehashed at participant
n1. After the (n+1)th participant joins in, the new
hash function should hash this object at participant
n2 since (n1 − n2)n+ n1 = (n1 − n2)(n+ 1) + n2.

Dynamic join and departure operations are very
expensive with the full redistribution scheme. In
most of the applications, the number of entries can
be very large (can be up to 220). The Θ(n2) total
number of messages can also become a problem
when we have a lot of participants(for example,
n = 64), which is usually the case in collaborative
applications.

4.2 Master Scheme

The master scheme combines the ideas of the
centralized and distributed directory approaches.
In this scheme, a participant is assigned to be the
master. The master has a master table containing
the locations of all the entries. When a participant
joins, no action is taken to maintain the directory.
When a participant departs, only the entries on
the departing participant need to be sent to new
locations and all other entries will remain at old
location. When a participant accesses an entry,
it sends a message to the new location using the
new hash function, and if the new location does
not have the entry, it requests the master to fetch
it from the old location, and the master changes the
corresponding entry in the master table to point to
the new location. Future accesses to the same entry
are handled by the new location.

4



1

2

3

requester

new location

master

old location

4

Figure 2: Four-hops procedure in the master
scheme

Figure 2 shows the four hops procedure to access
an entry which is still in the old location. When the
master departs, a new master will be assigned, and
the old master sends the master table to the new
master.

In the master scheme, the overhead of dynamic
join and departure operations is relatively small.
Join operations have complexity of O(1) and re-
quire no message overhead. The complexity for
departure operations is O(1) in the best case and
O(m) in the worse case, where m is the number
of entries. The best case occurs when a participant
joins and departs immediately. Uneven distribution
results in the worst case. For example, initially,
participant 1 is the only participant, so participant
1 holds all the entries. Then other participants
join the computation. And if no entries are moved
from participant 1 to new locations because they
are never accessed, participant 1 needs to shift all
the entries to others when it departs.

This scheme has four disadvantages:

• Directory entries distribute unevenly among
participants. Some locations may contain
most of the entries while others only have a
few. As we have observed in many systems,
uneven distribution can significantly degrade
performance.

• Locate operation requires a four-hop message
when the entry is not at the new location,
though future accesses need at most 1 message.

• There can be a bottleneck at the master. It
may limit the scalability of the system.

2

3

0

1

index table

0

0

1

1

before user 2 joins

2

3

0

1

2

0

1

1

after user 2 joins

Figure 3: The index table before and after user 2
joins

• the master table may occupy too much mem-
ory, and it is proportional to the number of
directory entries.

4.3 Indexed Hashing Scheme

Main Idea

The main idea of the indexed hashing scheme is to
use a hash function independent of the number of
participants while still ensuring even distribution
of the directory. To locate the entry for a given
shared object, the object number is hashed into an
index i in a small table called indexed table using
a universal hash function h. The ith element in
the indexed table points to the location with the
directory entry. In other words, for a given object
b, participant indexTable[h(b)] holds the directory
entry. For convenience, we use N to denote the
maximal number of participants the middleware
supports. The index table has N entries. Figure 3
shows an indexed table t with N = 4 and 2
participants.

When a user joins, some entries in the indexed
table are changed to point to the new participant.
When a user departs, all the entries pointing to
the departing user are changed to point to other
participants. Figure 3 shows an example of how
the indexed table is changed after user 2 joins.

Data Structures

The main data structures include an index table, a
participant list and two pointers. Every participant

5



has a copy of these data structures. All copies are
kept identical by running the exact same algorithms
on all participants every time a user joins or
departs.

• Index Table
All entries pointing in the index table to the
same location are linked together. Each entry
has two fields:

– next: a pointer to the next index table
entry mapped to the same participant;

– location: a pointer to the location in the
participant list.

• Participant List.
All participant structures are linked together
as a ring. Each participant structure has the
following fields:

– id: the sequence number assigned to the
participant;

– load: the workload of the participant, or
the number of entries in the index table
mapped to this location;

– first: a pointer to the first entry in the
index table mapped to this location;

– next: a pointer to the next participant.

• L Pointer lp.
lp points to the first participant with lighter
workloads in the participant list.

• H Pointer hp.
hp points to the first participant with heavier
workloads in the participant list.

Initial State

Initially, user 0 is the only participant, and both lp,
hp and every entry on the index table point to user
0.

Dynamic Join Algorithm

When a participant receives a new participant’s
join notification, it runs the join algorithm to
change the index table and decides which entries
should go to the new user. The join procedure goes

through the elements in the participant list starting
from the one pointed by hp until the workloads are
balanced. Each iteration changes one entry in the
indexed table to point to the new location. After
the algorithm finishes, a link list called moving
list contains all the entries which need to send to
the new location from the current location. The
pseudo-code for the algorithm is as follows:

1. repeat until the work load of participant a

reaches the minimum workload (lp→ load)

(a) remove the first entry e from the entry
list of the participant pointed by hp;

(b) add e to a’s entry list;

(c) a→ load+ +;

(d) hp→ load−−;

(e) if hp points to the current location run-
ning this algorithm, move e to the sending
list;

(f) hp = hp→ next;

2. move all directory entries which are hashed to
indexes contained in the moving list to new
location a;

3. add a into the participant list right before hp.

Dynamic Departure Algorithm

When a user a departs, all remaining participants
modify their index tables by performing the fol-
lowing departure procedure. The algorithm starts
from the participant pointed by lp and distributes
all the entries that point to the departing location
to other participants in a round-robin fashion. The
algorithm works as follows:

1. remove a from the participant, if hp == m,
hp = hp → next; and if lp == m, lp = lp →
next;

2. repeat until the work load of participant a

equals 0

(a) remove the first entry e from participant
a’s entry list;

(b) add e to the entry list of the participant
pointed by lp;

6



1 2 2

1 2 2

next

Index Table

0 2 0

nill

nill

3

1

id load first next lp

hp

0

1

2

3

(a) before user 2 joins.

Participant List

next location

Index Table

0 1 1

nill

nill

3

id load first next lp

hp

0

1

2

3

(b) after user 2 joins.

nill

Participant List

2 1 0

location

Figure 4: An example for the dynamic join algo-
rithm in the indexed hashing scheme(darker num-
bers and arrows are changed values).

(c) a→ load−−;

(d) lp→ load+ +;

(e) lp = lp→ next;

3. if I am departing, send directory entries to
other remaining participants, otherwise wait
for entries from user a

Figure 4 shows an example of how the indexed
table and the participant list change after a user
joins.

Properties

The indexed hashing scheme takes constant time
to locate an entry. The memory overhead for this
scheme is small since we only need memory space
to hold the small indexed table and the participant
list. For N = 1, 024, the maximal memory space
needed for this scheme is less than 16K bytes.

One of the main advantage for this scheme is
it can evenly distribute directories among partici-
pants. The following theorem states the property.

Theorem 2 In the indexed hashing scheme, the
workload of any participant is either bNn c or dNn e,
where N is the maximal number of users the system
supports.

3

3

3

3

3 2

2
hp

lp2

Figure 5: An example of the participant list

To simplify the problem, we only look at work-
loads in the participant list. Figure 5 shows
the participant list for 8 participants. Each circle
represents a user, The numbers inside the circle
is the workload. hp and lp point to users in the
participant list.

To prove theorem 2, it suffices to prove the
following lemma.

Lemma 1 All the users in the path from lp to
the predecessor of hp have workloads of bNn c, while
the others have workloads of dNn e.

The rigorous proof of the lemma can be done by
induction. The idea of the proof, however, is not
difficult. We can prove it by showing that

1. hp always points to the first user with heavier
workloads;

2. lp always points to the first user with lighter
workloads;

3. if hp 6= lp, then hp→ load = lp→ load+ 1;

4. hp and lp break the participant list into 2 lists:
l1 = [hp, . . . , lp) and l2 = [lp, . . . , hp). Any
users in l1 has the same workload as hp, and
any users in l2 has the same workload as lp.

All the four properties are obviously true with
the initial state. They also hold after every
iteration of the join and departure algorithms. In
the join algorithm, each iteration moves the first
entry mapped to user hp to the new participant,
and hp then moves to the next user in the list.
Now the user pointed by the old hp has the same
workload as lp, and the user pointed by the new hp

7



will be the first one with heavier workloads. And
the workloads for all other users are unchanged.
Therefore, the four properties are still true. Sim-
ilarly, in the departure algorithm, each iteration
moves one workload from the leaving user to the
user pointed by lp, and lp slides down to the next
one in the list. So the user pointed by the old lp

has the same workload as hp, and the user pointed
by the new lp will be the first one with lighter
workloads.

After we proved the even distribution property
of the indexed hashing scheme, we can easily
figure out the complexity for join and departure
operations. When a user joins, every iteration of
the algorithm moves one unit of workload from
an old location to the new location. And the
algorithm finishes when the workload at the new
participant reaches the same workload as lp, which
is N

n . Therefore, only N
n iterations are executed.

Since every participants sends message only to
the new participant, the total number of messages
is O(n). Similarly, when a user departs, each
iteration moves one workload from the leaving user
to other participants. Since the leaving location
has [Nn ] workloads, the algorithms finish after [Nn ]
iterations. In summary, we have the following
corollary.

Corollary 1 The cost of a join or departure
operation with n participants is Θ(Nn ). The total
number of network messages introduced by a join
or departure operation is O(n).

4.4 On-Demand Indexed Hashing
Scheme

On-demand indexed hashing scheme is a modifica-
tion to the basic indexed hashing scheme. It has
the same departure algorithm as the basic scheme.
The only difference from the basic scheme is that
the on-demand scheme postpones the redistribution
of the entries until the first accesses. After the
join algorithm finishes, all entries which need to
be moved to the new location from the current
location are stored in the moving list. When the
new participant receives a message requesting a

directory entry which is still in the old location, 3-
hop messages are paid to fetch from the old location
all directory entries hashed to the same entry in
the index table. To achieve this, a special data
structure is needed in order to keep track of the old
locations for the unmoved entries.

The complexity for the dynamic join and de-
parture of this approach is the same as the basic
approach. But a join operation needs not send any
message. The tradeoff is that it may require 3-hops
messages to locate the entry. Similar to the master
scheme, it does not maintain even distribution
among participants. The memory overhead is
reasonable since the table keeping old locations are
distributed among all locations.

4.5 Summary

Now, we briefly summarize this section by compar-
ing all four methods to manage object directories
in the presence of dynamic join and departure
operations with shared object middlewares. Table 1
illustrates the difference of the four solution using
the four criteria described in Section 3.

As shown in Table 1, the full redistribution
scheme has the highest complexity and number of
messages for join and departure operations. For the
master scheme, the uneven distribution and the 4-
hop messages for the locate operation can degrade
the system performance. Moreover, the significant
amount of memory overhead and the bottleneck
caused by the master make this method unscalable.
When all factors are considered together, the two
indexed hashing scheme work better than the other
two. The on-demand scheme can reduces the
number of messages for join operations with the
cost of the uneven distribution and possible 3-hop
messages for locate operations.

5 Related Work

Many DSM systems have been developed in the
past to provide parallel applications with a shared
memory or shared object abstraction. An early
paper [14] introduced the concept of shared vir-
tual memory and compared several centralized and
distributed directory approaches in the context

8



properties full redistribution master indexed hashing on-demand
distribution even uneven even uneven

memory overhead 0 big small medium
number locate 1 1 or 4-hops 1 1 or 3-hops

of join Θ(n2) 0 O(n) 0
messages departure Θ(n2) O(n) O(n) O(n)

locate O(1) O(1) O(1) O(1)
complexity join Θ(m) O(1) Θ(Nn ) Θ(Nn )

departure Θ(m) best O(1);worst O(m) Θ(Nn ) Θ(Nn )

Table 1: Comparison(m is the number of directory entries, n is the number of participants and N is the
maximal number of participants the system supports)

of sequential consistency. Recent shared virtual
memory systems [3, 11, 4, 16, 18, 12] used various
relaxed consistency models. Shared object sys-
tems [1, 2, 9] maintain memory consistency in the
same way as the shared virtual memory approach
except at object level. None of these systems, to
the best of our knowledge, is used for distributed
and collaborative applications because of lacking
the ability to allow nodes to dynamically join and
departure.

There are several recent proposals to use shared
object or replicated objects for Internet collabora-
tive applications such as discussion forums, collab-
orative editors and Internet games. For example,
Objent has provided a framework for high-end col-
laborative applications [15]. [17] has proposed and
analyzed a dynamic replication algorithm. They
did not describe how to support dynamic join and
departure operations.

Other distributed systems has also encountered
the directory management problem for dynamic
join and departure operations. The global memory
management project [8] has a centralized method
similar to the master scheme in this paper. It
mentioned that when a new workstation adds in,
each machine distributes appropriate portions of
the global-cache-directory to the new workstation;
and when a machine departs, the global-cache-
directory is also redistributed. However, no further
detail about the join and departure algorithms has
been given.

Indexed extendible hashing is a modification to

the extendible hashing scheme. Indexed extendible
hashing and extendible hashing are mainly used in
database systems or files systems to allow hashing
tables to grow or shrink dynamically without sac-
rificing small cost of the retrieval time [7, 6, 5]. We
use the indexed hashing method to manage object
directories in the presence of dynamic join and
departure operations in shared object middlewares.

Universal hashing function for shared memory
was analyzed in [10]. But it did not consider
dynamic join and departure operations.

6 Conclusions

This paper presented four methods to manage
distributed object directories in the presence of
dynamic join and departure operations with shared
objects middleware: full redistribution, master,
indexed hashing and on-demand indexed hashing.

We have compared these four schemes with
four criteria: even distribution, memory overhead,
number of messages and algorithm complexity.
Among these four schemes, the two indexed hashing
schemes on average are better than the other two
schemes. Compared with the basic indexed hashing
scheme, the on-demand scheme can reduce the
number of messages for join operations with the
cost of the uneven distribution and possible 3-hop
messages for locate operations. The full redistri-
bution scheme can maintain even distribution but
the join and departure operations are expensive
and requires many messages. Although the master

9



scheme can reduce the complexity and the number
of messages for join and departure operations, but
it loses the even distribution property and the
memory overhead and the centralizer limits its
scalability.

Note to reviewers: We are working on our
implementation to evaluate the four schemes. The
experimental results will be included in our final
version, if the paper is accepted.

References

[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda
and Friends. IEEE Computer, 19(8):26–34, August
1986.

[2] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum.
Orca: A Language for Parallel Programming of Dis-
tributed Systems. IEEE Transactions on Software
Engineering, 18(3):190–205, March 1992.

[3] J.K. Bennett, J.B. Carter, and W. Zwaenepoel.
Munin: Distributed Shared Memory Based on
Type-Specific Memory Coherence. In Second ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 168–176, Seattle,
Washington, March 1990.

[4] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon.
The Midway Distributed Shared Memory System.
In Proceedings of the IEEE COMPCON ’93 Con-
ference, February 1993.

[5] Soon M. Chung. Indexed Extendible Hashing
for Databases,. Technical Report WSU-CS-91-02,
Washington State University, 1991.

[6] Carla Schlatter Ellis. Extendible Hashing for
Concurrent Operations and Distributed Data. In
Proceedings of the Second ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems.

[7] Ronald Fagin, Jürg Nievergelt, Nicholas Pippenger,
and H. Raymond Strong. Extendible Hashing —
A Fast Access Method for Dynamic Files. ACM
Transactions on Database Systems, 4(3):315–344,
September 1979.

[8] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R.
Karlin, and H. M. Levy. Implementing Global
Memory Management in a Workstation Cluster. In
Proc. of the 15th ACM Symp. on Operating Systems
Principles (SOSP-15), pages 201–212, December
1995.

[9] Kirk L. Johnson, M. Frans Kaashoek, and Deb-
orah A. Wallach. CRL: High-Performance All-
Software Distributed Shared Memory. In Proceed-
ings of the 15th Symposium on Operating Systems
Principles, December 1995.

[10] Anna R. Karlin and Eli Upfal. Parallel Hashing—
An Efficient Implementation of Shared Memory
(Preliminary Version). In Proceedings of the Eigh-
teenth Annual ACM Symposium on Theory of
Computing, pages 160–168, Berkeley, California,
28–30 May 1986.

[11] P. Keleher, A.L. Cox, S. Dwarkadas, and
W. Zwaenepoel. TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating
Systems. In Proceedings of the Winter USENIX
Conference, pages 115–132, January 1994.

[12] Leonidas Kontothanassis, Galen Hunt, Robert
Stets, Nikolaos Hardavellas, Michal Cierniak, Srini-
vasan Parthasarathy, Wagner Meira, Sandhya
Dwarkadas, and Michael Scott. VM-Based Shared
Memory on Low-Latency, Remote-Memory-Access
Networks. Proc., 24th Annual Int’l. Symp. on
Computer Architecture, June 1997.

[13] Lesile Lamport. How to Make a Multiprocessor
Computer That Correctly Executes Multiprocessor
Programs. IEEE Transactions on Computers, C-
28(9):690–691, 1979.

[14] Kai Li and Paul Hudak. Memory Coherence in
Shared Virtual Memory Systems. In Proceedings
of the 5th Annual ACM Symposium on Principles
of Distributed Computing, pages 229–239, August
1986. A revised version appeared in ACM Transac-
tions on Computer Systems, 7(4):321–359, Novem-
ber 1989.

[15] K.Schwan F. Bustamante T. Rose M. Ahamad,
R. Das and D. Zhou. Objent: A Framework for
High-end Collaborative Applications. Technical
report.

[16] D.J. Scales, K. Gharachorloo, and C.A. Thekkath.
Shasta: A Low Overhead, SOftware-Only Ap-
proach for Supporting Fine-Grain Shared Memory.
In The 6th International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, October 1996.

[17] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang.
An Adaptive Data Replication Algorithm. ACM
Transactions on Database Systems, 22(2):255–314,
June 1997.

10



[18] Y. Zhou, L. Iftode, and K. Li. Performance Evalua-
tion of Two Home-Based Lazy Release Consistency
Protocols for Shared Virtual Memory Systems. In
Proceedings of the Operating Systems Design and
Implementation Symposium, October 1996.

11


