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Abstract

Out-of-core applications perform poorly in paged virtual
memory (VM) systems because demand paging involves slow
disk I/O accesses. Much research has been done on reducing
the I/O overhead in such applications by either reducing the
number of I/Os or lowering the cost of each I/O operation.

In this paper, we investigate a method that combines fine-
grained threading with a memory server model to improve
the performance of out-of-core applications on multicomput-
ers. The memory server model decreases the average cost
of I/O operations by paging to remote memory, while the
fine-grained thread scheduling reduces the number of I/O
accesses by improving the data locality of applications. We
have evaluated this method on an Intel Paragon with 7 ap-
plications. Our results show that the memory server system
performs better than the VM disk paging by a factor of 5 for
sequential applications and a factor of 1.5 to 2.2 for parallel
applications. The fine-grained threading alone improves the
VM disk paging performance by a factor of 10 and 1.2 to 3
respectively for sequential and parallel applications. Overall,
the combination of these two techniques outperforms the
VM disk paging by more than a factor of 12 for sequential
applications and a factor of 3 to 6 for parallel applications.

1 Introduction

Out-of-core applications involve data sets that are too large
to fit in main memory. Many astrophysics modeling, com-
putational biology and engineering problems are examples
of such applications [6, 7, 19]. For these applications,
main memory simply serves as a small cache in the memory

hierarchy, and the bulk of the data must reside on disks
or other secondary storage. There are three categories
of out-of-core applications: sequential applications, parallel
applications, and message-passing parallel applications with
uneven data partitioning. The last one is viewed as a separate
category because its memory requirements on some nodes are
greater than physical memory sizes, even though the total
data set size does not exceed the total amount of memory.

The simplest way to solve the out-of-core problem is
to run the original in-core program with the increased
problem size, using underlying virtual memory (VM) support
for demand paging. Although this approach requires no
effort from application programmers, it typically has poor
performance due to slow disk accesses, which are several
orders of magnitude slower than memory accesses.

There are two approaches to reducing the I/O overhead
in out-of-core applications. The first is to reduce the number
of I/O accesses, which can be achieved by applications,
compilers or runtime systems. Some scientific researchers use
explicit I/O calls rather than transparent virtual memory
paging because the application has better knowledge of its
own data locality and reference pattern. However, this
approach usually requires significant restructuring of the
code, which can be a formidable task. Some compilers
can reorder instructions to improve data locality [2, 13]
or insert explicit I/O calls or prefetches into application
codes [5, 14, 16, 22, 15, 12]. Most of these compiling
techniques are limited by the alias analysis problem and
therefore only useful for certain array codes.

The second approach is to reduce the cost of each I/O
operation. Memory server is one such example. This
technique extends the multicomputer memory hierarchy by
using remote memory servers as distributed caches for disk
backing stores [10]. It has been demonstrated that the
memory server model can improve the performance of some
out-of-core sequential applications. However, [10] has
several limitations. First, it uses dedicated memory server
nodes to service memory requests from the computation
nodes. Second, for some applications with poor data locality,
the paging overhead in the memory server system is still
significantly high, up to 50% of the total execution time. This
overhead can be reduced by improving applications’ data
locality. The third limitation is that no results have been



shown with the memory server model for message-passing
parallel applications.

A recent study has proposed a method to improve the
cache locality of sequential programs by scheduling fine-
grained threads [17]. The scheduling algorithm relies upon
hints provided at the time of thread creation to determine
thread execution order to improve data locality. This
method can effectively reduce second level cache misses
and consequently improve the performance of some untiled
sequential applications. But their study can only deal with
independent threads.

In this paper, we extend the fine-grained thread schedul-
ing approach to handle thread dependencies and apply it in
memory servers to reduce the capacity page misses for our-of-
core applications. We also extend the memory server model
to support both dedicated and non-dedicated memory server
nodes. We have evaluated our method on an Intel Paragon
with 7 applications. Our results show that the combination
of these two techniques outperforms the traditional virtual
memory disk paging by more than an order of magnitude
for sequential applications and a factor of 3 to 6 for parallel
applications.

2 Fine-grained Thread Scheduling

The fine-grained thread scheduling was originally proposed
to improve data locality for caches [17]. Their results show
that this method can significantly improve performance by
reducing second-level cache misses. However, the proposed
method is limited to threads that are independent of each
other. In this paper, we extend the thread scheduling
approach to handle dependent threads, and apply it in the
memory server to reduce capacity page misses for out-of-core
applications.

2.1 Original Idea

The original idea of fine-grained thread scheduling is to
decompose a program into fine-grained threads and schedule
these threads so as to improve the program’s data locality.
With fine-grained threads, for example, one can substitute
a thread for the innermost loop of a program that may
be causing second-level cache misses. The run-time thread
scheduler determines an execution order with good data
locality.

We borrow the example in paper [17] to illustrate the
thread scheduling scheme. The example is a matrix multiply
of two n by n matrices A and B with the result put in matrix
C. In order to improve locality, B is transposed before and
after the computation. One straightforward implementation
uses the following nested loops:

for i = 1 to n
for j = 1 to n
C[i, j] = 0;
for k = 1 to n
C[i, j] = C[i, j] +A[i, k] ∗B[j, k];

The innermost loop computes the dot product of two n-
element vectors. Fine-grained threading simply replaces the
dot-product loop with a thread as following

for i = 1 to n
for j = 1 to n
th = Fork(DotProduct, i, j, A[i], B[j]);

RunThreads();

DotProduct(i, j) :
C[i, j] = 0;
for k = 1 to n
C[i, j] = C[i, j] +A[i, k] ∗B[j, k];

where Fork creates a thread that will compute the
specified dot product and returns a thread ID for the create
thread, and RunThreads runs each thread in some order
determined by the scheduling algorithm. The last two
arguments in the Fork interface are reference hints for the
thread system. These hints are used by the scheduler to
approximately measure the cache affinity among threads.

Thread ti is denoted by ti(ai1, . . . , aik) where aij is the
address of the jth piece of data referenced by thread ti during
its execution. Thus, if n threads are executed in some order
t1, t2, . . . , tn, they can be represented by the permutation:

t1(a11, . . . , a1k),
t2(a21, . . . , a2k),

...
tn(an1, . . . , ank).

The goal in scheduling n threads for cache locality is to find
a permutation that minimizes the number of cache misses.
We can view such a problem as a k-dimensional geometry
problem [3]. A thread ti(ai1, · · · , aik) is a point in the k-
dimensional space where the coordinates of the point are
(ai1, · · · , aik). The problem is then equivalent to finding
a tour of the thread points in the space that satisfies the
requirement of minimizing cache misses.

2.2 Original Thread Scheduling Algorithm

The main idea of the original thread scheduling algorithm
is to schedule threads in “bins” so that when the threads
in a bin are run they will not cause many capacity cache
misses. The address space is first divided into blocks. The
block size is set to be the cache size (main memory size in
our case) divided by the number of reference hints. Threads
accessing the same blocks are grouped into the same bin.
When threads in a bin are run one after another, they will
not cause many capacity misses. For each non-empty bin,
the scheduler runs all threads it contains one after another
until it becomes empty.

With two address hints, we constrain the general schedul-
ing problem. Intuitively, the two hints might be the two
largest objects referenced by the thread or the two objects
most frequently referenced by the thread. Thus constrained,



the scheduling problem then becomes finding a tour of points
in a two-dimensional plane as shown in Figure 1, where each
thread is represented as a point in the plane with coordinates
defined by the two address hints. To minimize cache misses,
the scheduling algorithm must find a tour that has a “cluster”
property, i.e., threads that have the same or similar hints
should be clustered together in the tour.
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Figure 1: Scheduling threads in a 2-D plane.

To show how the thread scheduler works, let us consider a
simple example of a 4×4 matrix multiplication (C = A×B)
program using the thread interface presented in section 2.1.
The inner-loop forks off threads, each of which computes a
dot product, in the following order:

t1(a1, b1), t2(a1, b2), t3(a1, b3), t4(a1, b4),
t5(a2, b1), t6(a2, b2), t7(a2, b3), t8(a2, b4),
t9(a3, b1), t10(a3, b2), t11(a3, b3), t12(a3, b4),
t13(a4, b1), t14(a4, b2), t15(a4, b3), t16(a4, b4)

where ai and bj are the i-th vector of matrix A and j-th
vector of matrix B respectively.
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Figure 2: An example of scheduling threads. Each i, j pair
represents a thread that computes the dot product for ai and
bj .

Suppose the cache holds only four vectors and the dimen-
sion size of a block in the 2-D scheduling plane is one half the
cache (or main memory) size. Then in one possible mapping
threads fall into four blocks of the schedule plane, as shown
in Figure 2.

The scheduler schedules all threads in each bin before
moving to the next bin. The scheduler thus reorders the dot-
products in such a way that the execution of the threads in
each bin will not cause capacity cache misses. The scheduling
order exhibits similar locality to that provided by course
grain tiling either by hand or by a compiler.

Since the original study assumes independent threads, the
implementation of the thread scheduler is relatively simple.
All threads can be scheduled at fork time by hashing reference
hints into bins, which is organized as a hash table. Once all
threads are forked, RunThreads simply traverses all non-
empty bins executing threads one after another. Further
detail about the original scheduler can be found in [17].

2.3 Limitations of the Original Idea

The original approach has two limitations. First, it assumes
that all threads are independent. This assumption only holds
for a limited amount of applications. In some applications,
a thread cannot start until another thread completes. For
example, a thread t has to be executed after another thread
t′ is done if t needs to read the data produced by t′ or t
overwrites the data needed by t′. Many applications such
as matrix factorization have data dependencies between loop
iterations. The original approach does not work with such
applications since it cannot support dependencies among
threads.

The second limitation of the original approach is its bin
traversing scheme. Although any bin traversal scheme always
yields correct results, it may have different performance. Be-
cause the original scheduling algorithm uses a hash scheme,
the bin traversing sequence is very random. The main
drawback of this random traversing scheme is that it cannot
reuse any data that are brought into the cache (or main
memory) by preceding bins. A better alternative is to visit
bins that share some reference hints one after another. In
the above 4×4 matrix multiplication example, the traversing
sequence bin 1, bin 2, bin 3, bin 4 has fewer cache (or
page) misses than the sequence bin 1, bin 4, bin 2, bin 3.
When bin 2 follows bin 1, vectors a1 and a2 are still in the
cache (or main memory).

2.4 Thread Dependencies

We extend the original thread system to support applications
with thread dependencies.

Consider a simplified Gaussian elimination of matrix A:

for i = 1 to n
for j = i+ 1 to n (1)
a[i, j] = a[i, j]/a[i, i];

for j = i+ 1 to n
for k = i+ 1 to n (2)
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Figure 3: Scheduling tree (Only ready threads are inserted into the tree. Edges represents address hints and ovals represents
bins, which are traversed according to the tree nodes traversal algorithm).

a[j, k] = a[j, k]− a[i, k] ∗ a[j, k];

Just as in the matrix multiplication example, we can turn
inner loops (1) and (2) into threads:

for i = 1 to n
thi,i = Fork(Pivot, i, a[i]);
for j = i+ 1 to n
thj,i = Fork(Compute, i, j, a[i], a[j]);

RunThreads();

Pivot(i) :
for j = i+ 1 to n
a[i, j] = a[i, j]/a[i, i];

Compute(i, j) :
for k = i+ 1 to n
a[j, k] = a[j, k]− a[i, k] ∗ a[j, k];

where Pivot() replaces inner loop (1) and Compute() re-
places inner loop (2).

In contrast to matrix multiplication, this application has
thread dependencies. For example, thread thj,i depends on
thread thi,i and thj,i−1 since it needs to use the ith and
jth row, which are produced by thread thi,i and thj,i−1,
respectively. Similarly, thread thi,i has to execute after
thread thi,i−1. In order to guarantee the correct execution
order of threads, we need to specify dependency relations
at thread creation time so the thread system can schedule
threads according to the dependency specification. One way
to achieve this is to extend the Fork interface to allow
applications to specify dependencies. The threaded code for
Gaussian Elimination is then changed to:

for i = 1 to n
thi,i = Fork(Pivot, i, a[i], thi,i−1);
for j = i+ 1 to n
thj,i = Fork(Compute, i, j, a[i], a[j],

thi,i, thj,i−1);
RunThreads();

2.5 Scheduling with Dependencies

Once an application has specified thread dependencies, the
challenge is to design a scheduling algorithm that improves
the program’s data locality without violating thread depen-
dencies. In the original study, fine-grained threads are used
to reduce capacity cache misses, which cost too little to
justify any sophisticated scheduling algorithms. However,
since our study uses fine-grained threading to reduce capacity
page misses, a relative complicated scheduling scheme can be
used for the sake of better performance.

The first modification to the original scheduling algorithm
is to schedule threads at run time rather than at fork time.
A ready set is introduced to record all ready threads. A
thread is ready if and only if all threads it depends on have
been executed. Threads in the ready set can be executed in
any order without violating the correctness of the program.
Each thread has a dependency counter. The dependency
counter for a thread is decremented by one when one of
its dependencies completes. When the dependency counter
reaches zero, the thread will be put into the ready set.

The second extension is a better bin traversal scheme
that takes advantage of the data affinity among bins. Our
scheduler uses a fat tree rather than a simple hash table as
the main data structure. Each node in the tree represents
a bin. The tree is organized in a way such that siblings
share some reference hints. The main advantage for this tree
scheme is that when the scheduler uses the tree traversing
algorithm to move from one bin to another, some data in
the cache (or main memory) can be reused. In addition,
the tree structure makes it more efficient and less memory
consuming to support scheduling with thread dependencies.
This scheme can also easily support variable number of
reference hints.

Figure 3 shows the tree structure of the 4 × 4 matrix
multiplication example. The scheduling tree contains only
threads that are ready to execute. Once a thread’s depen-
dency counter reaches zero, it is inserted into the tree with
address hints as indices. The depth of the tree equals the
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Figure 4: The Memory Server Model

number of address hints. Nodes are allocated on demand
to reduce memory overhead. The scheduler traverses the
whole tree to move from one bin to another bin. The node
traversing sequence gives the bin scheduling sequence to be
bin 1, bin 2, bin 3, bin 4.

3 Memory Server Model

Memory server is a virtual memory management technique
that can be used to reduce the number of disk accesses for
out-of-core applications on multicomputers [10]. It has been
demonstrated that the memory server model outperforms
the traditional virtual memory disk paging by a factor of 3
for some out-of-core sequential applications with good data
locality.

In this paper, we assume large-scale distributed memory
multicomputers as the architectural framework. Each node
consists of a processor, a local memory unit, and a network
interface. Nodes in the system are interconnected through
a scalable, high bandwidth routing network. Disks are
attached only to some nodes.

Our memory server model supports both dedicated and
non-dedicated memory server nodes. Dedicated memory
server nodes are only used for serving remote memory re-
quests. Non-dedicated memory server nodes are computation
nodes at the same time. In other words, all the physical
memory in all computation nodes is managed together as
a whole. By doing this, we can reduce the number of
disk accesses for message-passing parallel applications with
uneven data partitioning. Figure 4 shows an example of
our memory server model with n computation nodes (non-
dedicated memory server nodes) and m dedicated memory
server nodes.

When a computation node exhausts its local memory, it
swaps out some victim pages to other nodes. Since each
computation node is also a memory server node, the physical
memory at each node may contain both local and remote
data. A simple replacement policy is always to replace remote

pages first. When the amount of free memory is below some
threshold, the oldest remote page will be returned back to
the owner of that page, and the owner can send this page to
some other node or disk. When no remote page is present,
a local page is chosen to be the victim according to some
approximate LRU algorithm.

One alternative replacement strategy is global LRU
among both local and remote pages. This method can reduce
the total number of disk accesses at the cost of maintaining
some global timing information about memory references.
Since this approach would involve operating system support
to collect memory reference history information, we use the
first replacement policy in our prototype implementation.

On a page miss, the computation node fetches the missing
page from a remote node or a disk. Each node has a page
table that records the status and current locations for its own
pages. After the missing page is fetched back to its owner,
it is deleted from the remote memory. In our memory server
model, there is always at most one copy in memory for any
page. The main advantage of this policy is that it can save
memory space. The drawback is that clean pages also need
to be transferred to new locations when swapping.

In general, the memory server model can reduce the
average page miss penalty. This can be explained from two
aspects. First, for applications with reasonable temporal
locality, most of paging in the memory server model is from
remote memory rather than disks. Although a node’s non-
resident pages can be in either remote memory or disks,
the memory server replacement policy guarantees that pages
in disks are much older than those in remote memory.
Therefore, if the application has good locality, it is more
likely to fetch pages from remote memory than from disks.
Second, fetching a page from remote memory is two orders
of magnitude faster than paging from disks. For example,
transferring an 8-Kbyte page from a remote memory takes
about 100 microseconds on the Intel Paragon, whereas
reading a page from a disk takes around 10 milliseconds. As
a result of these two reasons, memory server has significantly



smaller average page miss penalty than VM disk paging.

4 Implementation

To evaluate our method of combining fine-grained threading
with memory server, we need a platform that can support
both sequential and message passing parallel applications.
The Intel paragon exactly matches our requirement [11].
The memory server model implementation requires a small
modification to the kernel, while the thread system runs at
user level.

4.1 Experiment Environment

The Intel Paragon multicomputer used in our experiments
consists of 10 nodes for computation. Each node has one
compute processor and a communication co-processor. Both
processors are 50 MHz i860 microprocessors with 16 Kbytes
of data cache and 16 Kbytes of instruction cache [11]. The
two processors share 64 Mbytes of local memory, with around
56 Mbytes memory available to user applications. The
memory bus provides a peak bandwidth of 400 MBytes/sec.
The nodes are interconnected with a wormhole routed 2-D
mesh network whose peak bandwidth is 200 Mbytes/sec per
link [23].

The operating system is a micro-kernel based version of
OSF/1 with multicomputer extensions for a parallel pro-
gramming model and the NX/2 message passing primitives.
The co-processor runs exclusively in kernel mode, and it
is dedicated to communication. The one-way message-
passing latency of a 4-byte NX/2 message on the Paragon
is about 50 µsec [18]. The transfer bandwidth for large
messages depends on data alignment. When data are aligned
properly, the achievable maximal bandwidth at user level
is 175 Mbytes/sec. Without proper alignment, the peak
bandwidth is about 45 Mbytes/sec.

4.2 Thread System Implementation

The implementation of the thread system is straightforward
for sequential applications. Applications are manually modi-
fied to create millions of small threads. The thread scheduler
runs at user level. Applications’ virtual address space is
divided into 16-Mbyte blocks. In order to reduce the thread
system memory overhead, the scheduler is triggered to start
running threads when the number of created threads has
reached some threshold.

For parallel applications using NX/2 message passing
primitives [18], our thread system faces the challenge of
supporting communication among nodes while improving
data locality. A reordering of communication events that
satisfies the local thread dependencies may still generate
incorrect results or deadlocks. For example, the following
code

Node 0 Node 2
send(TYPE1, ...); send(TYPE1, ...);
recv(TYPE2, ...); recv(TYPE2, ...);

can proceed normally. But, if the send and recv are
scheduled in a switched order on node 0, and the code on
node 1 remains unchanged, a deadlock will occur.

Our solution is to also treat send and recv pairs on
different nodes as dependencies. The recv thread cannot
execute until the corresponding send thread on another node
completes. This method can only reorder local threads but
does not require global coordination for scheduling. The
main drawback of this method is that it does not consider
parallelism. Sometimes, it is better to sacrifice data locality
to schedule a send thread early so other nodes waiting for
the message can proceed.

fork run total
time (ms) 0.013 0.006 0.02

Table 1: Thread overhead in milliseconds.

Table 1 reports the overhead to fork and run a null thread
on the Intel Paragon. The thread overhead is calculated using
a simple loop that creates one million threads to call the
null procedure and then runs them. The threads’ references
are evenly distributed across the address space. The total
overhead for one thread is only 0.02 milliseconds, which is
two orders of magnitude less than the page miss penalty in
most of paging systems. This indicates that the overhead can
be easily justified by eliminating just one page miss for each
thread.

4.3 Memory Server Implementation

To implement the memory server model on the Intel
Paragon, one straightforward approach is to use the external
memory management (EMM) mechanism in OSF/1 (derived
from Mach 3.0). The advantage of this approach is that
the implementation can be done at user level. However,
our prototype implementation using EMM shows that this
method is very inefficient due to the high operating system
overhead. Another approach to implement the memory
server model is to change the VM system of the Mach kernel
to page to/from remote memory rather than disk. But
this approach is hard to debug and has poor portability.
Therefore, we implemented the memory server model at user
level by adding a new system call to deal with virtual to
physical page mapping.

VM disk paging EMM MS
time (ms) 13 6.5 1.4

Table 3: The average page fault time.

Physical memory is managed by the memory server
library. To do this at user level, the memory server library
needs to

• catch page faults. When a page is swapped out to
remote memory or disks, its access protection is turned
off. The first access to this page after it swaps out
triggers a page fault. The page fault handler fetches the



handler request context page page
invoking transfer switch transfer protection total

time (ms) 0.3 0.05 0.7 0.1 0.2 1.4

Table 2: The breakdown for handling a page fault in MS

missing page from remote memory or disks, changes its
protection and restarts the faulting instruction.

• pin all memory. This is needed to avoid swapping by
the VM system.

• map virtual pages to physical frames. When the local
memory is exhausted, the memory sever system swaps
out a page and gives its physical frame to the faulted
page. This can be easily achieved in a system that
supports memory mapped files. Due to the limitation
of the Paragon system, we have to add one system call
remap addr(addr1, addr2) to the Mach kernel. This
system call maps addr1’s physical frame to addr2.

The memory server system uses NX messages to transfer
requests and pages. All computation nodes run two kernel
threads, one for application computation and one for serving
remote memory requests.

Table 3 compares the average page fault handling time
with virtual memory management (VM) disk paging, the
memory server implementation using external memory man-
agement (EMM), and the memory server implementation
with small modifications to the kernel (MS). The MS imple-
mentation has the fastest average page fault handling time,
8 times faster than VM disk paging and 4 times faster than
EMM.

Table 2 shows the time breakdown for handling a page
fault in the MS implementation. Transferring a page only
costs 10% of the total page fault handling time, while
operating system related overhead takes other 90%. This in-
dicates that the memory server performance can be improved
significantly by reducing the operating system overhead.

5 Performance

To evaluate the performance of our implementation, we
have used three sequential applications (Matrix multiply,
Gaussian elimination and Cholesky factorization), the par-
allel versions of these three applications and one parallel
application with uneven data partition (N-Body).

Table 4 gives the problem sizes, data set sizes and
execution time with MS for the seven applications. We
choose the problem sizes large enough so that the whole data
sets cannot fit in physical memory. All applications take
several hours to several days to execute with MS.

5.1 Sequential Applications

Figure 6 shows the performance and time breakdown for
three sequential applications with the traditional VM disk
paging (VM), our memory server implementation (MS), VM
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Figure 5: Number of page misses with sequential applica-
tions.

disk paging with threading (TH-VM) and MS with threading
(TH-MS). All the execution time is normalized to that with
VM disk paging. The MS performance is measured using 8
dedicated server nodes. Because it takes more than 10 days
to run the non-threaded versions of our applications with VM
disk paging, we estimate the performance with VM using the
following formula:

#misses(MS)×missPenalty(VM)

The assumption made here is that VM will generate the
same number of page misses as the memory server. This
is true unless the application is very non-deterministic.
Numbers with MS, TH-VM and TH-MS are measured with
experiments.

The memory server model performs dramatically better
than VM with all three sequential applications. As we
might expect, most of the execution time with VM is spent
on paging to/from disks. Figure 6 shows that the VM
paging overhead takes more than 97% of the total execution
time. MS reduces this overhead by a factor 7 for the three
applications because on average MS handles a page miss 8
times faster than VM (Table 3). As a result, MS outperforms
VM by more than a factor of 5.

Fine-grained threading also significantly improves per-
formance. As shown in Figure 5, the threaded versions
(TH-VM and TH-MS) have 97% fewer page misses than
the non-threaded versions(VM and MS). As a result, fine-
grained threading alone reduces the paging time with VM by
a factor of 20 to 40. The overhead of the thread system is less
than 25% of the execution time for Gaussian and Cholesky.
For matrix multiply, the overhead of threading is negligible
because this application has no thread dependencies. In ad-
dition, the fine-grained threading also effectively reduces the
number of cache and TLB misses for matrix multiply. This



applications problem size data set size (Mbytes) execution time (s)
sequential matrix multiply 4,096 x 4,096 384 162,364.4
applications Gaussian elimination 4,096 x 4,096 128 58,864.8

Cholesky factorization 4,096 x 4,096 128 28,256.7
parallel matrix multiply 8,192 x 8,192 1,536 514,756.8
applications Gaussian elimination 8,192 x 8,192 512 202,169.6

Cholesky factorization 8,192 x 8,192 512 123,143.3
irregular N-Body 80,000 bodies 300 total 19,640.1
applications 30 iterations 70 max,28 min

Table 4: The problem sizes, data set sizes and execution time with MS for seven applications.
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Figure 6: Sequential applications performance (VM stands for the traditional virtual memory disk paging, MS for our memory
server implementation, TH-VM for fine-grained threading with VM disk paging and TH-MS for fine-grained threading with
memory servers.

is indicated by the decreased computation time with TH-VM
and TH-MS. Consequently, fine-grained threading improves
VM performance by more than an order of magnitude.

Overall, the combination of fine-grained threading and
memory server performs 12 to 30 times better than tradi-
tional VM. The paging overhead is reduced from 97% with
VM to less than 10% of the total execution time.

5.2 Parallel Applications

Our experiments use the message passing code of the three
sequential applications. The matrix multiply application
partitions the result matrix in a row-wise fashion. The other
two applications are parallelized by partitioning the matrix
by interleaving row-wise. All three applications have thread
dependencies. The experiments run on 8 computation nodes
and 2 dedicated memory server nodes.

The combination of MS and fine-grained threading out-
performs VM by a factor of 3 to 6. As shown in Figure 7,
MS reduces the paging overhead by a factor of 1.7 to 2.5,
which results in a factor of 1.5 to 2.2 improvement in overall
performance. Although fine-grained threading reduces the
average number of page misses per node by a factor of 2 to 20

as shown in Figure 8, it only improves the end performance
with VM disk paging by a factor 1.2 to 3. The main reason is
the inter-node data dependencies in parallel applications. A
page miss on node 1 not only slows down this node execution
but also delays the computation of other nodes who are
waiting for node 1 to produce and send results.

The performance improvement by the memory server
model and fine-grained threading is less pronounced with
parallel applications than with sequential applications. The
main reason is the serialization effect at dedicated memory
server nodes. In our experiments, 2 dedicated memory
servers need to service 8 computation nodes. In addition,
the fine-grained threading cannot work as effectively with
parallel applications as with sequential applications because
dependencies among threads on different nodes limit the
number of reorderable threads at any one time.

5.3 Irregular Applications

We use the N-Body application to demonstrate that our
memory server model can help reduce the paging overhead
for irregular applications with uneven data partitioning. We
do not have the results with fine-grained threading for this
application. But we are in the process of changing the
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Figure 7: Parallel applications performance.
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Figure 8: Number of page misses with parallel applications.

application to use fine-grained threads.

The N-Body application is widely used in many areas of
science and engineering, including astrophysics, molecular
biology and even graphics. It simulates the interactions
among system of particles over a number of time steps,
using the Barnes-Hut hierarchical N-body method [1]. Our
N-Body application is based on Salmon’s implementation
with message passing [24]. It uses the orthogonal recursive
bisection partitioning technique. It is parallelized in a way
that the work on each node is well balanced. If all particles
have the same mass, all particles are evenly distributed
among all nodes. Otherwise, imbalance in data partitioning
can occur. A black hole in a galaxy is such an example.
Our input simulates such a scenario. The total memory
requirement is around 300 Mbytes, and the data partitioning
is uneven among 8 nodes, from 28 Mbytes to 70 Mbytes.
This causes paging in nodes whose data partitions exceed
the physical memory limit, while some other nodes still have
more than 20 Mbytes of free physical memory available.
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Figure 9: N-Body performance (MS-0 means 8 computation
nodes with no dedicated memory server, and MS-1 means 8
computation nodes with 1 dedicated memory server).

Figure 9 shows the performance of the N-Body applica-
tion on 8 computation nodes with VM disk paging, memory
server with no dedicated server nodes (MS-0) and memory
server with one dedicated server node (MS-1). The memory
server reduces the paging overhead with VM by a factor of
2 without using extra nodes. As a result, the memory server
running on the same number of nodes runs a factor of 1.5
faster than VM. With the memory server, applications’ in-
core problem sizes are limited by the total amount of memory
on all nodes rather than the amount of memory on a single
node.

Using one dedicated memory server node (MS-1) sub-
stantially outperforms the memory server without dedicated
server nodes (MS-0). The paging overhead is reduced from
46% of the execution time in MS-0 to less than 10% in
MS-1. With no dedicated server nodes, paging requests to
a remote node need to interrupt the computation of this
node, while in MS-1, all paging requests are first sent to



the dedicated memory server node. Because the context
switch and message notification on the Intel Paragon are
very expensive, the memory server system overhead and the
average page miss penalty with MS-0 are much greater than
with MS-1. Consequently, MS-1 runs twice as fast as VM.

6 Related Work

Researchers in the local area network community haven taken
a similar approach to the memory server model [4, 9, 21, 8],
using the memory available on other nodes as backing store.
All these studies use a cluster of workstations and run
sequential or distributed applications, while our memory
server model runs on a multicomputer for sequential and
parallel applications. Therefore, we have different design
tradeoffs.

Memory server for multicomputers was first proposed
in [10]. They presented the model and discussed several
design issues including computation vs. memory server
nodes, page mapping and replacement, and caching and
prefetching. They also showed preliminary results of a
prototype implementation on an Intel iPSC/860 for sequen-
tial applications. Our memory server model can support
both dedicated and non-dedicated memory server nodes.
Our experiments include sequential, parallel and irregular
applications. In addition, we use fine-grained threads to
reduce the number of page misses.

Much research has been done in the area of improving the
performance of out-of-core applications. A lot of scientific
researchers working on out-of-core applications typically
write a separate version with explicit I/O calls to achieve
reasonable performance. Writing an out-of-core version is a
formidable task because it often involves significant restruc-
turing of the code, and in some cases can have a negative
impact on the numerical stability of the algorithm [25].
The approach presented in this paper provides a potentially
simpler alternative. It is conceivable that this technique
could be used by a compiler, but that investigation is beyond
the scope of this paper.

An alternative application-specific method is to provide a
special library for applications to hide the details of reading
and writing from disk. For example, “Manual paging” [20] is
used in hierarchical tree based applications to increase spatial
and temporal locality by controlling the swapping policy in
the library. This approach shares some similar design issues
with our memory server model. The difference is that this
method is usually application-specific, whereas our memory
server is more general.

Compiling for out-of-core applications tends to focus
on two areas: using various tiling techniques to improve
data locality [2, 13] and inserting explicit I/O calls or I/O
prefetches into application codes [5, 14, 16, 22, 15, 12]. Most
of these compiling techniques are limited by the alias analysis
problem and therefore only useful for certain array codes.

Fine-grained thread scheduling was originally proposed
in [17]. It was used to reduce second level cache misses. In
this paper, we apply the idea in reducing page misses in our

memory server system. We also extend the thread system to
support thread dependencies.

7 Conclusions and Limitations

This paper describes a method that uses fine-grained threads
with the memory server model to reduce the number of disk
accesses for out-of-core applications. Our implementation
on the Intel Paragon has shown that the memory server
mechanism lowers the page miss penalty of the traditional
VM disk paging by a factor of 8. The results with six out-
of-core applications shows that the thread system effectively
reduces the number of page misses by more than 97% for
sequential applications and 58-96% for parallel applications.
The combination of these two mechanisms outperforms
VM disk paging by more than an order of magnitude for
sequential applications and a factor of 3 to 6 for parallel
applications.

The memory server model can also help parallel appli-
cations with uneven data partitioning, such as the N-Body
application. Our experiments with this application have
shown that with the same number of multicomputer nodes,
the memory server system performs 50% faster than the
traditional VM disk paging. With one dedicated memory
server node, the memory server system runs twice as faster
as VM.

Our study has several limitations. Our experiments are
conducted on an old platform. However, since network
performance is increasing at almost the same speed as
processor performance, we expect that our results can still
apply to current parallel systems. We have not compared our
results with explicit I/O or compiler-inserted I/O versions
for out-of-core applications. We have also not compared the
fine-grained thread scheduling with manually tiled version.
Because of the platform limitation, we are unable to inves-
tigate the effectiveness of fine-grained thread scheduling for
reducing second level cache misses in addition to memory
swapping.
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