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Abstract

This thesis discusses how a wavelet basis can be used in the context of two computer

graphics applications, realistic rendering and geometric modeling, to produce more

e�cient and exible algorithms.

The goal of realistic rendering is to simulate the interreection of light in some

geometric environment to produce realistic images. Radiosity is a commonly used

solution method for this problem. Recently Hanrahan et al. have introduced a hi-

erarchical method that can solve radiosity problems in O(n) time instead of O(n2).

This thesis explores how the hierarchical radiosity algorithm can be formally under-

stood from the context of wavelet theory. When the radiosity problem is expressed

with respect to a wavelet basis, the resulting linear system is sparse, with only O(n)

signi�cant terms. By casting the hierarchical method in this framework, a variety of

wavelet basis functions can be used, resulting in more e�cient radiosity methods.

This thesis also discusses how wavelets can be used in the context of geometric

modeling. Geometric modeling is the study of how geometric shapes can be repre-

sented and manipulated by a designer. This thesis explores the use of wavelets to

represent parametric curves and surfaces within the context of geometric modeling

interfaces.

One intuitive modeling interface commonly used in geometric modeling allows

the user to directly manipulate curves and surfaces. This manipulation de�nes some

set of constraints that the curve or surface must satisfy (such as interpolation and

tangent constraints). Direct manipulation, however, usually leads to an undercon-

strained problem since there are, in general, many possible surfaces meeting some set

of constraints. Therefore an optimization problem must be solved.
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This thesis discusses how geometric modeling optimization problems can be solved

more e�ciently by using a wavelet basis. Because the wavelet basis is hierarchical,

iterative optimization methods converge rapidly. And because the wavelet coe�-

cients indicate the degree of detail in the solution, they can be used to determine the

number of basis functions needed to express the variational minimum, thus avoiding

unnecessary computation. An implementation is discussed and experimental results

are reported.
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Chapter 1

Introduction

One use of computer graphics is to create and display images. These computer gen-

erated images have many uses, for example to allow people to view and interact with

virtual objects and environments that do not actually exist. The exploration of these

virtual environments may be useful for people who are designing objects and environ-

ments such as mechanical engineers and architects. Computer generated images may

also be used for artistic expression or entertainment purposes such as for computer

art, video games and special e�ects in motion pictures. This thesis will focus on two

important subproblems of the process of viewing and interacting with virtual objects

and environments: geometric modeling and realistic rendering.

In geometric modeling, a person uses a computer to create the geometric descrip-

tion of objects and environments. A geometric modeling tool must allow the user

to easily actualize his abstract notion of some object, and so it must provide him

with the ability to interact with the virtual object in an intuitive fashion. It is also

important for the modeling tool to respond to the users actions at interactive speeds.

In realistic rendering the computer is used to generate images of virtual objects

and environments. The images are called realistic in that they appear similar to

how the object would appear in the real world, as governed by the physics of light

(or at least to a good approximation of physics). To achieve this result one needs a

method of simulating the interreection of light. If the simulation is accurate, then

the resulting image will have realistic looking lighting properties.

1



CHAPTER 1. INTRODUCTION 2

In both of these domains, geometric modeling and realistic rendering, there is a

need to represent functions. The representation must be exible, expressive, and lead

to e�cient algorithms. In geometric modeling the objects which the user designs can

be described as a combination of curves and surfaces. which in turn need to be repre-

sented in some functional form. In realistic rendering, the lighting simulation results

in a light intensity distribution over all of the surfaces of the geometric environment.

This light distribution is expressed as an illumination function over the domain of

the environment's surfaces. This illumination function also requires a representation.

In each of these domains there are a variety of function representations that have

been used. In geometric modeling both implicit and explicit function representations

have been used. One example of an implicit representation de�nes a surface as being

the zero set of some 3D function F (x; y; z). This thesis will focus on explicit repre-

sentations, where the function is represented directly. In particular, in a parametric

representation, a surface is represented by three functions (X(s; t); Y (s; t); Z(s; t)).

These three functions de�ne a geometric point (X;Y;Z) for each parametric point

(s; t).

In realistic image synthesis, there have also been a variety of representations used

for the illumination function. One method used for realistic rendering is ray trac-

ing [77]. In ray tracing a brightness value is computed for each pixel that makes up

the image. In this method, the illumination function is represented pointwise, i.e., the

function is only de�ned at a discrete set of points (which correspond to the surface

points \seen" through each pixel). This thesis will focus on the radiosity method

for realistic rendering [38]. Unlike ray tracing, which generates a single image with a

single view of the environment, the radiosity method is view independent; it produces

a representation of the illumination over all of the surface points in the environment.

One advantage to such a method is that once computed, a radiosity solution can

quickly generate realistic images from any point of view in the environment. This

can be used for interactive walk-throughs of architectural models. Thus, radiosity

requires the representation of a complete function, not just a set of discrete points.

Representing an arbitrary function is a di�cult problem. At each point, an arbi-

trary function can take on any value, and thus there are an in�nite variety of functions.
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A useful representation requires some form of discretization, where a function's rep-

resentation is reduced to a �nite set of scalar values. This �nite set of scalars can

then be stored in a computer, and manipulated with algorithms. One approach for

such a discretization is point sampling where the function is represented at a discrete

set of points. In the limit, as one represents more and more points, point sampling

can converge to any well-behaved function. Unfortunately the cost of approaching

this mathematical limit is prohibitive. By using fewer points, the cost can be kept

down, but the representational value of these few points becomes limited.

What is required is a way to generate a good approximation of an entire function,

with a �nite set of discrete values. For the representation to be useful, it must allow

for the function to be evaluated at arbitrary points rapidly. For example, suppose one

wishes to approximate a univariate function. One possible representation is to linearly

interpolate between point samples of the function. The discrete points de�ne a set of

linear polynomials, and these polynomial can be quickly evaluated at any arbitrary

point. A drawback of piecewise linear interpolation is the derivative discontinuities at

the point samples; these discontinuities may not be desirable for some applications. A

di�erent representation method which generates a smooth function is polynomial in-

terpolation (using Lagrange's method [27]). Although these polynomials are smooth,

Lagrange interpolation is not a well behaved method; when one interpolates a large

set of points, the resulting polynomial tends to oscillate wildly [27].

Both linear interpolation and polynomial interpolation can be expressed by lin-

early combining a set of functional \building blocks" called basis functions. This

method allows one to approximately represent a function using a set of discrete scalar

values called \coe�cients". There are a wide variety of basis functions that can be

used, and each gives rise to a representation with particular advantages and disad-

vantages (such as the tradeo� between piecewise linear interpolation, and Lagrange

interpolation).

As this thesis will discuss, there are many di�erent kinds of basis functions that

can, and have been used in computer graphics. Many of the basis functions commonly

used in computer graphics can be categorized as \piecewise", that is, each basis

function represents some local piece of the function. In contrast to the piecewise
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methods, this thesis will discuss a fairly new family of basis functions called wavelets

that can be used to represent some of the functions that arise in computer graphics. A

wavelet basis represents the function with a multi-level hierarchy. In a wavelet basis,

some of the basis functions represent the the broad/coarse aspects of the function,

while other basis functions describe local detail.

As one might expect, the type of representation (basis) used has a strong impact on

the computational requirements for computing and operating with these functions. In

particular, the wavelet basis has been found to have the following powerful attributes:

� If one has represented some function in an appropriate \piecewise" basis, the

wavelet representation can be computed in O(n) time, where n is the number

of functions in the basis [54].

� The hierarchical nature of a wavelet basis allows many \smooth" functions and

operators to be compressed, and represented with a sparse set of coe�cients. It

has been shown in [8] that a large class of smooth operators can be represented

in a wavelet basis by a sparse matrix with only O(n) signi�cant entries. This is a

dramatic improvement over piecewise bases, where these operators are expressed

by a dense matrix with O(n2) signi�cant entries. The operator de�ning light

transport, used in realistic rendering, is such a smooth operator. Thus, this

feature of wavelets can be exploited to obtain an e�cient method for solving

realistic image synthesis problems.

� The hierarchical nature of the wavelet basis allows a large class of di�erential

equations and optimization problems to be expressed with a well conditioned

matrix. When a piecewise basis is used, the condition number � of the resulting

matrix grows as O(n2) [11]. The number of iterations required by iterative

methods for convergence is a function of �. As discussed in [25, 81], for a large

class of di�erential equations, when the problem is expressed in a wavelet basis,

the condition number of the resulting matrix remains constant, independent of

n. This feature of wavelets can be used to obtain e�cient solutions to certain

optimization problems that arise in geometric modeling.
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1.1 Realistic Image Synthesis

In realistic image synthesis the goal is to produce a realistic image of an environment

that is described to the computer. This realism is useful in architectural simulation,

as well as special e�ects production. The description of the environment includes the

geometric description of the objects (e.g., walls, furniture, plants), as well as a physical

description of the reective properties of the objects (e.g., the left wall reects blue

light, the mirror is shiny) and �nally the positions and properties of light emitting

objects (e.g., a uorescent light, a desk lamp, or the sun shining through a window).

In a realistic image, it is important to predict how the lighting would appear if this

described environment were real: which areas would be bright, which areas would

be less bright, which areas would be in shadow, and which areas would have colors

that resemble nearby reecting objects due to interreection. The computed lighting

may be represented by an illumination function. For every point (and perhaps every

direction) in the environment, the illumination function represents the brightness (in

each wavelength of color in the visible spectrum).

Computing the correct illumination function has been one of the primary foci of

computer graphics research. There are two families of methods commonly used, the

ray tracing method [77], and the radiosity method [38]. The ray tracing method

simulates the light in the environment by tracing the paths of many photons. In

contrast to this, the radiosity method breaks up the environment into little pieces or

elements, and computes how the illumination at one element e�ects the illumination

of the others. The result of these interactions is computed by solving a linear system

of equations. At the heart of this linear system is a matrix which represents the

interactions of these elements. If there are n elements used to discretize the environ-

ment, the matrix has n2 entries (corresponding to all ordered pairs of elements). In

a realistic sized problem, n can be large (on the order of millions), and so the cost of

computing the matrix entries and solving the linear system can be prohibitive.

This thesis will describe how the use of a wavelet basis to represent the illumination

function gives rise to a sparse linear system, where only O(n) of the matrix terms are

non-zero. Intuitively, this occurs because in many regions of the environment, the
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energy interaction can be well represented with a very coarse description. With the

hierarchical wavelet representation, this coarse description can be accounted for, while

ignoring the unnecessary detail. The sparseness of the system allows the solution to

be computed very e�ciently.

1.2 Geometric Modeling

In computer aided geometric modeling the goal is for a user to create geometric

descriptions of objects. These objects may include curves or surfaces (the canonical

example being a automotive engineer designing a car fender). These curves or surfaces

are functions that must be represented. This thesis will discuss a variety of modeling

paradigms and explain how a wavelet basis can be used to obtain e�cient and useful

modeling tools.

In the simplest geometric modeling paradigm the user sculpts a curve or surface

by dragging control points (e.g., B�ezier or B-spline [27]). Each control point directs

how the di�erent basis functions are to be blended, and so this method is sensitive to

the type of basis functions being used. In particular, when a piecewise basis, such as

a B-spline or B�ezier basis is used, the control points have a local and narrow inuence

on the curve or surface. While this may be desirable in some instances, at other times

a user may want to be a�ecting the curve or surface at a broader resolution, changing

the overall sweep of the curve or surface. This thesis will discuss how a wavelet basis

can be used to address this problem. The hierarchical nature of this basis allows the

user to manipulate the curve or surface at any desired resolution.

A more intuitive modeling paradigm allows the user to directly manipulate curves

and surfaces. The user is allowed to click on the curve or surface with a mouse, and

drag that point, and use other widgets to manipulate the tangent at some point. This

manipulation de�nes some set of constraints that the curve or surface must satisfy

(such as interpolation and tangent constraints). Direct manipulation, however, usu-

ally leads to an underconstrained problem since there are, in general, many possible

surfaces meeting some set of constraints. Finding the \best" solution requires solving

a variational problem.
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One of the most popular methods for solving this variational modeling problem

is the �nite element method[72]. In this method the surface is described by a large

collection of basis functions. Each of these functions, or elements, describes the

behavior of the surface in some very small region. As with the radiosity method,

expressing the problem with respect to some basis gives rise to a (linear) system of

equations. This system is then solved using an descent method, that proceeds from

some initial guess by iteratively changing the quantity of each of these elements until

the best combination is found. Unlike radiosity, the matrices arising from optimal

surface problems are usually sparse, with only O(n) terms of the matrix being non-

zero. Unfortunately the resulting systems of equations are poorly conditioned and

the iterative descent methods converge slowly when a �nite element basis such as B-

splines is used [72, 71]. This occurs because the solution method is always focusing on

a very narrow region of the solution. This thesis discusses how geometric variational

modeling problems can be solved more e�ciently by using a wavelet basis. Because

the wavelet basis is hierarchical, the iterative methods are able to alter the solution

at a variety of resolutions. This results in a well conditioned systems of equations,

and the iterative methods converge rapidly.

There are other important advantages to using a wavelet basis for geometric mod-

eling. When using a �nite element method, it is important to choose the right number

of basis functions needed to represent the optimal solution. If too few are chosen,

then there may not be enough degrees of freedom to meet the constraints, or to meet

them with enough \optimality". If too many basis functions are chosen, then the

program will do unnecessary work. This decision can be di�cult to make a priori,

and so an adaptive method is needed, that can extend or reduce the basis as the iter-

ations proceed. As this thesis will discuss, this adaptivity can be achieved e�ectively

with a wavelet basis.

The organization of this thesis is as follows. Chapter 2 presents an introduction

to wavelets. Chapter 3 reviews the radiosity formulation. Chapter 4 discusses how

wavelets can be used in the context of radiosity to obtain an e�cient solution method.

Chapter 5 reviews some basic concepts from geometric modeling. Chapter 6 discusses

how wavelets can be used to perform multiresolution modeling. Chapter 7 discusses
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how wavelets can be used to quickly solve variational modeling problems. The results

of the thesis are summarized in chapter 8.



Chapter 2

Wavelets

This chapter will introduce the general concepts used to construct a wavelet basis.

Some of the details are technical, and the reader may want to �rst read this chapter

lightly, and later come back to this chapter as a reference. More details about wavelets

may be found in [59, 16, 54, 26].

2.1 Basis Functions

Computer graphics applications, in particular geometric modeling and realistic ren-

dering, often require a method for representing or approximating some function F (t).

One possible representation is through a linear combination of a set of basis functions

using scalar coe�cients as weights.

F (t) =
X
i

fi�i(t) (1)

In this thesis, by convention functions will be denoted by uppercase letters while the

corresponding scalar coe�cients will be denoted by lowercase letters. The parameter t

will sometimes be left o� to avoid clutter. In this case, F is a function with parameter

t, and the fi are scalar coe�cients.

The use of basis functions is a very general concept, and includes many well known

methods for representing functions. For example, a function can be represented at a

discrete set of points (without loss of generality let the discrete set of points be have

9
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F(t) = Σ fi φi(t)
i

F(t)

φi(t)

fi 2 1 −1 3

F(t)        =           2φ1(t) + 1φ2(t) − 1φ3(t) + 3φ4(t) 

Figure 1: The hat basis functions are linearly combined to construct piecewise linear
functions.

the parameter values ti for i between 0 and n). In this case, the basis functions are

Delta functions

�(t� ti) (2)

A function can be represented by linearly interpolating between pairs of discrete

points, in this case the basis functions are hat functions (Figure 1). A function can

be represented by polynomial interplation using Lagrange polynomial basis functions.
Qn
j=0(t� tj)Qn
j 6=i

j=0
(ti � tj)

(3)

A function can be expanded using its taylor series about the origin using monomial

basis functions

ti (4)

A function can be expressed as a combination of di�erent frequencies using the com-

plex Fourier basis.

e�
p�1it (5)

Although the use of a linear combination of basis functions is a very general notion,

it is mathematically very simple, and therefore useful in domains, such as rendering

and modeling, where one needs to solve for the desired solution. More complicated
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representations, such as the rational B-spline representation that allows the division

of one basis function with another, do not lend themselves as easily to such solution

methods.

In order to represent an arbitrary function, one needs a basis made up of an in�nite

number of basis functions. For example if one wants to represent all functions 1 on

the interval [0 : : : 1], one can do this by using a complete Fourier basis (The complex

basis functions e�
p�1it may be thought of as sines and cosines of all frequencies i).

In this case, Equation (1) becomes an in�nite sum. Because this representation uses

an in�nite number of basis functions, the space of functions spanned by this basis is

said to have in�nite dimension.

In order to use the representation in an algorithm, one cannot use an in�nite

dimensional basis. Instead one must use a basis made of a �nite collection of basis

functions. This limits the space of representable functions to a �nite dimensional

space. For example, one can obtain a �nite dimensional Fourier basis by dropping

all basis functions above a certain frequency. The �nite dimensional function space

is less expressive, but the representation is more manageable. Because the �nite

dimensional function space is less expressive, arbitrary functions cannot be exactly

represented in it, they must be approximated instead. For example, if one wishes

to represent some function that has a high-frequency component, using some �nite

dimensional Fourier basis, one must approximate it by dropping the high-frequency

information. This thesis will be primarily discussing �nite dimensional bases.

The Fourier basis functions have global support. The basis functions, which are

sines and cosines, are non-zero over the entire parameter domain. When basis func-

tions have global support, the corresponding coe�cients have global inuence. This

can be a disadvantage. It is di�cult to modify local detail using a basis with global

support. For example, in geometric modeling, one may be interested in altering some

local region of the curve or surface. This is not possible with a global basis, without

altering all of the coe�cients.

To obtain a more exible and local representation, \piecewise" bases are often

used. In such a basis, each basis function represents a local region of the function,

1functions with �nite L2 norm
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F(t) = Σ fi φi(t)
i

F(t)

fi 

φi(t)

2 1 −1 3

F(t)        =           2φ1(t) + 1φ2(t) − 1φ3(t) + 3φ4(t) 

Figure 2: The box basis functions are linearly combined to construct piecewise con-
stant functions.

and so the corresponding coe�cients have local inuence. Because these basis function

are only non-zero over a �nite region, they are said to have compact support.

Perhaps the simplest imaginable piecewise basis is the \box" basis (Figure 2).

With the box basis, the space of functions that can be represented is all functions

that are piecewise constant between adjacent integers. If one wants to represent

the space of all functions that are C1 (have continuous derivative) and are piecewise

linear between adjacent integers, one can use the \hat" basis (see Figure 1). One

can continue this sequence, representing functions which are piecewise higher order

polynomials, using B-spline basis functions Nd
i of arbitrary degree d [6]. The B-

spline basis functions can be de�ned recursively using B-spline basis functions of

lower degree.

Nd
i (t) =

t� ti�1
ti+d�1 � ti�1

Nd�1
i (t) +

ti+d � t

ti+d � ti
Nd�1
i+1 (t) (6)

The sequence of parameter values ti is called the knot sequence. N0
i (t), the zero order

B-spline, is a box function that is zero everywhere except between the knots ti and

ti+1, where it is one. If the knot values are evenly spaced, the resulting basis functions

are called uniform B-spline basis functions. This thesis will make extensive use of

the uniform cubic B-spline basis (d = 3). The uniformly spaced knots will be at the

integers ti = i. The resulting basis functions, which will simply be denoted as �i(t),
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0 8 16

Figure 3: The uniform cubic B-spline basis.

are cubic polynomials between adjacent integers. Each of the basis functions is a

translated copy of �0(t), and can be expressed as �i(t) = �0(t� i). The ith uniform

cubic B-spline basis function is non-zero between the parameter values i and i + 4

(see Figure 3). It is made up of four polynomial segments. If one translates each of

these segments to the interval between zero and one, they can be expressed as

1

6
(t3)

1

6
(�3t3 + 3t2 + 3t+ 1)

1

6
(3t3 � 6t2 + 4)

1

6
((1� t)3) (7)

In geometric modeling, non-uniform rational B-splines or NURBS are often used.

These functions are de�ned as the division of two sets of basis functions, using a set

of weighting coe�cients wj.

F (t) =

P
i fiN

d
i (t)P

j wjN
d
j (t)

(8)

This thesis will not be discussing NURBS. For more detail about B-splines see [6, 27].

2.2 Haar basis

Wavelets o�er a family of bases that combine the frequency decomposition of the

Fourier basis, with the piecewise locality of bases like the box, or hat basis. This

combination of features is very useful. Let us start by looking at the simplest and

oldest wavelet basis, the Haar basis [42].
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φL,0(t)

φL,1(t)

φL−1,0(t)

ψL−1,0(t)

F(t)

F = 2φL,0 + 1φL,1

F = 1.5φL−1,0 − 0.5ψL−1,0

Figure 4: Two adjacent box functions can be replaced by one wider box function and
one Haar function to represent the same function F.

To begin the description of the Haar construction, consider two adjacent box

functions that will be denoted as �L;0, and �L;1, (the meaning of L, the level, will

become apparent later on in this chapter). It is easy to see that these two basis

functions can be replaced by one box function that is twice as wide �L�1;0, and one

step function  L�1;0 called the Haar function (Figure 4). The new basis functions (at

level L� 1) can be expressed as linear combinations of the old ones (at level L)

�L�1;0 = �L;0 + �L;1

 L�1;0 = �L;0 � �L;1 (9)

and the old (level L) as linear combinations of the new ones (level L� 1)

�L;0 =
1

2
�L�1;0 � 1

2
 L�1;0

�L;1 =
1

2
�L�1;0 +

1

2
 L�1;0 (10)

Using these new basis functions, the wider box function represents the pairwise

average of the function over the span of the two thinner box functions, and the

Haar function represents the pairwise di�erence of the two halfs from the average.

Computationally, obtaining the scalar coe�cients for these new basis functions is as

easy as taking pairwise averages and pairwise di�erences of the coe�cients of the

original box basis.
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f�L�1;0 =
1

2
f�L;0

+
1

2
f�L;1

f L�1;0 =
1

2
f�L;0

� 1

2
f�L;1

(11)

(In this notation, the symbolic form of the basis function is used as the index of

the corresponding scalar coe�cient). The inverse coe�cient transformation is simply

f�L;0
= f�L�1;0 � f L�1;0

f�L;1
= f�L�1;0 + f L�1;0 (12)

This simple replacement of two basis functions, can be done pairwise over the

entire range of a box basis with more than two basis functions. Consider a box

basis, made up of eight adjacent box functions (the shaded box in Figure 5a). By

linearly combining these basis functions with scalar coe�cients, all piecewise constant

functions over the interval [0 : : :8] can be expressed. Call this space of functions VL.

Pairwise averaging and di�erencing can be used to replace the eight box functions

with four wider box functions and four Haar functions (Figure 5a). This new basis is

an alternative basis for the same function space VL, and will be called the two-part

basis.

Notice though that in this new basis, half of the functions are themselves box

function (only twice as wide). This allows for a reapplication of the pairwise aver-

aging/di�erencing transformation to replace those four box functions with two wider

box functions, and two wider Haar functions (Figure 5b). The transformation may

again be applied one �nal time (Figure 5c). The �nal result is a new basis of eight

functions spanning the same function space, called the Haar basis, Figure 5d.

In this Haar basis representation, all functions in VL are expressed hierarchically.

Going from top to bottom, one of the basis functions represents the overall average

of the function, and one represents the di�erence between the left and right half. On

the next level the basis functions represent the di�erences in the quarters, and �nally

the basis functions on the lowest level represent the di�erences on the eighths. This
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a b c d

φ3

φ2

φ1

φ0

ψ2

ψ1

ψ0

Figure 5: From left to right: a pyramid transformation replaces the box basis with
the Haar basis.

construction is very similar to an image pyramid that one might use for texture map-

ping [78]. In such a pyramid the image is represented at di�erent levels of resolution

by successive averaging steps. The Haar pyramid only stores the overall average and

all the di�erences between successive levels of the pyramid.

� This new basis combines the locality of the box basis with the resolution/scale

decomposition of the Fourier basis. This multiresolution property is useful in

geometric modeling and allows either the user, or some optimization process to

manipulate the solution at a variety of resolutions.
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� This hierarchical basis also allows for very economical representations of many

functions. If a function has little or no detail in some region (i.e., it is nearly

constant over some region), then the Haar coe�cient for that region will be near

or close to zero. If that basis function is removed from the basis, little is lost

in the representation. This compression property will be important for both of

the applications discussed in this thesis, radiosity and geometric modeling.

� Another feature of this basis is that the transformation of coe�cients between

the box basis and the Haar basis is very e�cient. This level by level transfor-

mation described above is called a pyramid transformation. Each level of the

pyramid transformation can be done in linear time. As each level performs a

transformation of half the size, the running time of the complete pyramid is

thus governed by the geometric series (n+ n
2
+ n

4
+ : : :+ 1) = 2n = O(n), and

runs in linear time.

The Haar basis is just the simplest example of a wavelet basis. There are an

in�nite variety of wavelets, where the scaling function, �, is some function besides a

box function and the wavelet function,  , is some function besides a step function.

But the concepts are similar; a pyramid-like transformation is applied to the �nest

resolution � functions to create a hierarchical basis, that has the multiresolution and

compression properties.

There are a variety of other properties that classify di�erent wavelet families.

� One property is smoothness which can be measured in many ways including the

number of continuous derivatives. It is desirable to have smooth basis function

if one wants to represent smooth functions.

� Another desirable property some wavelets have is symmetry. With a symmetric

wavelet, fewer artifacts tend to appear in the representation.

� The support of a wavelet refers to the size of the interval over which the wavelet

function is non-zero. It is desirable to have wavelets with small, �nite support,

so that the expense of expressing some local detail is con�ned to some small

region.
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� There are two other desirable properties orthogonality and vanishing moments

which will be described in due course in the text.

2.3 B-spline Wavelets

To introduce the concepts and terminology of wavelets in general, this section will

describe the construction of wavelet bases based on cubic B-splines. These wavelets

are C2 and symmetric, with �nite support.

2.3.1 Two-Part Basis

As with the Haar basis, a �rst step of the cubic B-spline wavelet basis construction

is the creation of a new basis for the same space of curves de�ned by the B-splines,

but consisting of two distinct types of basis functions.

To understand the two-part basis, begin with the uniform cubic B-spline basis

made up of translated copies of the B-spline basis function �0(t) (Figure 3). This

basis is made up of translated copies of a single hump shaped function �0(t) that will

be denoted without the index simply as �(t). � is made up of four cubic segments

de�ned in Equation (7).

The set of basis functions can then be de�ned as

�L;j(t) = �(t� j) (13)

(the index j represents the translation of a speci�c basis from the canonical B-spline

left justi�ed at zero, and L is the level or resolution of the basis). The space (or family)

of curves spanned by all linear combinations of these basis functions is denoted VL

(e.g., VL contains all functions that are piecewise cubic, with simple knots at the

integers).

Wavelets o�er an L level hierarchical basis for the space VL, but let us begin by

building a two-part basis at level L � 1 of the hierarchy. The two-part basis begins

with the basis functions

�L�1;j(t) = �(2�1t� j) (14)
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0

1 4 6 4 1h = 1/8  *

φL

φL−1
φL−1,0

Figure 6: Five B-splines �L;j may be combined using the weights h to construct the
double width B-spline �L�1;0

These basis functions are twice as wide as the original B-spline basis functions, and

hence the space they span contains piecewise cubic functions with knots at all even

integers. This space will be referred to as VL�1. According to the well known B-spline

knot insertion algorithm [18, 30, 16] there is the following relationship

�L�1;j =
X
k

hk�2j �L;k (15)

where the sequence h is given in Appendix A.1. This process is illustrated in Figure 6.

Clearly VL�1 is a proper subset of VL and thus, it is not as rich as the space VL.

Therefore, if one begins with VL�1, and wants to �nd additional basis functions to

again span VL, more basis functions besides the �l�1;j are needed. In the wavelet

methodology, this is accomplished by introducing into the basis translated copies of

a special wavelet shape  . Just as with the B-splines, the relationship between the

wavelet basis functions and the model wavelet shape is notated  L�1;j(t) =  (2�1t�j).
These new basis functions are also de�ned as linear combinations of the B-spline basis

functions at level L:

 L�1;j =
X
k

gk�2j �L;k (16)

where the sequence g is given in Appendix A.1 and illustrated in Figure 7. There is

some degree of freedom in choosing the sequence g, as long the new basis functions

\�ll in" the missing space between VL and VL�1 2. Advantages to the particular choice

2There are some other technical requirements in order to ensure the numerical stability of the
basis. These requirements insure a dual basis with certain bi-orthogonal properties, and hence are
called bi-orthogonal wavelets. See [17].
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0

g = 1/256  *

ψL−1

5 20 1 −96 −70 280−70 −96 1 20 5

φL

ψL−1,0

Figure 7: Eleven B-splines �L;j may be combined using the weights g to construct
the wavelet function  L�1;0

of g given in Figure 7 include compactness and symmetry. With this construction,

we now have two alternate bases for VL, the B-spline basis

f�L;jg (17)

and the two-part basis

f�L�1;j;  L�1;jg (18)

Just as the two-part basis functions can be expressed as a combination of the B-

splines basis functions (Equations (15) and (16)), so too, the B-spline basis functions

can be expressed as combinations of the two-part basis functions. This is given by

�L;j =
X
k

~hj�2k �L�1;k +
X
k

~gj�2k  L�1;k (19)

where the sequences ~h and ~g are given in Appendix A.1. This process is illustrated

in Figure 8. In the literature, there are many wavelet constructions, each with its

own particular functions � and  , and sequences h, g, ~h, and ~g 3, The sequences and

the particular wavelet construction described in this section are derived in [17]. This

wavelet construction has been chosen because the associated � is a cubic B-spline,

the function  is symmetric with compact support, and most importantly, all of the

four sequences h, g, ~h, and ~g are �nite.

3In this particular construction h is related to ~g and g is related to ~h by reversing the sign of
every other element. This is not in general true for all wavelet constructions.
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0

φL

φL−1

ψL−1

h = 1/256  *

~

g = 1/8  *
~

0

0

φL,0 φL,1

−4 6 −4 11 φL,1

1 −4 6 −4 1 φL,0

−5 20 −1 −96 70 280 70−96 −1 20 −5 φL,1

−5 20 −1−96 70 280 70 −96 −1 20 −5 φL,0

Figure 8: Two wavelets  L�1;j together with �ve double width B-splines �L�1;j may
be combined using the weights ~g and ~h to construct the B-spline �L;0. Three wavelets
 L�1;j together with six double width B-splines �L�1;j may be combined using the
weights ~g and ~h to construct the B-spline �L;1.

The sequences have the following relationships

X
a

~ha�2jha�2k = �j;k (20)

X
a

~ga�2jha�2k = 0 (21)

X
a

~ga�2jga�2k = �j;k (22)

X
a

~ha�2jga�2k = 0 (23)

Where �ij is the Kroneker delta.

Proof: The �rst two relationships can be established using the following reasoning

�L�1;j =
X
a

ha�2j�L;a

=
X
a

ha�2j
X
k

~ha�2k�L�1;k + ~ga�2k L�1;k

=
X
k

�L�1;k
X
a

~ha�2kha�2j +
X
k

 L�1;k
X
a

~ga�2kha�2j
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0 =
X
k

�L�1;k(
X
a

~ha�2kha�2j � �j;k) +
X
k

 L�1;k(
X
a

~ga�2kha�2j) (24)

And the result then follows from the linear independence of a basis. 2

Just as the space of the functions spanned by the �L�1;j can be denoted as VL�1,

the space of functions spanned by  L�1;j can be denoted as WL�1. Any function in VL

can be uniquely expressed as the sum of a function in VL�1 and a function in WL�1.

Symbolically this is expressed as the following direct sum

VL = VL�1 _+WL�1 (25)

Suppose some function F (t) in VL has been expressed as a linear combination of

the B-spline basis function

F (t) =
X
j

f�L;j
�L;j (26)

where the f are scalar coe�cients. The coe�cients needed to express the function in

the two-part basis can be computed as

f�L�1;j =
X
k

~hk�2j f�L;k

f L�1;j =
X
k

~gk�2j f�L;k
(27)

(This process is similar to the one illustrated in Figures 6-7 except that h and g and

are interchanged with ~h and ~g).
Proof:

F (t) =
X
j

f�L;j �L;j

=
X
j

f�L;j � (
X
k

~hj�2k �L�1;k +
X
k

~gj�2k  L�1;k)

=
X
j

X
k

f�L;j
~hj�2k �L�1;k +

X
j

X
k

f�L;j
~gj�2k  L�1;k

=
X
k

X
j

f�L;j
~hj�2k �L�1;k +

X
k

X
j

f�L;j
~gj�2k  L�1;k

=
X
j

(
X
k

f�L;k
~hk�2j) �L�1;j +

X
j

(
X
k

f�L;k
~gk�2j)  L�1;j

=
X
j

f�L�1;j �L�1;j +
X
j

f L�1;j  L�1;j (28)

2
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Intuitively speaking, the f�L�1;j encode the smooth (low frequency) information

about the function F , and the f L�1;j encode the �ne detail (high frequency) infor-

mation.

Alternatively if F (t) has been represented with respect to the two-part basis, the

representation with respect to the B-spline basis can be found with

f�L;j =
X
k

hj�2k f�L�1;k +
X
k

gj�2k f L�1;k (29)

Orthogonality

The previous section described one of the possible wavelet construction based on cubic

B-splines. For certain technical reasons, that construction is called bi-orthogonal.

There are other possible wavelet constructions based on cubic B-splines. In [16] a

di�erent sequence g is chosen (given here in Appendix A.2) so that the resulting basis

functions  L�1;j are orthogonal to the B-spline basis functions �L�1;j with respect to

the L2 inner product, de�ned for general functions F and G as

hF (t); G(t)i =
Z +1

�1
F (t)G(t) dt (30)

This type of construction is called semi-orthogonal.

In the semi-orthogonal construction, all of the functions in VL�1 are orthogonal

to the functions in WL�1. This is denoted using the orthogonal sum notation

VL = VL�1 �WL�1 (31)

This is a more restrictive relationship then the direct sum relationship ( _+).

In a semi-orthogonal construction, the smooth component of Equation (28) S(t) =P
j f�L�1;j �L�1;j(t), is the orthogonal projection of F into VL�1. Thus, it is the best

approximation of F in the space VL�1 where error is measured by

j E(t) j= hE;Ei1=2 (32)

This property is not true for the bi-orthogonal construction.

The price paid for the semi-orthogonality in the cubic B-spline setting is the fact

that the corresponding sequences ~h and ~g are in�nite in length. (Although they do

decay rapidly from their centers).
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There also exist fully orthogonal constructions where all of the basis functions are

orthogonal to each other (not just the basis functions on di�erent levels as in the

semi-orthogonal constructions). Modulo scaling, this implies that h = ~h and g = ~g.

The price paid for full orthogonality in the cubic B-spline setting is that the sequence

g must be in�nite in length, and the function  must have in�nite support[16].

2.3.2 Bases on the Interval

In a classical wavelet construction, the index j goes from �1 : : :1, and VL in-

cludes functions of unbounded support. In the contexts described in this thesis, only

functions over some �xed �nite interval need to be expressed, and it is important to

only deal with a �nite number of basis functions.

The easiest way to do this is to extend the function F , de�ned on an interval, to

all of the real line and use a regular wavelet construction. There are a number of

ways to extend F , for example, one can de�ne F to be zero outside of the interval, or

one can extend the function by making periodic copies of F . Both of these methods

are unacceptable since they will require the function to either be zero at the ends,

periodic (a closed B-spline curve), or have discontinuities.

Bi-orthogonal Mirrored Interval Construction

Another solution is to use a mirror-reection of the interval [26]. This technique,

borrowed from signal processing, is simple to understand and requires the least special

cases in the code. Because the technical details are non-trivial, this thesis includes

speci�c pseudo-code in Appendix A.1.

Suppose some function F (t) is only de�ned for t in [0 : : : 2L]. This function can

be extended to the entire real line by placing a mirror at 0 and a mirror at 2L, and

reecting the function back and forth. (This is the same as reecting the functions

around 0, and then making periodic copies of the singly reected function). This

extended function is then represented as a function on the real line in VL (piecewise

cubic with C2 continuity at the integers). The representation of this extended function
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B−spline Coefficients

Wavelet Coefficients

Interval

−2 2L−2
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Figure 9: When a function on an interval is extended to the entire real line using
mirror reection, the corresponding B-spline and wavelet coe�cients have mirrored
patterns as well

will be made up of 2L +1 unique B-spline coe�cients f�L;j
with j in f�2 : : :2L � 2g.

The rest of the in�nite number of coe�cients will be de�ned by the mirrors. This

pattern is shown in Figure 9. If the unique B-spline coe�cients are stored in an

array, b[�2 : : :2L � 2] any of the extended B-spline coe�cients can be obtained with

the indexing procedure bs index given in Appendix A.1. The only limitation of this

method is that in order for the extended function to be in VL and have coe�cients

with the mirror pattern, dF
dt

must be zero at the boundaries.

After obtaining coe�cients of the mirror reected functions in the two-part basis

with Equation (27), the result will have 2L�1 + 1 unique coe�cients f�L�1;j and 2L�1

unique coe�cients f L�1;j . The reection pattern of the  coe�cients is slightly

di�erent than that of the � coe�cients since each wavelet basis function is centered

half way between the centers of two B-splines. The pattern of wavelet coe�cients is

shown in Figure 9.

The unique  coe�cients may be stored in an array w[�3 : : : 2L � 4], and then

any of the extended wavelet coe�cients can be obtained with the indexing procedure

wave index given in Appendix A.1.

Given the above indexing functions, the interval version of Equation (27) can

be implemented with the procedure coef xform up. The inverse transformation de-

scribed by Equation (29) may be implemented by the procedure coef xform down

(see Appendix A.1).
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2  1  0 −1 −2 −1  0  1  2  3  4  5  6  5  4  3  2  1  0 −1 −2 −1  0  1  2  3  4

Interval

−2 2L−2

Figure 10: Each line shows a \single" basis function made up of mirror reected
copies of the B-spline basis shape. When the copies overlap (bottom line) they are
summed together.

The interval wavelet transformation can be applied to the basis functions as

well as the coe�cients. Equations (15) and (16) are implemented in the procedure

basis xform up. And �nally Equation (19) may be implemented with the procedure

basis xform down.

There are two di�erent ways to view this interval construction. It can be viewed

as a way to extend functions from the interval to the real line. Alternatively, it can

be viewed as a way of generating basis functions on the interval. Begin with the

space of all functions on the real line de�ned by B-spline coe�cients with the mirror

reecting pattern. Because of this assumed pattern, there are only 2L+1 true degrees

of freedom to this family of functions on the real line. Corresponding to these �nite

degrees of freedom are 2L+1 basis functions. Each of these \mirrored" basis functions

can be constructed by adding together all of the basis functions on the real line that

are a�ected by a single coe�cient, or mirror reected copies of it. For example, one

of these new basis functions will be the set of in�nite reected copies of a single cubic

B-spline basis function. Near the interval boundaries these copies will overlap, and
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the new basis functions will be de�ned by adding up this overlap (Figure 10).

If these new basis functions are restricted to the interval [0 : : : 2L], (just discarding

everything outside of the interval), then this can be considered a new set of basis

functions that are contained in the interval, and these basis functions and coe�cients

can be manipulated with the procedures described above.

Semi-orthogonality Interval Construction

If this mirror reection construction is applied to the semi-orthogonal cubic B-spline

wavelet basis functions, the resulting wavelet basis functions near the boundaries

will not be orthogonal to the mirror reected B-spline functions with respect to the

interval inner product

hF (t); G(t)i =
Z 2L

0
F (t)G(t) dt (33)

Thus, if one is interested in maintaining the semi-orthogonality on the interval, mirror

reection is unacceptable and special boundary basis functions must be constructed.

At this point, since the mirror reection must be abandoned and special boundary

functions must be de�ned, it makes sense to extend the space of functions VL in the

interval to include all C2 functions de�ned over the interval [0 : : : 2L] that are piecewise

cubic between adjacent integers (simple knots at the inner integers and quadruple

knots at the boundaries). In order to span this space, 2L + 3 basis functions are

required. (Recall that when mirror reection is employed, the function is constrained

to have zero �rst derivative at the boundaries, and thus, there are only 2L + 1 basis

functions).

A basis for this non-mirrored interval space is made up of inner basis functions,

which are just those translational basis functions �L;j from Section 2.3.1 whose sup-

port lies completely within the interval, as well as three special boundary B-spline

basis functions at each end of the interval. For the boundary basis functions, one

may either choose to include the translational basis functions �L;j themselves from

Section 2.3.1 whose support intersects the boundaries by just truncating those basis

functions at the boundary, or else one may use the special boundary basis functions

that arise from placing quadruple knots at the boundaries [6]. This complete set of
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basis functions will be denoted �L;j with j in f�3 : : : 2L � 1g, where it is understood
that the �rst and last three basis functions are the special boundary B-spline basis

functions.

The two-part basis for this space begins with the wider B-spline functions �L�1;j

with j in f�3 : : : 2L�1�1g where again the �rst and last three basis functions are scaled
versions of the special boundary B-splines functions. The two-part basis is completed

with the semi-orthogonal wavelet functions  L�1;j with j in f�3 : : : 2L�1 � 4g. Here
too, the inner wavelet basis functions are just those translational functions  L�1;j

from Section 2.3.1 that do not intersect the boundaries, while the �rst three and the

last three interval wavelet basis functions must be specially designed to �t in the

interval and still be orthogonal to the �L�1;j. A full description of this construction

is given in [15, 61].

This interval construction, which on the real line corresponds to Equations (15)

and (16), is described by the linear time procedure basis xform up that is given

in Appendix A.2. As this procedure is equivalent to multiplication with a banded

matrix, the inverse procedure basis xform down which describes the interval version

of Equation (19) can be implemented by solving the banded linear system. This too

can be done in linear time.

The interval version of Equation (29) can be implemented with the procedure

coef xform down. And the inverse transformation, which is the interval equivalent

of Equation (27) may be implemented by the procedure coef xform up. See Ap-

pendix A.2.

2.3.3 Complete B-spline Wavelet Basis

The reasoning that was used to construct the two-part basis can now be applied L

times to construct a multilevelwavelet basis. Thus far, a two-part basis f�L�1;j;  L�1;jg
has been discussed as an alternative for the B-spline basis f�L;jg.

Note that (roughly) half of the basis functions in the two-part basis are themselves

B-spline basis functions (only twice as wide). To continue the wavelet construction,

keep the basis functions  L�1;j and re-apply the reasoning of section 2.3.1 to replace

the �L�1;j with f�L�2;j;  L�2;jg. This results in the new basis f�L�2;j;  L�2;j;  L�1;jg
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where �L�2;j(t) = �(2�2t� j), and  L�2;j(t) =  (2�2t� j).

Each time this reasoning is applied, the number of B-spline functions in the hier-

archical basis is cut in half, and the new basis functions become twice as wide. In the

bi-orthogonal mirror reection interval construction, L applications can be performed

and the resulting wavelet basis

f�0;0; �0;1;  i;jg (34)

can be obtained obtained, with i in f0 : : : L � 1g and j in f�3 : : : 2i � 4g, where

�i;j(t) = �(2(i�L)t� j)

 i;j(t) =  (2(i�L)t� j) (35)

This basis is made up of two wide B-splines, and translates (index j) and scales (index

i) of the wavelet shape (Figure 11).

The wavelet basis is an alternative basis for VL, but unlike the B-spline basis, it is

an L level hierarchical basis. At level 0 there are two broad B-splines, and one broad

wavelet. These three basis functions give the coarse description of the function. At

each subsequent level going from level 0 to L � 1, the basis includes twice as many

wavelets, and these wavelets are twice as narrow as the ones on the previous level.

Each level successively adds more detail to the function. If the function is su�ciently

smooth in some region, then very few signi�cant 4 wavelet coe�cients will be required

in that region.

The wavelet basis decomposes the space VL into the following direct sum

VL = V0 _+
L�1
i=0 Wi (36)

The coe�cients representing some function in the B-spline basis can be trans-

formed to the wavelet basis using the procedure coef pyrm up, that makes L calls

to coef xform up each time with an input vector of 1=2 the length. (Note since this

transforms an n-vector to an n-vector, it can be implemented with proper indexing

using linear storage).

4In this case, signi�cant can be de�ned to be having an absolute value greater than some epsilon
without incurring signi�cant error in the representation.
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Figure 11: The wavelet basis is a hierarchical basis with L levels (in this �gure
L = 4). On the coarsest level 0, there are two wide B-splines �0;0 and �0;1, and one
wide wavelet function  0;0. On each subsequent level there are twice as many wavelet
functions, that are half as wide.

coef pyrm up( bsin[], bsout[], wout[][], L )

bstemp[L][] = bsin[] ;

for( i = L; i � 1; i�� )

coef xform up( bstemp[i][], bstemp[i� 1][], wout[i� 1][], i ) ;

bsout[] = bstemp[0][] ;

The inverse transformation is
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coef pyrm down( bsin[], win[][] , bsout[], L )

bstemp[0][] = bsin[] ;

for( i = 1; i � L; i++ )

coef xform down( bstemp[i� 1][], win[i� 1][], bstemp[i][], i ) ;

bsout[] = bstemp[L][] ;

Finally, the basis transformations are

basis pyrm up( bsin[], bsout[], wout[][], L )

bstemp[L][] = bsin[] ;

for( i = L; i � 1; i�� )

basis xform up( bstemp[i][], bstemp[i� 1][], wout[i� 1][], i ) ;

bsout[] = bstemp[0][] ;

and

basis pyrm down( bsin[], win[][] , bsout[], L )

bstemp[0][] = bsin[] ;

for( i = 1; i � L; i++ )

basis xform down( bstemp[i� 1][], win[i� 1][], bstemp[i][], i ) ;

bsout[] = bstemp[L][] ;

The running time of these pyramid procedures is governed by the geometric series

(n + n
2 +

n
4 + : : :+ 1) = O(n), and hence they run in linear time. Each one of these

four procedures transforms one n-vector, to another, and thus can be represented as

a matrix. IfW is the matrix of the linear transformation performed by the procedure

coef pyrm up, then W�1 is the matrix of coef pyrm down, W�T is the matrix 5 of

basis pyrm up and WT is the matrix of basis pyrm down.

5The inverse transpose of a matrix is notated here by �T .
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Note that in the semi-orthogonal interval construction, the transformation can

be applied only L � 3 times to insure that the left boundary basis functions do not

intersect the right boundary and vice versa. Otherwise, new functions would have to

be devised to maintain the orthogonality constraints. The pyramid procedures for the

semi-orthogonal case must be appropriately changed to only perform L� 3 xforms.

Note that in this description, wavelets have been used to create an alternative

basis for space VL. But one need not stop with the wavelet basis functions at level

L�1. Instead one can include  functions at greater levels, including more and more

descriptive power. In fact, in the limit if one includes an in�nite number of wavelet

functions on �ner and �ner levels, the basis has the expressive ability to describe all

functions 6 in L2 (all functions with �nite norm).

L2 = V0 _+
1
i=0Wi (37)

Scaling

One �nal issue is the scaling ratio between the basis functions. Traditionally [54, 58]

the wavelet functions are de�ned with the following scaling:

�i;j(t) = 2(i�L)=2 �(2(i�L)t� j)

 i;j(t) = 2(i�L)=2  (2(i�L)t� j) (38)

This means that at each level up, the basis functions become twice as wide, and

are scaled 1p
2
times as tall. This is done so that the the quantity j  i;j j is independent

of i. In the pyramid code, this is achieved by multiplying all of the h and g entries

by
p
2, and all of the ~h and ~g by 1p

2
.

2.4 Families of Wavelets

The description of the B-spline wavelet bases has introduced many of the concepts

and terminology relevant to wavelets in general. At this point the reader should be

6Formally, �nite combinations of these functions form a dense subset of L2
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able to take the Haar construction, and express the transformations using all of the

notation (h and g) developed here.

Roughly speaking, all wavelet constructions are built using two functions � and

 , and four sequences h, g, ~h and ~g. Translations and scales of these functions are

de�ned by Equation (38). The relationships between these functions on adjacent

levels can be expressed using Equations (15, 16, 19). And these relationships can be

cascaded into pyramid algorithms.

There are many other wavelet families that are discussed in the literature. In the

signal processing literature, many convolution sequences (h, g, ~h, and ~g) have been de-

veloped in the context of band-pass �lters used for signal compression. Corresponding

to these sequences are associated � and  functions.

Perhaps the most famous wavelets are the ones developed by Daubechies [26].

These wavelets are both fully orthogonal and have compact support. (This is impos-

sible when the � is a cubic B-spline [16]). The Daubechies wavelets are not symmetric.

They also have no closed form, or piecewise expression, but they can be evaluated

numerically at all dyadic rational points (j=2i).

2.5 Duals and Projections

Given some function F , the question arises, how can one obtain its coe�cients with

respect to some basis? And if the function does not lie in the chosen �nite dimensional

space, then how can one obtain an approximation of F that does. These questions

can be answered using duals and projections.

Given a space VL, and a basis for that space �L;j, we de�ne a set of dual basis

functions ~�L;j to be some set of functions 7 that has the property

h�L;j; ~�L;ki = �jk (39)

where �jk is the Kronecker Delta. The space spanned by the dual basis functions is

denoted ~VL.

7When looking for a dual basis for some �nite dimensional space, and allowing the dual functions
to be arbitrary functions in L2, there are an in�nite variety of duals. Di�erent duals will give rise
to di�erent projections.
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Given some general function F in L2 we can use the dual basis functions to project

F into VL.

PLF �X
j

hF; ~�L;ji�L;j (40)

This operation is a projection in that if F is already in VL, then F = PLF .

Proof:

PLF =
X
j

hF; ~�L;ji�L;j

=
X
j

hX
k

f�L;k
�L;k; ~�L;ji�L;j

=
X
j

X
k

f�L;k
h�L;k; ~�L;ji�L;j

=
X
j

f�L;j
�L;j

= F (41)

2

In the case that F is already in VL, then the projection operator Equation (39) is

just a decomposition operation, i.e., it is one way to obtain the coe�cients of F .

Given some wavelet construction, where the basis �L;j is replaced by the two part

basis f�L�1;j;  L�1;jg using the sequences h and g, and given some dual basis ~�L;j,

there is a dual two-part basis de�ned by

~�L�1;j � X
k

~hk�2j ~�L;k

~ L�1;j � X
k

~gk�2j ~�L;k (42)

(Recall these are the ~h and ~g sequences from Equation (19).) This new basis is dual

to the two-part basis:

h~�L�1;j; �L�1;ki = �jk

h ~ L�1;j;  L�1;ki = �jk

h~�L�1;j;  L�1;ki = 0

h ~ L�1;j; �L�1;ki = 0 (43)
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Proof: These orthogonality conditions are easily veri�ed. For example

h~�L�1;j; �L�1;ki = hX
a

~ha�2j ~�L;a;
X
b

hb�2k�L;bi

=
X
a

X
b

~ha�2jhb�2kh~�L;a; �L;bi

=
X
a

~ha�2jha�2k

= �jk (44)

(the last implication uses Equation (20)). 2

The spaces spanned by the dual two-part basis functions are denoted ~VL�1 and

~WL�1

Given some dual basis ~�L;j that de�nes a projection operator PL from L2 into VL,

the corresponding dual two-part basis f~�L�1;j; ~ L�1;jg de�nes two new projections

into VL�1 and WL�1

PL�1F � X
j

hF; ~�L�1;ji�L�1;j

QL�1F � X
j

hF; ~ L�1;ji L�1;j (45)

It can be shown that

PL = PL�1 +QL�1 (46)

Analogous to Equation (19), the original dual basis functions can also be expressed

as a linear combination of the dual two-part functions.

~�L;j =
X
k

hj�2k ~�L�1;k +
X
k

gj�2k ~ L�1;k (47)

In light of Equations (42) and (47), it is clear that one can operate with the dual

basis functions, just like the primal basis functions as long as one toggles the tildes

(~). There are two bases for ~VL, ~�L;j and f~�L�1;j; ~ L�1;jg. Dual coe�cients can be

transformed using

f~�L�1;j =
X
k

hk�2j f~�L;k

f ~ L�1;j =
X
k

gk�2j f~�L;k
(48)
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and

f~�L;j =
X
k

~hj�2k f~�L�1;k +
X
k

~gj�2k f ~ L�1;k (49)

This may be summarized as

dual basis xform up � coef xform up

dual basis xform down � coef xform down

dual coef xform up � basis xform up

dual coef xform down � basis xform down (50)

There are the dual projections into ~VL�1 and ~WL�1

~PL�1F � X
j

hF; �L�1;ji~�L�1;j
~QL�1F � X

j

hF; L�1;ji ~ L�1;j (51)

and

~PL = ~PL�1 + ~QL�1 (52)

Just as one can reapply the two-part transformation L times to the basis �L;j to

obtain the wavelet basis, one can also reapply the dual two-part transformation L

times to the basis ~�L;j to construct the dual functions

f~�i;j; ~ i;jg (53)

which make up the dual wavelet basis

f~�0;0; ~�0;1; ~ i;jg (54)

with i in f0 : : : L� 1g. And once again

dual basis pyrm up � coef pyrm up = W

dual basis pyrm down � coef pyrm down = W�1

dual coef pyrm up � basis pyrm up = W�T

dual coef pyrm down � basis pyrm down = WT

(55)
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The dual functions at the various levels i de�ne the projections Pi and Qi into the

function spaces Vi and Wi, and

Pj = P0 +
X

0�i<j
Qi (56)

This gives two independent ways of computing a wavelet coe�cient f i;j for some

function F : either obtain all of the f�L;j
coe�cients and apply the pyramid procedures,

or else directly compute the inner product

hF; ~ i;ji (57)

This gives us another way to look at Equation (27).

f�L�1;j = hF; ~�L�1;ji
= hF;X

k

~hk�2j ~�L;ki

=
X
k

~hk�2jhF; ~�L;ki

=
X
k

~hk�2jf�L;k
(58)

There is one last subtlety that should be mentioned. In the wavelet construction

the � and h are chosen so that the two-part functions �L�1;j are just wider copies of

the original basis functions �L;j. This is called a \two-scale" property. In the above

discussion of duals, we were free to pick for the dual basis ~�L;j any set of functions

that satis�ed the duality constraints (Equation (39)). Thus, there is no guarantee

that that the dual basis functions ~�L�1;j on level L� 1 , de�ned using ~h in Equation

(42), are just scaled versions of the original duals. However, it can be shown that

under some weak conditions, there does exist a dual shape ~� that does have the two-

scale property [17]. When wavelet functions  i;j are used to form a basis for L2 on

the real line (i.e., not just VL) by including \in�nite" levels fi = 0 : : :1g, then there

is one natural dual basis, and this dual basis satis�es the two-scale property.

In addition if the wavelet basis is semi-orthogonal (or fully orthogonal), then the

natural dual basis functions span the same space as the primal functions

Vi = ~Vi

Wi = ~Wi (59)
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Orthogonal Projections

The result of projecting a function into some space VL is an approximation of the

original function. This approximate function di�ers from the original function by an

error function E � F � PLF . For each space VL, there is a special projection, called

the orthogonal projection that has the property that the error, E, is orthogonal to

all of VL i.e.,

8j hF � PLF; �L;ji = 0 (60)

The orthogonal projection is often used for approximation because PLF is the best

approximation to F in VL using the L2 norm.

PLF = G s:t: min
G2VL

j F �G j (61)

If one only considers dual basis functions that are members of VL (i.e., VL =

~VL), then there is a unique dual basis. The projection that arises from taking inner

products with this unique dual is the orthogonal projection of F into VL.

Proof: Because VL = ~VL, the orthogonality condition may be stated as

8j hF � PLF; ~�L;ji = 0 (62)

The orthogonality of this projection may be veri�ed as:

8j hF � PLF; ~�L;ji = 0

hF; ~�L;ji � hPLF; ~�L;ji = 0

hF; ~�L;ji = hPLF; ~�L;ji
= hX

k

hF; ~�L;ki�L;k; ~�L;ji

=
X
k

hhF; ~�L;ki; h�L;k; ~�L;ji

= hF; ~�L;ji (63)

2

When using orthogonal wavelets, the basis functions are their own duals, and

the associated projection is orthogonal. When using semi-orthogonal wavelets, the

natural duals lie in the same space, and so the natural projection is the orthogonal
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projection. When the wavelet basis is merely bi-orthogonal (and not semi-orthogonal),

then the natural duals do not lie in the same space, and so the natural projection is

not the orthogonal projection 8.

2.5.1 Vanishing Moments

Since taking inner products is one way to express the projection of some function into

a basis, it is important to study the inner product properties of basis functions. In

the Haar basis, a wavelet coe�cient is near zero if the represented function is nearly

constant over that region since for any constant C,

Z
dt  (t)C = C

Z
dt  (t)

= 0 (64)

Wavelets generalize this notion to higher order using the concept of vanishing

moments. A function  has M vanishing moments if

h (t); tii =
Z
dt (t)ti = 0; i = 0; : : : ;M � 1 (65)

If some function F is well represented by a low order polynomial (� M) over

the support of the basis function  i;j, and  i;j has M vanishing moments, then the

corresponding wavelet coe�cient F ~ i;j
will be nearly zero. The number of vanish-

ing moments measures the compression ability of a wavelet expressed in polynomial

degree.

The cubic B-spline wavelets discussed in this section have four vanishing moments.

2.6 Multidimensional Wavelets

Basis functions of two (or more) variables, are needed for the applications discussed

in this thesis. Two dimensional functions are needed to describe surfaces, and four

dimensional functions are needed to fully describe the light transport in 3D environ-

ments.

8In a geometric setting, such projections are called oblique.
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Given some basis �L;j for VL, a natural basis for the bivariate space VL�VL is the

tensor product basis

�L;j;k(s; t) = �L;j(s)�L;k(t) (66)

2.6.1 Standard Basis

Given some wavelet basis f�0;j;  i;jg for VL, the natural bivariate basis is the standard
tensor product wavelet basis

�0;j(s)�0;l(t) �0;j(s) k;l(t)

 i;j(s)�0;l(t)  i;j(s) k;l(t)
(67)

Given some bivariate function F (s; t) in VL�VL, which is represented in the tensor
product B-spline basis

F (s; t) =
X
i;j

f�L;i;�L;j
�L;i(s)�L;j(t) (68)

the standard tensor product wavelet coe�cient can be obtained by performing the

standard bivariate stan coef pyrm up procedure. Given the original coe�cients in

a two dimensional matrix tableaux indexed by i and j, this procedure �rst performs

the univariate coef pyrm up procedure on all the rows resulting in a new matrix of

coe�cients. The procedure then applies the univariate coef pyrm up procedure on

all of the columns. The resulting numbers are the standard tensor product wavelet

coe�cients.

The tensor process described in this section can be repeated again, to obtain a

4variate standard tensor product basis.

2.6.2 Non-Standard Basis

One feature of the standard basis, is that the basis functions  i;j(s) k;l(t) mix uni-

variate wavelet functions from di�erent resolution levels i 6= k. For radiosity this is

unfortunate because, as we will see, the resulting matrix is not as sparse as possible.

Also for geometric modeling the standard representation is not very natural, because

it does not allow one to decompose bivariate functions into separate resolution levels.
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This inter-level coupling can be avoided if an L level bivariate basis is directly

constructed. For univariate functions, the wavelet construction began with the two-

part basis. For bivariate functions, the non-standard tensor product wavelet basis

construction begins with the four-part basis.

To construct the four-part basis for the space VL � VL spanned by �L;j(s)�L;k(t),

one starts with �L�1;j(s)�L�1;k(t) (tensor product B-spline functions that are twice

as wide) and completes the basis by adding in the basis functions  L�1;j(s) L�1;k(t)

and  L�1;j(s)�L�1;k(t) and �L�1;j(s) L�1;k(t). Note that with univariate functions,

only one special function  (t) was needed to complete the basis, while with bivariate

functions three types of functions need to be added. With this choice, transformations

between the tensor B-spline and the tensor four-part bases can be accomplished with

the procedures

nonstan coef xform up,

nonstan coef xform down,

nonstan basis xform up, and

nonstan basis xform down.

The procedure nonstan coef xform up works as follows: The coe�cients f�L;i;�L;j

are placed in a \matrix" according to their indices i and j. Each row of this matrix

is transformed using coef xform up resulting in a new matrix of coe�cients. Now

each column of this resulting matrix is submitted to coef xform up, resulting in the

four-part coe�cients f�L�1;j ;�L�1;k and f�L�1;j ; L�1;k and f L�1;j ;�L�1;k and f L�1;j ; L�1;k .

Just as with univariate functions, reapplication of this reasoning to the �L�1;j(s)�L�1;k(t)

functions results in another alternative basis, and after L applications, the non-

standard wavelet basis is obtained

�0;j(s)�0;k(t) �i;j(s) i;k(t)

 i;j(s)�i;k(t)  i;j(s) i;k(t)
(69)

(with i in f0 : : : L� 1g).
In this non-standard wavelet basis, all of the bivariate basis functions are products

of univariate basis functions from the same resolution level i.

Again, as with univariate functions, one can transform between the bivariate ten-

sor B-spline and the bivariate tensor non-standard wavelet bases bases using the
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recurse

f�i;�i

f�i; i�1 f�i;�i�1 f i�1 ; i�1 f i�1;�i�1

f�i�1; i�1 f�i�1;�i�1

Figure 12: The 2D non-standard pyramid algorithm (from [40]).

procedures

nonstan coef pyrm up,

nonstan coef pyrm down,

nonstan basis pyrm up, and

nonstan basis pyrm down

where the procedure nonstan coef pyrm upmakesL calls to nonstan coef xform up,

each time with an input \matrix" of 1=4 the size (Figure 12).

A 4variate non-standard basis can be constructed using the method described

in this section. There are other multivariate wavelet bases that are not based on

univariate wavelet bases. This thesis will not discuss such bases.



Chapter 3

Radiosity

The next two chapters discuss how wavelets may be used to e�ciently solve the in-

tegral equation arising in the radiosity formulation of global illumination problems 1.

In a global illumination problem, one is given the geometric description of an envi-

ronment and wants to simulate the interreection of light to create a realistic looking

image of the environment that is faithful to the physics governing light transfer. This

simulation is useful for architects who want to know how bright di�erent regions of

some planned structure will be. It is also useful for anyone interested in producing

computer generated images that look realistic, for example people in the �lm industry

making special e�ects. Although the physics of light transfer is well understood, a

complete simulation, following the path of the innumerable photons, is intractable.

Instead researchers have searched for practical methods that numerically approximate

the solution. The radiosity method is one such approach, where an approximate global

illumination solution is found by constructing and solving a linear system. Unfortu-

nately, to obtain a detailed solution, one must solve a large dense matrix equation.

This can become quite expensive. This chapter reviews the radiosity formulation.

The following chapter will discuss how a wavelet basis can be used to more e�ciently

solve radiosity problems. In particular this thesis will describe how the wavelet basis

gives rise to a sparse linear system, which can be computed and solved quickly.

1These chapters represent work done jointly with Peter Schr�oder and our advisors Professors
Michael F. Cohen and Pat Hanrahan and is also reported in [40, 65].

43
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t

ωi

ωo

Figure 13: The BRDF is parameterized by a location t on a surface, as well as
incoming and outgoing directions !i and !o.

3.1 A Little Background

The earliest attempts to render realistic looking images only focused on local re-

ectance properties. The goal was to mimic the way that real objects respond to

real light sources. Formally speaking, the local reectance properties of a surface are

de�ned by its bidirectional reectance function (BRDF)

fr(!i; s; !o; �) (70)

which describes the amount of light from an incoming beam centered in the direction

!i with wavelength � 2 that is reected in the outgoing direction !o at the surface

point s (see Figure 13). (See [23] for a comprehensive discussion of photometric units).

Thus given a point light source in some direction !i, and an eye placed in direction

!o, the BRDF can be used to compute the the appearance of the surface point s

to the eye. This can be used to compute the value of the corresponding pixel of a

graphical image. Many simple lighting models, such as Phong and Torrance-Sparrow

have been developed [29], and important research on BRDFs continues to the present

time [50, 64].

2In computer graphics, color is often handled by sampling the visible spectrum at three locations
for red, green, and blue values. This thesis will have no further discussion of wavelength, and � will
be dropped.
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While the local reectance methods helped introduce a great deal of realism to

computer generated images, these local methods lack any global illumination e�ects.

In a realistic environment, the light incident at a surface point results from com-

plicated interactions involving all of the geometry of the environment. Important

global illumination e�ects include occlusion and interreection. An example of an

occlusion e�ect is the complicated shadow patterns (umbrae and penumbrae) that

arise when some light source is partially blocked by a surface. A simple example of

an interreection e�ect is color bleeding, where some surface (A) takes on the color

of a non-emitting nearby colored surface (B), because of the color of light that (B)

reects. In this global perspective every surface point is responsible for receiving from

and reecting to every other surface point.

One of the �rst algorithms designed to account for some degree of global illumina-

tion was ray tracing [77]. The basic idea is simple. A ray is cast from the \eye" of the

viewer through each pixel of the computer screen window into the 3D environment,

until this ray hits some surface point. To calculate the brightness of that surface

point, and hence the intensity of that pixel, shadow rays are cast towards point light

sources. If a shadow ray intersects some other surface (before hitting the light), then

that light source is blocked, and none of its light is propagated to the surface point

in question. If the shadow ray is not blocked, then the BRDF is used to calculate the

intensity of light reected back in the direction of the eye. Using this method, sharp

shadow regions, that arise from point light source, can be calculated.

If the ray cast from the eye, hits a surface with specular reectance (such as a

mirror, or suspended glass ball), then another ray is propagated in the \bounce"

direction. This ray is then recursively treated as an eye ray, and the light calculated

for that ray is then bounced back towards the eye.

Early ray tracing methods only accounted for direct reection of point light sources

at non-specular surfaces, and indirect reection at specular surfaces. Later, these

methods were extended to include area light sources and non-specular interreection

using the method of distribution ray tracing [24]. To account for area light sources,

a large collection (distribution) of shadow rays are �red towards area light sources.

Each of these shadow rays is associated with some fraction of the area light source,
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and propagates its energy back to the surface point. If all of the shadow rays are

blocked, then the surface point is shadowed. If all of the shadow rays hit the light,

then the surface point is fully illuminated. If only some fraction of rays are blocked,

the surface point is in a penumbral region.

A similar method is employed by distribution ray tracing to account for indirect

reection at surfaces with directionally di�use BRDFs (e.g., a glossy but not mirrored

surface such as a waxed tile oor). When an eye ray hits a glossy surface, a large

distribution of rays are sent to sample the cone of the bounce direction. These rays

are recursively treated like new eye-rays, and the energy brought back by these rays is

summed up using the BRDF to return the proper amount of energy to the pixel. Using

distribution ray tracing, many stunning images have been created. In theory, these

methods can be extended to include very general BRDFs such as di�use reectance,

but this requires sending an immense amount of rays to sample the entire hemisphere

of reection (there being no preferred bounce direction).

The radiosity algorithm [38] was introduced as a method for rendering an image

with primarily di�use reectance, and area light sources. In the radiosity paradigm,

the BRDFs of the surfaces are assumed to be Lambertian di�use (light is reected

with the same brightness in all directions over the hemisphere), and the light sources

are assumed to be emitting light in a di�use manner. With these assumptions, the

brightness at every point on a surface can be described by one value which is called

radiosity 3.

The environment is meshed into a set of surface regions, called elements, and the

assumptions is made that the radiosity is constant over each element, and that the

environment is in energy equilibrium. This gives rise to the following linear system.

8i bi = ei + �i
X
j

bjFi;j (71)

3Radiosity has units watts
meters2

.
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Figure 14: The con�guration of two polygons. The lines with arrowheads are normals
of the polygons.

or in matrix form:2
66666666666664

1 � �1F1;1 ��1F1;2 ��1F1;3 : : ��1F1;n

��2F2;1 1 � �2F2;2 ��2F2;3 : : ��2F2;n

: :

: :

��n�1Fn�1;1 :

��nFn;1 : : : : 1� �nFn;n

3
77777777777775

2
66666666666664

b1

b2

:

:

bn�1

bn

3
77777777777775
=

2
66666666666664

e1

e2

:

:

en�1

en

3
77777777777775

where:

bi = the radiosity of the ith element

�i = the reectivity of the ith element

ei = the emission of the ith element

Fi;j = the form factor from element i to element j

= the fraction of power leaving element i arriving directly at element j

This equation states that the radiosity of an element is equal to the amount of

emitted radiosity of that element, plus the reected (�) radiosity that is gathered
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from the entire environment (
P
j). The form factor, Fi;j, de�nes the fraction of power

leaving element i that arrives at element j, and can be calculated as the de�nite

integral 4 over the elements �i �j ,

1

ai

Z
�i
dt
Z
�j
ds

cos �s cos �t
�r2st

Vst (72)

Where ai is the area of element i, rst is the distance between point t and point s, and

the visibility, Vst is 1 if point s can see point t and 0 otherwise, (see Figure 14) 5.

This algorithm raises several computational issues that have motivated a great

deal of research. The form factor integrals Equation (72), must be computed, and

many methods to do this have since been developed [23]. It should also be clear

that the mesh of elements chosen has a great impact on the quality of the solution;

in regions where the true radiosity varies greatly (for example shadow boundaries)

many small elements are needed to express the variation, thus methods for mesh

generation have also generated a great deal of research[23]. Once the solution (b) is

computed one can simply output at shaded surface elements to the screen, but one

may also use more sophisticated methods such displaying Gouraud shaded polygons,

or employing some more complicated method of reconstruction[63].

Some research has focussed on methods for solving the linear system (Equation

(71)). Obviously one could use a direct matrix inversion technique such as Gaussian

elimination, but this takes O(n3) time. In [21] it was noted this matrix is diagonally

dominant, and hence can be solved by relaxation methods such as Gauss-Seidel or

Jacobi iteration, which converge to acceptable solutions much quicker than direct

inversion methods. This was improved upon in [20] where the progressive radiosity

(PR) solution method was introduced. PR operates by keeping track of unshot energy

and \shooting" it around the environment until convergence occurs. In [39], it was

shown that PR is related to the Southwell method of solving linear systems.

4In all of the integrals presented in this chapter are parameterized with respect to geometric size.
For 3D radiosity then, dt and ds are unit area elements. For 2D Flatland radiosity dt and ds are
unit length elements.

5It may seem counterintuitive that the we use Fi;j in the linear system and not Fj;i. But this is
a result of measuring in units of radiosity (power/area) instead of power and using the reciprocity
relationship AiFi;j = AjFj;i [38].
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Just as ray tracing was �rst designed for specular reectance, and then extended

to more di�use BRDFs, radiosity which was �rst designed for specular reectance has

since been extended to handle more specular-like BRDFs [69].

3.2 Integral Equations

Kajiya [49] put this whole topic in formal terms when he explained that all these

methods were really trying to solve the integral rendering equation.

L(s; !o) = Le(s; !o) +
Z
dt Vst L(t; !ts)

cos �s cos �t
r2st

fr(!st; s; !o) (73)

L(s; !o) is the outgoing radiance from surface point s in the direction !o. Le is the

out going emitted radiance and !st is the direction of the ray from point s to point

t. The angles � and the radius r are given in Figure 14 6. This equation states that

the outgoing radiance L at surface point s in the outgoing direction !o is equal to

the emitted radiance Le at that point, plus the reected radiance at that point. To

compute the reected radiance, one must integrate over the rest of the environmentR
dt, check if the two points are mutually visible Vst, collect the radiance at these

points L(t; !ts), attenuate by a geometric term (the term with the cos and 1=r2), and

multiply by the BRDF fr. The unknown of this equation is the function L.

If the BRDF is assumed to be Lambertian di�use, then the equation reduces to

the radiosity integral equation 7.

B(s) = E(s) + �(s)
Z
dt Vst B(t)

cos �s cos �t
�r2st

(74)

6L has units of watts
meters2 steradians

.
fr cos �s has units of

1
steradians

.
dt has units of meters2.
cos �tdt

r2
has units steradians

meters2
.

7By making the assumption of di�use reectance, the BRDF becomes independent of the direc-

tions !i and !o. This di�use BRDF is only a function of s and can be expressed as �(s)
�

. Since the

outgoing radiance is equal in all directions, the radiance can be expressed as B(s)
�

. B(s) is only a
function of s and it measures radiosity which has units watts

meters2
. 1

�
has units 1

steradians
. Similarly

the emitted radiance can be expressed as E
�
. This 1

�
can be multiplied out of the integral equation

leaving an equation for the radiosity B.
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where B(s) is the radiosity at point s and �(s) is the di�use reectivity fraction. The

unknown function to be solved for is B, the radiosity function. This equation is often

written as

B(s) = E(s) +
Z
dt K(s; t)B(t) (75)

where the kernel function is

K(s; t) = �(s)
cos �s cos �t

�r2st
Vst (76)

This can be written in operator notation as

B = E +KB (77)

where K is the associated integral operator 8.

3.3 Finite Element/Galerkin Radiosity

From this perspective, Kajiya explained that distribution ray tracing was just an

application of the Monte Carlo method for solving solving the rendering integral

equation (Equation (73)). In [45], Heckbert explained how the radiosity method, was

actually an application of the Galerkin/�nite element method for solving the radiosity

integral equation (Equation (74)).

The �nite element method begins by orthogonally projecting E into some �nite

dimensional function space VL, spanned by n basis functions �L;j.

E � Ê =
X
j

e�L;j
�L;j (78)

and then assuming that the unknown function B also lies in VL

B � B̂ =
X
j

b�L;j
�L;j (79)

This results in the integral equation:

B̂(s) = Ê(s) +
Z
dtK(s; t)B̂(t) (80)

8For ease of exposition, B will be described as a univariate function andK as a bivariate function.
In 3D radiosity, B is a function de�ned over the domain of surfaces, and so is bivariate, while K is
4variate.
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Unfortunately this equation does not in general have a solution B̂ that resides in VL.

Heckbert describes two ways that the equality can be relaxed. In point collocation,

equality is only enforced at a �nite discrete set of points. This gives rise to a linear

system with n variables. In the galerkin method, it is assumed that the residual is

orthogonal to VL. �
B̂(s)� Ê(s) +

Z
dtK(s; t)B̂(t)

�
? VL (81)

This is also a set of linear constraints, and also results in a linear system.

The Galerkin orthogonality constraint can be expressed in the language of projec-

tions (Section 2.5), given the unique basis ~�L;j that is dual to �L;j and also lies is VL

(i.e., VL = ~VL) as follows

B̂(s) = Ê(s) +
X
i

�Z
dtK(s; t)B̂(t); ~�L;i(s)

�
�L;i(s) (82)

Using projection notation, this equation can be written as

B̂ = Ê + PLKB̂ (83)

and since B̂ by de�nition lies in VL, B̂ = PLB̂, so the equation can also be written as

B̂ = Ê + PLKPLB̂ (84)

In words, we operate on (integrate against the kernel) the �nite dimensional function

B̂(t). After having been operated on, the resulting function generally no longer lies

in the �nite dimensional function space, so the function is orthogonally reprojected

into VL using the dual basis ~�L;i(s).

This sets up the n constraints (8i)

b�L;i = e�L;i +
�Z

dtK(s; t)B̂(t); ~�L;i(s)
�

= e�L;i +

*Z
dtK(s; t)

X
j

b�L;j
�L;j(t); ~�L;i(s)

+

= e�L;i +
X
j

b�L;j

�Z
dtK(s; t)�L;j(t); ~�L;i(s)

�

= e�L;i +
X
j

b�L;j
ki;j (85)
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where the b�L;i are the n unknowns and

ki;j =
�Z

dtK(s; t)�L;j(t); ~�L;i(s)
�

=
Z
ds
Z
dtK(s; t)~�L;i(s)�L;j(t) (86)

and

e�L;i = hE; ~�L;ii =
Z
dsE(s)~�L;i (87)

Or in matrix terms

b = e+Kb (88)

There are n2 matrix terms, where n is the number of basis functions used to de-

scribe B. Computing these terms is the most expensive part of radiosity calculations.

(Because the system is well conditioned, very few relaxation iterations are required

for convergence and so solving the system is somewhat less expensive.)

When the box functions are chosen as the basis �L;i, then the dual function ~�L;i

is a box function with height 1=ai, and this linear system is identical to the classical

radiosity linear system (Equation (71)).

When relaxation methods, such as Jacobi iteration are used to solve a radios-

ity linear system, the main operation of the iteration is multiplying some vector

by the matrix K, or in operator notation, performing the operation PLKPLB =

PL
R
dtK(s; t)PLB(t) on some function B. This operation is often called \shooting".

If the input is a radiosity function B, the output function is the result of shooting

that radiosity once through the environment.

Note that the ki;j terms can also be viewed as the coe�cients of the function K

projected into the bivariate basis �L;i(s)~�L;j(t).

K̂ � PLs ~PLtK(s; t) =
X
ij

ki;j�L;i(s)~�L;j(t) (89)

(where the s and t projection subscripts designate projections of K with respect to

the correct variable).
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This projected K can be used as another way to write out the projected integral

operator:

Z
dtK̂(s; t)B(t) =

Z
dt(PLs ~PLtK(s; t)) �B(t) (90)

=
Z
dt(PLsK(s; t)) � (PLB(t))

= PL

�Z
dtK(s; t)(PLB(T ))

�
(91)

This gives two identical ways to express the same operation: either project B,

integrate K with it, and reproject the result (Equation (90)), or project K and then

integrate the resulting function with B (Equation (91)).

Given that VL = ~VL, and PL = ~PL, one can also obtain the same projected kernel

K̂ by expanding K into the symmetric basis ~�L;i(s)~�L;j(t).

ki;j =
Z
ds
Z
dtK(s; t)�L;j(t)�L;i(s) (92)

This symmetric representation has the advantage of only one type of basis function

under the integral. The matrix made up of these terms will be denoted as ~K which

is a symmetric matrix (modulo �). When this form of the integral operator

~PLKPL (93)

is applied to the function B expressed with respect to the primal basis �L;j(t), the

resulting function is expressed with respect to the dual basis ~�L;i(s), and must be

transformed back to the primal basis for further computation.

3.3.1 Choosing a Basis

It is important to remember that the projected equation is only an approximation to

the original integral equation. Projections into di�erent �nite dimensional spaces will

result in di�erent approximations with di�ering amounts of error and di�erent types

of error. In general, the projection error is O(hp+1) where h is the size of the grid

elements, and p the degree of the polynomial used. Thus one can reduce the error by
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using higher order basis functions or smaller elements. Basis functions of higher order

polynomials can also result in smoother reconstructed radiosity solutions leading to

fewer visual artifacts. However, higher order basis functions require more work to

evaluate the associated inner products, possibly o�setting potential savings.

The original classical radiosity algorithms (CR) used the box basis. Heckbert

studied the use of a linear basis (in the context of 2D radiosity in a plane)[45].

Troutman and Max discuss the use of a linear basis in 3D radiosity[75]. And Zatz

has studied using higher order Galerkin methods[82]. These higher order methods

are referred to as Galerkin Radiosity (GR).

This thesis discusses using a variety of wavelet bases for radiosity. Some wavelet

bases o�er alternative bases for familiar spaces that have been used in �nite element

methods (e.g., Haar basis), while others span new spaces that have not been explored.

The advantage of a wavelet basis is that its hierarchical structure allows the kernel

function and the associated integral operator to be expressed with a sparse matrix

representation. A hierarchical representation for radiosity was explored in the hier-

archical radiosity method of Hanrahan et al. to obtain a fast radiosity method[44].

As will be discussed, the hierarchical radiosity method can be understood as a �rst

order wavelet method.



Chapter 4

Wavelet Radiosity

This chapter will discuss using a wavelet basis to represent the illumination function

and the kernel function. The illumination function is a function that describes the

light intensity over all of the surface points in a geometric environment and the kernel

function is a function that describes the energy interaction between pairs of points

in the environment. Because in many regions (over the space of pairs of points), the

kernel function is smooth, the wavelet basis is able to compress the representation

resulting in a sparse radiosity matrix. The sparseness of this matrix allows for a more

e�cient solution method then possible with classical radiosity approaches where a

dense matrix of equations must be solved. This represents work done jointly with

other researchers at Princeton University, and the presentation here is adapted from

the papers [40, 65]. The use of wavelet functions to quickly solve integral equations

was discovered by [9, 2, 3]. This important discovery allows a large class of integral

equations to be expressed in a wavelet basis by a sparse matrix with only O(n)

signi�cant entries. When a classical �nite element basis is used, the resulting matrix

generally has O(n2) signi�cant entries. Much of the theoretical discussion given in

this chapter is based on that work.

55
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4.1 Contribution

The contribution of the wavelet approach to radiosity described in this chapter is

both theoretical and practical.

The use of a wavelet formulation gives rise to a more elegant formulation of the

hierarchical radiosity method (HR) of Hanrahan et al. [44]. hierarchical radiosity uses

a hierarchical representation of the geometric environment in order to simulate the

energy transfer of light in the environment using only O(n) interaction terms instead

of the usual O(n2). This makes it the most e�cient method know to solve radios-

ity problems. This chapter explains how wavelets can be used to cast hierarchical

radiosity in the context of the more traditional Galerkin/�nite element method. In

particular hierarchical radiosity can be viewed as a wavelet approach based on the

simplest wavelet, the Haar wavelet.

This formulation not only expresses hierarchical radiosity in an elegant theoret-

ical framework, but it also gives rise to more e�cient radiosity algorithms that can

produce more accurate solutions with less computation. By posing the hierarchical

methods in the wavelet context, one is free to move beyond the Haar basis and explore

the tradeo�'s of using a variety of di�erent wavelet bases. In particular this thesis

describes a new set of basis functions dubbed \atlets" that have been developed

speci�cally for radiosity. This chapter explores some of these tradeo�s, describes an

implementation, and discusses some experimental results.

4.2 Hierarchical Radiosity

This section briey describes a hierarchical radiosity method described by Hanrahan

et al. [44]. Later sections will discuss the relationship between this algorithm and

wavelet based methods.

In classical radiosity implementations, the radiosity integral equation is solved by

an iterative method such as Jacobi iteration. Each iteration can be thought of as

propagating some energy through the environment, applying the operator PLKPL to

some current radiosity solution B. To facilitate this energy propagation, each of the
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surfaces in the environment propagates its energy to all of the other surfaces. In order

for one surface (called the \shooter") to propagate its energy to some other surface

(called the \receiver"), each of the two surfaces is meshed into a set of smaller surface

elements. The energy distribution is represented using one coe�cient for each mesh

element. Energy is then propagated from each of the mesh elements of the shooting

surface, to all of the mesh elements of the receiving surface. This results in a new

energy distribution on the receiving surface.

In contrast to this classical radiosity implementation, hierarchical radiosity uses a

hierarchy of meshes to describe the energy distributions at each surface at a variety

of resolutions. For di�erent portions of the energy propagation, di�erent resolutions

of the meshes are used. This novelty combines two di�erent meshing strategies,

multilevel meshing of surfaces receiving energy, and multilevel meshing of surfaces

shooting energy. Each of these strategies have been used and justi�ed in previous

implementations of radiosity.

Multilevel receivers: It is clear from the linearity of the integral operator, that one

can shoot from each the surface elements independently. Therefore one is free to use

a di�erent mesh resolution over the receivers for di�erent shooting element. For some

shooting elements, one may need to use a �ne mesh for the receiving surface, while

for other shooting elements one may only need some coarse mesh for the receiver.

After all of the shooting elements have been accounted for, the received energy can

then be summed up at �nest resolution mesh of the receiver.

Multilevel shooters: Cohen et al. [22] discuss the converse strategy. In their

method, one always uses the �nest resolution mesh to describe the receiving surface,

but one uses a coarser description to represent the energy distribution of the shooting

surface. They argue that during light exchange, little error is incurred by using this

coarse description for the shooters. The coarser distribution of energy at the shooting

surface, is obtained by averaging the �ne level description of energy.

Hierarchical radiosity combines these two strategies in a systematic way. Roughly

speaking, in hierarchical radiosity, when two nearby surface regions of the environment

interact, a �ne description of the environment is used on both the shooter and the

receiver. When two distant regions (relative to the size of the regions) interact,
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Figure 15: The space of projection methods for radiosity (from [40]).

the kernel function can be well represented as a constant (because the geometric

terms, such as the cosines and distance do not vary greatly) and therefore a coarser

description is used on both the shooter and receiver. When two regions are partially

visible (mutually penumbral), then it is concluded that the kernel function is not

constant, and a �ner description is used. The hierarchical description of the energy

distribution on shooting surface is obtained using an averaging pyramid procedure

called pull that works from the �nest resolution to the coarsest. The radiosity

received at the various resolutions of the mesh are summed together with a procedure

named push that works from the coarsest resolution to the �nest [44].

Because many of the interactions can be done between coarse levels of the hi-

erarchy, hierarchical radiosity is able to use interaction patterns with only O(n) in-

teractions, where n is the number of elements in the �nest level description of the

hierarchy.

Hierarchical methods for radiosity can be formally understood by using a wavelet

basis, where the e�ciency is expressed by the sparseness of the matrix, and this

sparseness is due to the vanishing moments of the wavelets. In this context, it will be

explained how hierarchical radiosity is related the Haar basis. By doing so, hierar-

chical radiosity can be understood as a �rst order wavelet method. Figure 15 places

earlier algorithms plus the wavelet methods into a matrix relating hierarchy versus

the order of the underlying basis. Classical radiosity (CR) uses zero order polyno-

mials, while galerkin radiosity (GR) uses higher order polynomials (indicated by the
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arrow). The vertical axis represents the sparseness obtained by exploiting smooth-

ness of some order in the kernel. Hierarchical radiosity (HR) exploits \constant"

smoothness in the kernel. Within this context, we recognize hierarchical radiosity as

a �rst order wavelet. Higher order wavelets can be used that result in an even sparser

matrix. One such family of higher order wavelets is the multiwavelet family of [3]

(M2;3 in Figure 15). We will also introduce a new family of wavelets, which we have

dubbed atlets (F2;3 in Figure 15) that require only low order quadrature methods

while maintaining most of the bene�ts of other wavelet sets.

4.3 Compression of Integral Operators

The theoretical basis for the wavelet radiosity method comes from the discovery by

Beylkin et al. [8] that a large class of functional operators can be realized in the

wavelet basis with a sparse set of matrix entries. In particular they studied Calderon-

Zygmund Integral operators K; these are operators with the form

(KB)(s) =
Z
dt K(s; t)B(t) (94)

where the kernel function K is singular along the diagonal K(s; s), and is su�ciently

smooth away from the diagonal. The required smoothness is de�ned by

j K(s; t) j � 1

j s� t jd

j @Ms K(s; t) j + j @Mt K(s; t) j � CM
j s� t jd+M (95)

for someM � 1, where d is the dimension of the parameters s and t, and CM is some

constant. One simple example of an operator which meets these conditions is

(KB)(s) =
Z
dt

1

s� t
B(t) (96)

If the kernel function K is expanded in a multivariate wavelet basis with M

vanishing moments, and K can be well described by a polynomial of low degree

(relative to the number of vanishing moments of the chosen wavelet function) over

the support of some particular basis function  i;j(s) k;l(t), then the corresponding
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coe�cient will be correspondingly small. This occurs because the integral of a wavelet

with enough vanishing moments, against a polynomial of correspondingly low degree,

is zero.

In particular Beylkin et al. show that for a Calderon-Zygmund kernel, by dropping

the �rst M terms of the kernel's taylor series, the magnitude of a kernel coe�cient

with respect to a wavelet with M vanishing momentsZ
ds
Z
dt K(s; t) i;j(s) k;l(t) (97)

can be bounded by

CM

 
max(Is; It)

singDist( i;j;  k;l)

!d+M
(98)

where singDist measures the minimum distance between the singularity in (s; t)

and the support of the basis function  i;j(s) k;l(t). Is is the support length of the

basis function  i;j(s), and It is the support length of the basis function  k;l(t). For

completeness, a derivation of this theorem is given in Appendix B.

This implies that coe�cients are small when the support of the basis functions are

small, or if the basis functions are far from the singularity of the kernel function 1.

Given that the coe�cient of a particular basis function is less than epsilon, if one

moves twice as far from the singularity, then the basis functions that are twice as

wide will also have coe�cients less than epsilon.

Using this reasoning, Beylkin et al. show that for Calderon-Zygmund operators,

when the standard bivariate wavelet basis is used to expand the kernel function, only

O(n log n) coe�cients are larger than a user de�ned epsilon. Moreover, only O(n)

coe�cients are signi�cant if the non-standard bivariate wavelet basis is used. In

these complexity bounds, n is the number of basis functions used to expand functions

of the single parameter s or t, such as the function B in Equation (94). By discarding

the non-signi�cant coe�cients, a sparse matrix representation of the integral operator

is obtained.

The framework developed by Beylkin et al. is general enough to include the light

transfer operator of radiosity problems. For 3D radiosity, the parametric dimension d

1If the support size is less than the distance to the singularity, then the coe�cients can also be
made smaller by raising the number of vanishing momentsM .
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is two and the denominator of the 3D radiosity kernel falls as 1=r2, thus it meets the

criteria of Equation (95). Roughly speaking, the radiosity kernel is smooth between

two distant, small regions. The kernel has a singularity, and thus is not smooth, where

two surfaces touch. The kernel has a discontinuity, and is thus is also not smooth,

where two surfaces undergo a visibility change from mutually visible to mutually not

visible.

The radiosity kernel for particular geometric con�gurations can be analyzed in

this framework. The radiosity con�guration giving rise to an operator analogous to

Equation (96) is the environment consisting of two parallel polygons facing each other

with a short distance between them. This case is in fact better behaved (with smaller

coe�cients) than those of Equation (96) because there is no actual singularity for any

values of s and t. (There is a singularity when viewed as a function in complex plane.

For a discussion, see the Appendix of [65]). An example of a radiosity con�guration

with a singular kernel is one where two polygons intersect (such as a wall meeting the

ceiling). But this case is also better than Equation (96) because this singularity is

smaller in dimension, (it is not along the diagonal of parameter space, but just along

a corner). A discontinuity in K is similar to a singularity, in that basis functions that

cross the discontinuity have large magnitude, but is better behaved in that coe�cients

than are arbitrarily close to the discontinuity may still be small.

There is a theoretical disadvantage to the standard decomposition, which comes

from the coupling of univariate basis functions of di�erent scales i and k in construct-

ing the basis functions  i;j(s) k;l(t). This coupling gives the basis functions wider

than necessary supports, resulting in more basis functions crossing a discontinuity, or

not being well separated from a singularity. In comparison, the non-standard basis

functions have square support, and have more basis functions of smaller support.

Consider for example the Haar basis with L = 1. In the bivariate standard

basis, there are 4 functions at level 0 with support 4 � 4, there are 4 basis func-

tions f 1;j(s) 0;l(t);  1;j(s)�0;l(t)g with support 2 � 4, there are 4 basis functions

f 0;j(s) 1;l(t); �0;j(s) 1;l(t)g with support 4� 2, and there are 4 bivariate basis func-

tions f 1;j(s) 1;l(t)g with support size 2� 2.

In the non-standard basis, there are the 4 functions at level 0 with support 4� 4,
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while the remaining 12 basis functions only involve functions at level 1 and all have

support 2 � 2. For the non-standard basis, the arguments in [9] arrive at an O(n)

sparseness bound on the number of signi�cant coe�cients.

4.4 Wavelet Radiosity

4.4.1 Standard Decomposition

The idea behind the standard wavelet method is simple. All the reasoning of section

3.3 is applied, but instead of using a standard �nite element basis to represent B(s),

a wavelet basis is used.

In this case, the matrix has elements of the form

k�ijkl =
Z
ds
Z
dt K(s; t) ~ i;j(s) k;l(t)

k�jkl =
Z
ds
Z
dt K(s; t)~�0;j(s) k;l(t)

kijl =
Z
ds
Z
dt K(s; t) ~ i;j(s)�0;l(t)

k�jl =
Z
ds
Z
dt K(s; t)~�0;j(s)�0;l(t) (99)

This matrix can be de�ned relative to the matrix K of section 3.3. as WKW�1.

(Recall that W is the matrix representation of coef pyrm up). If one is using the

symmetric expansion, then the standard matrix has the terms

k�ijkl =
Z
ds
Z
dt K(s; t) i;j(s) k;l(t)

k�jkl =
Z
ds
Z
dt K(s; t)�0;j(s) k;l(t)

kijl =
Z
ds
Z
dt K(s; t) i;j(s)�0;l(t)

k�jl =
Z
ds
Z
dt K(s; t)�0;j(s)�0;l(t) (100)

and the matrix can be de�ned as W�T ~KW�1.

This decomposition is referred to as standard, as it can be interpreted as an

application of Equation (90) where K(s; t) is projected and expressed with respect to
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the bivariate standard wavelet basis. Here is the symmetric version of that expansion:

K̂(s; t) =
X
ijkl

k�ijkl
~ i;j(s) ~ k;l(t)

+
X
jkl

k�jkl
~�0;j(s) ~ k;l(t)

+
X
ijl

kijl
~ i;j(s)~�0;l(t)

+
X
jl

k�jl
~�0;j(s)~�0;l(t) (101)

One can also express this decomposition, as the operator K operating on the �nite

dimensional function spaces and using the identity PL = P0 +
PL�1
i=0 Qi. (Here is the

symmetric version)

~PLKPL
= ( ~P0 +

L�1X
i=0

~Qi)K(P0 +
L�1X
i=0

Qi)

= ~P0KP0 +
L�1X
i=0

~P0KQi +
L�1X
i=0

~QiKP0 +
L�1X
i;l=0

~QiKQl

(102)

Each one of the terms in the above expansion describes the action of the integral

operator between the two spaces on its left and right side [3].

4.4.2 Non-Standard Decomposition

A sparser set of coe�cients representing the kernel can be obtained using the non-

standard wavelet decomposition. This representation must be used to obtain a

method to implement the integral operator K. This can be done using the method

described in [9], which may be described from three di�erent points of view.

Algebraic

In Equation (101), K̂ is expressed with respect to the standard bivariate wavelet basis.

As explained in Section 2.6.2, an alternative bivariate basis is the non-standard basis,
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and K̂ can be expressed as

K̂(s; t) =
X
ijk

k�ijk
~ i;j(s) ~ i;k(t) +

X
ijk

k�ijk
~�i;j(s) ~ i;k(t)

+
X
ijk

kijk
~ i;j(s)~�i;k(t) +

X
jk

k�jk
~�0;j(s)~�0;k(t) (103)

where

k�ijk =
Z
ds
Z
dt K(s; t) i;j(s) i;k(t)

k�ijk =
Z
ds
Z
dt K(s; t)�i;j(s) i;k(t)

kijk =
Z
ds
Z
dt K(s; t) i;j(s)�i;k(t)

k�jk =
Z
ds
Z
dt K(s; t)�0;j(s)�0;k(t) (104)

In this expansion, all bivariate basis functions are combined from univariate basis

functions of the same scale i. Because all of the bivariate basis functions have square

support, the well-separated arguments of [9], show that only O(n) k terms will be

above �.

The only question remaining is how does one use this expansion of the kernel

function to expand the integral operator. To expand the operator, it is best to begin

with Equation (90) and not Equation (91). From this we can derive:

Z
dtK̂(s; t)B(t)

=
X
ij

~ i;j(s)
X
k

k�ijkb
�
ik + kijkb


ik +

X
ij

~�i;j(s)
X
k

k�ijkb
�
ik +

X
j

~�0;j(s)
X
k

k�jkb

0;k

(105)

where

b�ik = b�ik = b i;k =
Z
dt ~ i;k(t)B(t)

bik = b�i;k =
Z
dt ~�i;k(t)B(t) (106)
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Proof:

Z
dtK̂(s; t)B(t)

=
Z
dt
X
ijk

k�ijk
~ i;j(s) ~ i;k(t)B(t) +

Z
dt
X
ijk

k�ijk
~�i;j(s) ~ i;k(t)B(t)

+
Z
dt
X
ijk

kijk
~ i;j(s)~�i;k(t)B(t) +

Z
dt
X
jk

k�jk
~�0;j(s)~�0;k(t)B(t)

=
X
ij

~ i;j(s)
Z
dt
X
k

k�ijk
~ i;k(t)B(t) +

X
ij

~�i;j(s)
Z
dt
X
k

k�ijk
~ i;k(t)B(t)

+
X
ij

~ i;j(s)
Z
dt
X
k

kijk
~�i;k(t)B(t) +

X
j

~�0;j(s)
Z
dt
X
k

k�jk
~�0;k(t)B(t)

=
X
ij

~ i;j(s)
X
k

k�ijk

Z
dt ~ i;k(t)B(t) +

X
ij

~�i;j(s)
X
k

k�ijk

Z
dt ~ i;k(t)B(t)

+
X
ij

~ i;j(s)
X
k

kijk

Z
dt~�i;k(t)B(t) +

X
j

~�0;j(s)
X
k

k�jk

Z
dt~�0;k(t)B(t)

=
X
ij

~ i;j(s)
X
k

k�ijkb
�
ik + kijkb


ik +

X
ij

~�i;j(s)
X
k

k�ijkb
�
ik +

X
j

~�0;j(s)
X
k

k�jkb

0;k

(107)

2

Equation (105) can be implemented in the following three phase algorithm:

Pull: In this phase, the b�� scalars are computed. If we begin with the b�L;i
coef-

�cients, the new scalars can be obtained with the procedure pull. This procedure

is just like coef pyrm up( bsin[], bsout[], wout[][], L ) except that all of the

b�i;j coe�cients are saved on the way up, and output after the pyramid.

pull( bsin[], bsout[][], wout[][], L )

bstemp[L][] = bsin[L] ;

for( i = L; i � 1; i�� )

coef xform up( bstemp[i][], bstemp[i� 1][], wout[i� 1][], i ) ;

bsout[i� 1][] = bstemp[i� 1][] ;

Gather: In this phase index k of Equation (105) is summed over for all i and j. This
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can be thought of as multiplying a matrix with a vector.

Push: At this point, the resulting function is expressed as a combination of ~�i;j and

~ i;j. To obtain an expression of this function with respect to the basis ~�L;j, the proce-

dure dual push can be used. This procedure is like the dual coef pyrm down( bsin[],

win[][] , bsout[], L ) except that the after each call to the dual coef xform down,

the returned vector btemp[i][] has bin[i][] added to it.

dual push( bsin[][], win[][] , bsout[], L )

bstemp[0][] = bsin[0][] ;

for( i = 1; i � L; i++ )

dual coef xform down( bstemp[i� 1][], win[i� 1][], bstemp[i][], i ) ;

bstemp[i][] += bsin[i][] ;

bsout[L] = bstemp[L][] ;

Projections

The non-standard decomposition of K can also be described completely as the fol-

lowing operator decomposition.

~PLKPL = ~P0KP0 +
L�1X
i=0

~QiKPi +
L�1X
i=0

~PiKQi +
L�1X
i=0

~QiKQi (108)

This expression states nothing about expanding the kernel function K, it merely

describes the operator as the sum of \smaller" operators. And given bases to span

the Vi and Wi, each of these smaller operators can be expressed as a matrix. This

gives rise to the same three phase algorithm.

This decomposition can be derived using the following reasoning. Suppose one

begins with the coarsest description of the operator

( ~P0 + ~Q0)K(P0 +Q0) (109)

Suppose one now wishes to include yet another level of detail to obtain

( ~P0 + ~Q0 + ~Q1)K(P0 +Q0 +Q1) (110)
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There are two ways to do this. One could add to the terms of Expression (109) the

following terms:

~Q1KP0 + ~Q1KQ0 + ~Q1KQ1 + ~P0KQ1 + ~Q0KQ1 (111)

If this form is used up to include the full resolution �nite dimensional function space,

then one obtains the standard operator decomposition (Equation (102)). On the other

hand, due to P0 + Q0 = P1 and could instead add in to the terms of the following

terms: Expression (109).

~Q1KP1 + ~Q1KQ1 + ~P1KQ1 (112)

If this form is used to include the full resolution �nite dimensional function space,

then one obtains the non-standard operator decomposition (Equation (108)).

Preconditioning

The standard decomposition can also be viewed as a matrix preconditioning process

wherein the vector matrix multiply ~Kb is expanded as

~Kb =WTMWb (113)

and where M =W�T ~KW�1 is the preconditioned sparse matrix.

Similarly, the non-standard method can also be viewed as a matrix precondition-

ing process, except that rectangular matrices must be employed. In this case W is

the rectangular matrix that represents the pull procedure, and W
T

is the matrix

representing push. Because the W matrix is rectangular, and has no unique inverse,

there are many matricesM that represent the same operator. In particular the matrix

with the non-standard k terms (Equation (104)) is one such inverse.

4.5 Implementation

This section discusses the implementation of a wavelet radiosity system that was

implemented by Peter Schr�oder and this author, and was reported in [40]. This

section discusses some of the issues that arose in implementing that system, and the

choices that were made.
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4.5.1 Choice of Basis

The 3D implementation of wavelet radiosity, includes only the non-standard decom-

position due to the theoretical properties of this basis, and due to some implemen-

tation issues. In particular, the arguments in [9] show an O(n) sparseness for the

non-standard decomposition, as compared to O(n lg n) sparseness for the standard

decomposition. In addition, our implementation of wavelet radiosity was built on top

of an already existing hierarchical radiosity program[44], and the non-standard basis

was a more natural extension. In the standard decomposition, each basis function

interacts with basis functions from all resolution levels, while in the non-standard

decomposition, only basis functions from the same resolution level interact. This is

similar to the hierarchical radiosity implementation where an emitter/receiver pair of

polygons are recursively subdivided until the desired error tolerance is achieved, and

then interactions are computed at that single resolution level.

With regard to the actual type of wavelet used, there are an in�nite variety of

wavelet bases to choose from with various desirable properties.

� Small support is important. Wider basis functions are more likely to cover a

non smooth portion of the kernel.

� Vanishing moments are important to capture the coherence of energy transfer

operator with few signi�cant coe�cients leaving a sparser matrix.

� Continuity is convenient if the basis is used to represent continuous functions.

If a discontinuous basis functions are used, the projected function is likely to

display discontinuities.

� Orthogonality is convenient in that � = ~� and  = ~ . Non-orthogonality

raises many complicated issues. If the non-symmetric expansion (Equation

(86)) is used, then one has to keep track of two kinds of basis functions under

the integrals. If the symmetric expansion (Equation (92)) is used then one

must perform a basis change between iterations, going from the dual to primal

representation. If the symmetric expansion is used, but the primals and duals do

not span the same space, then the projection of Equation (92) is not orthogonal,
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and one does not obtain a true Galerkin method. (One obtains a more general

weighted residual method [23].)

� The tree property of the Haar basis is convenient for implementation. In tree

wavelets, during the construction of the two-part basis, disjoint sets of scaling

functions are combined to construct disjoint sets of wavelet and wider scaling

functions. In the Haar case, two adjacent box functions are combined to make

one wider box function, and one Haar function. The B-spline wavelets do not

have this tree property. In the B-spline example, �ve B-splines are combined

to make one wider B-spline. Some of these �ve are also needed to make the

adjacent translated wider B-spline.

In the implementation described in this thesis, only tree wavelets were considered

because the wavelet radiosity program was written as an extension to an already

existent hierarchical radiosity program 2. Two families of bases were considered, the

multiwavelets that were developed by Alpert [3], and the atlets which were developed

speci�cally for the radiosity problem. To maintain the tree property, while increasing

the number of vanishing moments, one must surrender the wavelet property of having

the construction based on a single � and a single  . Instead multiple �m and  m

shapes are used.

Multiwavelets

The M th multiwavelet basis, MM , is a generalization of the Haar basis with M

vanishing moments, that was developed by Alpert [3] to quickly approximate integral

operators. Like the Haar basis, the domain is divided up into a set of elements, and

the represented function is allowed to be any polynomial of order M over each of the

elements. There are no continuity constraints between the elements. These functions

can be represented by a set of orthogonal Legendre Polynomials over each element.

2With tree wavelets, one can replace the scaling functions and wavelet functions over a single
element with the scaling functions over two elements on the next �ner resolution level, without
a�ecting any basis functions over other elements. If this is done, the interaction matrix terms only
deal with scaling functions and not wavelet functions. This scheme corresponds closely to hierarchical
radiosity where only constant polygonal elements (box basis functions) interact.
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To construct the \two-part" M2 basis, the 2M Legendre basis functions over

two adjacent elements are replaced with a di�erent set of 2M basis functions: M

Legendre Polynomials that are twice as wide, and M piecewise polynomials that

have M vanishing moments and are mutually orthogonal. This transformation is

applied pairwise across the whole basis to construct the two-part basis. This basis is

orthonormal.

Figure 16 shows this basis xform up transformation over two elements in theM2

basis. The transformation shown in the �gure can be expressed as

1p
8

2
66666666666664

2 0 2 0

�p3 1
p
3 1

0 �2 0 2

1
p
3 �1 p

3

3
77777777777775
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66666666666664
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3
77777777777775
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2
66666666666664

�1L�1;j

�2L�1;j

 1
L�1;j

 2
L�1;j

3
77777777777775

(114)

As this is an orthogonal transformation, the same matrix can be used to describe

the coef xform up relationship. The transpose matrix can be used to describe the

basis xform down and coef xform down relationship. Like in a wavelet construction,

the L level hierarchy is then constructed by reapplying this transformation L times

each time on the twice as wide Legendre Polynomials.

Computation with a multiwavelet basis is best done with a binary tree. Each leaf

represents an element on the �nest level, and thus stores theM Legendre coe�cients.

To perform coef xform up, the coe�cients from two leaves are transformed using a

linear combination (Equation (114) in the M2 case). The computed  coe�cients

are saved, and the � Legendre coe�cients are exposed to the next level of the bi-

nary tree. Similarly, one may compute with the bivariate non-standard multiwavelet

construction using a quad-tree instead of a binary tree.

The functions spanned by the theM2 basis are piecewise linear over each element

with no continuity between element boundaries. In contrast to this basis, the hat

basis (�rst order B-splines) generates piecewise linear functions with C0 connections

between the elements. This lack of continuity in the multiwavelets is most likely

a liability, since the number of basis functions must double to express this extra
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Figure 16: The M2 wavelet construction whose smooth shapes are the �rst two
Legendre polynomials. Both of the detail shapes (lower right) have two vanishing
moments (from [40]).
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Figure 17: The F2 wavelet construction. F2 bases have two di�erent detail shapes.
Both of the detail shapes have two vanishing moments (from [40]).

freedom, and the freedom to be discontinuous gives rise to solutions that display

unwanted discontinuities. However this is the price that must be paid if one is to use

a tree-wavelet.

Flatlets

The atlets are a family of basis functions that were developed speci�cally for ra-

diosity problems. Flatlets with any desired number of vanishing moments can be

constructed to obtain a sparse radiosity matrix. Flatlets are also tree wavelets and

so the computation may be performed using a binary tree. Unlike the multiwavelets,

the atlet functions are piecewise constant. This may be desirable in that the as-

sociated ki;j integral terms are essentially form factors (Equation (72)). This allows

the use of previously developed algorithms and programs for calculating form factors.

The atlet basis combines the piecewise constant functions so that the  have higher

vanishing moments. To illustrate these principles we give the hierarchical basis with

two vanishing moments (F2) (see Figure 17 and show how to construct bases with

even more vanishing moments.
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Begin with �1 and �2 which are adjacent box functions and de�ne the hierarchy

of basis functions using the basis xform up de�ned by

2
66666666666664

1 1 0 0

0 0 1 1

�1 3 �3 1

�1 1 1 �1

3
77777777777775

2
66666666666664

�1i;2j

�2i;2j

�1i;2j+1

�2i;2j+1

3
77777777777775
=

2
66666666666664

�1i�1;j

�2i�1;j

 1
i�1;j

 2
i�1;j

3
77777777777775

(115)

The top two rows of this matrix are chosen to create box functions twice as wide while

the bottom two rows are orthogonal to constant and linear variations (the vectors

[1; 1; 1; 1], [0; 1; 2; 3]). The inverse transpose matrix de�nes the dual basis xform up

1
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These two matrices de�ne all of the (dual/primal) (basis/coe�cient) xform proce-

dures.

An L level hierarchical basis is applied by cascading this transformation L times

each time on the twice as wide box functions.

There is a choice to be made for the ~�mL;j functions. One could choose the natural

duals (which in this case would be linear functions), and then the ~� would look the

same on every level. In this case though VL 6= ~VL, and we could not use them to

perform the orthogonal projection required for the Galerkin method (Equation (82)).

For this reason, at the level L, we de�ne the dual basis to also be the box basis

�mL;j = ~�mL;j
3.

3This is also convenient because when the symmetric expansion of the operator is used, the result
is expressed in the dual wavelet basis. But after a push operation, the result is expressed at level L,
where the dual and primal coe�cients are the same.
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If a linear function is projected into the dual basis, many coe�cients will be near

zero due to the two vanishing moments of the wavelet functions. The representation of

linear variation is possible since the dual functions are made up of ramp like functions

that are piecewise constant only on the �nest level.

This construction can be generalized for any number of vanishing moments [65].

To construct the two-scale relationship for F3 we would use a matrix, like that of

Equation (115), where the �rst 3 rows are chosen to give us box functions of width 2

and the bottom 3 rows are chosen to be orthogonal to constant, linear, and quadratic

variation. This implies that the last three rows will be a basis for the null space of

2
6664
1 1 1 1 1 1

0 1 2 3 4 5

0 1 4 9 16 25

3
7775

Clearly there are many bases for this space each giving us a set of wavelets and

associated two-scale relationship. To �x these degrees of freedom we give the wavelets

even more vanishing moments. We require the �rst wavelet to have 5 vanishing

moments, giving us the row (�1; 5;�10; 10;�5; 1). The next wavelet is required

to have 4 vanishing moments and to be orthogonal to the �rst wavelet, giving us

(1;�3; 2; 2;�3; 1). Finally, the third wavelet is required to have 3 vanishing moments

and be orthogonal to the �rst 2 wavelets, yielding the �nal row (�5; 7; 4;�4;�7; 5)
and the matrix 2

66666666666664

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

�1 5 �10 10 �5 1

1 �3 2 2 �3 1

�5 7 4 �4 �7 5

3
77777777777775

After normalizing each row we have the two-scale relationship for F3. This procedure

is very similar to the one used in [1].
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4.5.2 Calculating The Wavelet Matrix

At the heart of the wavelet representation of the radiosity operator is a matrix of

k terms de�ned by Equation (104). Due to the vanishing moments of the wavelets,

many of these terms will be negligible and can be ignored, but �rst one must obtain

this matrix.

One possible way of doing this is a bottom up approach. To start, the k�L;i;�L;j

terms are computed, using some numerical quadrature. Then the bivariate

nonstan coef pyrm up is run on this matrix of terms. Finally the negligible entries

are discarded, leaving a sparse matrix.

This method is not e�cient though, because it �rst requires computing the n2

terms of the original matrix, before the sparse matrix is obtained. Computing the

matrix terms is the main bottleneck of computation (as opposed to solving the system

once the matrix is in hand).

Since there are a small number signi�cant entries in the wavelet matrix (onlyO(n))

if it were known which ones they were, they could be directly computed in the wavelet

basis using some quadrature. Unfortunately, this is not the case. This process can be

approximated however, by working in a top down fashion. First the �� coe�cients

at level 0 are computed. If the kernel is smooth over its entire support, then no more

terms need to be computed. Otherwise the wavelet coe�cients are computed at that

level (in this case 0), and the next level (in this case 1) is investigated. At level 1,

if the kernel is not smooth over the support of some of the bivariate basis functions,

those coe�cients are computed, and the basis functions under the same region of

support on the next level are investigated. If, however, the kernel is smooth over

the support of some of the bivariate basis functions, then the �ner basis functions on

the next level, with support under these regions do not need to be investigated. The

smoothness is measured by an Oracle function which is discussed later. This can be

summarized with the following recursive procedure: 4

4Once again, to ease the exposition, the procedures are written out as if the patches were uni-
variate and the kernel bivariate
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ProjectKernel( i, patch p, patch q )

smooth = Oracle( p, q );

if( smooth ) return;

else

(k�i;j(p);k(q), k
�

i;j(p);k(q), k


i;j(p);k(q)) = Quadrature( k, p, q );

if( i == L-1 ) return;

else

ProjectKernel( i+1, left(p), left(q) );

ProjectKernel( i+1, left(p), right(q) );

ProjectKernel( i+1, right(p), left(q) );

ProjectKernel( i+1, right(p), right(q) );

The use of tree-wavelets in this implementation allows for a number of simpli�-

cations. Starting at level 0, if the oracle determines that the kernel is not smooth,

instead of computing the ��, � ,  � and   coe�cients at level 0, we compute the

�� coe�cients on the next level down (1). Since this is a tree wavelet, this is an exact

n function to n function replacement, and so represents the same operator decompo-

sition (equivalently the same projection of K). Given that we are computing the ��

coe�cients at level 1, this level can be treated just like four copies of the problem at

level 0. With this, ProjectKernel can be implemented as

ProjectKernel( i, patch p, patch q )

ParentLevelsmooth = Oracle( p, q );

if( ParentLevelsmooth || i == L )

k�;� = Quadrature( k, p, q );

else

ProjectKernel( i+1, left(p), left(q) );

ProjectKernel( i+1, left(p), right(q) );

ProjectKernel( i+1, right(p), left(q) );

ProjectKernel( i+1, right(p), right(q) );
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When this technique is being employed, none of the kernel coe�cients are com-

puted until the basis functions cover smooth regions. This makes the numerical

integration of those coe�cients well behaved.

In this light, this implementation of wavelet radiosity is closely related to the hi-

erarchical radiosity algorithm of [44]. In 3D radiosity where B is a bivariate function,

the bivariate non-standard atlet or multiwavelet coe�cients are stored in a quad-

tree. The atlet or multiwavelet coe�cients are transformed into the box or piecewise

Legendre representation using a quad-tree push procedure similar to that of [44]. The

atlet or multiwavelet representation is obtained using a quadtree procedure pull like

that in [44]. The ki;j entries of the sparse matrix are stored on links that have pointers

to the i and j atlet or multiwavelet coe�cients. The gather operation is performed

by traversing this set of links.

4.5.3 Oracle

The job of the Oracle function is to determine if the kernel function can be repre-

sented by a low order polynomial over some region of support. If this is true, the

kernel wavelet coe�cients over that region on this and �ner levels are negligible, and

need not be computed. If the oracle is too stringent, then too many coe�cients will

be computed. If the oracle is too lenient, then too few coe�cients will be computed

and an unsatisfactory result may be computed. There is clearly a work/accuracy

tradeo� here, and so the oracle should be driven by a user de�ned �.

In hierarchical radiosity, the actual magnitude of the form factor is used for the

oracle determination. This can be viewed as a simple way of determining the variation

in the kernel. When the form factor is large, this implies that one is dealing with large

nearby polygons, over which the kernel is likely not to be constant. When the form

factor is small, one is dealing with small distant polygons, over which the kernel is

probably constant. It would be nice to derive simple geometric considerations (based

on such things as size, distance, and orientation) for the oracle to use in cases besides

hierarchical radiosity (higher vanishing moments), but this has not been done to date.

One way of implementing a general Oracle is to numerically compute the appro-

priate kernel wavelet coe�cients on the present level and examine their magnitude.
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Coe�cients with small magnitudes imply that the kernel is smooth in the correspond-

ing region. This implementation uses a somewhat di�erent approach. First the kernel

is sampled at one set of points to �t an interpolating multivariate polynomial. Then

the kernel is sampled at another set of points to see how accurate the interpolating

polynomial is. The accuracy of the �t is used to determine the smoothness of the

kernel.

The oracle, as implemented, treats the visibility portion of the kernel separately.

A simple visibility test is performed to determine total visibility, invisibility or par-

tial visibility between two surfaces using jittered rays. If the two surface regions,

corresponding to this interval of the 4variate kernel function, are mutually invisible,

then it is quickly determined that the kernel is smooth (it is identically zero). If the

two surface regions are completely, mutually visible, then the sampling test described

above is used for the oracle. If the two surface regions are mutually partially visible,

then the sampling test described in the previous paragraph is used, and a separate

penalty is assessed due to the partial visibility.

Like in hierarchical radiosity, a brightness re�nement oracle is used in this imple-

mentation. This means that the result of the oracle's kernel test is weighted by the

brightness of the involved surface regions. More properly one could imagine a varia-

tion re�nement strategy where the magnitude of the radiosity wavelet coe�cients is

used to weight the oracle's kernel test. In this case large surface regions with low order

polynomial radiosity functions would not be subdivided even if the kernel coe�cients

are large. In the matrix multiply, those kernel wavelet coe�cients are multiplied by

negligible radiosity wavelet coe�cients, and therefore do not matter. This strategy

has not been implemented to date 5.

4.5.4 Quadrature

Some form of quadrature must be employed to compute the k matrix terms. The cur-

rent implementation uses Gauss-Legendre (GL) quadrature. When a Gauss-Legendre

5When using a bi-orthogonal wavelet construction, the dual wavelets may not have the same
number of vanishing moments as the primal ones. In the basis expansion, the kernel is integrated
against primal functions, while the radiosity function is integrated against the duals, and so the
same degrees of smoothness may not vanish in the radiosity function.
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quadrature with p sample points is chosen, the resulting method returns the exact

de�nite integral for polynomial functions with order up to 2p � 1.

A greater number of sample points is used as the number of vanishing momentsM

increases. This is because with more vanishing moments, the Oracle will consider the

kernel smooth even if it is a higher order polynomial, and so a more costly integration

(due to the higher order polynomial) needs to be computed. Also, the integrand

consists of the kernel multiplied by a basis function, and in the case of multiwavelets,

asM increases, the basis functions are piecewise polynomial of higher order, resulting

in a more expensive integration 6. For multiwavelets, an M point Gauss-Legendre

is employed rule for the multiwavelet basis with M vanishing moments. For atlets,

a two point rule is used for each of the M piecewise constant sections of the basis

functions 7.

When the integration includes a singular region of the kernel (e.g., the form factor

between two intersecting polygons), Gauss-Legendre rules tend to produce inaccurate

results. For atlets, the solution has been to use an analytic form factor solution

described in [66]. For multiwavelets, the solution has been to have the oracle function

subdivide these singular regions until their error is below a given threshold.

4.6 Results

4.6.1 Flatland Radiosity

To verify and illustrate some of the ideas of wavelet radiosity, 2 atland radiosity [45]

(radiosity in 2D) environments were studied: the con�guration consisting of two

perpendicular unit length line segments meeting in a corner, and the con�guration of

two unit length parallel line segments that are separated by unit length (Figure 18)

The kernel functions from these two con�gurations were projected into the bivari-

ate box basis �L;i(s)�L;j(t). The left column of Figure 19 shows these projections

6Special Gauss-Legendre rules can be developed for each basis function, so that its order is
considered an \integral weighting function", not included in the complexity of the integrand. This
has been attempted in [14].

7This choice is justi�ed further in [65].



CHAPTER 4. WAVELET RADIOSITY 79

parallel perpendicular

Figure 18: The 2D con�gurations of two parallel lines, and two perpendicular lines
.

with L = 5 obtaining a 64 � 64 element matrix (1=4 of the full symmetric matrix

is shown in these �gures). In this �gure, the size of a dot represents the magnitude

of the associated matrix coe�cient. In these (1=4) matrices, all n2 coe�cients are

non negligible, but the matrices do show some coherence. The stan coef pyrm up

procedure was then applied to the matrices to obtain the representation with respect

to the bivariate standard wavelet basis (the middle and right columns of Figure 19).

The nonstan coef pyrm up procedure was then applied to obtain the non-standard

representation. These procedures were applied using both the Haar and the F2 bases

(Figures 20 and 21). In each of the wavelet representations, many of the coe�cients

are small in magnitude, and it can also be seen that the basis with two vanishing

moments has a greater number of negligible coe�cients.

These di�erent representations were also compared numerically. Beginning with

a matrix with 256� 256 elements, the standard and non-standard pyramid up proce-

dures were applied. The largest m coe�cients were kept, and the rest were discarded.

To measure the accuracy of this sparse representation, the matrices were then sub-

jected to the inverse pyramids to obtain an approximate kernel K̂. The errror due to

this sparse representation was computed as

R
dt
R
ds j K(s; t)� K̂(s; t) jR
dt
R
ds j K(s; t) j (116)

This measures the accuracy of the kernel representation in general instead of just
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a                              b                              c

parallel

perpendicular

Figure 19: The top row shows 1=4 of the matrix of the atland kernel for two parallel
line segments in the �nest level box basis, the standard Haar basis and the standard
F2 basis (left to right). The bottom row shows the matrix of the atland kernel for
two line segments meeting at right angles in the same three bases (from [65]).

measuring the speci�c error incurred when using some �xed emission function E.

This is also di�erent from the k2 matrix norm used in [9]. The k2 matrix norm

measures the worst possible error over the space of possible emission functions. This

is probably too pessimistic for typical radiosity problems. The error for a series of

full matrices with �ner and �ner resolution n = 20; 21; : : : ; 28 was also measured for

comparison. No change to a wavelet basis was performed on these matrices.

The results of these numerical experiments are plotted in Figure 22. In both

con�gurations the series of full matrix solutions were found to have the most error

per amount of work, although in the parallel con�guration the non-standard Haar

basis was only better by a constant factor. The F2 basis performed asymptotically

better as seen by the steeper slopes in the graphs. Notice that the steeper curves

atten out towards the end. This occurs because as the number of coe�cients kept

increases, the 256 by 256 full matrix solution is approached. In e�ect the �nest

level of the representation is arti�cially limited so that there is a common standard
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Figure 20: The kernel for two parallel lines realized in the non-standard Haar basis
(left) and the non-standard F2 basis (right) (from [65]).

Figure 21: The kernel for two perpendicular lines realized in the non-standard Haar
basis (left) and the non-standard F2 basis (right) (from [65]).

against which to measure the error. In practice, the wavelet radiosity implementation

allows the scales to become �ner in a dynamic fashion as higher accuracy is requested,

preventing the \bottoming out" of the graphs.

Although the theoretical bounds are stronger for the non-standard basis than for
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Figure 22: Parallel segments (left) and perpendicular segments (right). Relative L1

error plotted against number of coe�cients used with full matrices, non-standard
haar, standard haar, non-standard F2, and standard F2 bases (top to bottom) (from
[65]).

the standard basis [8], in these experiments the standard basis performed slightly

better. This is consistent with the experimental results obtained in [47]. The ex-

planation is that even though the non-standard functions have smaller support, the

bivariate standard basis functions are combinations of univariate  functions in both

variables s and t. These standard basis functions have vanishing moments in both s

and t which results in a greater number of small coe�cients than the non-standard

basis functions which combine both univariate  and � functions.

In these experiments, it is clear that raising the numberM of vanishing moments

gives rise to a sparser representation. Of course there are costs involved with raising

M . Wavelets with more vanishing moments have wider support (in the case of tree

wavelets this corresponds to more basis functions per element) and thus more basis

functions can cross over a discontinuity or singularity.

These experimental results suggest that wavelet radiosity can obtain radiosity

solutions more e�ciently than hierarchical radiosity.
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Figure 23: Relative L1 error as a function of the number of interaction links for the
haar basis with h = 1

4
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(top to bottom). The test con�guration is depicted in
the upper right corner (from [40]).

4.6.2 3D Radiosity

This section discusses the experimental results using the 3D implementation of wavelet

radiosity.

The �rst test con�guration, depicted in the inset of Figure 23, consisted of a

\shooting" polygon with side length 1, that emits constant radiosity and has zero

reectivity and a \receiving" polygon with side length 2. The distance between these

polygons is 0:1. Because the shooter emits constant radiosity, and reects none, the

resulting radiosity at any point on the receiver can be analytically computed using

the di�erential area to �nite area form factor [7].

In the wavelet radiosity program, the user sets the stringency of the oracle using

an input parameter. When the oracle is made more stringent, the work increases

(more matrix terms are computed) as the error in the solution is forced to decrease.

Figure 23 shows this work/error tradeo� using the Haar basis. In each of the four

curves, a di�erent smallest subdivision size h was imposed. The right end of each

curve represents a full matrix of a particular resolution. Note that when using the
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Figure 24: Left: Relative L1 error as a function of the number of interactions for the
wavelet bases M1, M2, M3, and M4 (top to bottom) using the same test con�gu-
ration as in Figure 23. Here h = 1

32. Right: Relative L1 error as a function of work
(from [40]).

Haar wavelet basis, the full accuracy in the solution is reached well before the full

matrix is computed.

The left graph of Figure 24 shows the work/error tradeo� using the �rst four mul-

tiwavelet bases (h was set to 1
32
). As the number of vanishing moments is increased,

the basis performs better, and has a steeper convergence slope. The right graph of

Figure 24 shows the same experiment, but this time work is measured by the number

of kernel samples used for the quadrature. This accounts for the extra overhead used

in this implementation with higher order wavelets.

Experiments were also conducted with the con�guration of perpendicular polygons

(Figure 25) where the kernel has a singularity. Figure 26 shows the exact answer along

the receiving oor, as well as error surfaces obtained using the �rst 3 atlet bases.

In all of these cases the number of interactions is approximately constant (8000).

Figure 25 shows rendered images of the con�guration using the Haar and F2 bases.

Figure 27 shows a picture of a more complicated environment, computed using
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Figure 25: Computed image of perpendicular emitter and receiver. For the Haar basis
(left), and F2 basis (right) using same amount of work. Note that any post processing
such as Gouraud shading has not been performed. From [40].
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Figure 26: Height�eld error plots for perpendicular emitter and receiver (from [40]).

the M2 basis 8.

These experiments show how raising the number of vanishing moments allows for

a better answer with less work, and thus demonstrates how wavelet radiosity improves

over hierarchical radiosity.

8These images are displayed with no post processing such as Gouraud shading.
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4.7 Conclusion

This section has discussed how wavelets can be used to e�ciently solve radiosity

problems. Classical radiosity matrices are dense, requiring the computation of n2

coe�cients, and solving a dense linear system. When a wavelet basis used, the as-

sociated matrix is sparse. Standard and non-standard wavelet decompositions have

been discussed. The non-standard basis functions have smaller support, and so better

theoretical bounds are possible, but in the 2D experiments, the standard basis fared

better. The 3D system which extends an existent hierarchical radiosity program uses

the non-standard basis, since this was the most direct extension.

Two families of wavelets were discussed (atlets and multiwavelets), and 2D and

3D experimental results were shown. Bases with larger numbers of vanishing moments

were shown to obtain better radiosity representations than classical methods and the

hierarchical radiosity method. When bases with more than 2 vanishing moments are

used, the inter-element discontinuities necessitated by the tree property, give rise to

many basis functions per element, and this constant factor of overhead can swamp

the computation. For example in the M3 basis there are 3 basis functions per 1D

element, 9 per 2D element, and 81 resulting matrix terms for the interaction of two

2D elements. In practice, because of the high constant factor of using the bases with

many vanishing moments, users of the program have had the best experience with

the M2 basis [33]. Clearly it will be fruitful to experiment in 3D with a standard

decomposition, using families of continuous wavelets.

The work described in this thesis has been recently been extended to elegantly

use texture mapped emittance and reection patterns [34]. More signi�cantly, there

is current research extending this wavelet method to solve the general illumination

rendering equation with glossy reectance [67, 14].
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Figure 27: Four views of an architectural scene computed with the M2 basis and
rendered directly from the basis functions (from [40]).



Chapter 5

Geometric Modeling

There are many computer applications where it is necessary for a computer to have

an internal representation of some three dimensional geometric object. These objects

may include a variety of real world objects, such as a mountain, an airplane or a

chair. One may also desire a representation of some imagined object that does not

exist in the real world, such as a dragon.

� In computer graphics, the representation of a geometric object can be used to

render images. Examples of such images include ight simulation images, where

the geometric objects may be some terrain, or a control tower. Other examples

of such images include artistic images, in which case the geometric object may

be anything from a ower to a robot.

� In computer aided analysis, the representation of a geometric object may be used

by engineers to analyze the object. For example a geometric representation of

an airplane wing may be used to �nding the weakest point of that wing.

� In computer aided manufacturing, this representation may be used to to drive

some manufacturing machine. For example, a computer representation of a nut

or bolt could drive some sculpting device.

� In computer aided design, a designer may use an interactive geometric modeling

tool, which allows him to manipulate the representation of a geometric model.

88



CHAPTER 5. GEOMETRIC MODELING 89

Using such a tool, he may experiment with a virtual object, interactively chang-

ing its shape until he �nds just the shape he is looking for.

Geometric modeling is the study of how such geometric objects can be represented

in a computer. Geometric modeling is also concerned with algorithms and interfaces

that allow a user create, manipulate and alter the geometric description of a three

dimensional object.

This chapter reviews a variety of representations that have been used in geometric

modeling. It also reviews some modeling paradigms that have been used to manipu-

late curves and surfaces.

5.1 Geometric Representations

In the real world, the shape of some arbitrary three dimensional solid objects can

be thought of as binary function S of three variables x; y; z. This binary function

denotes whether the solid object covers each spatial location x; y; z. Unfortunately

this idealized function, S, cannot be directly used in a computer representation; in

order to be used by a computer, the representation must be described by a �nite set

of numbers. This section will briey describe some of the di�erent representations

that are used commonly in geometric modeling.

One way to obtain a �nite representation of a geometric solid shape, is to simply

discretize the ideal binary function S. A 3D spatial region is chopped up into an

N�N�N cube of voxels [46, 55]. A binary value at each voxel is then used to denote

whether the object covers that spatial region or not. Using this representation, one

can combine di�erent modeled objects using the boolean operations \and" , \or", and

\not". One can manipulate an object represented this way using a simple sculpting

tool that allows a user to add or scrape material from the object. Although this is a

very general representation, it also has some limitations. In particular, unless a very

�ne grid of voxels is used, the surfaces of the object will have a \blocky" nature. Also

it is hard to determine the vector that is normal to some point on the surface of the

object. The normal vector is necessary for many shading algorithms.
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Another way to represent a solid object is to begin with a collection of simple

shapes for which the ideal function S is already known. Such simple solids include

spheres, cones and cylinders. Instances of these objects can be parameterized by a

�nite set of numbers, for example a sphere can be characterized by the location of

its center, and its radius. More complicated geometric objects can then be created

by combining these building blocks using boolean operations (and, or, not). This

representation is known as constructive solid geometry. Because these objects can be

described mathematically in closed form, one doesn't have to resort to a \blocky"

voxel representation. Also surface normals can be computed directly from the math-

ematical representation. These models can be ray traced, or converted to polygons

for display [36, 4]. The main drawback to constructive solid geometry is that one

must build all geometric objects by combining a �xed set of simple shapes. At times

a user wants to describe an arbitrary or free-form shape, and so a more general

representation is often required.

For many applications, it is not important to have an actual representation of the

3D solid. Instead one only needs a representation for the surfaces bounding the object.

For example, in order to render an image of a solid opaque object, such as a basket-

ball, it is only important to know the shape of its outer surface. It is not important

to represent the thickness of the ball's wall, or whether or not its center is hollow.

For this reason, geometric modeling often uses a surface or boundary representation.

There are a variety of di�erent ways to represent a surface. The implicit repre-

sentation de�nes a surface as the zero set of some density function F (x; y; z). F has

positive values in the object's interior, negative values exterior to the object, and zero

values at the surfaces bounding the object. For implicit surfaces, one needs a way to

represent the density function, F , using a �nite set of scalars. The most prevalent

method is the blobby object method [10, 79], where the density function is de�ned

by placing a collection of \�eld sources" in space. These �eld sources have simple

density functions, such as a decaying Gaussian function that has the greatest value

at the center, and decrease with distance. Instances of these �eld sources can be

parameterized by the location of their centers and their rates of decay. By combining

a variety of Gaussian density \blobs", a user can implicitly manipulate the surface
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(i.e., the zero set). The implicit method is useful for modeling certain types of objects

that are \blobby" and have soft rounded features. For example, such methods are

useful for modeling the human form. The main drawback of this method is that it

does not give a user very precise control over the exact structure of the surface. It

may also be expensive to render such a surface; one either has to convert the implicit

surface representation to some approximate polygonal representation, or one has to

ray trace the implicit surface. Computing the intersection of a ray with an implicit

surface requires an expensive root �nding operation.

Another way to represent a surface is using some procedural method. An example

of a procedural representation is subdivision surfaces [13, 43]. In this representation,

the surface is de�ned by an input mesh made up of vertices and edges. A transfor-

mation rule is applied to the input mesh resulting in a denser mesh. In the limit, as

this transformation is applied again and again, the output mesh converges to a set of

dense points. These dense points de�ne a continuous surface. A user can manipulate

such a surface by manipulating the original mesh. Alternatively, the user can de�ne

a set of constraints, such as interpolation constraints, and a satisfactory input mesh

can then be solved for. Because this representation begins with some arbitrary mesh,

the user is free to model a surface with arbitrary topology. One drawback of the sub-

division surface representation is that the surface is de�ned procedurally, One does

not have an explicit representation of the surface. This may make some operations

on such a surface, such a ray tracing, di�cult.

There are a variety of methods that explicitly represent the surfaces of an object.

The simplest method is to de�ne the object as a collection of polygons. The user

can manipulate the object by moving the vertices of the polygons around in space.

Polygonal objects can easily be rendered directly, or can be ray traced. The biggest

drawback of polygons is that one cannot use them to model smoothly varying curved

surfaces.

To explicitly model smooth curves and surfaces, one can use a parametric rep-

resentation. In this representation, a curve is de�ned as a 3 dimensional trajectory

parameterized by t,

(t) = (X(t); Y (t); Z(t)) (117)



CHAPTER 5. GEOMETRIC MODELING 92

and a surface is de�ned as

(s; t) = (X(s; t); Y (s; t); Z(s; t)) (118)

which de�nes a three dimensional location for every parameter pair (s; t). Using

this simple parameterization, one can only construct surfaces that are topologically

like a sheet, or torus. More complicated structures must be built by trimming and

combining a collection of parameterized sections.

The parametric representation of a curve or surface is made up of three functions

X;Y;Z, and so some practical method for representing each of these functions is

required. This can be done using some set of basis functions. Just focusing on the X

function, for curves this becomes

X(t) =
X
j

xj�L;j(t) (119)

and for surfaces

X(s; t) =
X
j;k

xj;k�L;j;k(s; t) (120)

where the x are scalar coe�cients. In geometric modeling the univariate basis �L;j(t)

is typically some \piecewise" basis, such as a cubic B-spline or the Bernstein (B�ezier)

basis, and the bivariate basis used for surfaces is the associated tensor product basis

�L;j;k(s; t) � �L;j(s)�L;k(t).

There are a variety of cubic B-spline bases that are commonly used in modeling.

The uniform cubic B-spline basis is the simplest basis, where all of the basis functions

are uniformly spaced translations of a single function. The non-uniform cubic B-spline

basis allows for a non-uniform spacing of \knots". In particular, these knots can be

coincident allowing for discontinuities of various degrees along a curve. The non-

uniform rational B-spline basis (NURB), introduces a polynomial denominator which

gives rise to rational functions that allow for expressing a greater variety of curves [6].

Parametric curves and surfaces, represented with combination of basis functions,

are used in many popular modeling systems. They can be easily rendered, and are

subject to a variety of useful manipulation methods. These parametric curves and

surfaces will be the subject of this thesis. In particular, this thesis will discuss using
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Figure 28: A piecewise cubic curve with de�ned by a set of B-spline control points
(circles).

a wavelet basis based on cubic B-splines to represent smooth parametric curves and

surfaces. The use of a wavelet basis allows a greater variety of modeling operations

to be performed on the objects and it also allows some modeling operations to be

performed more e�ciently.

5.2 Geometric Speci�cation

Given some set of basis functions to describe a curve/surface, some speci�cation

method is required so that a user can describe and design the desired object. The

method must allow the user to manipulate the curve or surface in an intuitive manner,

and must operate at interactive rates. This section will review three such methods.

Control Handles

In this simplest of schemes, the user is exposed to the actual representation parameters

and allowed to manipulate them. For example, with cubic B-splines, the user is shown

some current curve or surface, along with a control polyon or mesh whose vertices
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are the 3D coe�cient points (xi; yi; zi) (See Figure 28). The user can click and drag

on these points with a mouse, thus reweighting the associated basis functions and

altering the curve or surface. For such a method to work, the basis functions must

be chosen so that manipulating their coe�cients a�ects the solution in some intuitive

way. Bernstein (and Hermite) basis functions are therefore often used because the

resulting curve or surface interpolates the control points (and control tangents). Cubic

B-splines are also commonly used because the resulting object is C2, and the curve

is related to the control polyon in some natural ways [6]. These control schemes are

desirable because it is computationally inexpensive to calculate and display a curve

or surface given the control points.

When controlling a curve or surface using a piecewise basis, the user is forced into

manipulating the object at some �xed resolution. This is not fully desirable, because

sometimes a user may want to specify some �ne detail in a region of the object, while

at other times he may wish to describe the broad sweep of it. This thesis will describe

how hierarchical representations, such as the wavelet representation can be used to

ameliorate this problem.

Least Squares Solving

The control handle method has the disadvantage that the user manipulates a set of

parameters instead of the curve or surface itself. In order to a�ect some desired result,

the doggedly determined user may have to try endless combinations of control point

changes. It is more desirable to allow the user to directly manipulate the object,

grabbing the curve itself at some point and dragging it around, or dragging around

the tangent at any curve point. By doing this, the user introduces a constraint that

the curve or surface must meet. In this context we will only be discussing linear

constraints. For example, the constraint that a curve at t = ti interpolate the point

bi can be written in the form

X
j

xj�L;j(ti) = bi (121)
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and constraining the curve to have derivative bi can be written

X
j

xj _�L;j(ti) = bi (122)

Adding some set of constraints is not usually enough to uniquely describe the

curve or surface, (i.e., it is likely to be underconstrained), and so some notion of

optimality must be introduced. In least squares solving [5], given a current curve or

surface de�ned by some current set of control points, when the user drags on the

curve/surface or otherwise de�nes some constraint, the new curve or surface is found

that meets the new constraints, while minimizing the change of the control points.

The magnitude of the change is measured by the sum of the squares of the change in

each control point. Least square solutions can be found very inexpensively using the

pseudoinverse [32] or quadratic minimization techniques [76].

Clearly the semantics of this method is sensitive to the representation used. For

example if the uniform cubic B-spline basis is used, the addition of an interpolation

constraint has a very local e�ect. Only four basis functions overlap the parameter

ti, and so a least squares method never tries to move any distant basis functions.

This has the disadvantage of locking the user into some �xed resolution. This thesis

will describe how a hierarchical wavelet representation may be used to address this

problem.

Variational Modeling

The least squares method is a special example of variational modeling. In variational

modeling the solution desired is the curve or surface that meets some set of constraints,

while having minimal cost or energy. There are numerous possible notions of cost,

but in geometric modeling optimality is usually measured by smoothness. Given some

set of constraints then, the desired solution is the one that satis�es them and has the

least \wigglyness".

This notion, \wigglyness" is not well de�ned, and so there are many mathematical

measures employed. One convenient measure is the thin plate functional related to
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the square of the second derivative. Thus, for curves, this is 1

E() =
Z
�
dt k �(t) k2 (123)

and for surfaces is

E() =
Z
�
dt ds k tt(t; s) k2 +2 k ts(t; s) k2 + k ss(t; s) k2 (124)

This measure approximates the physical bending energy of a beam or sheet, that

is bent from its original at shape. Other measures include �rst derivative terms [73],

which penalize stretching, while yet other measures include third derivative terms

which penalize variation in curvature[57] (favoring circles, cylinders and spheres).

Some measures, like the thin plate term, are sensitive to the particular parameter-

ization of a curve or surface (there are many di�erent parameterized trajectories

(X(t); Y (t); Z(t)) that trace out the same curve in space). Intrinsic geometric mea-

sures are based solely on the geometry of the object, and give the same measurement

under any s; t parameterization. For curves, the intrinsic equivalent to the thin plate

measure method is based on the second derivative of the arc-length parameteriza-

tion � of the curve. For surfaces, curvature is measured with gaussian and normal

curvature[27]. Other intrinsic functionals include theminimum variation surfacemea-

sure of [57] and the measures given in [62]. All of these functionals can have variable

local weights over s and t, allowing the modeling material to be \sti�er" in some

regions, and more exible (and even creasable) in others [73].

Clearly, the intrinsic measures are the most natural ones for a geometric setting,

and they produce the most desirable results [57]. The disadvantage of these measures

is that the resulting optization problems are highly non-linear and very costly to

compute. On the other hand, parametric measures such as the thin plate (even

allowing variable local weights) give rise to the much easier quadratic minimization

problems. The work reported in this thesis will focus on the simpler thin plate

measure, but will also discuss some issues of using more complicated measures.

Given some set of constraints and an energy functional E, the desired solution

is the curve or surface that minimizes E while satisfying the constraints. Although

1the `2 norm brackets \k" are used since  is a 3-vector.
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this is a well de�ned problem of variational calculus, it is often di�cult to �nd a

closed form solution. For some simple surface problems, such as point and tangent

interpolation using the thin plate measure over the entire in�nite s; t plane, there are

sets of radially symmetric basis functions (where each basis function corresponds to

one constraint) which, when properly combined, give rise to the optimal solution [56].

(These methods are the multivariate extension to natural spline optimization meth-

ods). While these methods are in many ways optimal, they are somewhat inexible;

special constructions must be done to allow for the thin plate domain to be some

�nite square of s; t, or to allow for locally variable weights. These methods are not

well suited for in�nite interpolation problems, such as having the surface interpolate

some curve. These methods only work when the problem can be decoupled in to three

separate X;Y;Z problems. This is not possible for the intrinsic functionals 2. Finally,

since these radial basis functions are in�nite in support, one must solve a dense linear

system. For a large number of constraints, this can be prohibitive.

In practice, therefore an approximation method is employed. In particular, this

thesis will focus on the Ritz method, where a good approximate minimum solution is

found by limiting the solutions to those that can be represented by a linear combina-

tion of a �xed set of basis function such as cubic B-splines. With this simpli�cation,

instead of searching for the minimum of the space of all possible curves or surfaces,

the Ritz method only considers solutions that are linear combinations of the �xed

set of basis functions. The variational problem then becomes an optimization prob-

lem over a discrete set of variables xi, to which a variety of numerical optimization

techniques can be applied.

Given a set of n variable control points x, an objective function E(x), and m

constraints Ci(x) = 0, the Lagrangian function is de�ned as

L(x; �) = E(x) + (C(x))T� (125)

Where � are a set of m Lagrange multipliers.

A necessary condition for some point x0 to be a constrained minimum of E is

that the gradient of L vanishes at x0, for some set of Lagrange multipliers �0. The

2It is also not possible for normal interpolation.
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gradient with respect to the control points is

rxL(x; �) = rxE(x) + (J(C(x)))T� (126)

where J is the Jacobian matrix. The gradient with respect to the Lagrange multipliers

is

r�L(x; �) = C(x) (127)

Setting the gradient of the L to 0 creates a set of n+m simultaneous equations, with

the n + m variables (x; �). If the energy functional (like the thin plate term) is a

quadratic function

E(x) = xTHx (128)

where H is the Hessian matrix

Hi;j =
@2E

@xi@xj
(129)

and the constraints are linear

Ax� b = 0 (130)

then the optimal solution in the given space can be computed as the solution to a

single linear system [76]. ������
H AT

A 0

������

������
x

�

������ =
������
0

b

������ (131)

For thin plate curves the Hessian terms are

Hi;j =
@2E

@xi@xj
=
Z
dt ��L;i(t)��L;j(t) (132)

If the functional is not quadratic, or the constraints not linear, then a non-linear op-

timization problem must be solved. Solution techniques such as sequential quadratic

programming [35], lead to a series of linear systems with a form like Equation (131).

A common choice of a basis for variational modeling is the uniform cubic B-spline

basis. An advantage to this basis is that the linear system obtained in Equation

(131) is O(n) sparse; for example the Hessian terms de�ned in Equation (132) are

only non-zero when the support of �L;i and �L;j overlap. Thus, for cubic B-spline
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curves there are 7 non-zero entries per row of H, and for tensor product cubic B-

spline surfaces there are 49 non-zero entries per row. This avoids the need for direct

inversion of the matrix in O(n3) time, as one can use an iterative method such as the

conjugate gradient method [59], where each iteration, comprised of a constant number

of matrix-vector multiplies, can be performed in linear time. Unfortunately as the

number of basis functions in the set grows, the system becomes poorly conditioned

resulting in the need for an excessive number of iterations to �nd a solution [72, 71].

One of the positive qualities of the B-spline basis for modeling paradigms, local

control, is a disadvantage in the optimization framework. Since a change in a single

coe�cient (control point) e�ects only a very limited section of the curve or surface,

there is a conict between moving a control point to meet a positional constraint and

maintaining a smooth curve. This causes the iterative optimization procedures to

perform a series of small changes to a sequence of control points. Fewer wider basis

functions would provide a better means to control the curve or surface as a whole,

but this would limit the ability to model �ne detail in certain regions of the curve or

surface. What is needed is a hierarchical description of the curve, where some of the

basis functions represent a coarse/broad description of the solution, while other basis

functions re�ne the curve and describe a higher degree of detail.

A hierarchical description is also useful for the iterative solution method to be able

to dynamically adapt to the complexity of the solution and best approximate the true

variational minimum. This adaptivity can be done easily when using a hierarchical

description; a few wide (or coarse) basis functions can be used until the solution

procedure decides to add detail in some region.

Wavelets o�er such a hierarchical basis for representing a curve or surface. Unlike

hierarchical B-splines [30], which over-represent a curve or surface by using B-spline

functions of di�erent widths, wavelets o�er a unique representation of a curve or sur-

face. The wavelet coe�cients directly encode the necessary detail at various degrees

of resolution, and thus allow solutions of variational problems to proceed adaptively

and quickly.



Chapter 6

Multiresolution Modeling with

Wavelets

In the following two chapters, three di�erent curve and surface modeling paradigms

will be explored. For each of these paradigms, wavelet methods, that make the

interaction more intuitive or e�cient, will be investigated. This chapter will discuss

the control point and the least squares modeling paradigm.

6.1 Contribution

With a control point modeling tool, the user is shown some set of shape handles which

he can drag around to a�ect the object. In a least square modeling tool, the user can

directly manipulate the object, using the mouse to specify interpolation and tangent

constraints. The modeling tool then returns a new object that meets the constraints

by changing the current object by the \least" amount. In both of these paradigms, it

will be discussed how the wavelet representation allows a user to manipulate a curve

or surface at a variety of resolutions, instead of at some �xed B-spline resolution.

This gives the user a more exible manipulation method.

The wavelet representation allows the user to specify whether local detail changes

are desired, or whether broader changes to the entire sweep of the object are intended.

These ideas have been pursued independently by Finkelstein et al. [28]. The wavelet

100
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B−Spline

Wavelet

Figure 29: When B-spline coe�cients are manipulated, the curve responds in a
\hump" like fashion. When wavelet coe�cients are manipulated, the curve responds
in a \wave" like fashion.

approach may be considered as an extension to the Hierarchical B-spline approach

described in [30, 31]. In the Hierarchical B-spline approach, there is no unique rep-

resentation of any curve or surface. When a user modi�es some \broad" B-spline

control points, the a�ect on \�ner" control points is computed using B-spline re-

�nement rules. But when a user modi�es �ne control points, there is no notion of

what a�ect this has on broader control points. In contrast, wavelets form a linearly

independent basis, and so each curve or surface has a unique representation.

6.2 Control Handles

The �rst approach one might attempt is to have the user directly manipulate the

wavelet coe�cients. This is not likely to produce an intuitive interface. Moving such

a control point, and thus changing the amount of some wavelet basis function used,

changes the solution in a \wave" like fashion. In contrast, it is more intuitive to move

a B-spline control point which changes the solution in a \hump" like fashion (see

Figure 29).

To allow for multiresolution editing, a hybrid method is employed. Instead of

using the complete wavelet basis

f�0;j;  i;lg 0 � i � L� 1 (133)
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Figure 30: The hybrid basis, with L = 4 and r = 2. This basis consists of B-spline
basis functions at level 2 and wavelet functions at the levels 2 and 3.
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Figure 31: At each level a vector of B-spline (\B") and wavelet (\W") coe�cients is
maintained. Not all of these coe�cients are necessary for all of the hybrid bases. The
necessary coe�cients for the hybrid basis with r = 0 are in boxes.

or the B-spline basis

f�L;jg (134)

a variety of hybrid bases for di�erent �xed resolutions r are employed

f�r;j;  i;lg r � i � L� 1 (135)
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Figure 32: The necessary coe�cients for the hybrid basis with r = 1 are in boxes.
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Figure 33: The necessary coe�cients for the hybrid basis with r = 2 are in boxes.
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Figure 34: The necessary coe�cients for the hybrid basis with r = 3 are in boxes.
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Figure 35: The necessary coe�cients for the hybrid basis with r = 4 are in boxes.
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0 BB
  W

1 BBB
  WW

2 BBBBB                      doLevel
  WWWW

3 BBBBBBBBB
  WWWWWWWW

4 BBBBBBBBBBBBBBBBB          seeLevel

Figure 36: A partial pyrm down has been performed between levels 2 and 4. All
B-spline coe�cients between these two levels become valid.

Figure 3 (of Chapter 2) shows the B-spline basis (with L = 4) this can be considered

a hybrid basis with r = 4. Figure 11 shows the complete wavelet basis, this can be

considered a hybrid basis with r = 0. Figure 30 shows the hybrid basis with r = 2.

Each of these bases has B-spline basis functions at its \top" resolution level r, and

wavelet basis functions at that resolution, and below. Each of these bases is comprised

of 17 basis functions.

In multiresolution editing, the parameter r is chosen dynamically by the user. It

speci�es the resolution level at which the basis includes B-spline basis functions. The

user then manipulates the corresponding B-spline control points at the desired level

r. If the user sets r = L then the chosen basis is the original B-spline basis. If the

user sets r = 0, then the chosen basis is the complete wavelet basis. In between

0 and L are a sequence of hybrid bases. Each of these hybrid bases is made up of

translations and scales of the wavelet shape,  , and translations of the B-spline shape,

�, at resolution r. Choosing a basis with small r allows the user to manipulate rather

coarse B-spline basis functions, while choosing a basis with large r allows the user to

manipulate �ner B-spline basis functions.

Transformations between the hybrid bases at two chosen levels rin and rout, are

done using modi�ed coef pyrm down and coef pyrm up procedures. Instead of always
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transforming between levels 0 and L, like the complete pyramid procedures, these

procedures only apply the requested number of xform transformations.

For these procedures, it will be assumed that at each level i with 0 � i � L, two

vectors of coe�cients b and w are maintained. In order to represent a curve in one of

the hybrid bases, not all of the coe�cients in these vectors need to be used, just the

ones required by the particular hybrid basis. Figures 31-35 show which coe�cients

need to be valid in the hybrid bases with L = 4.

Upon input to the modi�ed pyramid procedures, it is assumed that the there are

valid coe�cients for the hybrid basis at level rin, (i.e., the  coe�cients are all valid

from level L � 1 up through rin and the � coe�cients are valid at level rin). Upon

output, there must be valid coe�cients for the hybrid basis at level rout (i.e., the  

coe�cients must be valid from level L�1 up through rout and the � coe�cients must

be valid at level rout).

As a side e�ect of these procedures, the � coe�cients will also become valid at all

levels between rin and rout. Figure 36 shows which coe�cients will be valid when this

transformation is done between resolution levels 2 and 4.

Here is the procedure partial coef pyrm up which assumes that rin > rout, and

the procedure partial coef pyrm down which assumes that rin < rout: The struc-

tures b and w are passed by reference, and are used for both input and output.

partial coef pyrm up( b[][], w[][], rin, rout )

for( i = rin; i > rout; i�� )

coef xform up( b[i][], b[i� 1][], w[i� 1][], i ) ;

partial coef pyrm down( b[][], w[][] , rin, rout )

for( i = rin + 1; i � rout; i++ )

coef xform down(b[i� 1][], w[i� 1][], b[i][], i ) ;
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Figure 37: The user edits the �ne detail of the curve. The doLevel is set to 4.
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Figure 38: The user edits the curve at a medium resolution. The doLevel is set to 3.



CHAPTER 6. MULTIRESOLUTION MODELING WITH WAVELETS 109

Figure 39: The user edits the overall sweep of the curve. The doLevel is set to 2.



CHAPTER 6. MULTIRESOLUTION MODELING WITH WAVELETS 110

Figure 40: The user views the curve at three di�erent resolutions by setting the
seeLevel to 4, 3 and 2 (top to bottom).
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When performing multiresolution editing, there are two resolution levels that

are signi�cant. The resolution at which the user views the curve, called rs or the

seeLevel, and the resolution at which the user manipulates the curve, called rd or

the doLevel. These levels are chosen dynamically by the user, and can be set inde-

pendently. Therefore two valid representations of the same curve must be maintained.

The B-spline coe�cients at the seeLevel are used to draw the curve using a

GL nurbscurve call [41]. If the seeLevel is set to L the user views the complete

resolution curve. If it is set to a smaller number, then the user views a smoother

projected version of the curve. Figure 40 displays the same curve with the seeLevel

set to 4, 3, and 2.

For manipulate purposes, the B-spline coe�cients at the doLevel are displayed

as a control polygon. The user can then manipulate these B-spline coe�cients by

clicking and dragging on them with a mouse. This allows the user to alter the curve

in a \hump" like fashion at the doLevel resolution.

In general the doLevel and seeLevel can be set to any desired levels. One

useful combination of these levels is for the user to �x the seeLevel at L, so he

always views the complete curve. The doLevel can then be adjusted to various

levels allowing manipulation of the curve at di�erent resolutions. Figure 37 shows

a user manipulating a curve with the doLevel set to 4 (the seeLevel is also set

to 4). Figure 38 shows the user manipulating the same curve with the doLevel set

to 3 and the seeLevel set to 4. The user is shown a coarser control polygon, and

the manipulation is at a broader scale. Figure 39 shows the user manipulating the

same curve with the doLevel set to 2 and the seeLevel set to 4. This allows for

manipulation at even a broader scale.

Another useful combination is for the user to always set the doLevel and seeLevel

be the same, viewing and manipulating smoother versions of the curve. Figure 40

shows a curve displayed at three di�erent seeLevels.

In order to maintain both a doLevel and a seeLevel, hybrid bases for both rd and

rs must be maintained. This can be done using the the b and w vectors described above

and shown in Figures 31-35. In order to maintain both hybrid bases, there must be

valid coe�cients for both bases. In addition, because the partial pyramid procedures
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are used between these levels, the B-spline coe�cients between the doLevel and the

seeLevel will also be valid. Figure 36 shows the valid coe�cients with rd = 2 and

rs = 4.

Using the mouse, the user can manipulate a B-spline coe�cient at the doLevel.

After the user manipulates a B-spline coe�cient, the change must be propagated

to the seeLevel representation so that the curve can be displayed at the proper

resolution. The proper pyramid (up or down) is chosen depending on the order of the

doLevel and seeLevel.

manipulate( b[][], w[][] , rd, rs )

change coef(b[rd][]) ;

if ( rd < rs)

partial pyrm down( b[][], w[][], rd, rs ) ;

if ( rd > rs)

partial pyrm up( b[][], w[][], rd, rs ) ;

display curve(b[rs][]);

The user can also interactively change either the seeLevel or doLevel up or down

by one level. This is implemented in the following procedures.

upSeeLevel( rd, rs )

if ( rs > rd)

rs-- ;

else

partial pyrm up( b[][], w[][], rs, rs-1 ) ;

rs-- ;
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downSeeLevel( rd, rs )

if ( rs < rd)

rs++ ;

else

partial pyrm down( b[][], w[][], rs, rs+1 ) ;

rs++ ;

upDoLevel( rd, rs )

if ( rs < rd)

rd-- ;

else

partial pyrm up( b[][], w[][], rd, rd-1 ) ;

rd-- ;

downDoLevel( rd, rs )

if ( rs > rd)

rd++ ;

else

partial pyrm down( b[][], w[][], rd, rd+1 ) ;

rd++ ;

In the above procedures, because the B-spline coe�cients on the levels between

the doLevel and the seeLevel are valid, no pyramid transformations are necessary

when the levels are moving \towards" each other. When the levels are moving \away

from" each other, then a modi�ed pyramid up or down is performed.

This modeling method is quite similar to the Hierarchical B-spline editing method
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described in [30] where the resulting curve (or surface) is de�ned as the superposition

of the hierarchical B-spline functions

f�i;jg 0 � i � L (136)

and the user directly manipulates the hierarchical B-spline control points. In that

method there are many combinations of B-spline control points that give rise to the

same curve. The actual representation that gets used is determined by which control

points the user dragged by some amount to build this curve. When a user adds some

detail at some �ne level, there is no notion of this having any a�ect at any coarser level

description. In the wavelet method the user also manipulates hierarchical B-spline

control points, but each curve has a unique wavelet representation, and a unique

projected representation �i;j at every level i (see Figure 40).

6.2.1 Tangent, Normal, Binormal Frame

In the parametric representation, the curve or surface is represented by three func-

tions X;Y;Z. In the the multi-resolution paradigm, when a user adds in some �ne

directional detail, say a �ne hump in the X direction, this detail is locked in the orig-

inally chosen direction. If the user later manipulates the broad sweep of the curve,

the detail will still maintain its direction (see Figure 41). This is not fully desirable,

since the user may want the detail's orientation to follow the broad sweep.

An \orientation" approach used with hierarchical B-splines [30] may be applied

to the wavelet multiresolution editing scheme, as suggested by Adam Finkelstein [28].

In a multiresolution representation, each level of the hierarchy represents a further

level of detail. Usually this detail is expressed as three independent functions of

x; y; z. The basic idea of the orientation approach is to instead represent this detail

with respect to the geometric shape of the lower resolution version of the curve. In

particular this is done by computing the tangent and normal directions of the lower

resolution curve at a series of sample points. The detail is then expressed with respect

to these tangent and normal directions instead of the x; y; z directions. If the smooth

component of the curve is altered, the detail's orientation will change appropriately.
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The technical details of this \orientation" approach are as follows: Focusing on

just one level of the multiresolution representation, the xform procedure is used to

transform the B-spline coe�cients

(x�L;j ; y�L;j ; z�L;j ) (137)

into the two-part coe�cients

(x�L�1;j ; y�L�1;j ; z�L�1;j)

(x L�1;j ; y L�1;j ; z L�1;j ) (138)

Then each particular triplet of wavelet coe�cients (for each particular j)

(x L�1;j ; y L�1;j ; z L�1;j ) (139)

is rewritten in the tangent, normal, binormal frame:

(t L�1;j ; n L�1;j ; b L�1;j) (140)

.

The tangent, normal, and binormal directions provide an orthogonal set of di-

rections based on the geometry of the curve. The tangent direction of the curve at

parameter value tj is in the direction of the �rst derivative (with respect to t) of the

curve.

( _x(tj); _y(tj); _z(tj)) (141)

The binormal direction is perpendicular to the directions of the �rst and second

derivatives of the curve. This can be found using the cross product.

( _x(tj); _y(tj); _z(tj))� (�x(tj); �y(tj); �z(tj)) (142)

The normal direction is perpendicular to the tangent and the binormal directions.

tangent� binormal (143)

If the curve lies in a plane, then the binormal vector is perpendicular to that plane.
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xyz

tnb

Figure 41: When the xyz frame is used for wavelet multiresolution editing, detail
maintains its orientation as the sweep is changed. When the (t; n; b) frame is used,
the detail does not maintain its structure as the sweep is changed.

To perform this transformation, the �rst and second derivatives must be taken

of the smooth curve de�ned by the �L�1;j functions. This can be done symbolically

using the piecewise cubic de�nition of the B-spline basis functions. The derivatives

are evaluated at the each parameter location tj where the wavelet basis function

 L�1;j has its greatest inuence (at its center). For example, the zeroth wavelet

basis function,  L�1;0, is centered at parameter value t = 7, see Figure 7. Given the

tangent, normal, binormal frame, for each j, the triplet of wavelet coe�cients

(x L�1;j ; y L�1;j ; z L�1;j ) (144)

which de�nes a vector in (x; y; z) coordinates, is rewritten as the same vector in

(t; n; b) coordinates

(t L�1;j ; n L�1;j ; b L�1;j) (145)

This triplet of coordinates is then stored, instead of the (x; y; z) triplet, to represent

the wavelet component of the curve. Later if the broad sweep of the curve is changed,

this de�nes new tangent, normal, binormal frames at the tj. The stored (t; n; b)

triplets are used with these new frames. Using this method, the wavelet description

of detail follows the broad orientation of the curve.

Even though this idea works well in the context of hierarchical B-splines [30], in

the wavelet context, this is not as successful. When the user changes the broad sweep
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of the curve, changing the tangent, normal, and binormal frame at tj, this remixes

the wavelet functions. Since these wavelet functions are \wave" shaped, the resulting

curve includes non-intuitive wiggly changes, (see Figure 41). This method appears

to work better with hierarchical B-splines, where changing the (t; n; b) frame remixes

a set of x; y; z �ner B-spline functions which are \hump" shaped with very small

support.

6.3 Least Squares

A multiresolution editing approach can also be applied to the least squares edit-

ing paradigm. The user interactively speci�es the manipulation resolution using the

doLevel rd parameter. When rd is small, the user wishes the constraints to have a

broad e�ect, and when rd is large, the user wishes the constraints to have a narrow

e�ect.

Given the speci�ed rd, a modi�ed pyrm procedure is used to put the curve in

the proper basis (Equation (135)). The  basis functions are \locked" and the least

squared solution is found over the �rd;j coe�cients. The least squared solution may

be found using the pseudoinverse [32].

The least squared problem can also be posed as a minimization problem [76],

whose solution can be found by solving following linear system that is related to

Equation (131): ������
I AT

A 0

������

������
x

�

������ =
������
x0

b

������ (146)

where x0 are the control points of the current curve or surface. Informal experiments

have shown that this system can be solved using just a few (< 10) conjugate gradient

iterations, and thus leads to a useful interactive modeling tool.

It should be noted that the hierarchical least squares method described in this

section can be implemented with a bit of extra work using a \delta" method, without

using the wavelets. Given a present curve ci and a new set set of constraints, the new

solution ci+1 can be expressed as the old curve plus some \delta" curve that must be
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solved for

ci+1(t) = ci(t) + �i(t) (147)

The constraints for ci+1 can be reexpressed as constraints on the �i curve. For

example if the new curve at parameter value t0 is constrained to interpolate the

geometric point b0, this can be achieved by constraining the delta curve to interpolate

the point

b0 � ci(t0) (148)

Finally a \minimal" least squares solution for the delta curve is found that meets

these reexpressed constraints, and minimizes the sum of the squares of the �i(t)

coe�cients. One is free to choose any set of basis functions to represent the new

delta curve independent of the basis used to represent the resulting curve ci+1. In

particular, one can choose B-spline basis functions of various resolutions to represent

the delta curve. This will allow multi-resolution least squares editing.

It should also be noted here that when the (t; n; b) frame is being used, simple

constraints such as interpolation are no longer linear, and so a more complicated

solution process is required to solve such a case.

Pentland describes a related method where complicated variational problems are

solved quickly using wavelets [58]. The system of Equation (131) is set up using a

wavelet basis instead of a �nite-element basis, and then all of the o� diagonal terms

of H are discarded. This new linear system can then be solved very rapidly. The

justi�cation given in [58] for this method cites Beylkin [9] and claims that due to the

vanishing moments of the wavelet basis, most of the o� diagonal terms are negligible

and so can be ignored.

Although the arguments of Beylkin are valid in the context of integral equations

(like radiosity) where the matrix coe�cients are de�ned by an expression like

Z
ds
Z
dt K(s; t) i;j(s) k;l(t) (149)

and the vanishing moments cancel against a smooth K, in a variational context, the

matrix terms are de�ned by some expression like

Z
dt � i;j(t) � k;l(t) (150)
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where the vanishing moments are irrelevant. In fact, as will be seen in Section 7.4.1,

the wavelet matrix in a variational problem is usually more dense than the �nite

element matrix. By discarding the o�-diagonal terms of the wavelet matrix, Pentland

is solving a system like Equation (146) and so is implicitly solving a (weighted) least

squared problem in the wavelet basis. This method does produce smoother solutions

than are obtained by a least squared solution using a �nite element basis, because

when a wavelet basis is used the least squares solution a�ects all resolutions. The

properties of the wavelet least squares interpolant deserve further study.

Jawerth et al. [48] discuss a methodology, where given a di�erential equation (as

opposed to a variational problem), a special wavelet basis can be constructed on the

y so that the �nite-element matrix is indeed diagonal. In essence this representation

constructs a special basis, whose least squared solution is actually the minimum

energy solution. It would be interested to investigate how this method can be used

in a modeling context.

6.4 Discussion

This chapter has discussed how wavelets can be used in the context of multiresolution

editing. A hierarchical control handles method has been discussed as well as a hier-

archical least squares method. Both of these methods could be implemented using

hierarchical B-splines, without wavelets (although the use of Hierarchical B-splines

in the least squared context has not appeared in the literature). Wavelet analysis

elegantly extends the Hierarchical B-spline framework by including the notion that

any curve or surface has a unique projected smoother version at every resolution.

A brief analysis of a wavelet least squares method is also given. This area could

certainly use more investigation.



Chapter 7

Variational Modeling with

Wavelets

7.1 Contribution

In the variational modeling paradigm the user directly manipulates the object, cre-

ating constraints, and the modeling tool returns the \best" object that meets the

constraints (where the notion of best is typically measured the amount of curvature

in the object). Solving for such an optimal surface is a time-consuming numerical

task. This chapter will discuss how the wavelet representation allows for fast numeric

solutions of the associated systems of equations. This allows the tool to respond more

quickly. In contrast to the radiosity equation where the wavelets are used to obtain a

sparse system, in variational modeling wavelets are used to obtain a well conditioned

system that can be solved using fewer iterations than required with a more standard

representation such as the B-spline basis.

In the variational modeling paradigm, the wavelet basis allows an optimizing pro-

cedure the ability to alter the curve or surface at a variety of resolutions. This allows

for a much more e�cient solution process than could be obtained by using a sin-

gle resolution basis, such as uniform cubic B-splines. The hierarchical nature of the

wavelet basis also allows the optimizing procedure to work top-down; beginning with

a small coarse basis and locally adding in �ner and �ner wavelet basis functions where

120
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needed as the process continues.

The optimization work described in this chapter is related to the work of a variety

of researchers. Qian et al. and Ja�ard et al. [60, 47] use wavelets to quickly solve

simple di�erential equations. In work more related to the topic at hand, Szeliski [71]

uses a hierarchical pyramid basis change to perform e�cient surface reconstruction

from sparse data, to be used for machine vision problems. The pyramid basis change

described there, works bottom-up starting with a uniform basis at some �xed reso-

lution. The method described in this chapter uses a wavelet basis, where the basis

functions are all translations and dilations of a single function. Thus, the optimizer

can work adaptively in a top-down fashion, performing more \re�nement" in some

regions and less in others, and not stopping at any �xed resolution level. Also, by

using a basis derived from uniform cubic B-splines, this method is compatible with

other modeling software tools.

In other related work, Pentland [58] also describes a method similar to Szeliski.

Independent of this work, Yaou et al. [80] discuss a wavelet optimization approach

similar to the one described here. These approaches are not based on B-splines, and

no adaptive re�nement method is investigated. Also these researchers do not explore

the implicit matrix representation, which is essential for e�ciency.

After describing the relevant theory this chapter discusses a variety of implemen-

tation issues and reports some experimental results.

7.2 Minimization

In contrast to the control handles and least squares modeling paradigms, where the

basis chosen de�nes the semantics of the user's manipulation, in variational modeling

the minimum energy curve or surface is sought. The energy of a curve or surface is

independent of the basis used 1, however in variational modeling the choice of basis

can have a strong impact on the e�ciency of the solution method.

1Although energy measurements such as thin plate are sensitive to the particular parameterization
of the curve or surface.
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Iterative methods are usually employed to solve minimization problems for a num-

ber of reasons. For most non-quadratic minimization problems, there is no direct way

to �nd the minimum. Instead, one must progress downhill from some initial guess to

a local minimum. Even for linear systems/quadratic minimization problems (where

there are many direct solution methods) descent methods are also used if the system

is sparse because each iteration can be done in linear time. Iterative methods are

also useful because as one performs more iterations, a progressively better solution is

obtained. A user can therefore quickly see a rough solution. Iterative methods are

also good for updating solutions when a new constraint is added, since the previous

solution often provides an excellent starting guess for the new solution 2. This section

will briey review various iterative methods, and their behavior under basis change.

7.2.1 Quadratic Functions

Suppose one wishes to solve the linear system

Mx = b (151)

IfM is a symmetric positive de�nite matrix, then the solution x is also the minimum

of the quadratic function

E(x) =
1

2
xtMx� xtb (152)

And ifM is not positive de�nite (but is non-singular), then one can instead solve the

equivalent positive de�nite system

MTMx =MTb (153)

which minimizes the `2 norm of the residual 3.

There are a variety of related descent methods used to minimize the quadratic

function (Equation (152)). Given a current guess, x(k), these methods pick a descent

direction, and then travel along that direction by some amount. Often the distance

2QR factorization updating is another good method for quickly updating a solution as new
constraints are added [37].

3This squaring of the matrix has the unfortunate consequence of squaring the condition number.



CHAPTER 7. VARIATIONAL MODELING WITH WAVELETS 123

is chosen that minimizes the quadratic function along that direction 4. Choosing

this distance in general is called line search, but for quadratic functions the desired

distance can be computed directly without any iterative searching.

Steepest descent descends in the steepest downhill direction, which is the direction

of the residual vector

r(k) =Mx(k) � b (154)

If there are O(n) non-zero terms in the matrix, then this direction can be computed

in linear time.

Gauss-Seidel relaxation iteratively descends in each of the axis directions. At the

minimum point along each axis, the corresponding entry of the gradient vector r(k)

is zero. Thus a descent step for variable i can be calculated as

�xi = bi �
X
j

Mi;jxj (155)

If there are O(n) non-zero terms in the matrix, then successively descending down

the n axis directions, called one complete Gauss-Seidel sweep, can be done in linear

time. A complete Gauss-Seidel sweep can be expressed as

Dx(k+1) = �Lx(k+1)�Ux(k) + b (156)

where D, L, and U are the the diagonal, lower and upper components of the matrix

M.

Conjugate Gradient iteration descends down a set of mutually conjugate directions.

Two directions a and b are called conjugate if

0 = aTMb (157)

A new conjugate direction can be found by doing a small number of matrix vector

multiplies in linear time given a sparse matrix [59]. In exact arithmetic, the precise

minimum should be found after considering n conjugate directions, but in oating

point computation this does not occur, and further iterations are often required.

Generally, conjugate gradient requires the fewest iterations for convergence. This is

followed by Gauss-Seidel, which is followed by steepest descent [59, 71].

4Over-relaxation schemes travel a distance along the ray further than the minimizer.
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7.3 Fast Convergence With Wavelets

The number of iterations required to obtain a satisfactory solution is sensitive to the

basis chosen for representing the problem. In particular, when solving for a minimal

curvature curve or surface using a �xed resolution basis, such as cubic B-splines,

the optimizing procedure must make all of its changes at that �xed �ne resolution,

even if the necessary change is at some coarser resolution. This gives rise to very slow

convergence. For example, in Gauss-Seidel iteration, the optimizer cycles through the

basis functions in order, and for each one, adds in the \currently optimal" amount

of that basis function. If one is using a �xed resolution basis, and the necessary

change is at a coarser resolution, the Gauss-Seidel iteration cannot perform large

changes for any particular basis function; that would lead to a high energy curve

or surface. Instead, only small changes are made, until the optimal curve is �nally

approached. In contrast to the B-spline basis, the wavelet basis expresses the solution

at a combination of resolutions, and so the optimizing program is able to make direct

changes at a wide variety of resolutions, thus converging quickly.

Most of the theoretical results known in this area are for simple boundary value

problem di�erential equations such as

�X(t) +B(t)X(t) = G(t) (158)

for some given functions B and G and some boundary conditions on X. For these

problems, when a �xed resolution basis, such a B-spline basis, is used in a �nite

element approximation of X, the condition number � of the resulting matrix grows

as n2, where n is the number of basis functions [47, 11]. The number of iterations

required by the conjugate gradiant method to achieve convergence to within some

epsilon grows proportionally to
p
� [71, 47]. As a result, obtaining accurate solutions

to these problems using a �nite element basis is very costly. When a multiresolution

basis, such as a wavelet basis is employed to solve these problems, it can be shown

that the number of iterations remains constant, independent of n [81, 47, 25]. Thus,

wavelets provide a practical way of quickly obtaining solutions to many di�erential

equations. For a more detailed discussion see Appendix C.
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The constrained optimization problems that arise in geometric modeling are more

complicated than the simple di�erential equations studied in the theoretical literature.

In particular, in a modeling problem, the constraints may be placed anywhere in the

domain of the curve or surface, and not just on the boundary. Therefore the proofs

for the theoretical bounds for simple di�erential equations can not be directly applied

to geometric modeling problems. But as will be shown in the experimental results

section, in practice, the wavelet basis is a powerful method to reduce the number of

iterations.

7.3.1 Scaling

The scaling of the basis functions is very signi�cant for the behavior of the optimizing

procedures. Traditionally [54, 58] the wavelet functions are de�ned with the following

scaling:

�i;j(t) = 2(i�L)=2 �(2(i�L)t� j)

 i;j(t) = 2(i�L)=2  (2(i�L)t� j) (159)

This means that at each level moving up, the basis functions become twice as

wide, and are scaled 1p
2
times as tall. While in many contexts this normalizing

may be desirable, for optimization purposes it is counter productive. When the

basis functions are normalized, the basis transformation to the wavelet basis can

become close to an orthogonal transformation. An orthogonal basis transformation

merely \rotates" the �nite dimensional optimization problem, and cannot change its

conditioning properties. For the optimization procedure to be well conditioned [47,

25] it is essential to emphasize the coarser levels. The correct theoretical scaling

depends on both the energy function used, and the dimension of problem. For a

fuller discussion, see Appendix C. In the experiments described in this thesis the

following scaling was used

�i;j(t) = 2�(i�L) �(2(i�L)t� j)

 i;j(t) = 2�(i�L)  (2(i�L)t� j) (160)
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This means that as one goes from level i to level i � 1 the basis functions become

twice as wide, and 1=2 as tall. In the pyramid code, this is achieved by multiplying

all of the h and g entries by 2, and all of the ~h and ~g by 1=2 5.

7.4 The Wavelet Linear System

Transforming a problem from the cubic B-spline basis to the wavelet basis can be

expressed using the basis transform matrixW. The goal of this transformation is to

produce a quickly converging system.

In the B-spline basis, the optimization procedure resulted in the linear system

given by Lagrangian Equation (131) 6. In the wavelet basis, a di�erent Lagrangian

linear system results which is given by

������
�H �AT

�A 0

������

������
�x

�

������ =
������
0

b

������ (161)

where the bars signify that the variables are wavelet coe�cients, �x =Wx, and the

Hessian and constraint matrix are expressed with respect to the wavelet basis. To see

the relationship with the B-spline system, the new system can also be written as

������
W�THW�1 W�TAT

AW�1 0

������

������
�x

�

������ =
������
0

b

������ (162)

Although Equation (131) and Equation (161/162) imply each other, they are two

distinct linear systems of equations. Because the wavelet system (161/162) is hierar-

chical it will not su�er from the poor conditioning of the B-spline system of Equation

(131) (see Figure (53)). As explained above, the intuition behind the better behavior

of the wavelet basis is due the ability of the relaxation method to make changes at

any appropriate resolution.

5The proper scaling is essential to obtain the quick convergence of the wavelet method when
steepest descent or conjugate gradient iteration is used. Scaling is not important with Gauss-Seidel
iteration, which will perform the same sequence of iterations regardless of scale.

6This system is not positive de�nite so the squared system (Equation (153)) must be used with
descent methods.
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7.4.1 Implicit versus Explicit Matrix Representation

By using a wavelet basis instead of a �nite element basis, fewer iterations are required

to converge to a solution. It is important that extra computational costs are not

accrued by going to the wavelet basis slowing down each iteration. This leads to the

following choice. In an iterative conjugate gradient solver, the common operation

is multiplication of a vector times the wavelet matrix given in Equations (161/162).

There are two ways to implement this.

One approach, the explicit approach, is to compute and store the wavelet Hessian

matrix �H and the wavelet constraint matrix �A (Equation (161)). These can be

computed directly from a closed form (piecewise polynomial) representation of the

wavelet functions  i;j. For example, for wavelet curves, the Hessian terms of the thin

plate energy are
R
dt � i;j(t) � k;l(t). Unfortunately, these matrices are not as sparse

as the B-spline Hessian and constraint matrices for two reasons. Firstly, the wavelets

are wider than B-spline functions. On a single level, i, there are 13 wavelet curve

functions that overlap with a chosen wavelet, (instead of the 7 B-splines that overlap a

single B-spline). For tensor product surfaces, there are over 300 wavelet functions that

overlap with a chosen wavelet (instead of the 49 B-splines). Secondly, since wavelets

are hierarchical, a single wavelet will overlap with wavelets on all L levels. As a result

there are O(n lg n) overlapping wavelet basis functions, and thus the wavelet Hessian

matrix is only O(n lg n) sparse.

Alternatively, there is the implicit approach [81, 71] which only computes and

stores the entries of the B-spline matrices H and A (Equation (162)). In this ap-

proach, the multiplication of a vector v by a wavelet matrix �H or �A is computed

as W�THW�1v or AW�1v, where the matrix-vector multiplies involvingW�1 are

implemented using the coef pyrm down (tensor version for surfaces), and the mul-

tiplies involving W�T are implemented using the basis pyrm up (tensor). These

procedures are given in the Appendix. The advantage of this approach is that the

whole multiply remains O(n) in both time and space, since the pyrm procedures run

in linear time, and the matrices H and A are O(n) sparse. There is, of course, some

constant factor of overhead introduced by executing the pyrm procedures.

Even though one of the methods explicitly uses wavelet terms while the other
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uses B-spline terms, these two methods are mathematically equivalent, and so both

will have the same condition properties. On the other hand, they may have di�erent

space requirements, and require di�erent amounts of time to compute a matrix-vector

multiply. Both approaches have been implemented the results are discussed in Sec-

tion 7.9.

The implicit approach can only be used when the iterative algorithm can be im-

plemented with simple matrix vector multiplies. In particular, the conjugate gradient

and steepest descent methods can be expressed this way. A complete Gauss-Seidel

sweep, which is expressed in Equation (156), cannot be expressed as simple multipli-

cations with the matrixM, and so the implicit method may not be used for it.

7.5 Adaptive Oracle

By limiting the possible surfaces to only those that can be expressed as a linear com-

bination of a �xed set of basis functions (perhaps uniform B-splines of a given size),

one obtains an approximation of the true optimal surface. As more basis functions

are added, perhaps by using smaller B-splines, the space of possible solutions becomes

richer and a closer approximation to the true optimal surface can be made. Unfortu-

nately, as the space becomes richer, the number of unknown coe�cients increases, and

thus the amount of computation required per iteration grows. A priori it may be dif-

�cult to know how many basis functions are needed to allow an approximation with a

su�ciently small error. It is therefore desirable to have a solution method that adap-

tively chooses the appropriate basis functions given some user de�ned error bound.

This approach was applied using hierarchical B-splines in [76]. When re�nement was

necessary, \thinner" B-splines basis functions were added, and the redundant original

\wider" B-splines were removed. With wavelets, all that must be done is to add in

new \thinner" wavelets wherever re�nement is deemed necessary. Since the wavelets

coe�cients correspond directly to local detail, all previously computed coe�cients

are still valid.

The decision process of what particular wavelets to add and remove is governed

by an oracle procedure which is called after every �xed number of iterations. The



CHAPTER 7. VARIATIONAL MODELING WITH WAVELETS 129

oracle must decide what level of detail is required in each region of the curve or

surface. In [76] two criteria for re�nement were suggested. Re�nement to better

satisfy a constraint, and re�nement to obtain any solution with lower energy. Using

B-splines, the �rst criterion is easy to implement because it is simple to detect that

a constraint is not being satis�ed, but there is no easy way to implement the second

criterion because there is no direct way of knowing how much local detail is being

used in the solution. In a wavelet basis the second criterion is also easy because the

magnitude of a wavelet coe�cient itself speci�es the degree of detail in the solution

thus far.

When some region of the solution does not need �ne detail, the corresponding

wavelet coe�cients are near zero, and so the �rst thing the oracle does is to de-

activate the wavelet basis functions whose corresponding coe�cients are below some

small threshold. The oracle then activates new wavelet basis functions where it feels

more detail may be needed. There are two criteria used. If a constraint is not being

met, then the oracle adds in �ner wavelet functions in the region that is closest in

parameter space to the unmet constraint. Even if all the constraints are being met, it

is possible that more basis functions would allow the freedom to �nd a solution with

lower energy. This is accomplished by looking for the current basis functions with

coe�cients above some maximum threshold, and activating �ner wavelet functions

in that parameter region. This is based on the reasoning that if the current solution

requires detail in some region, it may be improved by adding even �ner detail in that

region. This can be summarized as follows:
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oracle(w[][],constraints[])

forall (i,j)

if (w[i][j] < minSize)

deactivateWavelet(w[i][j]);

if (w[i][j] > maxSize)

activateWavelet(children(w[i][j]));

forall (k)

if (error(constraint[k]) > errTol)

activateWavelet(nearby(constraint[k]))

The function children returns the wavelets on the next �ner level i + 1 that

are closest to the parent wavelet. For curves it returns two wavelet functions. For

surfaces it returns the four wavelet functions. These four are of the same type (  ,

 �, or � ) as the parent.

The function nearby returns the unactive wavelets nearest to the violated con-

straint.

There can be some tendency for the oracle to get into cycles; at one iteration it

may activate a new basis function, and at some later iteration it may notice that the

basis function is not being used and deactivate it. To avoid the immediate reactivation

of basis functions, a basis function is marked as being dormant when it is removed

from consideration. Of course, it is possible that later on the solution may really need

this basis function, and so periodically there is a revival phase, where the dormant

marks are removed.

When the oracle is used, the computation proceeds in a top down fashion, be-

ginning with a coarse basis, and including more basis functions as the computation

proceeds. This has the added advantage of starting with small simple systems where

the iterations may be performed very quickly, and rough approximate solutions are

obtained quickly. It is possible for these small systems to be better behaved than the
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larger systems representing a problem with more dimensions.

7.6 Replacing Wavelets with B-splines

When the implicitmatrix representation is being used, the constraint and Hessian ma-

trices, with respect to the wavelet basis functions, are computed by explicitly storing

B-spline constraint and Hessian matrix entries, and using the pyramid transformation

W. But when an adaptive oraclemethod is being used, only a subset of the wavelet

basis functions,  i;j, may be active. And so it may be unnecessary to compute the

constraint and Hessian matrices with respect to the complete uniform B-spline basis,

�L;j.

Instead, it is only necessary to compute matrix terms with respect to some min-

imal set of B-spline basis functions, �i;j. This set, which may include B-spline basis

functions from any resolution i, must span a space that includes the space spanned

by the active wavelets. This set should also be as small as possible. This set can be

computed using the following algorithm:

ComputeActiveBSplines(activeWavelets)

activeBSplines = emptySet;

forall(activeWavelets)

(i,j) = index of active wavelet;

activeBSplines += BSplines on level i+1 that span wavelet (i,j) ;

forall (activeBsplines)

(i,j) = index of active BSpline;

if ( Bspline (i,j) is represented by finer active BSplines)

activeBSplines -= BSpline (i,j);

In the above procedure, a su�cient B-spline set is found by replacing each wavelet

function,  i;j, with enough B-spline functions from one level lower �i+1;j, that can



CHAPTER 7. VARIATIONAL MODELING WITH WAVELETS 132

construct it (Equation (16)). The resulting set of B-spline basis functions can repre-

sent any function that was represented by the active wavelets. Since this set contains

B-spline basis functions from arbitrary levels i, it may be redundant. Therefore, in a

second pass, this su�cient set is made smaller by removing the B-splines that can be

constructed using other B-splines from the su�cient set that are on lower levels.

The pyrm procedures are also altered so that they perform transformations be-

tween the active wavelet set, and the minimal B-spline set. (The for loops in the pyrm

procedures of the appendix only iterate over the necessary j and k). The running

time of these altered pyrm procedures is linear in the number of active wavelets.

7.7 Comparison With Previous Approaches

There are a number of researchers who have discussed wavelet/hierarchical condi-

tioning schemes. Terzopoulos discusses a multigridding approach for surface recon-

struction problems that arise in computer vision [72]. In these problems, a sensor or

camera has returned a sparse set of data points on some actual surface. The goal of

the reconstruction process is to obtain a reasonable representation of the complete

surface, using only the sparse data. In multigrid, a series of di�erent problems at

di�erent resolutions are posed and solved. In the simplest multigrid scheme, one

begins by solving a simpli�ed problem, using a small basis of coarse functions. The

result of this approximation is used as the starting guess for a re�ned problem de�ned

with a �ner grid of basis functions. This process is repeated on down to �ner and

�ner levels until the result with desired resolution is obtained. In other multigrid

schemes, the algorithm uses a more complicated pattern of subproblems at various

resolutions. This is done so to avoid slow convergence. Multigrid is a successful and

popular methodology, with entire conferences devoted to its details [12].

In contrast to the multigrid methods, the wavelet method used here attempts to

solve a single problem, but the good conditioning is obtained by using a multires-

olution basis. Various researchers have discussed using a wavelet basis to quickly

solve di�erential equations [60, 47]. In the machine vision community, Szeliski has

used a hierarchical basis to quickly solve surface reconstruction problems [71]. The
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basis he uses is contructed by starting with the �L;j functions de�ned as Terzopoulos'

quadratic elements[74]. Then the linear pyramid of Yserentant [81] is used to de�ne

the �i;j and  i;j basis functions. In this construction, the functions on each level i

are not scales of each other, and they have no simple closed form. As a result, one

must a priori choose the level of resolution L, and no adaptivity is possible. Szeliski

also explores the implicit matrix representation [81] to counteract the fact that the

wavelets produce denser matrices. He experiments with both conjugate gradient and

Gauss-Seidel iteration, and �nd conjugate gradient to require fewer iterations. This

corresponds to what is generally known for iterative methods.

In [58] Pentland discusses using a wavelet basis for quickly solving variational

problems [58]. (His method of using the diagonal terms from the wavelet matrix is

discussed in Section 5.2). He uses an orthonormal wavelet transformation, without

discussing scaling and also assumes the wavelet matrix to be sparse, and so does not

pursue the implicit matrix representation. Pentland does not explore any adaptive

oracle method.

In research independent of this author's, Yaou et al. use a semi-orthogonal linear

B-spline wavelet for surface reconstruction [80]. This is an unusual choice for thin

plate problems, since the second derivative measure is not very meaningful with bi-

linear basis functions. Once again, the implicit method is not pursued, and thus each

of the wavelet iterations are considerably more expensive than the with �nite element

basis. In their implementation a full wavelet basis is used, and no adaptive oracle is

investigated. They also experiment with both Gauss-Seidel and conjugate gradient

and surprisingly �nds Gauss-Seidel to work better.

The system described in this thesis is closely related to these works. It applies

conjugate gradient iterations to a properly scaled cubic B-spline wavelet system to

obtain a method that uses few iterations, and can be adapted on the y to the proper

level of detail. The implicit method is used to exploit the sparseness of the B-spline

�nite elementmatrix. An oracle is used to adapt the size of the basis to the complexity

of the particular solution. By using a basis derived from cubic B-splines, this method

becomes compatible with other modeling tools based on cubic B-splines.
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7.8 Implementation

The ideas outlined in the previous sections have been used to build an interactive

variational modeling system (see Figures (42-46)). Some implementation details are

described here.

7.8.1 Choice of Wavelet

Section 2.3 describes a number of wavelet constructions based on cubic B-splines. This

implementation uses B-spline wavelets since the the resulting solutions are C2. More-

over the result can be displayed with GL nurbscurve and nurbssurface calls [41],

and interfaced with other computer graphics software that knows how to handle B-

splines.

In Section 2.3, two wavelet constructions are discussed, a bi-orthogonal and a

semi-orthogonal construction. The projections Pi arising from the semi-orthogonal

construction are orthogonal, which is a natural way to create smoother versions of

some curve. In the semi-orthogonal construction, the sequences ~h and ~g are in�nite

in length, and so the procedure coef xform up can only be made to run in linear

time by solving a band-diagonal system. This has a high constant factor. In the

bi-orthogonal construction, the sequences ~h and ~g are �nite and so the procedure

coef xform up can be simply implemented using convolutions (see Appendix A.1).

For this reason, the implementation uses the bi-orthogonal construction.

In Section 2.3.2, two methods are described to construct a wavelet basis over an

interval: mirror reection, and using special boundary basis functions. This imple-

mentation uses mirror reection because it is the simplest construction, but this does

have its draw backs. Mirror reection implies that the B-spline control points double

back on each other (see Figure 9). This implies that the functions X(t); Y (t); Z(t)

must have zero derivative at the boundaries, and the geometric curve has zero curva-

ture � at the boundaries. The use of special boundary functions is worthy of further

exploration.

For surfaces the non-standard bivariate basis is used.
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These images show a user sculpting a surface interactively using constraints. The
user begins with a surface pinned down at four corners.

Figure 42: The user then pulls down one of the corners.
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The user adds a new interpolation constraint. The constraint is colored pink because
the delta information is valid for that constraint.

Figure 43: Using the valid delta information, that constraint can be manipulated
without resolving the system of equations.
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The user adds a new tangent and interpolation constraint.

Figure 44: The user changes the tangent orientation slightly.
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Later the user has added more interpolation and tangent constraints.

Figure 45: The user manipulates one of the interpolation/tangent constraints.
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The pink constraints can be manipulated quickly using the delta information.

Figure 46: Here the user twists one of the tangent constraints.
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value

index i

index j

Figure 47: A matrix entry

7.8.2 Sparse Matrix

The speed of the algorithm depends on being able to quickly manipulate a sparse

matrix. The required operations are

� Multiply a vector with the matrix.

� Multiply a vector with the transpose of the matrix.

� Add an arbitrary entry to the matrix (when the oracle activates new basis

functions).

� Delete a row or column of the matrix (when the oracle deactivates a basis

function).

These matrices do not have a simple structure (such as band diagonal), and so a

general sparse representation is used. In the implementation the matrix is represented

using one node to represent each non-zero entry. Each node contains a value as well as

an i; j index (see Figure 47). Each row of the matrix is represented as a doubly linked

list of nodes. Each column is also represented as a doubly linked list of nodes (see

Figure 48). Vectors are stored densely in an array, so they can be accessed randomly

in constant time.

A matrix vector multiply is implemented by walking down each of the rows i and

multiplying the node value by the value in the proper vector element j. Transpose
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Figure 48: The rows and columns are made up of doubly linked lists.

matrix multiplies are handled similarly. Deleting a row is done by walking down it,

and deallocating each node. When a node of some row is deallocated the two nodes

in the same column as that node, above and below it, must have their pointers �xed

up so that they point to each other and not the deleted node. Deleting a column is

done similarly. Adding an arbitrary i; j entry is simply done by placing it at the head

of the i row linked list, and the head of the j column linked list 7.

For e�cient implementations, Unix malloc and free system calls are not used for

individual matrix nodes. Instead large chunks of memory are taken when necessary

from the system, and doled out internally.

In this implementation vectors are stored densely in an array, but many of the

entries may represent deactivated basis functions are need not be used (they are zero

by de�nition). This knowledge can be used to add two vectors, or perform the dot

product of two vectors more quickly. To achieve this, the number n of active entries

7For the operations required here, there is no need for the linked lists to have any internal sorted
order since an individual entry of a row or column is never sought. Matrix multiplies, and row, or
column deletions traverse entire linked lists. And so new entries can always be put at the head of
the lists.
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map of active coefficients, n=4

dense vector in memory

Figure 49: Vectors are stored densely in memory. A separate map structure points
to the active entries.

is maintained along with a map array associated with the vector. The �rst n entries

of the map hold the indices of the active entries in the vector. To perform a vector

operation (such as an add or dot product) the map is traversed instead of the entire

vector, and thus no computation is performed for non active basis functions (see

Figure 49).

7.8.3 Computing Matrix Terms

The Hessian matrix contains second derivative of the energy function with respect to

the basis functions. For thin plate curves, the Hessian matrix has terms
Z
dt � i;j(t) � k;l(t) (163)

or if the implicit method is being used
Z
dt ��i;j(t)��k;l(t) (164)

For thin plate surfaces, the Hessian matrix term relating the two non-standard

basis functions  i;j(s) i;l(t) and  m;n(s) m;p(t) isZ
ds
Z
dt Dss( i;j(s) i;l(t)) �Dss( m;n(s) m;p(t))

+ 2
Z
ds
Z
dt Dst( i;j(s) i;l(t)) �Dst( m;n(s) m;p(t))

+
Z
ds
Z
dt Dtt( i;j(s) i;l(t)) �Dtt( m;n(s) m;p(t)) (165)
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which can be rearranged and expressed with respect to univariate basis functions

Z
ds � i;j(s) � m;n(s) �

Z
dt  i;l(t) m;p(t)

+ 2
Z
ds _ i;j(s) _ m;n(s) �

Z
dt _ i;l(t) _ m;p(t)

+
Z
ds  i;j(s) m;n(s) �

Z
dt � i;l(t) � m;p(t) (166)

If the implicit method is used, then all of the basis functions in the above expression

are B-spline basis functions �i;j.

Each of the univariate basis functions  is piecewise cubic (with 14 pieces) and the

univariate basis functions � are also piecewise cubic (with 4 pieces). The functions

_ and _� are piecewise quadratic, and � and �� are piecewise linear. Computing the

integrals thus requires integrating each of the pieces separately using symbolic anti-

di�erentiation, and summing up the total. At the boundary of the domain, one must

use the polynomial form of the special boundary basis functions, or mirror reected

basis functions.

7.8.4 The Main Loop

A user of the system is �rst presented with a default curve or surface. Constraints

can then be introduced by clicking on the curve or surface with the mouse. The

location of the mouse click de�nes a parametric position t (and s) on the curve (or

surface). The user can then drag this point to a new location to de�ne an interpolation

constraint. Tangent constraints at a point can also be de�ned by orienting \arrow"

icons at the point. Once the constraint is set, the solver is called to compute the

minimum energy solution that satis�es the constraints placed so far. The system uses

thin plate energy to measure the smoothness of the solution. Resulting curves and

surfaces are displayed by transforming the wavelet representation back to a uniform

cubic B-spline representation at the �nest level of detail, and then making a SGI GL

nurbscurve or nurbssurface call [41] 8.

The solver sets up the appropriate linear system (Equation (161/162)). Initially

the solver assumes that very few degrees of freedom are needed, thus only a few

8One GL call to nurbssurface can be more expensive than a complete iteration.
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variables �x are active, corresponding to the basis functions on wavelet level 0 (the

coarsest level). The matrices are represented sparsely, so the solver only needs storage

for the non-zero entries, and the cost of a matrix-vector multiply scales with the

number of non-zero entries. This linear system is then solved by using conjugate

gradient iterations [59]. After every k iterations (25 is the default), the oracle

is called. As explained in Section 7.5, the oracle decides which new wavelet basis

functions and their corresponding variables �x should be activated, and which ones

can be deactivated.

At this point the matrices must be updated. If the explicit approach is being

used (Equation (161)), then the bookkeeping is very simple. When activating a new

wavelet basis function all that must be done is to add in a row and column to �H,

and a column to �A. These matrix terms are computed on the y. Because the basis

functions are piecewise polynomial, multiplication, derivation with respect to s; t, and

integration can all be performed symbolically. This is summarized in the following

pseudocode 9

activateWavelet(i,j)

forall( active wavelets with support overlapping (i,j) )

(k,l) = index of an overlapping wavelet ;

val = computeHessianTerm( (i,j) , (k,l) );

sparseMatrixInsert(val, matrix= Hess, row=(i,j) , col=(k,l) );

sparseMatrixInsert(val, matrix= Hess, row=(k,l) , col=(i,j) );

forall (constraints under the support of (i,j) )

(k) = index of an overlapped constraint ;

val = computeConstraintTerm( (i,j) ,k);

sparseMatrixInsert(val, matrix= Constraint, row=k, col=(i,j) );

When deactivating a wavelet basis function, all that is done is to delete a column

9For simplicity, the basis functions will be indexed with two indices. For surfaces, the bivariate
non-standard wavelet basis is used, and so the indexing is more complicated.
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(and row) from the matrices. If there is su�cient memory on the computer, then the

discarded values are cached; if the oracle later reactivates those basis function, then

the solver does not need to symbolically recompute those matrix entries.

deactivateWavelet(i,j)

sparseMatrixDeleteRow(matrix= Hess, row=(i,j) );

sparseMatrixDeleteCol(matrix= Hess, col=(i,j) );

sparseMatrixDeleteCol(matrix= Constraint, col=(i,j) );

When the implicit approach is used (Equation (162)), the bookkeeping becomes a

bit more complicated. When very few wavelet functions are active, it is not necessary

or e�cient to compute the entire B-spline matricesH and A, nor is it necessary to pay

the cost of the complete pyrm procedures. Instead the following is done. When the

oracle activates or deactivates a wavelet, this just updates a list of active wavelets.

activateWavelet(i,j)

add (i,j) to list of active wavelets;

deactivateWavelet(i,j)

remove (i,j) from list of active wavelets;

After the oracle is �nished, a minimal B-spline basis that spans the space of the

active wavelets is computed using the procedure computeActiveBSplines. Then a

B-spline constraint and hessian matrix are updated. This can be described as the

following:
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activateAndDeactivate(ActiveWavelets, oldActiveBSplines)

newActiveBsplines = computeActiveBSplines(ActiveWavelets);

forall(newActiveBSplines - oldActiveBSplines)

(i,j) = index of a new BSpline;

activateBSpline(i,j);

forall(oldActiveBSplines - newActiveBSplines)

(i,j) = index of a old BSpline;

deactivateBSpline(i,j);

The procedures activateBSpline and deactivateBspline update the B-spline con-

straint and Hessian matrix.

activateBSpline(i,j)

forall( active BSplines with support overlapping (i,j) )

(k,l) = index of an overlapping BSpline ;

val = computeHessianTerm( (i,j) , (k,l) );

sparseMatrixInsert(val, matrix= Hess row=(i,j) , col=(k,l) );

sparseMatrixInsert(val, matrix= Hess row=(k,l) , col=(i,j) );

forall (constraints under the support of (i,j) )

(k) = index of an overlapped constraint ;

val = computeConstraintTerm( (i,j) ,k);

sparseMatrixInsert(val, matrix= Constraint, row=k, col=(i,j) );
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deactivateBSpline(i,j)

sparseMatrixDeleteRow(matrix= Hess, row=(i,j) );

sparseMatrixDeleteCol(matrix= Hess, col=(i,j) );

sparseMatrixDeleteCol(matrix= Constraint, col=(i,j) );

This adaptive approach is possible with the wavelets described in this thesis,

but was not possible with the hierarchical construction in [71]. This is because an

adaptive method must be able to compute new Hessian and constraint matrix terms

on the y, and therefore one needs an explicit expression for the hierarchical basis

functions. When wavelets or hierarchical basis functions are only de�ned by some

complete pyramid transformation, without a closed symbolic form for the individual

basis functions, then one must always use the complete hierarchical basis. The �i;j

and  i;j functions described in this thesis have a piecewise polynomial form, making

the adaptive method possible.

The conjugate gradient iterations are continued until the residual is smaller than

some tolerance.

7.8.5 Delta Constraints

When the solution is completed, the result provides information for not only the

curve or surface satisfying the speci�c value of the new constraint, but for curves

or surfaces with respect to any value of this constraint. Once the linear system

(Equation (161/162)) with the newest constraint has been solved, the solver stores

the delta vector
��x

�bm
(167)

where m is the index of the newest constraint, and bm is the constraint value (i.e.,

the position or tangent speci�ed by the user). This vector stores the change of the

coe�cient vector due to a unit change in the new constraint �bm, essentially a column
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of the inverse matrix. The user is now free to interactively move the target location of

the constraint without having to resolve the system since, as long as the parameters

s, and t of the constraints do not change, the matrix of the system, and thus its

inverse, do not change. However, as soon as a new constraint is added (or a change

to the parameters s and t is made) there is fresh linear system that must be solved,

and all of the delta vectors are invalidated. The ability to interactively change the

value of a constraint is indicated to the user by coloring the constraint icon.

The application of this process to an interpolation constraint for the univariate

function, X, is shown in the following pseudocode. m is the constraint identi�er.

tm is the parameter value for the constraint (a surface would have two parameters

(sm; tm)). newB is the new requested interpolation point.

manipulate(m, tm, newB)

if (oldConstraint (m) and validDelta(m) )

oldB = X(tm) ; /* evaluate the function at tm */

changeB = newB - oldB;

�x += changeB * deltaVec[m];

return;

if (new(m))

invalidate all deltas;

/* solve, and set new delta */

oldXvec = �x;

oldB = X(tm) ;

�x = conjugateGradiantSolver();

��x = �x - oldXvec;

�bm = newB - oldB;

deltaVec[m] = ��x

�bm
;

validate(deltaVec[m]);



CHAPTER 7. VARIATIONAL MODELING WITH WAVELETS 149

0 1 2 3

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or

splines
wavelets
oracle wavelets

Figure 50: Error per time. Curve with 65 control points, 3 constraints.
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Figure 51: Error per time. Curve with 65 control points, 7 constraints.

7.9 Results

A series of experiments were conducted to examine the performance of the wavelet

based system compared to a B-spline basis. In the 2D experiments, the number of

levels of the hierarchy, L, was �xed to 6, and thus there were 65 B-spline, or wavelet

functions in the complete basis for x(t) (and another 65 basis functions for y as well
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Figure 52: Error per time. Curve with 65 control points, 13 constraints.
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Figure 53: Solutions found by B-spline and wavelet methods after various numbers
(0-1024) of iterations. There are 65 variables. This sequence shows the iterations after
the third constraint (open square) has been added. This illustrates the ill conditioning
of the B-spline optimization problem.
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as z). The optimization process was then run on problems with various amounts of

constraints. The results of these tests are shown in Figures (50-52). These graphs

show the convergence behavior of three di�erent methods, solving with the complete

B-spline basis, solving with the complete wavelet basis, and solving with an adaptive

wavelet basis that uses an oracle. (The wavelet results shown here use the implicit

implementation). If x(m) is the computed solution expressed as B-spline coe�cients

at time m, and x� is the correct solution of the complete linear system 10 (i.e., the

complete system with 2L + 1 variables, and no adaptive oracle being used) then the

error at time m is de�ned as P
j j x�j � x

(m)
j j

P
j j x�j � x

(0)
j j

(168)

To obtain the starting condition x(0), two constraints were initialized at the ends

of the curve, and the minimal thin plate solution (which in this case is a straight

line) was computed. (For surfaces, the four corners were constrained.) All times

were taken from runs on an Silicon Graphics R4000 Reality Engine running at 50

megahertz.

When there are a small number of constraints, and the solution is thus very un-

der constrained, the B-spline method is very poorly conditioned, and converges quite

slowly while the wavelet method converges dramatically faster (this is illustrated in

Figure (53)). Since the optimization problem is very underconstrained, the oracle

decides that it needs only a very small active set of wavelets and so the adaptive

method converges even faster. As the number of constraints is increased, the solution

becomes more tightly constrained, and the condition of the B-spline system improves.

(Just by satisfying the constraints, the B-spline solution is very close to minimal en-

ergy). Meanwhile the oracle requires a larger active set of wavelets. Eventually, when

enough constraints are present, the wavelet methods no longer o�er an advantage

over B-splines. While it still requires fewer iterations to converge, it must pay more

per iteration.

How much is this extra cost? Experiments with both the explicit and implicit

wavelet methods showed that for curves with a complete basis (no oracle), and L = 6,

10computed numerically to high accuracy
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Figure 54: Error per time. Surface with 1089 control points, 5 constraints.

one iteration of the explicit or the implicit wavelet method was slower than one

B-spline iteration by about a factor of 3 11. Thus, for problems of this size, the

explicit and the implicit methods cost about the same. For the implicit method, this

factor of 3 is the extra constant factor incurred by using the pyrm procedures and is

independent of L. For the explicit method, this factor of 5 was a result of the denser

wavelet matrices �H and �A, which are only O(n lg n) sparse, and so this factor will

increase as L increases.

As expected, for surfaces everything becomes more expensive (because of the

denser surface matrices), except for the pyrm procedures. And so for surfaces, a

single iteration of the implicit wavelet method is only slower than a single iteration

of the B-spline method by about a factor of 1:3, regardless of L 12. Meanwhile one

iteration of the explicit wavelet method for L = 5, where the complete basis has 1089

functions (33 in s, times 33 in t), is slower than one B-spline iteration by about a

factor of 10.

In the surface experiments, L was set to 5. (There are 1089 basis functions for the

11Each B-spline iteration took 0:0035 seconds while each iteration using a complete wavelet basis
took 0:011 seconds.

12For L = 5 each iteration using B-splines took 0:68 seconds while each iteration using the complete
wavelet basis took 0:85 seconds.
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Figure 55: Error per time. Surface with 1089 control points, 11 constraints.
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Figure 56: Error per time. Surface with 1089 control points, 23 constraints.
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x coordinates, and another 1089 for y as well as z). A set of experiments with evenly

spaced constraints was run. The experimental results are shown in Figures (54-58).

With few constraints, the wavelet methods greatly outperform the B-spline method.

As more constraints are added, the B-spline method becomes better behaved, and

eventually converges faster than the wavelets.

Experiments were also run where all the constraints were along the boundary of the

surface. In these experiments there are many constraints, but the since the constraints

are along the boundary, much of the surface is \distant" from any constraint. In these

problems, the wavelets also performed much better than the B-spline method, (see

Figure 59).

These experiments imply that wavelets are best suited for problems where there

are large gaps between the constraints.

To demonstrate the importance of the scaling used for the wavelet basis functions,

the experiment using 23 constraints was rerun using wavelets with di�erent scaling

factors between the levels: Traditionally normalized wavelets

�i;j(t) = 2(i�L)=2 �(2(i�L)t� j)

 i;j(t) = 2(i�L)=2  (2(i�L)t� j) (169)

un-normalized wavelets

�i;j(t) = �(2(i�L)t� j)

 i;j(t) =  (2(i�L)t� j) (170)

and the \anti-normalized" wavelets that have been used in the rest of the experiments

thus far

�i;j(t) = 2�(i�L) �(2(i�L)t� j)

 i;j(t) = 2�(i�L)  (2(i�L)t� j) (171)

The results are shown in Figure 60. Clearly anti-normalization is essential for the

wavelet optimization method studied in this chapter.
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7.10 Discussion

The ability to directly manipulate curves and surfaces provides an intuitive interface

to the user for design purposes. Direct manipulation of a surface, however, leads

to an underconstrained problem since there are, in general, many possible surfaces

through a given point or set of points. Finding the \best" solution requires solving a

variational problem.

This chapter has presented a methodology to e�ciently solve such problems based

on a hierarchical representation of the curves and surfaces. In particular, a wavelet

basis is used to accelerate the computation of optimal curves and surfaces based on

a thin plate functional. Implementation and a system developed with these ideas are

presented and experimental results are discussed that demonstrate the advantages

over a pure B-spline based approach.

Another application for the adaptive oracle is data reduction. The size of the

active set of wavelet coe�cients is often much smaller than the number of B-spline

control points in the computed solution. For example, in the curve experiments, the

size of the �nal active sets for 3, 7, and 13 constraints respectively were 8, 21, and 29,

as compared to the 65 B-spline control points. Similarly, in the surface experiments,

the size of the �nal active sets for 5, 11, 23, 36,and 64 constraints respectively were

82, 150, 350, 218 and 239 as compared to the 1089 B-spline control points.

Future work will be required to explore the use of higher order functionals like

those given in [57, 62]. Because the optimization problems resulting from those func-

tionals are non-linear, they are much more computationally expensive, and it is even

more important to �nd e�cient methods. It is also important to study optimization

modeling methods where constraint changes only have local e�ects. Finally, it would

be desirable to extend the multiresolution framework beyond tensor product bases in

order to model surfaces with arbitrary topology [43]. Presently, the only way to model

an arbitrary structure is to piece together patches, and constrain the boundaries to

have the necessary continuity. In addition, improvements to the oracle function that

determines the appropriate local resolution may lead to more e�cient results.



Chapter 8

Conclusion

This thesis has discussed the use of a wavelet basis for two computer graphics appli-

cations radiosity and geometric modeling.

In radiosity, the compression properties of the wavelet basis is exploited, to obtain

a sparse matrix. The radiosity matrix contains coe�cients of the kernel function, a

function that represents the energy interaction between pairs of surface points in the

environment. Because many regions of this kernel function are smooth, the corre-

sponding coe�cients in the wavelet basis are negligible. In order to e�ciently enu-

merate the signi�cant coe�cients, a top down recursive procedure ProjectKernel is

presented. This procedure makes use of a oracle function that measures the smooth-

ness of the kernel. By using di�erent wavelets, with better compression properties,

more e�cient radiosity solutions can be obtained. This wavelet methodology also

allows for a more formal understanding of the hierarchical radiosity method of [44].

Some implementation issues have been discussed and experimental results have

been reported. In particular, experiments with two simple 2D environments have

shown that wavelets with 2 vanishing moments lead to sparser radiosity matrices

than the Haar basis. A variety of \tree" wavelets have been implemented in a working

3D radiosity system. Numerical experiments have shown how raising the number of

vanishing moments leads to a sparser matrix. User experience has been best with the

M2 basis (i.e., 2 vanishing moments).

This implementation only used tree wavelets, leading to possible discontinuities

158
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in the reconstructed solution. These discontinuities perhaps o�er too much freedom

in the representation. This freedom causes the number of basis functions to grow

quickly as the number of vanishing moments is raised. Also the discontinuities can

cause artifacts in the resulting images. It is important to study families of smooth

wavelets, and understand how they can be used in a radiosity implementation.

In radiosity algorithms, much of the subdivision is used to resolve discontinuities in

the illumination function, such as shadow boundaries. Recently, Lischinski et al. [51]

have discussed combining hierarchical radiosity with discontinuity meshing. In this

algorithm, the mesh is not simply re�ned by quad-tree subdivision, but rather along

the discontinuity lines which are computed a-priori by analyzing the geometry of

the environment. This method allows the radiosity algorithm to capture the shadow

patterns with fewer mesh elements. It would be interesting to study how the general

wavelet method could be combined with such a discontinuity meshing strategy.

In hierarchical radiosity algorithms, the algorithm begins with the initial input

geometry (typically polygons), and then subdivides them as necessary. The hierar-

chical nature of the wavelet method performs this subdivision in an e�cient manner,

avoiding the computation of unnecessary detail. But, if there are k initial geometric

objects input to the program, the interactions between all pairs of these objects must

be computed. This is a cost of O(k2). While this cost is negligible for simple envi-

ronments, it becomes overwhelming for complicated environments described by many

small geometric objects (such a football stadium with 100; 000 seats). A method of

clustering is needed that avoids computing the interactions between each pair of tiny

input objects. A number of solutions have recently been discussed [68, 70], but more

research is necessary.

The second computer graphics application this thesis has discussed is geometric

modeling (in particular, curve and surface modeling). In this context a wavelet basis

based on uniform cubic B-splines has been used. The wavelet representation allows

the user to interact with the curve or surface at any resolution level desired. This

provides the useful ability to manipulate the object in both broad and �ne ways. The

wavelet transformation also allows an optimization program the ability to alter the

solution at any necessary resolution. This results in a e�cient variational modeling
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tool that can �nd the \smoothest" curve or surface meeting some set of constraints

e�ciently with few iterations. In this context, an oracle function is used to determine

where the �ne detail is needed in the solution, and where it is unnecessary.

This implemented variational modeling tool only used the thin plate measure of

smoothness. There are other measures that may be employed, which may yield more

desirable surfaces. Many of these measures are highly non-linear, requiring very time

consuming optimization methods. Thus, in these cases, it is even more crucial to

explore methods to speed up this process.

The wavelet representation used in this thesis for geometricmodeling has a number

of limitations. In the cubic B-spline wavelet basis, the resulting curves and surfaces

are always C2. While this is desirable in general, at times one would like to introduce

discontinuities at speci�c places, in order to model sharp edges. It is important to

learn how this can be done within the context of a hierarchical representation. Sec-

ondly, the tensor product B-spline used in this thesis can only model surfaces that

have a square parametric domain. This is certainly a limitation when trying to model

arbitrary objects. Recently researchers have been exploring very exible representa-

tion methods for objects with arbitrary topology [43]. A hierarchical representation

bases on such methods has also been studied [53]. This hierarchical representation

o�ers a exible way to extend the methods described in this thesis to more general

surface topologies.

Numerical optimization is a general paradigm that can be applied to many problem

domains. One such example is the control problems that arise in computer anima-

tion [19]. In such a problem the animator wishes to create an animation sequence

for some creature without specifying the exact trajectory that the creature will take.

In this context, a costly non-linear minimization problem must be solved. Research

in this area has shown that wavelet methods, like those described in this thesis, can

help to e�ciently produce solutions [52]. It is important to see how these wavelet

optimization methods can be applied to other areas as well.



Appendix A

A.1 Bi-orthogonal B-spline Wavelet Transform

This appendix provides pseudo code for the bi-orthogonal wavelet transform. The

convolution sequences are given in [17].
The bs index procedure returns an index into the array of B-spline coe�cients

bs[�2 : : :2L2] using mirror reection The procedure �rst reects around 0, and then

periodizes.

int bs index(L, j)

range = 2L ;

j = j + 2 ;

j = absolute value(j) ;

j = j % (2 � range) ; /* "%" == "mod" */

if (j � range)

return(j - 2) ;

else

return(2 � range - j - 2);
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This wave index procedure indexes into the array of mirrored wavelet coe�cients

wave[�3 : : :2L � 4].

int wave index(L, j)

range = 2L ;

j = j + 3 ;

j = j + .5 ;

j = absolute value(j) ;

j = j - .5 ;

j = ( j % (2 � range)) ;

if (j � range� 1)

return(j -3) ;

else

return(2 � range - 1 - j - 3) ;

Coe�cient transformations are implemented with the procedures coef xform up

and coef xform down. The �rst procedure implements Equation (27). (The se-

quences h,g,~h, and ~g are zero outside of their de�ned ranges).

h[0::4] = f1
8
; 4
8
; 6
8
; 4
8
; 1
8
g;

g[0::10] = f 5
256
; 20
256
; 1
256
; �96
256
; �70
256
; 280
256
; �70
256
; �96
256

1
256
; 20
256
; 5
256
g;

~h[�3::7] = f �5256;
20
256;

�1
256;

�96
256 ;

70
256;

280
256;

70
256;

�96
256

�1
256;

20
256;

�5
256g;

~g[3::7] = f1
8;
�4
8 ;

6
8 ;
�4
8 ;

1
8g;
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coef xform up( bsin[], bsout[], wout[], L)

range = 2L�1 ;

bsout = wout = 0 ; /* zero vectors */

for (j = �2 ; j � range2 ; j++)

wdx = wave index(L� 1, j) ;

bdx = bs index(L� 1, j) ;

for (k = (2j � 3); k � (2j + 7) ; k++)

idx = bs index(L, k) ;

bsout[bdx] += ~h[k � 2j] � bsin[idx] ;

wout[wdx] += ~g[k � 2j] � bsin[idx] ;

The inverse transformation which uses Equation (29) is implemented in the fol-

lowing procedure

coef xform down( bsin[], win[], bsout[], L )

range = 2L ;

bsout = 0 ; /* zero vector */

for(j = �2; j � range� 2; j++)

odx = bs index(L, j) ;

for(k = j�10
2 ; k � j

2; k++)

bdx = bs index(L� 1, k) ;

wdx = wave index(L� 1, k) ;

bsout[odx]+= h[j � 2k] � bsin[bdx]

+ g[j � 2k] � win[wdx] ;
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The following procedure transforms the basis functions themselves (see Equa-

tions 15 and 16). Because the basis functions centered exactly on the boundaries do

not have a nearby mirrored copy, they must be scaled slightly di�erently.

basis xform up( bsin[], bsout[], wout[], L )

range = 2L�1 ;

downRange = 2L ;

bsin[0] �= 2:0; bsin[downRange] �= 2:0 ;

bsout = wout = 0 ; /* zero vectors */

for (j = �2; j � range� 2; j++)

wdx = wave index(L� 1, j) ;

bdx = bs index(L� 1, j) ;

for (k = (2j); k � (2j + 10); k++)

idx = bs index(L, k) ;

bsout[bdx] += h[k � 2j] � bsin[idx] ;

waveout[wdx] += g[k � 2j] � bsin[idx] ;

bsout[0] �= 0:5 ; bsout[range] �= 0:5 ;
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And the inverse transformation which implements Equation 19

basis xform down( bsin[], wavein[], bsout[], L )

range = 2L ;

upRange = 2L�1 ;

bsin[0] �= 2:0; bsin[upRange] �= 2:0 ;

bsout = 0 ; /* zero vector */

for(j = �2; j � range� 2; j++)

odx = bs index(L, j) ;

for(k = j�7
2 ; k � j+3

2 ; k++)

bdx = bs index(L� 1, k) ;

wdx = wave index(L� 1, k) ;

bsout[odx]+= ~h[j � 2k] � bsin[bdx]

+ ~g[j � 2k] � win[wdx] ;

bsout[0] �= 0:5 ; bsout[range] �= 0:5 ;

A.2 Semi-orthogonal B-splineWavelet Transform

This appendix provides pseudo code for semi-orthogonal B-spline wavelet transform.

The sequence h and the sequence g are the convolution sequences used to construct the

inner basis functions [16], while the vectors hj and the vectors gj are used to construct

the boundary basis functions [15, 61]. Only the vectors for the left boundary are

given, the vectors for the right boundaries are the mirror images of these vectors. It

is assumed that the boundary B-spline basis functions are those that arise by placing

quadruple knots at the boundaries.
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h[0::4] = 1
8
� f1; 4; 6; 4; 1g

g[0::10] = 1
8!
� f�1; 124;�1677; 7904;�18482; 24264;�18482;

7904;�1677; 124;�1g

h
�3 =

1
16 � f16; 8; 0; 0; 0; : : :g

h
�2 =

1
16
� f0; 8; 12; 3; 0; 0; : : :g

h
�1 =

1
16
� f0; 0; 4; 11; 8; 2; 0; : : :g

1

8!
�

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

g
�3

g
�2

g
�1

1136914560
27877

�2387315040
195139

123066720
1365937

�1655323200
27877

2141121840
195139 �2226000

1365937

1321223960
27877

878161880
195139

188417600
1365937

�633094403
27877

�498772701
27877

�2293862247
1365937

229000092
27877

4726413628
195139

10796596516
1365937

�46819570
27877

�3606490941
195139

�25245248833
1365937

124 7904 24264

�1 �1677 �18482

0 124 7904

: �1 �1677

: 0 124

: : �1

: : 0

: : :

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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The following procedure describes how the two-part basis functions are con-

structed by linearly combining the B-spline basis functions. (see Equations 15 and

16).

basis xform up( bin[], bout[], wout[], L )

bout = wout = 0 ; /* zero vectors */

for (j = 0; j � 2L�1� 4; j++)

for (k = 2j; k � (2j + 4); k++)

bout[j] += h[k � 2j] � bin[k] ;

for (j = 0; j � 2L�1� 7; j++)

for (k = 2j; k � (2j + 10); k++)

wout[j] += g[k � 2j] � bin[k] ;

for (j in [�3,�2,�1,2L�1� 3,2L�1� 2,2L�1� 1] )

bout[j] = hj � bin ; /*dot product*/

for (j in [�3,�2,�1,2L�1� 4,2L�1� 5,2L�1� 6] )

wout[j] = g
j
� bin ;

This procedure can be expressed as multiplication by a banded matrix, and so the

inverse procedure

basis xform down( bin[], win[], bout[], L )

can be obtained by solving this banded linear system.
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The following procedure can be used to obtain B-spline coe�cients given two-part

coe�cients.

coef xform down( bin[], win[], bout[], L )

bout = 0 ; /* zero vector */

for(k = 0; k � 2L�1� 4; k++)

for(j = 2k; j � (2k + 4); j++)

bout[j] += h[j � 2k] � bin[k] ;

for(k = 0; k � 2L�1� 7; k++)

for(j = 2k; j � (2k + 10); j++)

bout[j] += g[j � 2k] � win[k] ;

for(k in [�3,�2,�1,2L�1� 3,2L�1� 2,2L�1� 1] )

bout += hk � bin[k] ; /*vector addition*/

for(k in [�3,�2,�1,2L�1� 4,2L�1� 5,2L�1� 6] )

bout += g
k
� win[k] ;

This procedure can be expressed as multiplication by a banded matrix, and so the

inverse procedure

coef xform up( bin[], bout[], wout[], L )

can be obtained by solving this banded linear system.



Appendix B

Bounding the Magnitude of

Coe�cients

Beylkin et al. [8] prove that Calderon-Zygmund operators can be represented in the

non-standard wavelet basis with only O(n) signi�cant entries. This appendix sum-

marizes their arguments.

Given a Calderon-Zygmund kernel, the magnitude of a wavelet coe�cient can be

bounded as follows. In order to compute some coe�cientZ
ds

Z
dt K(s; t) i;j(s) k;l(t) (172)

where  has M vanishing moments, K(s; t) is approximated by a degree M multi-

variate taylor series about a point (s0; t0) that is under the support of  i;j(s) k;l(t):

K(s; t) = P (s; t) +R(s; t) (173)

P (s; t) is a degree M polynomial. R(s; t) is a residual function which, under the

support of  i;j(s) k;l(t), is can be bounded by

j R(s; t) j � DMK(sm; tm) � dist((s; t); (s0; t0))
M (174)

�
CM

singDist( i;j;  k;l)d+M
�max(Is; It)

M (175)

DM is the total M th derivative. (sm; tm) is the parametric position where the deriva-

tive DM has its maximum value. dist measures the distance of the point (s; t) from
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(s0; t0). Line (175) uses the Calderon-Zygmund smoothness property given in Equa-

tion (94). singDist measures the minimum distance between the singularity in (s; t)

and the support of the basis function  i;j(s) k;l(t). Is is the support length of the

basis function  i;j(s). And It is the support length of the basis function  k;l(t). More

generally, if the dimension d of the parameter space s is greater than 1, and the one

dimensional support length is Is, then the d dimensional volume supported by the

basis function is Ids .

The magnitude of the coe�cient can now be bounded

j
Z
ds

Z
dt K(s; t) i;j(s) k;l(t) j (176)

= j
Z
ds

Z
dt (P (s; t) +R(s; t)) i;j(s) k;l(t) j (177)

= j
Z
ds

Z
dt R(s; t) i;j(s) k;l(t) j (178)

�
Z
supp( i;j)

ds

Z
supp( k;l)

dt
CM max(Is; It)M

I
d=2
s I

d=2
t singDist( i;j;  k;l)d+M

(179)

=
CM max(Is; It)M

I
d=2
s I

d=2
t singDist( i;j;  k;l)d+M

Z
supp( i;j)

ds

Z
supp( k;l)

dt 1 (180)

=
CM max(Is; It)M

I
d=2
s I

d=2
t singDist( i;j;  k;l)d+M

Ids I
d
t (181)

=
CM Id=2s I

d=2
t max(Is; It)M

singDist( i;j;  k;l)d+M
(182)

�
CM max(Is; It)

dmax(Is; It)
M

singDist( i;j;  k;l)d+M
(183)

= CM

 
max(Is; It)

singDist( i;j;  k;l)

!d+M
(184)

In line (178), the M vanishing moments are used to make P vanish. Line (179),

uses a bound on R. The terms Id=2s and Id=2s appear in the denominator since the

basis function  i;j(s) k;l(t) is L
2 normalized. Line (181) uses the volume of the dt

and ds integrals.

If the non-standard bivariate wavelet basis functions (e.g.,  i;j(s) i;l(s)) are used,

then the ratio of line (184) can simply be expressed as

CM

1+ j j � l jd+M
(185)
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independent of the level i. Thus for any user supplied epsilon, there is a width w

(independent of the level i) such that the coe�cients of the basis functions that are

\far enough" away from the diagonal, with indices j j � l j> w, have magnitudes

less than epsilon. Only the basis functions within w of the diagonal j = l will be

signi�cant. Therefore the number of signi�cant coe�cients on a single level i is equal

to w � length(diagonal(i)). Since there are only log n levels, the number of signi�cant

entries is O(n):

lognX
i=0

w � length(diagonal(i)) =
X
i

w � 2i

= 2wn

= O(n) (186)



Appendix C

Bounding the Condition Number

A number of researchers [81, 47, 25] have studied the condition number of the matrices

that arise from �nite-element solutions to di�erential equations. Their main result

is that when a wavelet basis is used, the condition number of the matrix remains

constant, independent of n, the number of functions in the basis. This is an important

improvement over �xed resolution bases, where the condition number grows as a

polynomial of n. This appendix summarizes some of the theory.

Given some symmetric positive de�nite matrixM, the Raleigh quotient for some

vector x is de�ned as

R(x) =
x
T
Mx

xTx
(187)

The numerator of the Raleigh quotient is the \quadratic energy" of the vector x, and

the denominator is the square of the euclidean length of x. The condition number

� of M is de�ned as the ratio of the largest and smallest value that R takes, over

all non-zero vectors x. In some sense, the condition number measures how close the

euclidean length of x is to the energy of x.

When one is solving a di�erential equation or an optimization problem using a

�nite element solution method, the resulting matrix has terms of the form

Mi;j =
Z
dt Da(�i(t)) �D

a(�j(t)) (188)

for univariate problems and

Mi;j =
Z
ds

Z
dt Da(�i(s; t)) �D

a(�j(s; t)) (189)
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for bivariate problems, where a is some �xed constant, and Da is the ath derivative

(or sum of partial derivatives) of �. Thus, the energy term x
T
Mx induces the norm

E(X) =
�Z

dt (Da(X))2
�1=2

(190)

on the function X(t) that corresponds to the vector of coe�cients x. This norm is

called the Sobolov norm of degree a.

When one uses a �xed resolution basis, then the euclidean length of the vector x

is a poor estimate of the Sobolov energy of the function X for the following reason.

As one uses a �xed resolution basis with more and more basis functions, the energy

of any single basis function becomes higher and higher; for a � 1, thin \humps"

have more Sobolov energy than wide \humps". Even though each individual basis

function has more energy, the euclidean length of the vector associated with a single

basis function remains 1. Thus, the maximum value of R increases with n. On the

other hand, by using a higher resolution basis, one can still obtain a function X with

at least as low as energy as could be obtained with the lower resolution basis, and so

the minimum value of R does not increase. Thus the condition number, �, increases

with n. The condition number can not be improved by scaling the �xed resolution

basis functions. If one scales down all of the basis functions by a factor of s, then the

maximum value of R decreases by a factor of s2, but so does the smallest value of R.

When using a wavelet basis, one is able to scale down the thinner basis functions,

while maintaining the scale of the wider basis functions. In particular, it can be

shown that if all of the wavelet basis functions  i;j are properly scaled on each level

so that the Sobolov energy of each individual basis function is the same, then the

euclidean length of the vector of wavelet coe�cients, x, is a good estimate of the

Sobolov energy of the function X regardless of the number of wavelet levels i, and

the number of basis functions n employed. Thus, � remains bounded [81, 47, 25].

To obtain the correct scaling, the diagonal terms of the matrix, which for the

univariate problem are: Z
dt Da( i;j(t))D

a( i;j(t)) (191)

must all have the same value irrespective of i (by doing this, all basis functions, on

all levels i, have the same Sobolov energy). The exact scaling needed to obtain this
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property depends on the number, d, of parameters (i.e., s and t) in the problem, and

the degree, a, of the derivative in the energy term. It can easily be veri�ed, that the

necessary scaling relationship is

�i;j(t) = 2(1=2�a=d)(i�L) �(2(i�L)t� j)

 i;j(t) = 2(1=2�a=d)(i�L)  (2(i�L)t� j) (192)

For thin plate curves, a = 2 and d = 1, thus the proper scaling is

�i;j(t) = 2(�3=2)(i�L) �(2(i�L)t� j)

 i;j(t) = 2(�3=2)(i�L)  (2(i�L)t� j) (193)

This means that as one goes from level i to level i � 1 the basis functions become

twice as wide, and 23=2 as tall. In the pyramid code, this is achieved by multiplying

all of the h and g entries by 23=2, and all of the ~h and ~g by 2�3=2

Likewise, for thin plate surfaces, a = 2 and d = 2, and the proper scaling for the

univariate basis functions making up the bivariate non-standard basis functions is

�i;j(t) = 2(�1=2)(i�L) �(2(i�L)t� j)

 i;j(t) = 2(�1=2)(i�L)  (2(i�L)t� j) (194)

This means that as one goes from level i to level i � 1 the basis functions become

twice as wide, and 21=2 as tall. In the pyramid code, this is achieved by multiplying

all of the h and g entries by 21=2, and all of the ~h and ~g by 2�1=2

The constrained optimization problems that arise in geometric modeling are more

complicated than the simple di�erential equations studied in the theoretical literature.

In particular, in a modeling problem, the constraints may be placed anywhere in the

domain of the curve or surface, and not just on the boundary. And so the matrix

M measures not just Sobolov (thin plate) energy but also constraint information.

Adding constraints can both raise and lower the minimum value of R. Therefore the

proofs for the theoretical bounds for simple di�erential equations can not be directly

applied to geometric modeling problems, and the \proper" theoretical scaling may

not be optimal.
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For constrained thin plate curves and surfaces both the scalings of Equations (193)

and (194) and the scaling

�i;j(t) = 2�(i�L) �(2(i�L)t� j)

 i;j(t) = 2�(i�L)  (2(i�L)t� j) (195)

were experimented with. The results using these di�erent scalings did not di�er

greatly, but the best results were obtainted using the scaling of Equation (195), and

so those results are reported in the experimental section.
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