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Abstract

One of the core problems of computer graphics is the computation of the equilibrium
distribution of light in a scene. This distribution is given as the solution to a Fredholm
integral equation of the second kind involving an integral over all surfaces in the
scene. In the general case such solutions can only be numerically approximated, and
are generally costly to compute, due to the geometric complexity of typical computer
graphics scenes. For this computation both Monte Carlo and finite element techniques
(or hybrid approaches) are typically used.

A simplified version of the illumination problem is known as radiosity, which as-
sumes that all surfaces are diffuse reflectors. For this case hierarchical techniques,
first introduced by Hanrahan et al.[32|, have recently gained prominence. The hier-
archical approaches lead to an asymptotic improvement when only finite precision is
required. The resulting algorithms have cost proportional to O(k? + n) versus the
usual O(n?) (k is the number of input surfaces, n the number of finite elements into
which the input surfaces are meshed). Similarly a hierarchical technique has been
introduced for the more general radiance problem (which allows glossy reflectors) by
Aupperle et al.[6].

In this dissertation we show the equivalence of these hierarchical techniques to the
use of a Haar wavelet basis in a general Galerkin framework. By so doing, we come
to a deeper understanding of the properties of the numerical approximations used
and are able to extend the hierarchical techniques to higher orders. In particular, we
show the correspondence of the geometric arguments underlying hierarchical methods
to the theory of Calderon-Zygmund operators and their sparse realization in wavelet

bases. The resulting wavelet algorithms for radiosity and radiance are analyzed and

il



numerical results achieved with our implementation are reported. We find that the
resulting algorithms achieve smaller and smoother errors at equivalent work.
Advisor: Prof. Pat Hanrahan
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Chapter 1
Introduction

One of the core problems of computer graphics is the accurate computation of the
distribution of light in a given scene. This is often referred to as the problem of
photo-realistic rendering: the attempt to compute an image of a scene which is not
distinguishable by a human observer from a photograph of the same scene. This is
a very demanding challenge and we are far from getting close to achieving this goal.
Nonetheless, impressive progress towards this goal has been achieved over the last
few years and this dissertation attempts to make a contribution towards this goal.

To model light we must begin with a model of light propagation and behavior.
Clearly, a very detailed physical model of light, e.g. one that accounts for quantum
effects, would overwhelm our computational abilities in all but the simplest geometric
configurations. Luckily most of the visual world as it presents itself to the human
observer is dominated by effects adequately modeled by geometrical optics. Notable
exceptions include for example interference effects such as those visible on oil films
or soap bubbles. In the present work we will only consider geometrical optics and
linear effects as they are described by linear transport models. This excludes such
non-linear effects as temperature dependent reflection or emission, for example.

The history of computing illumination based on geometrical models is very old
and can be traced to Lambert and the publication of his “Photometria” [40]. For
example, Lambert already understood how to compute the illumination at a point

due to a polygonal lightsource of uniform brightness. He gave a closed form expression
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which is still used today in computer graphics.

In the early days of computer graphics, most illumination models considered only
local properties to describe the shading at a point on a surface [10, 30, 11|. Light
sources were considered as point sources and only the light reaching a surface on a
direct path from the light source was accounted for. Since then many algorithms
have been proposed to account for so called global effects, such as for example the
interreflection between diffuse surfaces. More complete techniques are all based on a
linear transport model of radiative transfer which describes the equilibrium transport
between a number of surfaces, given a set of emitters and appropriate descriptions
of reflection properties. The global nature of these descriptions requires costly com-
putations and many simplifications have been proposed to reduce the computational
problem to a manageable size. Some are based on point sampling techniques such as
raytracing [70]. Another set of computational procedures is based on finite element
techniques. It is these that we will concern ourselves with.

The first such approaches published in the computer graphics literature were based
on a technique pioneered in radiative heat transfer: Radiosity |26, 47]. Classical ra-
diosity uses a power balance argument to derive a system of linear equations using the
assumption that all surfaces have diffuse reflection and emission properties. That is,
all directional effects (e.g., a surface which reflects light preferentially along the mirror
direction) are ignored. This leads to a reduction in the dimensionality of the problem
and is a reasonable simplification for a large class of interior (architectural) scenes.
Although still a very expensive computation for scenes of even moderate complexity,
significant progress has occurred with the recent introduction of two approaches for
the radiosity problem: Higher order Galerkin methods [71, 68] and hierarchical meth-
ods [32]. The former decrease the overall computational cost by a constant factor,
while the latter decrease it asymptotically. These two techniques are unified under
the framework of wavelets in this thesis.

Progress for the more general radiance problem, which allows for directionally
varying properties in both reflection and emission, has been much slower. It is still

largely impractical to compute for anything but simple configurations. Without new
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and more efficient techniques this more general problem will continue to dwarf com-
putational resources for the foreseeable future. If we hope to achieve rendering quality
which deserves the name photo-realism the development of efficient techniques for the

radiance problem in particular is crucial.

1.1 Outline

In this dissertation we will develop and discuss the use of wavelets for illumination
(radiosity and radiance) computations. Because of the historical development of these
techniques we begin with the case of radiosity and proceed to the application of these
numerical techniques to the radiance problem. As such this dissertation is divided
into two parts. In the first we lay the foundations for the use of wavelet techniques
to solve the illumination problem. The second part is devoted to the application of
these techniques to the case of radiance computations.

Since these techniques unify approaches which were first used in the context of
radiosity, and also to make our explanations concrete we use the example of radios-
ity when describing the basic arguments in the first part. In particular we describe
two basic techniques, the use of the Galerkin framework to solve integral equations,
and the use of hierarchical arguments to reduce the asymptotic complexity of such
computations. We will give much room to describing and analyzing the hierarchical
arguments in particular. Using geometric insights, which, it is hoped, are simple
and elegant, we explain and analyze hierarchical radiosity. The geometric arguments
are chosen so as to directly mirror the underlying mathematical arguments and thus
provide for a rigorous foundation while being intuitively obvious. Once these founda-
tions are in place we give a very short introduction to the rather rich field of wavelets.
In that section the focus is on the relevant facts for the application of wavelets to
the solution of integral equations. Using the theory of linear operators expressed in
wavelet bases and, in particular, the fact that operators satisfying certain smoothness
conditions will lead to sparse linear systems in wavelet bases, we recognize hierarchi-
cal radiosity and its geometric arguments as an instance of wavelet methods applied

to illumination computations. Reviewing some of the published results quantifying
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the power of these techniques in the case of radiosity we proceed to the more general
radiance problem.

The radiance problem has recently seen the application of hierarchical approaches
as well [6] and we extend these to higher orders by use of wavelets. The described
methods have been implemented and we report on the application of these techniques
to a number of geometric configurations. Finally we draw conclusions from our ex-

periments and close with recommendations for future research in this area.

1.2 Contribution

When hierarchical approaches were first presented their complexity arguments rested
on geometric reasoning, which was intimately tied to the use of constant basis func-

tions. Our contribution lies in the following main points:

e By interpreting the hierarchical algorithms as instances of a family of wavelet
algorithms, we embed them in the rich and well studied framework of wavelet
theory. This allows us to generalize the underlying techniques to higher orders

in a way which would be hard to do by geometric reasoning alone

e Reinterpreting the earlier geometric arguments of Hanrahan et al. [32] in the
strict language of Calderon-Zygmund operators we end up giving a new geomet-
ric proof for the sparsity of abstract integral operators in wavelet bases [9]. The
relevant mathematical quantities have a simple geometric interpretation even
if the underlying integral equation has no relationship to any actual geometry.
Using this interpretation a proof of the linear asymptotic complexity of the

approximation of smooth integral operators in wavelet bases follows trivially

e The wavelet framework allows us to reach a more detailed understanding and

characterization of the errors involved in the numerical approximations

e Our reduction to practice of these wavelet approaches leads us to new insights

not previously treated in the numerical analysis literature. In particular, we
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propose and analyze a design for an oracle, which is crucial in achieving the

promised linear bound on the asymptotic complexity.

The historical development of the ideas presented in this dissertation proceeded
out of a collaboration with Steven Gortler. In it the unification of Galerkin methods
and Hierarchical methods under the framework of wavelets for the sparse realization
of the radiosity integral operator was achieved. This work was documented in two
papers |28, 54]. While the first part of this dissertation deals with these ideas and the
radiosity problem in particular we have attempted to not duplicate any of the infor-
mation already present in the two previously published papers. Instead we attempt
to describe the underlying ideas in a purely geometric framework while being truthful
to the exact underlying operator theory. Consequently many of the implementation
details are not treated but left to the papers. The resulting text is perhaps more
tutorial in nature (in fact it is an edited version of a Siggraph tutorial note [53|) and
the interested reader is referred to the previously mentioned papers for implemen-
tation details. We will however review some of the results reported in these early
papers to support our claim that the wavelet techniques yield great benefits for the
computation of radiosity problems.

The second part of this thesis is an edited and expanded version of a paper pub-
lished with Pat Hanrahan in the 5th Eurographics Workshop on Rendering [55]. It
covers the application of wavelet techniques to the more general radiance problem and
shows the improvements possible with wavelets in this context. Here many imple-
mentation details and choices are discussed, while the underlying ideas are assumed

from the first part of this thesis.



Chapter 2

Radiosity

2.1 Introduction

The computation of radiosity % (i.e., power per unit area) on a given surface is
a widely used technique in computer graphics to solve for the illumination in an
environment. Radiosity is governed by an integral equation which arises from a more
general integral equation known as the rendering equation [37] when one assumes that
all reflection occurs isotropically. Solving the underlying integral equation exactly is
not possible in general. Thus numerical approximations must be employed leading to
algorithms which are generally very expensive.

Much research has been conducted into accelerating algorithms for the numerical
approximation of radiosity solutions. In this chapter we will discuss some recent tech-
niques which drastically improve the efficiency of such algorithms. Wavelet radiosity
(WR) was first introduced by Gortler et al.[28] and Schroder et al.[54]. Their algo-
rithm unifies the benefits of Galerkin radiosity (GR) [33, 34, 71, 68] and hierarchical
radiosity (HR) [32].

The original papers [28, 54| explain the implementation of such a system giving
many of the details including pseudo code. For this reason we will concentrate in this
chapter on the arguments behind the method to augment the original papers. Using
the historical development and more geometric arguments we attempt to motivate

WR. In a later part of this chapter we will also treat the underlying operator theory.
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At that point the geometric arguments should make it easier to see the flow of the
mathematical arguments.
Before going into the development and discussion of algorithms we first fix our

notation by beginning with the formal problem definition.

2.1.1 Problem Definition and Notation

Radiosity B(%) is a function defined over all surfaces M? which make up a given
scene. It is parameterized by some (2D) set of surface intrinsic parameters y. Here
and for the remainder of this dissertation we will assume that our scenes M? consist
of a collection of planar quadrilaterals. The planarity requirement serves to simplify
visibility computations which are needed in an actual implementation. Rectangular
parameter domains allow for cross product basis constructions, another convenience
which is not mathematically necessary but simplifies the implementation'. Allowing
more complex primitives, such as bi-cubic patches for example, raises implementation
issues such as self shadowing and visibility tests, but the underlying mathematical
theory continues to be valid. We do however fundamentally assume the existence of
a parameterization of our scenes, which excludes surfaces for example for which only
implicit forms are known.

Given such a set of primitives and their parameterizations the radiosity B(y) is
governed by a Fredholm integral equation of the second kind which describes the total

radiosity as a sum of emitted and reflected radiosities

B(y) = B*(y) + B"(9)

This equation holds for all wavelengths. Since we do not allow any coupling between
wavelengths (e.g., absorption at one wavelength followed by re-emission at another)
it is enough to consider all equations to be written for one wavelength. In practice
we will assume three representative wavelengths, red, green, and blue (rgb), in effect

solving always three instances of our problem in parallel.

n fact our current implementation allows for triangles as degenerate quadrilaterals with no ill
numerical effects.
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The reflected component of radiosity arises from the irradiance at the surface point

i after it is reflected
B'(y) = p(§) E(%)

Here p : M? — [0, 1] describes the fraction of power received at a point which is
reemitted. For physically realistic scenes p will always be bound away from 1, a prop-
erty we will take advantage of later to argue convergence of our solution algorithms.
The reemission is assumed to occur isotropically, thus there is no direction depen-
dence as we will see it later for the case of radiance. The irradiance E(y) results from
the radiosities arising at points on the visible hemisphere above y and is defined as
an integral over this hemisphere. We parameterize it with respect to other surfaces

and write it as an integral over areas

B = [ 6@ prB@)dA,

The radiosity arising at all other surfaces B(Z) is scaled by 7~!, which normalizes
the integral, and weighted by the function G, which is the parameterized version of
the measure, including the characteristic function of visibility since we are integrating
over all of M?

0 = cos 9;2008 0y vli5)

zy
The cosines measure the orientation of the surfaces with respect to the line connecting

Z and ¥ (see Figure 1). 7, measures the length of this line and its square accounts
for the falloff of angle subtended (by a surface element) with distance. v(Z,7) is the
visibility characteristic function taking on values in {0, 1} depending whether the line
between the two surface points parameterized by Z and % is obscured or unobscured
respectively.

Taking all of the above elements together we arrive at the classic radiosity integral

equation
B(y) = B*(#) + p(¥) sz G(@,9)r ™' B(Z) dA, (1)

The task at hand then is to numerically approximate the following problem:

Given the reflectances p, geometry M2, and the boundary conditions B¢
(the light sources), find B.
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Figure 1: Geometry for the transport between two surfaces. 6 denotes the angles
that the vector connecting two points on the surfaces makes with the local surface
normals. We assume that points on either surface are given with respect to some
intrinsic coordinates & and y respectively.
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Solving Equation (1) exactly is generally only possible for trivial geometric con-
figurations. Most such solutions rely on the exploitation of symmetry (e.g., inside
a sphere) or infinite extent assumptions (e.g., two parallel planes). Most of the
applications were initially in illuminating engineering [25, 45]. With the advent of
computers, radiosity computations were performed extensively in the radiative heat
transfer community. They dealt with the difficulty of computation by discretizing the
above integral equation and making a constant radiosity assumption for each result-
ing surface element. Typically the problems, such as the computation of radiative
transfer inside simple chambers, or for the skin of satellites [58|, were still very simple
compared to the complex geometric configurations of computer graphics.

The adoption? of radiosity techniques in computer graphics occurred with the
publication of an illumination algorithm based on it by Goral et al.[26] in 1984 and
Nishita et al.[47] in 1985. The main problem in computer graphics turned out to be
the management of the vastly more complex scenes. Discretization into a few hundred
elements for a cuboidal enclosure leads to only moderately expensive linear algebra
problems. However, dealing with the arbitrary configurations of possibly thousands of
input primitives as one typically finds in computer graphics quickly leads to numerical
computation problems whose size (in both space and time) overwhelms even large
computational resources.

Thus the focus of the development of radiosity techniques in computer graphics
has been on finding more efficient ways to compute the radiosity for a given scene.
Most of the early techniques focused on algorithmic developments such as the em-
ployment of graphics hardware [17], substructuring [18], Southwell relaxation [16],
and raytracing [69]. Only in the last few years have graphics researchers revisited the
numerical fundamentals of the solution of integral equations and in the process moved
the state of the art forward significantly. In the next section we will review two of

those techniques, GR, and HR, which are direct antecedents of wavelet techniques.

20ne might argue the term “reintroduction” because of the earlier use in illumination computa-
tions as far back as Lambert [40].
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A Note on Dimensionality

The radiosity equation for 3D is defined over 2D parameter domains ¢. Many times
in our exposition it will be easier to deal with radiosity in a plane where line segments
interact (“Flatland” radiosity [33|). In this way, all parameterizations will be written
as z or y and many techniques will be easier to explain and visualize. The equation will
retain its structure although G will only have a single power of r;, in its denominator

I will become 21 In an abuse of notation we will from now on

1

and the factor 7~
quietly assume that the factor 7! (27! respectively) is absorbed into the definition
of G. This frees us from having to distinguish between the two different factors and
simplifies our equations. However, any implementation has to be aware of using the

right factor when performing actual computations. We will also make liberal use of

the symbol df; to stand for the size of the area element due to the parameterization
in both the flatland and 3D cases.

The chief advantage of this reduction in dimensionality lies in the fact that many
quantities, which we have to manipulate, have a number of subscripts or superscripts
which is directly proportional to the dimensionality of the problem. It is easy to
loose sight of the essential ideas unless we limit ourselves to the 1D domain (flatland)
case. Where appropriate we will be explicit about the changes necessary to go to 2D
domains (radiosity in 3D). In general the differences are limited to more indices to

manipulate, or in the case of a program, more array dimensions to iterate over.

2.1.2 Numerical Solution

A canonical solution technique for integral equations such as the radiosity equation
(1) is the weighted residual method [21], a special case of finite element methods.
The historical development of radiosity algorithms did not proceed from the theory
of integral equations and finite element methods. Instead the first approaches were
motivated by power balance arguments (26, 47]. Only recently [33] was the traditional
mathematical framework brought to bear on these problems. Later on in this chapter
we will more formally treat solution methods for integral equations. For now we give

just enough of an exposition of the finite element method to understand why we are
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trying to solve linear systems. The rest of this chapter discusses techniques which
help solve linear systems efficiently.
We begin by noting that the radiosity integral equation has the structure of a

linear operator. Introducing the linear operator G

G(B) = /M 2 G(m,.)d;imB(a:)dx

which computes irradiance G(B) = E and the linear operator § which turns irradiance

into radiosity
S(E) = p(.)E(.)

we can frame the problem of solving the radiosity equation in the context of linear
operators and their solution
(I-80G)B=5B° (2)

Given some right hand side B¢ we effectively need to invert I — & o G to find the
unknown B. Since the spectral radius of S oG is strictly less than one (p < 1 — ¢ for

some ¢ > () we can use a von Neumann series to describe this inverse

]

(I-80G) =3 (So9)

i=0
which has a satisfying physical interpretation. B can be written as a sum of succes-
sively reflected contributions. First the direct component B¢, than the component
reflected through the environment once S o G(B¢), and so forth. In practice the
spectral radius of our operator is typically so small that this iterative computation
converges within a few iterations.

The main advantage of the observation that the radiosity equation gives rise to
a linear operator problem lies in the fact that we can understand the action of the
radiosity operator by studying its behavior with respect to a set of basis functions.
As such, Equation (2) is infinite dimensional (we take its domain and range to be L?)
and we need to work with finite dimensional approximations to it. This is done by
limiting ourselves to some finite dimensional subspace. Doing so reduces our original

problem of finding a solution to the radiosity equation to the problem of solving a
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matrix problem. A particular way of doing so is referred to as the weighted residual
method [21].

Any of the weighted residual methods can be derived by expanding all functions
in the radiosity equation with respect to some finite set of basis functions {N;}i—1,. ,
B(xz) = > 1 b:N;(x) and a reprojection step. For example, the basis functions might
be piecewise constant or polynomials up to some order. The reprojection step induces

a linear constraint on the residual r for a given approximation B
r(B)=B°—(I-80G)(B)

Notice that » will be zero for the exact solution. For example, we can ask that r
be orthogonal to the space spanned by the chosen {N;}, resulting in the Galerkin
methods. Other ways of “weighting the residuals” are possible, but we will stay
with the Galerkin method. A solution to the Galerkin form of the weighted residual
method insures that the residual is orthogonal to the image of the basis functions
under our operator. Other choices such as a least squares solution, which insures that
the residual is orthogonal to the basis functions themselves, or a point collocation
method which effectively uses Dirac delta distributions in the reprojection step are
possible. In either case the result is a system of linear equations in the unknown

coefficients b;
Vi: b= b + p; Z Gisb; (3)

J=1

For the Galerkin method the coefficients of this system are integrals of the form

. dA,
Gy = (G N) = [ [ G EN@N@dd (@

where we defined G4(x,y) = G(z,y di;’ for notational convenience. Note that the

well known form factors arise as Fi; = G;; when N; = 1 and N; = 1 (over the support
of elements i and j respectively).

Note that we separated p and moved it in front of the sum in Equation (3). In so
doing we have made another simplifying assumption which is often made, namely that
the reflectance is a constant over the support of each basis function. This assumption

is not necessary as is shown by Gershbein et al.[24]. We make it here since by far
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the largest part of the computational challenge in approximating radiosity solutions
arises from the approximation of G, not &. This is easily seen by observing that the
computation of irradiance is a global operation involving quadratures and visibility
computations over possibly large numbers of primitives. In contrast the application
of § is purely local and only a simple multiplication.

In order to write the coefficients in as simple a form as Equation (4) we have
implicitly assumed that we are dealing with orthonormal basis functions as is cus-
tomary for the Galerkin method. If in fact we want to use a bi-orthogonal basis
system®, a freedom which can be useful for certain wavelet bases, the reprojection
step has to be performed against the dual basis functions. The basic principles are
unperturbed, however we need to carefully keep track of which basis (primal or dual)
is appropriate at which point in the computation. The presentation in this thesis will
not distinguish between primal and dual bases, and ignore any scaling factors due to
non-normalized basis functions. All bases will be orthonormal. This will simplify our
notation considerably and help bring out the essential properties of the equations.

For purposes of the following discussions we only need to remember that the
coefficients of the linear system we wish to solve arise from (inner product) integrals
between the kernel function G4 and our chosen basis (Equation 4). For this reason the
coefficients are often called couplings or interactions to remind us that they have the
physical interpretation of measuring how much one basis function physically interacts
or couples with another. The coefficients also “inherit” some of the properties of G4,

a fact that we will take advantage of in wavelet methods.

2.2 Galerkin and Hierarchical Solvers

Two important techniques have been discussed in the recent radiosity literature, GR
and HR. In this section we give a short overview of these two techniques and ex-
plain how they found their culmination in the development of the wavelet radiosity

algorithm.

3Two bases {N;} and {N;} are bi-orthogonal iff (N;, N;) = 6;;.
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2.2.1 Galerkin Radiosity

Galerkin radiosity, first introduced by Heckbert [33, 34| aims to increase the order
of basis functions used in radiosity algorithms. In this context, classical radiosity
(CR) [26, 47] is seen to be a Galerkin method using piecewise constant functions. The
original goal of applying Galerkin methods to radiosity was to improve the quality of
the answers computed, as well as the efficiency of the computations. In particular,
using higher order basis functions allows the use of much coarser meshes than CR
required while still meeting a requested error bound. In his original work, Heckbert
applied these ideas in a flatland environment using piecewise linear basis functions.
More recently Troutman and Max [68] and Zatz [71] have applied higher order basis
functions to the computation of 3D radiosity. Zatz in particular has pushed the
ideas to their extreme by leaving many surfaces unmeshed. Instead he increased the
polynomial order of the basis functions so that the radiosity even over large surfaces,

such as entire walls, could be computed with high accuracy without any subdivision.

2.2.2 Hierarchical Radiosity

The first use of hierarchies was made by Cohen et al.[18]. They introduced a tech-
nique called substructuring based on the observation that a fine subdivision was only
necessary on the receiver of a transport of light, while a coarser subdivision was suffi-
cient on the source. Since the roles of receivers and sources are reversible a two level
hierarchy over each geometric primitive resulted. These ideas were developed turther
in a paper by Hanrahan et al.[32]. They introduced HR, which applied some argu-
ments from the n-body literature |3, 31, 8] to CR. In their approach a possibly very
deeply nested subdivision hierarchy was imposed on every primitive. Light transport
was allowed to occur throughout these hierarchies. They showed that to within some
user selectable error tolerance a linear number of interactions amongst all possible
interactions was sufficient to compute an accurate answer. Because the algorithms
up to that point always used a quadratic number of interactions HR improved the

performance of radiosity computations considerably.
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2.2.3 Performance Analysis

To put these two techniques and their respective advantages into perspective we need
to look at their costs. Given k input surfaces, say quadrilaterals, any one of the
above algorithms will use some number of basis functions n defined over the totality
of input surfaces. For example in the case of CR the surfaces are typically subdivided
into many elements with each element carrying an associated constant basis function
(whose support is exactly the element itself). In this case, n elements correspond
to n basis functions. Similarly, for higher order Galerkin methods we will probably
do some meshing into elements as well, albeit not as fine a mesh. Fach resulting
element will then typically carry some number of basis functions. For example, if
we are using piecewise linear basis functions each surface (2D) element will typically
have four basis functions associated with it. For each parameter axis we need two
basis functions (constant and linear) and we have two parameter axes for a total of
four combinations. In general an M — 1 order piecewise polynomial basis will have
M? basis functions defined over each (2D) element. Counting in this manner it makes
sense to talk about n basis functions in total for 77 elements.

Once we have a set of n basis functions the Galerkin method will give rise to
a linear system relating all of these basis functions with each other resulting in a
system of size O(n?) (see Equation 3). This linear system needs to be solved to find
the coefficients of all the basis functions. Using some iterative solver the solution
cost is proportional to O(n?). The constant (i.e., the number of iterations of the
iterative solver) is directly related to the spectral radius of our operator [64]. As
mentioned earlier for practical applications (realistic reflectances) this radius is usually
significantly smaller than 1 leading to fast convergence. While it is hard to make this
statement quantitatively precise it support the experiential observation that radiosity
linear systems converge after only few iterations.

GR, by going to higher order bases, manages to decrease n and thus get efficiency
gains. Even though the number of bases per element increases (M?) the number of
elements necessary for a given overall accuracy falls faster for a net gain. To see why
this is, we use the fact that a Galerkin method using a piecewise polynomial basis

of order M — 1 will have an accuracy of O(hM), where h gives the sidelength of the
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elements in the mesh [21, 39]. To make this concrete, suppose we are willing to allow
an error proportional to 2—;6. Using piecewise constant basis functions, h would have

to be on the order of ﬁ to meet our goal. Now consider piecewise linear functions.
In this case h would only need to be on the order of \/% = . So even though the
number of basis functions per element goes up, we still come out ahead. In the case
of flatland there are two linear basis functions per element and we go from n = 256
to n = 2 % 16 bases total. In 3D radiosity were we have 2 % 2 linear basis functions
per element n goes from 2562 down to (4 * 16)? basis functions overall.

We have seen that for n basis functions we have O(n?) interactions in general.
It is also immediately clear on an intuitive level that not all interactions are equally
important. HR makes this statement precise and takes advantage of it to reduce
the number of interactions which need to be computed, to O(n). For example, “far”
interactions do not need as much subdivision as “near” interactions. The exact ar-
gument as to why O(n) elements are enough will be given below. However, even if
we can make statements about the number of elements generated during meshing,
and how they will interact, we still need to consider at least one interaction between
each pair of the original set of incoming surfaces. Consequently the work of an HR
algorithm will be O(k? +n). Even though there still is a k? dependence we will often
have n >> k resulting in significant savings. Note that in a case in which the original
set of k surfaces is presented premeshed as n elements HR will be reduced to CR.

Thus it will perform no worse, but in practice often dramatically better, than CR.

2.2.4 Wavelet Radiosity

Wavelet radiosity, introduced in [28, 54|, aims to unify the advantages of both GR
and HR. Following the lead of HR it uses a multi-level structure of basis functions
over all surfaces to gain the asymptotic improvement from n? to n. It also gains the
advantages of GR by using higher order basis functions to get the improvement due
to coarser meshing and a decreased number of basis functions (smaller n) overall.

In the following section we will first take a closer look at the basic structure of

the HR. algorithm and then show how it can be extended to higher order bases. The
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geometric argument which we use to show that HR uses only O(k% + n) interactions
will be given in a way that it immediately applies to higher order methods as well.
At that point we will make the connection with wavelets and show how wavelets and
the theory of linear operators realized in wavelet bases can be used to abstract the
geometric ideas of the HR algorithm. Making this connection with wavelets allows
us to apply the basic ideas of HR in a much larger set of circumstances. We can
also generalize HR to higher order basis functions and make explicit claims about the
errors involved.

This development of the ideas is somewhat unusual in that we do not start with
the theory of linear operators and their sparse realization in wavelet bases to then
proceed to show how these ideas can be exploited for radiosity. Instead we will pursue
a more intuitive approach (which also happens to follow the historical development
more closely). While being somewhat “messier” from the pure mathematical vantage
point it will be more appealing to the geometric intuition and easier to relate to actual
implementations. The readers can rest agsured that the mathematical underpinnings

are solid and those interested will find the details in a later part of this chapter.

2.3 Algorithms

All radiosity algorithms have roughly two components for purposes of this discussion.
These can be described as setting up the equations (i.e., computing the entries of the
linear system) and solving the linear system. The latter typically invokes some itera-
tive solution scheme, for example Jacobi or Gauss Seidel iteration [64], or Southwell
relaxation [29]. In actual implementations, these two phases are often intermixed, for
example when refining a subdivision mesh (adding basis functions) during successive
iterations. Nonetheless we can distinguish these two fundamental operations in our
algorithms. Since the actual act of iterating (i.e., performing row updates) or ma-
trix/vector multiplies is much simpler we will first focus on the aspect of setting up

the equations.
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2.3.1 Hierarchical Radiosity

Hierarchical radiosity considers the possible set of interactions in a recursive enumer-
ation scheme. We have to insure that every transport (i.e., every surface interacting
with other surfaces) is accounted for once and only once. Energy must neither be
missed, nor introduced into the simulation multiple times. To do this we call the
following procedure for every input surface with every other input surface as a second

argument (once again we consider the problem over 1D domains)

ProjectKernel( Element i, Element j )
error = Oracle( i, j );
if( Acceptable( error ) || RecursionLimit( i, j ) )

Gi; = Quadrature( i, j );

else
if ( PreferredSubdivision( i, j ) == 1 )
ProjectKernel( LeftChild( i ), j );
ProjectKernel( RightChild( i ), j J);
else

ProjectKernel( i, LeftChild( j ) );
ProjectKernel( i, RightChild( j ) );

This procedure consists of several parts which we discuss in turn.

First we call a function Oracle, which is capable of estimating the error across
a proposed interaction between elements i and j. If this estimated error satisfies
the predicate Acceptable, the required coefficient is created by calling a quadrature
routine which evaluates the integral of Equation 4. We have, in effect, created an
entry in the matrix system, as well as implicitly decided on a particular basis function.
However, resource limitations may require us to terminate the recursion even if the
error is not acceptable yet. This predicate is evaluated by RecursionLimit. We
will show in the error analysis below that we can always force the error associated
with a particular transport below any arbitrary positive constant. From this point
of view we are always assured that Acceptable will become true at some point and

RecursionLimit will not need to be invoked. However, we may not have enough
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storage to subdivide elements enough for a very low error threshold request. In this
case RecursionLimit will be needed. Nonetheless, we hope that it will be invoked
only for a small number of cases so that at least over large parts of the solution we
can enforce the requested error bound.

If the error is too high we recurse by subdividing. Typically we will find that the
benefit in terms of error reduction is not equal for the two elements in question. For
example, one element might be much larger than the other and it will be more helpful
to subdivide the larger one in order to reduce the overall error (see the error analysis
below). This determination is made by PreferredSubdivision and a recursive call
is initiated on the child interactions which arise from splitting one of the parent
elements. For 2D elements there would typically be four recursive calls each, not two.
The preferred element would be split into four children (quadrants).

As mentioned earlier, the process of iterating and subdividing is not typically
separated in a real implementation. For example, we could imagine that the predicate

Acceptable takes into account

e the brightness of the sender (brightness refinement [32]) by multiplying the
error estimate with the amount of power transported over the given link before

comparing to the error threshold:

e the importance of the receiver (importance refinement [63]) again by multiplying
the error estimate with the importance magnitude before comparison with the

error threshold;

The error threshold may itself become smaller upon successive iterations (multi-
gridding [32]), creating a fast but inaccurate solution first and using it as the starting
point for successive solutions with lesser error. Any of these techniques we might refer
to as refinement. Thus we will typically reexamine interactions created in an earlier
iteration when iterating again.

In an implementation, this is easily done by keeping a list of all ;; created and
calling a modified version of ProjectKernel on these before the next iteration. If
none of the parameters which influence Acceptable had changed, ProjectKernel

would simply return; otherwise it would delete the interaction G;; because it has too
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much error and replace it with a set of finer interactions. This would correspond to
replacing some set of basis functions (and their interactions) with a new and finer set
of basis functions (and their interactions).

From the structure of the recursion, it is clear that every transport will be ac-
counted for once and only once. The remaining task is to show that for a strictly

1 we will create only a linear number of interactions

positive amount of allowable error
amongst all the (implicit in the subdivision) basis functions created. Furthermore we

need to show that the function Oracle can be implemented in an efficient way.

2.3.2 Bounding the Error

Recall that the ultimate goal is the approximation of the original integral equation
(Equation 1), as best as possible, with finite resources. Because of the particular
structure of the radiosity integral equation the set of possible solutions comes from
an infinite dimensional space of functions. In theory we would need an infinite sized
matrix system to compute an exact answer. Using a finite matrix system therefore
has to entail some amount of error before we even start to compute. There are other
sources of error, such as imprecision in the specification of the boundary conditions
or the geometry (for a careful analysis of these see Arvo et al.[4]). Here we will only
concern ourselves with errors due to the particular basis functions chosen. Expressed
differently, we are examining the errors which arise from replacing an otherwise infinite
sized matrix with a finite matrix.

We proceed by analyzing the function ProjectKernel more closely to understand
how many recursive calls it will generate. Again in order to streamline the presenta-
tion we first analyze the case of radiosity defined over 1D domains (flatland radiosity).
When we used the name ProjectKernel we already anticipated one meaning of the
G;; coefficients which we will now use to analyze the relationship between allowed
error and number of interactions necessary.

In order to proceed we need an inner product. The inner product between two

4Imagine Acceptable always returns False. In this case the recursion would always bottom
out and in fact all n bases at the finest level of meshing, as determined by RecursionLimit would
interact, resulting in n? interactions.
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arbitrary functions f and g is defined as {f,g) = [ f(x)g(x) dx. Recall that in finite
dimensional vector spaces (e.g., Euclidean three space) inner products of some vector
y against some set of orthonormal basis vectors e; give the expansion coefficients v;
of the vector y with regard to the basis: y = ¥, y;e;. The case for function spaces is
exactly analogous.

Recall the definition of G;; (Equation 4). Supposing that our basis functions are

orthonormal® we may interpret the (i;; as expansion coefficients of G4 as follows

Gy = [ Lo Galwn) N@Ni) dody
= ((GA,N->,N->
Galwy) = = Y GuN;@Ni(y) (5)
i,j=1

In other words, computing some set of G;; is equivalent to approximating the function
Ga(z,y) with a projected version G4(x,y). We say projected, since our finite basis
only spans some subspace of the otherwise infinite dimensional space of functions we
are operating in.

Before proceeding, we define the symbol 7' = (I —S0G) for notational convenience.
Similarly, we will use the symbol T to denote our approximation of the actual trans-
port operator. Using the fact that the radiosity integral equation is a bounded linear
operator for physically realistic reflectances [4], the error in our computed solution B

against the actual solution B can be bound as follows
|B— Bl = IT7'(B) —T7(B%||

17~ =T 1B

7T =TT 1Bl

IA

< NTYNT =TT 1B
= C|T-T|
= C||Ga— G4

where we assumed that B° can be realized exactly in the chosen basis, an assumption

°In the bi-orthogonal case is similar with inner products against the primal basis functions de-
termining the coefficients of an expansion with respect to the dual basis and vice versa.
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which is generally true in practice. C' is some constant associated with the input
(geometry, emission, and reflectances), but independent of the basis functions used.
Clearly given a user selectable ¢ > 0 the error in the computed solution can be forced
below ¢ by making G4 sufficiently close to G 4.

This approach to bounding the error is very conservative. By enforcing a good ap-
proximation of the kernel function we enforce a good approximation on our solution.
Note that it is possible to have a good approximation to the correct solution even
though the kernel approximation may not be very good. 'To see this consider that
an application of the operator always implies an integration. Even though the kernel
may vary rapidly, by the time we have integrated over those variations they may
make little contribution to the result (i.e., the integration acts as a strong smoothing
operator). Other researchers have used similar approaches to bounding the error in
their approximation. Smits at al.[63] use an upper and lower bound on the differen-
tial form factors across an interaction. Lischinski et al.[43] use individual estimates of
upper and lower bounds on differential form factors, visibility, and brightness, which
are combined to estimate a worst upper and lower bound for the variation of ra-
diosity on the receiver of a transport. Both of these approaches are estimating the
potential impact of the kernel approximation on the solution. A different approach
was suggested in [42] by Lischinski et al. Instead of bounding the error a priori they
actually compute an actual upper and lower bound solution to give an a posteriori
error estimate. This latter approach can avoid the overly conservative nature of a
priori derived error bounds.

Imagine that we are willing to allow some amount of error over the entire solution.
If we divide this error by the area of the entire scene, we have a bound describing how
much local error we can allow. Staying below this local error everywhere the total
global error will be no larger than our allowed error. Given that the total area in a
given scene is bounded we can make the following statement: Given some ¢, there
exists some &(¢) such that if the error in each of the interactions we enumerate stays
below &, the total error will stay below e.

This is a very important property, since it means that we can control the overall

error by controlling local error. Now we already know that the simplest version (no
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brightness, importance, or multi-gridding refinements) of the function Acceptable is

a test of error against 6.

2.3.3 Bounding the Number of Interactions

Before going into the mathematical details we point out that the ideas behind the
geometric argument that we are about to make were first given by Hanrahan et
al.|32|. However, we believe that the mathematical basis of their argument was not
as rigorous as the one we are about to give. Furthermore, we give the argument so
that it in fact applies to a larger class of operators, which will be discussed later in this
chapter. We first give the argument for the case of piecewise constant basis functions,
but our mathematical argument involving the mean value theorem remains valid for
higher order basis functions. In fact later on we will see that the abstract theory of
Calderon-Zygmund operators is the exact analog of our geometric arguments.
Suppose now that we stay in the framework of classical radiosity in so far that
we only allow constant basis functions (as HR does [32]) and that we simply set
G 4 = Ga(xo,yo) where xy and yo are the midpoints of the respective intervals we are
considering. The norms being used in the following argument are all understood to

be the L? norm. We observe that

IGal@9)l <

IQ"'SI»—A

102G all + 18,Gall <

7.2

with 7 the distance between the two points on the respective lines (surfaces) as mea-
sured in the surrounding space (2D for flatland; 3D for 3D radiosity). The bounds
for 3D radiosity are Z5 and & respectively. We also need the general version of the

mean value theorem [22]
d
1Ga(mo,90) — Gal@o + teyyo +Hy)| < [[(Eesty)]] 581[4'1313I ||d—5GA(5U0 + & s, 50 + 1)
€fo,1

< oltat)l

min 72
where (t,t,) denotes the offset of some point (x,y) from the center (zo, o). For

what follows we make the observation that the magnitude of (., t,), when integrated



CHAPTER 2. RADIOSITY 25

over some parameter domain can be bounded above by the diameter of the parameter
domain. This diameter in turn can be bounded, with the use of the triangle inequality,
by the sum of all side lengths of the parameter domain.

Consider now the intervals of support I, and [, for some pair of basis functions

respectively

1
Z

(a=Gal = ([, [ 16atanw) = Gato P o

C , 1
m (/Iy /Im |tz t) |l dxdy)

1
dist*(lss Iy) \IJ5

VBN I + 171)

dist*(1,, I,)

o)

where / denotes the maximum of ||/,| and ||I,|| and r = dist(I,, I,) measures the

IN

closest approach between I, and I, as sets. For 3D radiosity between surfaces Az and

Ay we have the bound
11

3
IGa—Gal < C (T)
In this case I denotes the maximal side length of Az and Ay, the two surfaces in
question, while r» = dist(Az, Ay) still gives the closest approach between the two
surfaces. Note that this is a stronger bound than the one given in the original HR
work, (“%u)z
The bound given above is small whenever the ratio of size to distance is small.
Clearly I must be smaller than r, which gives rise to the well known notion of “well
separatedness.” Note that it is only useful when dist > 0. When the two intervals
(areas) overlap, a more careful analysis must be applied. The difficulty arises because
of the 1 (4 respectively) nature of the radiosity kernel. In other words, the bound
given above holds everywhere so long as we exclude an arbitrarily small region around

the intersections of any of the line segments (surfaces). To deal with these remaining
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regions we need the boundedness of our original operator. For this small region around

the intersection set G 4 =0 to get
1Ga — Gall = [Gall = [ Lyl Fi 1.

(in 3D ||Ag||Fa,; 4;). In practice we will likely not use G4 = 0 at the singularity,
but doing do is sufficient to establish our bound. The fundamental reason is the
boundedness of the operator. Intuitively speaking, we can say that ignoring the
region directly bordering on the singularity will introduce an error which is no larger
than the “width” of this region times the “height” (i.e., a bound on the operator).
Given that the height is finite we can make the product arbitrarily small by making
the width small. More precisely we have the fact that the form factor F' < 1 allowing
us to force || G4 —G || below any desired threshold by making ||7, || (|| Ag| respectively)
small enough. Recall that we said earlier that the recursion will eventually bottom
out for any strictly positive error, although we may not have the resources to wait for
this natural recursion termination. The above bounds are at the base of this claim.
Taking both bounds together we can make the distance between G4 and its ap-
proximation arbitrarily small by making the ratio of size to distance small or, when
we are at the singularity, by simply making the size itself small. The region over which
we have to employ the second bound can be made arbitrarily small, and with it the
bound itself. For sake of our argument we allocate 5 of our total allowed error to the
regions touching the singularity and continue to consider only the case of elements
which are separated. Their error must now be kept below £, for a total of the given e.
In practice there is a difficulty in evenly dividing the error budget. Since we do not
know the exact form of all the constants involved in the error expressions, but only
their functional form, it is hard to force an even distribution of the error. However,
as the allowable error is reduced both the error at the singularity and everywhere else
is forced towards zero. We have seen this phenomenon in practice and will discuss it
in the context of an actual example in the section on the performance of WR (2.5.1).
Given that we have a remaining error budget of § we need to show that for this
allowable error any recursive call will create at most a constant number of calls to the

function Quadrature. From the above error bound we see that an interaction will be
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created whenever the size to distance ratio is smaller than some threshold. How many
elements can there be for which this is true? To answer this question we interpret the
size to distance ratio geometrically as a measure of angle subtended. In other words,
this ratio is proportional to the angle that one interval (surface) subtends from the
point of view of the other interval (surface)®.

On the initial call to ProjectKernel for element ¢ there can at most be k elements
(the original input surfaces) less than this threshold (hence the k* in the overall
performance analysis). Suppose that some of those initial input surfaces are too large
relative to their distance from element ¢ (i.e., their angle subtended is above the
threshold). These surfaces will result in recursive calls. How many can there be?

We first observe that the total angle subtended above a given point on an ele-
ment is bounded (27). This implies that there can be at most a constant number
of elements larger than our threshold at any stage of the recursion (only a constant
number of elements of a given size fit into the hemisphere above a point). Elements
whose angle subtended is smaller than the threshold have already been allowed to
interact, elements whose angle subtended is still too large will be forwarded recur-
sively. Abstractly we can say that only elements within a local neighborhood will be
allowed to interact. Those that are further away have already been allowed to interact
at a higher level in the recursion, those that are closer are forwarded. Since we are
considering a ratio of size to distance the distance can shrink as the size shrinks (due
to subdivision), maintaining a constant sized neighborhood over which interactions
are generated, at every level of the recursion. Taken together with the fact that even-
tually the elements have gotten so small that the error must be below our threshold,

and the recursion will bottom out, we have established our claim:

Each element—below the top level call to ProjectKernel—interacts with
at most a constant number of other elements. This means that the total
number of interactions created due to recursive calls is proportional to
the total number of elements, leading to O(k* + n) interactions overall.

The constant of proportionality is a function of the problem definition and

5The angle subtended by element 5 can be different from different points of view on element i.
We always assume the maximum over all points on .
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error requested, but not of the discretization itself.

2.3.4 Oracle

From the above arguments, we have seen that the function Oracle can be imple-
mented by estimating the ratio of size to distance, or in the vicinity of the singularity,
simply the size itself. In the case of radiosity with constant basis functions, measuring
the ratio is particularly simple since it is given by the point to finite area form factor,
a quantity for whose computation many formulas are known (see for example [58]
or [45]). This was the oracle used in the original HR algorithm [32]. For higher
order methods this simple form factor estimate is sufficient to argue the asymptotic
bound on the number of couplings created, but it does not take full advantage of the
information present. We will see later that in the case of higher order basis functions
within a hierarchical framework we will find the bound on our error to be given by a
higher power of the ratio of sizes to distance, implying that the falloff is much more
dramatic.

In either case there are other, more direct methods, to estimate the quantity

|Ga — G4l| discussed in the next section.

2.3.5 Higher Orders

Consider again the arguments used above to show that HR constructs only a linear
number of interactions. There was nothing particular in the argument which ties it to
constant basis functions. Suppose we wish to employ a Galerkin scheme with higher
order basis functions. In this case each interaction between two elements entails a
number of quadratures. For constant basis functions there was simply one coefficient
(+i; for elements i and j. We will continue to use the indexing (j;, but think of the
quantity Gij; as consisting of an array of numbers describing all the possible coupling
terms over the given elements due to higher order basis functions. For example, in
the case of piecewise linear basis functions we have two basis functions along each
dimension. In flatland Gj; now consists of 2 x 2 couplings and in 3D Gj; has 22 x 22

numbers associated with it. If M — 1 is the order of basis functions used we will
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abstract M x M (flatland) and M2 x M? (3D) couplings respectively into Gi;.

The basic reasoning of the recursion count argument still holds. ||@ a— Gy is
still the quantity which needs to be kept below some 6(¢), however G 4 is not constant
anymore. The form factor argument to measure angle subtended does not take full
advantage of the power of higher order basis functions. However, it is still sufficient
to argue the asymptotic bound. In practice we will of course want to take advantage
of the higher order nature of the basis functions. One way to do this is to have the
function Oracle use an estimate of the G;; to construct a polynomial and measure
how well this polynomial interpolates the real kernel GG4. This type of oracle was
employed in the case of WR [28, 54] and estimates the quantity ||G4 — G| directly
by computing the implied integral

164 =Gl = [; /1 G a(o,90) — Galz,y)| drdy

For the implementation in [28, 54] the above integral was computed with a Gaussian

quadrature rule. See Appendix B for the implementation details.

2.3.6 Iterative Solvers

As pointed out at earlier there are two parts to a complete algorithm, setting up
the equations, and solving them. Above, we described how to set up the equations
and argued why there are O(k? + n) interactions total for any given finite accuracy
requirement. To complete the algorithm we need the iteration function. This function
corresponds to the matrix/vector multiply in an iterative solver. In HR this was
referred to as Gather, a function which moves radiosity from element j across Gij;
to element i, multiplying it with the factor G;; (the form factor for constant basis
functions). Once this has occurred we still need a function referred to as PushPull
in [32].

For each input surface (element) i, ProjectKernel is called with all other input
surfaces (elements) j. As pointed out above, the choice of interactions G;; actually
created corresponds to an implicit choice of basis functions. Consequently when

ProjectKernel was called on, say i and jg, versus i and j, different basis functions
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may have been constructed on i for those two calls. Put differently, irradiance at a
surface will be computed at different levels of the hierarchy, due to different sources.
These incoming irradiances need to be consolidated.

Consider the function PushPull as proposed in Hanrahan et al.[32]. Irradiance of
a parent in the subdivision hierarchy is added to the children on a downward pass,
while on an upward pass the radiosity at a parent is the area average of the radiosity
at the children

PushPull( Element i )
if( !'Leaf( 1 ) )
ForAllChildren( i.c )
i.c.E = Sum( i.c.E, i.E ); //Push
PushPull( i.c J);
i.B = Average( i.children.B ); //Pull
else

i.B = 1.Be + i.tho * 1i.E;

where we used the symbols B to denote radiosity, E to denote irradiance, Be for the
emitted part of radiosity, and rho for the reflectivity of the given element.

The summing of irradiance on the way down follows immediately from the phys-
ical meaning of irradiance. The irradiance at a given element is the sum of all the
irradiances received at the element itself and all its ancestor elements. The area aver-
aging on the way up follows directly from the definition of constant radiosity, which
is a density quantity per area.

How to extend this PushPull reasoning to the higher order hierarchical algorithm
briefly outlined above is not immediately clear. In fact this is where wavelets come in
since they not only generalize the notion of higher order hierarchical basis sets, but
also the attendant notions of pushing and pulling throughout such a hierarchy. How-
ever, before describing this connection with wavelets and giving an exact prescription
of the transfer of power from parents to children and vice versa, we give an intuitive

description here.
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2.3.7 PushPull for Higher Orders

Suppose we use some higher order polynomial basis set and a given subdivision hier-
archy has received irradiance at different levels of the hierarchy. Consider an element
and one of its children. The parent has some set of coefficients EP"*™ describing the
irradiance with respect to the basis set over that element. Similarly the child has
some set of coefficients E*. We cannot simply add the coefficients because they
are with respect to different functions, wider ones on the parent, and smaller ones on
the child. For constant functions this did not matter, since constant functions “look
the same” at any level of the hierarchy. However, if we have some prescription which
tells us how to transform the basis functions on the parent level into some set of basis
functions on the child level we could perform the corresponding transformation on the
coefficients of EP*™. The resulting coefficients would be expressed with respect to
the same functions as the F"*" and could now be added coefficientwise. This is the
generalized function Push. Similarly on the way up we must apply some averaging
operation, since the children have a finer resolution than the parent. Suppose we
can compute a linear combination of basis functions on the parent which is in some
sense the closest match to a child basis function. Once again we could apply the
corresponding transformation on the B°"! to get a set of coefficients at the parent
level. These can now be assigned to BPe™e™,

Wavelets with their two-scale relation fulfill exactly these requirements in a simple

and efficient way.

2.4 Wavelets and Operators

Earlier we used geometrical reasoning to justify the claims of the original HR al-
gorithm. The arguments were also used to justify higher order basis functions in an
extended HR algorithm. These arguments find a much more general framework in the
context of wavelets. In this section we first review some simple facts about wavelets
which are needed to apply wavelets to our problem, we then show how wavelets can

be used to justify a much more general approach, opening up many new possibilities
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for efficient radiosity algorithms.

The basic roadmap is as follows:

1. Wavelets can be used to construct hierarchical basis function systems which

have fast (O(n)) basis change algorithms associated with them

2. Using these bases, a large class of integral equations (operators) can be realized

with sparse matrices if only finite precision answers are desired.

2.4.1 Wavelets

Wavelets form a rapidly evolving field of inquiry originating from several different
scientific and engineering disciplines. Most notably perhaps are signal processing [44]
and pure mathematics [20]. Consequently there are many possible approaches to
motivate the subject. We will take the view of operator theory here since it most
directly applies to the question of solving integral equations. Before going into the
mathematical details we go through the simplest example of a wavelet basis. This is

also the wavelet basis which corresponds to the HR algorithm.

An Example: The Haar basis

To provide the following definitions with some intuition we consider the simplest
example of a wavelet construction, the so called Haar basis. Figure 2 shows a piecewise
constant basis on the unit interval in the upper left hand corner. This basis consists
of a single function and its translates, a hallmark of wavelet constructions. The
resolution of this basis is 2° = 8. There are log, 8 = 3 levels. Throughout, the
first subscript on the ¢ and 1 functions denotes the resolution level, while the second
subscript describes the translation parameter. Now take these basis functions pairwise
and add them or subtract them to get the new functions shown in the top middle. The
adding, or more generally averaging process is denoted by h, while the differencing
process is denoted by g. After reordering we arrive at the basis set on the top right.
This is still a basis for the same space, though it uses different functions. The main

feature to note is that we have another set of 4 functions ¢s which are the same
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wavelet basis

Figure 2: The Haar basis construction, taking a piecewise constant basis (8 box
functions over the unit interval) into the Haar wavelet basis consisting of the overall
average and detail functions at all lower levels. Note, the heights of the functions are
not drawn to scale. (Adapted from [28].)
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as our original set except wider (i.e., at lesser resolution). Consider only the 8 box
functions we transformed from level 3 to the 4 box functions at level 2. The difference
between these two resolution levels is spanned by the 4 new functions 95%. These
latter are the wavelets proper. We say they span the difference subspace between the
functions at resolution level 3 and 2. These functions too consist of only one shape
and its translates.

Clearly we can now repeat the construction with the 4 box functions rewriting
them as 2 wider box functions and 2 wider wavelets. After repeating one more time
we arrive at the final basis set (bottom right). This basis set consists of one function
which encodes an overall average (the box function ¢) and a sequence of finer and
finer wavelet functions which encode for the successive levels of detail needed to
describe all functions in the original space.

What we just described in this simple setting is the essence of any wavelet con-
struction. In general, the functions as well as the operators g and h will be more
complicated, but the intuition is exactly the same. There is always a sequence of res-
olution levels, and there are spaces which describe the differences between successive
resolution levels. The operators g and h will generalize to high pass filters (g) and
low pass filters (h). The individual spaces are always described by some basic shape
(sometime a small set of basic shapes) and their translates and these shapes will
remain the same throughout the hierarchy, except they become coarser and coarser.

After this example we proceed to describe the general construction.

2.4.2 Multi-Resolution Analysis

We begin by defining a multi-resolution analysis (MRA). A MRA is a ladder of spaces
defined with respect to some underlying function space. In our case (radiosity) it
suffices to consider the space of all finite energy functions L?(D) where D is some
domain of interest. Generally the domain is the whole real line R, but it can be higher
dimensional or consist of only a finite subset, such as the interval [0, 1|. For radiosity
we will need D = [0,1] for flatland and D = [0,1]* for 3D. We begin with D = R

which is the classical case.
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A MRA of L?(R) is defined as a sequence of subspaces V; C L?(R), i € Z with the

following properties
e The spaces are nested: V; C Vi,
e As they become finer they eventually cover the entire space: U;ezVi = L*(R)

e As linear subspaces their only element in common is the zero element: ez Vi =

{0}

e The relationship between a resolution level and the next finer level is one of

doubling frequency: f(x) € V; < f(2x) € Vipq
e 1} is invariant under (unit) translation: f(z) e Vo <= f(z+1) e W

e |4 has a structure such that there is a special function whose translates span
Vo: 3 € Vo : {od(x— k)|k € Z} is a basis for Vg

Given these definitions, bases for all spaces can be built from the basis for V:
{pir(x) = V2ip(2x — k)|k € Z} is a basis of V; for all i € Z. The powers of /2
in front of the bases insure that all basis functions are normalized.

In a certain sense all the V; “look” the same except for their different resolution
(see the Haar example in Figure 2). ¢ is often referred to as the scaling or smooth
function. Since the V; have a containment relation and their union is dense in L*(R)
we can approximate any function f € L?(R) at various resolution levels f; and in the
limit f = lim;_ fi. The f; can be found by projecting into the associated subspace.

Since ¢ € Vp C V; there exists a sequence hy, such that
$(x) = V2D hip(22 — k)
k

Or in words, ¢ can be built up from smaller versions of itself (see the Haar construction
in Figure 2). This will be a crucial ingredient in navigating from one subspace to
another.

Since V; C Vi1 we can define W; as the extra detail added when going from V; to

the finer scale space V41
Viii=Vie W
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where @ is used to denote the direct sum. In the Haar example (Figure 2 top right)
V5 for example could be written as V5 plus the space spanned by the g .

Notice that this definition does not make W; unique. Under some very general
conditions we will get a function ¥ € W, called the wavelet or detail function, whose
translates span Wo. In this case we find that {1ix(z) = V24(2iz — k)|k € Z} is a
basis for the W; (see the % functions in Figure 2). Since ¥ € W; C Vi;; there exists
a sequence g such that

V(@) = V23 gr(2w — k)
k

Or in words, 9 (just as ¢ above) can be built up from smaller versions of ¢.
The sequences (hi, gr) together are referred to as the two scale relation. Their
usefulness arises from the fact that they describe the basis functions of V; and W; as

linear combinations of the basis functions of V;

bir = D he—uditik
%

Vig = Y Gr-uitik
!

Because of this property we can use the sequences (hg, gr) as a way of “navigating”
between these spaces. If a function is expressed with respect to the basis in V; we
have a straightforward way of finding its expression with respect to the bases of V;
and W;. hj can be thought of as a low pass filter, since it allows us to take a finer level
approximation f;;1 into a coarser (smoother) approximation fi. g is a corresponding
high pass filter encoding the differences between the approximation f;yy and f;. Note
that after the convolution there is a subsampling step (expressed as the 2/ in the
subscript of h and g).

So far the ladder of spaces was bi-infinite. If the construction is limited to a finite
interval such as [0, 1] there is a natural choice for the coarsest space V; (see Figure 2).
Throughout we will always use constructions on the interval [0, 1] (flatland) or [0, 1]
(3D) and the coarsest space will consist of some set of polynomials over the entire
interval (square).

In the Haar example the sequences g and h are: g, = (—27Y2,27Y/2) and h, =
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(2-1/22-1/2) and the original space Vi was decomposed as
%:Wg@%:Wg@Wl@%:W2€BWIEBWO@%

in the bottom right hand corner.

Suppose that the filter sequences are finite (either by construction of because of
truncation for practical reasons), then the total work in going from the finest level ¢
basis to the wavelet basis is linear. We begin with n smooth functions and transtorm
them into n/2 wider smooth functions and n/2 detail functions. Continuing with the
n/2 smooth functions we turn these into n/4 etc., for a total of O(n) (again consider
the example in Figure 2). This is one of the remarkable properties of wavelets since
in general a basis change has an operations count of O(n?). In particular for the
purposes of an asymptotically efficient algorithm for radiosity this O(n) property will
be crucial.

So far we only went from a canonical basis (the box basis in our example) into
a wavelet basis but this process is also reversible with a similar pyramid structure.
Since ¢p(2x—k) € Vi = VoW, there exist sequences of coefficients such that ¢(2x— k)
is a linear combination of the ¢(x —[) and v(x —[). If the wavelets are orthonormal,
as we assume for simplicity throughout, the sequences g and hy serve this purpose

as well

V202 — k) = hi—ad(z — 1) + > ge—antp(z — 1)
I {

In the more general bi-orthogonal case there are related sequences h and § arising
from the two scale relation of the dual bases. Details can be found in [54]. When
the filter sequences are finite this transformation too will have cost linear in the total
number of basis functions.

So far we have only talked about transforming the basis functions. All these
transformations have their corresponding transformations which will be applied to

the coefficients, which are the quantities we have to deal with in a program.
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2.4.3 Transforming Coefficients

Given that we can transform one basis into another and back with these filter se-
quences we can transform coefficients of some function with respect to one basis
into coefficients of that function with respect to the other basis (and back). Let f;

be an approximation of some function f at resolution level ¢ with coefficients s; g,
_ 21
fi = Xk=o Sik®Pix then

Si—11 = thf?.tsa,k
k

dz‘—l,l == ng—msi,k
k

will give the coefficients of this function with respect to the space W;_; and V,_;.
Conversely given the coefficients of some function with respect to the space W; and

V; we can find its coefficients with respect to V1,
Sitik = D Me—mSig + Y ge—audiy
1 1

These identities follow directly from substituting the definitions.

These two convolution equations are used extensively when manipulating functions
at different resolutions. In particular they will be the building blocks of the generalized
PushPull function in WR.

2.4.4 Locality and Smoothness

An important property of wavelets is the fast transform between a canonical basis and
the wavelet basis (and back). Another important property that makes wavelets so
useful, is their capability to localize phenomena well in both space and time. Compare
this with the extremes of Fourier series, which localizes completely in time, but looses
all localization in space, and Dirac delta distributions which localize completely in
space but loose all localization in time. From a practical point of view the localization
in both time and space implies, for example, that we only need fine detail descriptions
in regions which exhibit high frequencies while in other regions, where the underlying

function is very smooth, a coarse approximation will be sufficient.
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Consider again the example of the Haar basis. Figure 2 shows the Haar basis on
the bottom right. This set of functions can be interpreted intuitively as describing
functions in the original space V3 as realizable by writing them as a combination of
1 function which describes the overall average (¢g); 1 function which encodes for the
difference on either half of the interval (); 2 functions which encode the ditferences
on quarters (11 ); and 4 functions which encode the differences on eights (1/5). The
power of wavelets rests in the fact that for smooth functions some of the coefficients
corresponding to these basis functions will be very small. Consider a function which is
almost constant on the first and second eighth. In this case the coefficient associated
with 10909 would be very small.

This last observation is the basis for lossy wavelet compression [44]. In such a
compression scheme we transform an image into a wavelet basis. If the image has
regions with little high frequency information then the associated wavelet coefficients
will be small. If two neighboring pixels have almost equal value, then their difference—
the coefficient of the associated Haar function—will be near zero. Using thresholding
and quantization a significant compression can be achieved without a noticeable loss
in image quality. Similarly we can apply a lossy compression scheme to our matrix
system and achieve an answer which is very close to our desired answer, yet use only
a few coefficients to do so. This idea is the essence of wavelet methods for the solution
of integral equations and in particular WR.

In the Haar case we can only take advantage of neighboring pixels (or multi-pixel
blocks at higher levels) having almost equal value. How about considering larger
sequences of pixels and asking whether their relationship is almost linear or quadratic,
ete.? As pointed out above, the Haar basis is only the simplest of all wavelet bases and
the basic ideas generalize to higher order bases. The bases are capable of detecting
higher order coherence amongst neighboring pixels (or entries in a matrix system) and
exploit it. This ability arises from a property called vanishing moments. Diflerent
wavelets have more or less vanishing moments. In the next section we will show why

this property is helpful in realizing sparse solution methods for the radiosity equation.
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2.4.5 Vanishing Moments

We begin with the definition of vanishing moments. A function ) is said to have M

vanishing moments if its projection against the first M monomials vanishes

(¥, 2") :Ozfd:c?/)(m)xi i=0,...,M—1

The Haar wavelet for example has 1 vanishing moment. Other wavelets can be con-
structed to have more vanishing moments.

To see why this leads to small coefficients in general consider some function f € L.
Suppose we want to write it with respect to a wavelet basis. The coefficients of such

an expansion can be found by taking inner products against the basis functions
f@) = > Wij, )i
i,j€Z
We want to show that for smooth f many of the coefficients f;; = (1 ;, f) are small.

If f is smooth we can apply Taylor’s theorem to expand it about some point zo (for

simplicity, let zp = 0) to get

M-1 (i)Y . (M)

=0
for some £ € [0,x]. Now consider computing f; ;. To simplify the argument we
consider the inner product necessary to compute foo (i-e., the inner product with 1)
all others being related by translations and scalings. Using the vanishing moment

property we can bound the resulting coefficient as follows

(M)
[ @] = |f el e
(M)
< sup {2 i f asloco) m

where [, is the interval of support of 2. From this bound we can see that the
associated coefficient will be small whenever either || ;|| is small or the M* derivative
of fissmall. Similar arguments can be made for functions of more than one variable.

Notice the similarity with our earlier arguments bounding the error in HR. There we
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forced the error—which will become the detail coefficient in wavelet radiosity—bhelow
a ratio of size to distance. Here we have size again, but this time multiplied with
the derivative. Below we will argue that for integral equations whose kernel function
has derivatives which fall off as an inverse power of distance many detail coefficients
will be small. In that way the correspondence can be made with the size to distance
argument.

This bound allows us to argue that many of the entries in a matrix system arising
from an integral operator will be very small and can be ignored, leading to a sparse
matrix system. Recall that integral operators led to linear systems whose coefficients
are integrals of the kernel function against the chosen basis functions. In the case of
radiosity this lead to the G;; (Equation 4). Suppose that the basis functions for the
integral operator are chosen to be wavelets and that these wavelets have vanishing
moments. If G is smooth then many of the Gj; will be quite small because of the
vanishing moment property, and can be ignored without incurring too much error.
Below we will make this argument mathematically precise.

For now we note that these arguments are in some sense the converse of the our
earlier arguments, which showed that only a limited number of interactions need
to be considered in a hierarchical radiosity algorithm. There we argued about the
coupling coefficients which cannot be ignored. The wavelet arguments will describe
the coupling coefficients which can be ignored. In particular the projections onto
wavelet (detail) functions will measure the error incurred by higher order hierarchical
algorithms and embed the arguments we made earlier—using angle subtended—into
a much more general context.

With these preparations we now go into the details of applying wavelets to the

numerical solution of integral equations.

2.4.6 'Wavelets and Integral Equations

Since wavelets can be used as bases for function spaces it makes sense to consider
them in the context of a Galerkin method to solve an integral equation. For all the

arguments that follow, we will use the example of flatland radiosity again. We will
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Box (nodal) basis Box (nodal) basis

Figure 3: Two simple environments in flatland, two parallel line segments (left), and
two perpendicular line segments (right), and the resulting matrix of form factors
assuming a discretization of the line segments into 32 elements each and a constant
basis function over each element. (Adapted from [54].)

also simplify the arguments by considering only orthonormal wavelet bases (the case
of general bi-orthogonal bases is explained in [54]).

Recall that a Galerkin method applies projection operators to the integral equation
at hand: Choose a subspace, express all functions in this subspace (i.e., project them
into this subspace) and then solve the resulting linear system relating all the unknown
coefficients to each other. We will now study the projection operators involved in this
computation more carefully. In particular we will use the decomposition of subspaces
implied by a MRA to the subspace chosen by a Galerkin method. This will result
in a decomposition of the operator into actions on various constituent subspaces.
The power of applying such an analysis lies in its ability to discover that many of
these constituent subspaces are very sparse when using wavelets for smooth integral
operators. We begin with the so called standard decomposition or realization and
proceed to the more powerful non-standard realization of the operator.

We begin by defining projection operators for the resolution spaces V; of a MRA

2t—1

P=> (., i) ik
k=0

and for the associated detail spaces W;

2t—1

Qi=Pi1i—P= (., Yik) ik
k=0
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Given the radiosity integral equation in operator form
(I-80G)B=B°
and some finest resolution space Vi, the Galerkin method gives
(I = PL(SoG)PL)B = PLB"

Recall that we assumed throughout that the reflectance p would be constant over each
basis function support. Consequently we will now focus exclusively on the realization
of PG Pr, in wavelet bases.

CR for example uses as Vi, the space of all piecewise constant functions over the
elements at some finest resolution level L. Two examples of this for flatland radiosity
are given in Figure 3. On the left is the flatland environment of two parallel line
segments. The resulting matrix of form factors (piecewise constant basis functions)
has a block diagonal form. The diagonal blocks are identity matrices while one of
the off diagonal blocks is shown enlarged. The size of dots is proportional to the
magnitude of the form factor (G;; in our notation). Similarly on the right we see the
resulting matrix for an environment with two line segments meeting in a corner, for
which the domain contains the singularity. The most notable property is the extreme
smoothness or coherence of the resulting matrices.

As we saw earlier there are alternative ways of writing V7, using wavelets. Writing
Vi =W+ Ef’:_ol W; corresponds to writing the projection operator as P, = Fy +
Y Q. Using this identity we have

=l -1
PGP, = (Po+ ) Q)G(R+ > Qi)
i—0 i—0

L—1 L-1 =1
= RGP+ > RGQ:i+ > QiGP+ > QiGQ (8)
=0 1=0

1,1=0
This decomposition corresponds to a particular two dimensional basis construction.
Given a one dimensional wavelet basis {¢o,¥ix}, 1 =0,...,L -1, k=0,...,2° =1
we can build a two dimensional basis via a tensor product construction {¢g,;} %
{do,V1m}, 3,1 =0,...,L—1,k=0,...,22 —1, and m = 0,...,2" — 1. This is often

referred to as the standard realization of the integral operator [9].
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The pyramid algorithms that were mentioned above for transforming a function of
a single variable between a basis of Vi, and the bases in Vg + Ef‘:_gl W; can be applied
to matrices (functions of two variables). In particular the standard decomposition
corresponds to applying such a pyramid transform to all rows (transforming the right
hand side Fp) followed by a transform of all row transformed columns. This is nothing
more than a vector space basis change as is often done with matrices for various
reasons. The remarkable property of the change to the wavelet basis is that it can be
performed in time proportional to the number of basis functions, O(n?). In general
expressing a matrix of size O(n?) with respect to another basis entails a transform of
cost O(n?).

Figure 4 shows the effects of transforming form factor matrices expressed originally
in the piecewise constant nodal basis (see Figure 3) into different wavelet bases (the
standard form in this case). On the left the Haar basis was used, while on the right
the Flatlet basis with two vanishing moments [28] was used. The top row gives
matrices for the example of two parallel line segments, while the bottom row shows
the case of two perpendicular line segments. Notice how many of the coefficients are
small in magnitude (small disks). As the number of vanishing moments increases
from one to two (left to right) we can observe many more entries becoming small.
This demonstrates for two particular cases how more vanishing moments lead to more
(approximate) sparsity in the matrices.

At this point we have seen how the linear system associated with a linear operator,
such as an integral equation, can be transformed into a wavelet basis. This can be
done with the wavelet pyramid transform in time proportional to the number of basis
functions. The resulting matrices will have many entries of negligible magnitude due
to the vanishing moment properties of wavelets, if the kernel function of the original
integral operator satisfies some smoothness conditions. In the next section we will see
how many of these entries are small enough to be ignored leading to sparse solution

algorithms for a large class of operators.
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Haar basis (1 vanishing moment) Flatlet basis (2 vanishing moments)

Figure 4: Form factor matrices for two flatland environments (see Figure 3) expressed
in wavelet bases (standard form). The top row shows the form factor matrix for two
parallel line segments expressed in the Haar basis (top left) and in the Fy basis [28]
(top right), which has 2 vanishing moments but remains piecewise constant at the
finest level. The bottom row shows the same bases applied to the form factor matrix
for two perpendicular line segments. (Adapted from [54].)
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2.4.7 Calderon-Zygmund Operators

In a seminal paper published in 1991 Beylkin et al.[9] showed that for a large class
of linear operators the resulting linear system, when using wavelet bases, is approx-
imately sparse. More specifically they showed that for a class of integral operators
known as Calderon-Zygmund and any ¢ > 0 a §(¢) exists such that all but O(nlogn)
of the matrix entries will be below é and can be ignored without incurring more than
an error of € in the computed answer.

An integral operator K(f) = [ K(.,y)f(y)dy is called a Calderon-Zygmund op-

erator it its kernel function K : R® x R™ — R satisfies the following smoothness

criteria
1
IK(z, )| £ —=
|z =yl
Cur
6£4K +|8M K A, g e
10X K+ 10} KN < o e

for some M > 0. In this classical definition the arguments x and y are variables of

the parameter domain. In the case of radiosity we have a kernel of the form

1

Ip(x) — q(y)||™
Cu

lp(z) — a(y) [+

where p, q : [0, 1]" — R™"! are the parameterizations of the surfaces in question (here

IGalz, p) <

102" Gall + 118" Gall <

n = 1 for flatland and n = 2 for 3D radiosity), and C' and Cjs are only finite for
parameterization for which the magnitude of 4= (4=) is finite. The latter condition
holds for parameterization which are non-singular. Typically p and ¢ are polynomials.
For example, for quadrilaterals they are bi-linear. Similarly for bi-cubic patches they
are bi-cubic. The argument for the classical Calderon-Zygmund case as presented by
Beylkin et al.[9] carries over with little modification to what we might consider the
generalized Calderon-Zygmund operator of radiosity.

Recall the definition of the matrix entries Gy; in a Galerkin method

G = [ oo, CaE0) Ni@ Niy) dady
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Suppose now that we use wavelets with M vanishing moments for our {N;}. If
we use Taylor’s theorem (|22] Theorem 8.14.3) of order M for G4, abbreviating for
convenience

dM)

G’ = sup d_GA(xO + ftz:y + gty)
£€(o,1] E

we find that the first M terms in the expansion will not contribute to (;; leaving
Gl = ([ Lo, [GaED) NN do ary)
supp N; Jsupp N;

(/supp N; /supp N

dx dy)
C
@ = T (f;uppN. o NP D0 )

e N ([ [ N dedy)
, (nfn)”*M
= or ©)

IA

I(t, ) 1™ N;(2)Niy )

r

where: r = ||p(z) — q(y)||; n denotes the dimensionality of the domain; || /]| is defined
to be the maximum sidelength of any of the involved supports; |[(f;,¢,)| is bounded
by C||I|| with the help of the triangle inequality (i.e., the diameter of a cube is no
larger than some constant times the longest of its sides); to achieve our bound. The
last expression is identical to the classical Calderon-Zygmund claim of Beylkin et

al.|9] save for replacing r by ||z — y||. This proves that

Radiosity satisfies a Calderon-Zygmund type inequality making the claims
of Beylkin et al.[9] applicable to the radiosity integral equation.

Using this result we can assert that the radiosity matrix system arising from a
Galerkin method using a wavelet basis leads to a sparse system with only O(nlogn)
important entries. Examining the matrices in Figure 4 we can immediately see the
O(nlogn) structure. There are approximately logn bands visible, each of length
approximately equal to n. This is particularly noticeable in the case of two parallel

lines and the Haar basis (upper left in Figure 4).
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The fact that there is an extra factor of log n may seem surprising since we already
know from our geometric arguments that in the case of radiosity only O(n) couplings
(entries in the matrix) are important. Considering the meaning of a row in the wavelet
transformed matrix (see Figure 4) though we can see the logn dependence. For every
basis function on one primitive there are important entries across the entire row (i.e.,
at all levels of resolution of the other primitive). Since there are logn levels it is not
surprising that we have the extra logn factor. This statement is entirely compatible
with the bound given above for (generalize) Calderon-Zygmund operators. The bound
involves the largest of the dimensions of support for a pair of basis functions. Across
a row (or column) of the matrix one of the dimensions is kept constant while the other
gets successively halved. In the case of HR this would correspond to a basis function
system which required every function on one primitive to couple with basis functions
at all levels on the other primitive. Our insight that O(n) entries are enough was also
achieved by Beylkin at al.[9]. They proceeded to analyze the logn dependence in the
number of non-negligible entries in the matrix and showed that by decoupling all the
scales (i.e., reducing all dimensions in the subdivision equally) it is in fact possible
to reduce the number of needed entries to O(n). We will describe this so called non-
standard construction next. This is the final missing piece to connect wavelets to HR

and the resulting WR algorithm.

2.4.8 Non-Standard Operator Realization

We saw earlier how the decomposition P, = Py + Y57 Q; applied to PLG Py, on both
sides resulted in a realization of G in the wavelet basis. The resulting sum consisted
of terms involving all possible combinations of subspaces { Fy, (i }i=o,.. -1 on either
side of G. Said differently, the operator was expressed as a sum of contributions
between subspaces at all resolutions. To remove this coupling across all levels” we

use a telescoping sum argument to write

L-1

PGP, = RGFR+ Z(R’HQR:H — FGE)
i=0

7 As distinet from couplings across a constant number of levels.
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| T4 fid
= RGR+ Y QiGP.+ > PGQi+ > QiGQ; (10)
i—0 i=0 i=0
using the fact that P,y ; = P, + @i and rewriting each summand in turn as

P, 1GP,— PGP, = (R -+ Qz)g(-Pt + Qz) — F,GF,
= FGQi +QiGF + QiGQ:

With this algebraic “trick” we have managed to write the PGPy, as a sum involving
summands, each of which carries the same index i on the left and right. This implies
that each one of the subspaces interacts with only one subspace (the one with the same
index). Compare this to the standard decomposition (Equation 8) whose summands
carry different indices on the left and right sides, resulting in each space interacting
with a logarithmic number of other spaces. The decoupling of spaces results in a
representation of the operator which is referred to as the non-standard realization.
The standard realization uses a cross product basis, expressing the fact that the
operator goes from one space to another. Therefore a standard realization always
looks like a cross product basis. The non-standard realization involves terms which
cannot be written as a cross product basis. As a set of functions they are a basis
for a two parameter function space, but that is a different object from a basis which
realizes an operator. If in fact we want to write it as a matrix product we have
to use an over representation in both the domain and the range of the operator.
To see why, consider the summands that occur. We find that for each ¢ both P
and @Q; occur on both the left and right side for some summand. This is the over
representation since P, = Py + X5 Qi and not P, = Py + S5 Qi + S P
However, the total number of couplings that occur is still only n?, reflecting the fact
they they are a basis for a two parameter function space. However, they cannot
be written as a cross product of one dimensional bases. For this reason the set of
functions, {@o()do(y), Bim ()i (y), Vim (@) B35 (), Yim(@)ii(y)}t, 1 =0,..., L -1,
and j,m =0,...,2" — 1, is also referred to as the non-standard basis.

Figure 5 shows the non-standard realizations of the operators for the two flatland
environments considered earlier (Figure 3). Each level consists of three blocks. The
sets of triples consist of the ;GQ; block in the lower left, the F,GQ); block in the
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Non-standard Haar Non-standard Flatlet 2
. - AR
&
Non-standard Haar Non-standard Flatlet 2

Figure 5: Form factor matrices for two flatland environments (see Figure 3) expressed
in wavelet bases using the non-standard operator realization. The top row shows the
form factor matrix for two parallel line segments expressed in the Haar basis (top left)
and in the Fe basis [28] (top right). The bottom row shows the same bases applied
to the form factor matrix for two perpendicular line segments. (Adapted from [54].)
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upper left and the Q;GPF; block in the lower right. The empty quadrant would have
corresponded to F;GP;, however this is the block that the recursion occurs on. This
last, observation also suggests how to transform a matrix from the nodal basis into the
non-standard realization. Instead of performing complete pyramid transforms on each
row, followed by complete transforms on each column, the non-standard realization
can be achieved by interleaving the individual transforms. First all rows are split into
high pass and low pass bands (a single level application of the two scale relation), then
all columns are subjected to a single level transform. Now recurse on the low pass/low
pass quadrant (PG P;). When writing this out as a matrix suitable for matrix/vector

multiplies the matrices in Figure 5 result.

2.4.9 Properties of the Non-Standard Realization
O(n) Sparsity

The proof that only O(n) entries in the resulting system are above some threshold
5(¢) is exactly analogous to our earlier arguments counting the number of interactions
in HR. The operator realization in HR is the non-standard type. This follows from
the fact that a given element ¢ may interact directly with some other element j, while
requiring subdivision when interacting with some element 7;. In those two cases
element 7 is represented with both a single function and with a set of finer functions,
creating the over representation which is characteristic for the non-standard operator
realization.

The general proof of the O(n) sparsity property for general Calderon-Zygmund
operators is identical to our earlier geometric arguments. We argued that for a given
allowable error of ¢ we can permit some amount of error (6) across each link and
that there would only be a linear number of such links. Smooth functions (piecewise
polynomial) were used as basis functions. Saying that there is an error of § for one such
approximation is equivalent to saying that the associated detail coefficient is less than
8. Hence we can ignore it. Recall that the detail coefficient measures the difference
between one level of approximation and the next finer level (recursive splitting) of

approximation. To say that a detail coefficient is small (and can be ignored) then
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is equivalent to saying that no further subdivision is necessary, our assertion in the
recursive enumeration scheme. In contrast, the function ProjectKernel induced
further subdivision if the detail coefficient (the quantity effectively estimated by the
function Oracle) was found to be too large. However, instead of adding the detail
function in that region, it subdivided and chose to represent the region with finer
smooth functions, creating the over representation of the non-standard realization.
While we used an “angle subtended” argument to bound the number of coefficients
created in this fashion the (generalized) Calderon-Zygmund property is the abstract
analog of this geometric statement. Recall the bound we gave earlier for the case of

flatland radiosity and 3D radiosity
n+1
|Ga—Gal <C (@)

where n is the dimensionality of the domain (1 for flatland and 2 for 3D radiosity).
Examining the argument we gave above for a bound on the G;; for wavelets with M

vanishing moments, we get the bound

n+M
1Ga— Ciall < © (M)

T

(recalling the definition of G4 from Equation 5). This bound on ||G4 — G4|| is just a
restatement of the fact that the next coefficient (v;; in the expansion of @ 4 is small
and has the bound given in Equation 9.

Using the Calderon-Zygmund bound in this way reduces the argument as to why
there are only a linear number of important entries in the non-standard realization
of the operator to the geometric argument given for HR. This time our statement is
more general since it extends to wavelets with more than 1 vanishing moment and
to a general class of operators. Even if we have an integral operator of Calderon-
Zygmund type which does not arise from any kind of geometric problem, we can still
impose a geometric interpretation on the various quantities. In effect we are supplying
our abstract problem with a geometric structure. Having done so it is immediately
obvious why there should only be a linear number of coefficients which are less than

some size to distance ratio: angle subtended is a finite quantity even if the underlying
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abstract space has no obvious relation to “geometry” as we know it in 3D. In this
way the Calderon-Zygmund argument generalizes to other integral operators an idea
that is perhaps more obvious in the geometrical context of graphics.

Creating this correspondence we have made one assumption, that the support
of our basis functions is finite, but this is no different from the claims of Beylkin et
al.[9]. In the case that the supports are finite, but neighboring basis functions overlap,
the argument continues to hold. With a finite overlap the total angle subtended
“coverage” grows at most by a constant factor (the overlap), but continues to stay

finite, the crucial assumption.

Elimination of Detail Functions

In the case of HR we only used smooth functions and never any detail functions,
although the action of Oracle can properly be described as evaluating a detail coef-
ficient. The abstract theory of integral operators has us use the smooth and detail
functions to construct the sparse linear system. WR [28], or higher order HR methods,
continue to use only the smooth functions. Where are the detail functions?

To understand the answer, consider again the Haar example. Suppose we are
using the Haar basis for a non-standard realization of our operator (see Figure 5 left
column). If we ignore all entries in the matrix less than some threshold we will be
left with some set of entries corresponding to couplings between a mixture of smooth

and detail functions. For example one such entry might be

Gi; = ((Ga, Pr) Yri)

for some level k and translation ¢ and j respectively. For simplicity we will stay with
the flatland case, the 3D case being only ditferent by virtue of more basis functions
and more indices being involved. Using the two scale relationship for 1) we can rewrite

the above as

Gii = {(Ga,dr;j), \/i_l(¢k+l,2i+1 — Pry1,2i))
- ((GA: Cbk.;i)a \/§_I¢k+l,2i+1) - ((GA,¢k,j), \/§_I¢k+1,2i)
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The last two summands are again coupling coefficients but this time they only involve
smooth functions. In this way we can systematically replace all instances of couplings
involving detail functions with ones involving smooth functions only. In the actual
algorithm we directly use the smooth functions instead of first introducing detail
functions only to replace them with finer level smooth functions.

Figure 6 gives a simple 1D example for the difference between the standard and
non-standard representation as it replaces all detail functions with their smooth func-
tion equivalents (via the two scale relation). On the top we see an example of some
function which we wish to approximate to within some fidelity with the Haar basis.
This is done in the left column. We begin with the overall average (V) and invoke an
oracle to determine which detail functions we should add. This process is symbolized
by the sequence of finer and finer details (from spaces W, through W;) being added
until the sum of all the functions adds up to a close approximation of our original
function (see bottom left). Instead we could proceed differently (as HR does). Again
we begin with the overall smooth function on the top right (Vg or level 0). This
time the oracle determines where we should introduce a split. Note that a split is
equivalent to adding a detail function with its center at the split. But instead of
adding the detail we simply create a new level of our hierarchy. We now have a best
approximation of our function at two levels of resolution, level 0 and level 1. From
our previous study of the Haar system we know that the space spanned by level 1 is
exactly the space spanned by Vi + Wy as we did on the left. Continuing with further
splits, each corresponding to the addition of a detail function at the split site we
arrive at the same final representation.

The HR algorithms actually perform the refinement as shown on the right. We can
also see how this is equivalent to adding detail functions (left column) of the proper
resolution at the appropriate places. Nonetheless there is a fundamental difference.
Imagine that another function in our system wants to interact across the integral
operator with the subsection of our approximation numbered 5, which we will call fs
for the sake of this argument. Call the other function g. In order to have f5 interact
~ with g we need to link up g with all the basis functions which contribute to the final

height of section 5. In the left column this includes all functions at all levels which
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Figure 6: Given the approximation of a function at a certain level and an oracle which
decides where to add details we refine the representation of the function. On the left
this occurs by adding detail functions of ever finer levels where they are needed.
On the right we instead cause a splitting of (smooth) basis functions to occur. The
two processes are equivalent, but the one on the left corresponds to the standard
decomposition, while the one on the right is akin to the non-standard decomposition.
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Figure 7: The Fy wavelet construction. F, bases have two different detail shapes.
Both of the detail shapes have two vanishing moments (from [28]).

overlap section 5. This is the reason why we find the logn dependence in the standard
realization of the operator. However, if we use the realization of the function as shown
on the right, the only function that needs to link up with ¢ is the smooth function of
section 5 (which lives on level 4). None of the functions at levels above participate!
Note though that the realization on the left uses a basis proper, while the realiza-
tion on the right uses an overrepresentation. The easiest way to see this is to note
that all the functions in the left column are orthogonal to each other, thus they are
clearly independent. On the right this is not true. For example, smooth functions 4
and 5 at level 4 can be combined to build their parent at level 3. Similarly 3, 4, and
5 can be combined to build their parent at level 2, and so on. Another way to put
the same observation is to say that the smooth functions at each level can be used to

realize the next coarser level, they are in some sense “proxies” for all the levels above.

Tree Wavelets The reason the Haar basis allowed us to do this simplification lies
in the fact that the smooth functions in the Haar system do not overlap. For more
general wavelets there is overlap between neighboring functions. Consequently the
above substitution, while still possible [27], is not as straightforward. The problem
arises with overlapping basis functions because some regions may be accounted for
multiple times, in effect introducing the same energy more than once into the system.
Using only detail functions like we did in the left column of Figure 6 avoids this
problem, since by definition detail functions at one level are linearly independent to
the detail functions at another level. The wavelets that were used in the original WR
work [28, 54] did not suffer from this difficulty because they were tree wavelets. In a

tree wavelet the filter sequences do not overlap.
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Figure 8: The M, wavelet construction whose smooth shapes are the first two Legen-
dre polynomials. Both of the detail shapes (lower right) have two vanishing moments
(from [28]).

The Haar basis is a tree wavelet basis. When trying to extend these ideas to
more vanishing moments we have to allow more than one wavelet function over a
given interval to keep the filter sequences from overlapping. In essence, neighboring
intervals are decoupled. WR used so called Flatlets, which are still piecewise constant,
but combine more than two smooth functions to increase the number of vanishing
moments (Figure 7 shows the shape of Flatlets with two vanishing moments [28]).
Another set of wavelets explored for WR was introduced by Alpert [1| under the
name multi-wavelets. Over each interval a set of Legendre polynomials up to some
order M — 1 is used and a wavelet hierarchy is imposed. Here too, neighboring
intervals decouple giving multi-wavelets the tree property as well (see Figure 8 for a
multi-wavelet with two vanishing moments). Details regarding these functions in the
context of WR can be found in |28, 54].

Using tree wavelets and the substitution of all detail functions by sequences of
smooth functions leads to an obvious simplification of the code and follows naturally
from the historical development. However, if we had started from the abstract theory,

this development might have appeared odd.

PushPull

In the case of HR (piecewise constant basis functions) we pointed out the need for a
PushPull function. Its definition was derived immediately from the physical meaning
of irradiance and radiosity respectively and followed from the fact that a given surface
had different refinements with respect to different sources. These different “views”

of the same surface, or said differently, the fact that different sources would deposit
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power at different levels of the hierarchy, needed to be consolidated. We also indicated
that such an operation needs a non-trivial extension to higher orders with the help
of the two scale relationship.

Using the point of view of operator realizations we can now see that PushPull
was a consequence of the non-standard operator realization of HR. PushPull is the
function needed to consolidate these over representations after every iteration. In the
standard realization this consolidation is not needed since all the functions involved
are linearly independent (they form a proper basis).

However, there are other reasons to use a PushPull function, namely to change
between two sets of bases. This is accomplished by using push to go from one wavelet
basis to a canonical basis at the leaves, followed by a pull which goes to another
wavelet basis. An example, in which this property can be used, arises from the desire
to employ bi-orthogonal wavelets. Recall that the sparsity is a direct function of the
number of the number of vanishing moments. This constraint, taken together with
other constraints, may lead to a basis which cannot be orthonormal, giving rise to the
desire to use a bi-orthogonal basis. This was the case for the Flatlets used in |28, 54].
The desire for a maximal number of vanishing moments together with the constraint
that the smooth functions should continue to be box functions, led to a construction
in which the dual basis functions did not have vanishing moments. Consequently the
projection operators were arranged such that only primal basis functions were under
the integral operator. Formally this leads to a projection of the form PG F; (where
the “*” denotes the dual hierarchy). Applying a step of our iterative solver results in
expansion coefficients with respect to the wrong basis (P, instead of P;). Intuitively
we change from the primal basis to the dual basis when “going through” the integral
operator. In this case PushPull can be used to change back to the primal basis after

an iteration as was done in [28, 54].

Subdivision

We asserted that HR is the non-standard realization of the radiosity operator in the
Haar basis with the detail functions replaced by their constituent smooth functions.

Above we showed that subdivision is equivalent to the addition of detail functions
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under our replacement policy resulting in the over representation. There still remains
a difference to the abstract version of the non-standard representation.

The abstract derivation has us consider subdivision on both ends of a transport
when more detail is needed, while the function ProjectKernel only divides one of
the surfaces involved. Equation 10 has summands which involve level indices which
are identical on the left and right. If we want to allow for subdividing only one of two
elements® under consideration, we appear to be violating this rule. In fact HR allows
couplings across the hierarchies irrespective of the level. The crucial observation
is that for each element, there are only couplings with a single level. Suppose we
subdivided both elements in a given interaction evenly as the abstract derivation has
us do. Doing so we are likely to discover that some of the rows of the resulting operator
have more coherence than some of the columns, or vice versa. This implies that one
of the two surfaces did not need as much subdivision. In this case we may decide
to compress the rows further while keeping the columns untouched. Equivalently,
during the recursive subdivision scheme, we can decide to only subdivide one end
of an interaction instead of both ends. The resulting set of interactions still has the

non-standard structure, even though the indices on the left and right may be different.

Refinement

Another important difference between the standard and non-standard realization con-
cerns quadrature error. In the non-standard realization we keep descending down the
subdivision call sequence until a link is created. In this sense only the leaves of a
given subdivision hierarchy interact with the leaves of an appropriate subdivision hi-
erarchy on another primitive. The fact that this set of leaves is different for different
interaction partners lead to the over representation and the need for consolidation
with PushPull. In contrast, the standard realization has couplings across all levels of
a pair of subdivision hierarchies, involving basis functions corresponding to the root
all the way down to some appropriately chosen leaf level.

Consider the role of quadrature error in these two schemes. In the standard

realization refinement occurs because a given interaction is found to fail to capture

8The term “element” encompasses both leaf and internal nodes in our subdivision hierarchy.
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adequate detail in the answer and a finer detail function is added (see Figure 6). The
coupling associated with the parent function continues to be used. Note however, that
it was computed to within an accuracy which is a function of its level. Asserting that
that level has too much error and inducing the creation of a finer level implies that
the coupling coefficient at the parent level has too much quadrature error as well.
Consequently any standard realization needs to improve the accuracy in a parent
interaction coupling (the quadrature) whenever it adds a detail function at a finer
level (Christensen et al.[14] made this observation in the context of radiance). This
contrasts with the non-standard realization which, by its definition, replaces a link
which is found to have to much error with a set of finer links satisfying the error
criterion. In practice it actually never generates the link with too much error, but
instead recurses. Only if one of the successive refinement strategies is employed can it
occur that previously generated links are replaced. In any case, the quadrature error
associated with a given link is a function of the size of the elements interacting, and
in this way is of the same order as the oracle error estimate, which is also a function
of the sizes of the interacting elements. This insures that the links do not have too
much quadrature error or too little. The notion of “too little error” refers to the fact
that there is no benefit gained from computing a quadrature more accurately than the
given basis function support can realize anyway. To see this, consider the extreme case
of a quadrature being computed analytically. Even though the quadrature (coupling
coefficient) is exact the resulting accuracy in the answer can be no better than afforded

by the order of basis functions and the subdivision level.

2.5 Wavelet Radiosity

Early on in this chapter we discussed how the reasoning of HR extends easily to higher
orders simply by using piecewise polynomial bases over each element and otherwise
following the basic structure of HR. The counting argument worked just the same.
In practice, higher order bases imply that the bounds fall below our threshold even
faster than for the case of piecewise constant functions. The bounds given had an M*™

power on the size to distance ratio for M — 1 order piecewise polynomial bases or more



CHAPTER 2. RADIOSITY 61

generally wavelets with M vanishing moments. We discussed the need for an oracle
and gave a simple prescription of how to implement it. Seeing the connection with
wavelets we also know now how to perform push/pull in such a higher order hierarchy
by using the two scale relation. All the pieces for WR as described in [28, 54] are now
in place.

We intentionally ignored many of the actual implementation details in this chapter.
These are best found in the original papers. Instead we concentrated on the overall
structure behind these ideas. The geometric reasoning of relative size to distance
ratios leads to asymptotically faster algorithms for radiosity. This geometric argument
finds its analog in the theory of Calderon-Zygmund operators and their realization in
wavelet bases.

We conclude this chapter with a review of some of the experiments using Flatlets
and multi-wavelets for radiosity computations to show in a more quantitative way how
these bases perform. These experiments were first reported in [28, 54| and executed

in collaboration with Steven Gortler.

2.5.1 Performance of Wavelet Radiosity

The first experiment was designed to see the relationship between sparsity and the
achieved error. For this purpose the configuration in the upper right hand corner of
Figure 9 was uses. A 1 x 1m emitter of uniform emitted radiosity and 0 reflectivity
was placed above a 2 x 2m receiver with no emission and a reflectivity of 1. The
distance between the two was set to 0.1m. The short distance was chosen to create a
strong gradient in the resultant radiosity on the receiver. The emitter was rotated 45°
to avoid a serendipitous lineup of the subdivision lines with the strongest features in
the resultant radiosity on the receiver. Both this rotation and the closeness between
emitter and receiver make the approximation of the radiosity function on the receiver
numerically much more challenging. We used piecewise constant basis functions. As
our reference solution for the error determination we took advantage of the fact that
an analytic solution can be given for the radiosity on the receiver at any point.

Four experiments were conducted. In each one the finest level of subdivision was
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Figure 9: Experimental data for the configuration shown in the upper right. The finest
level subdivision for the 4 curves was to to h = 1/4,1/8,1/16,1/32 respectively. Each
curve represents the action of the oracle and plots the relative L! error as a function
of the number of Gj; coefficients allocated by the oracle. (Adapted from [28])
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limited to h = 1/4,1/8,1/16,1/32 (via the function RecursionLimit) respectively,
resulting in interaction matrices of size 16 x 16, 64 x 64, 256 x 256, and 1024 x 1024
at the far right of each of the curves. The curves themselves result from running
the tests with different error bounds, in each case letting the oracle decide which
couplings to generate. The results were plotted as relative L' error versus the number
of interactions ((;) created. For a given subdivision limit turning the error criterion
down would eventually force the oracle to create all possible n? interactions (without
necessarily realizing the requested error bound due to the artificial termination of the
recursion). These points are indicated at the far end of the curves and connected
by the diagonal dotted line. The slope of this line as a function of the associated
h = interactions* parameter is 1, as one would expect.

The first conclusion that can be drawn from this data is that the final accuracy
for a given subdivision limit is reached long before all coefficients are being used.
These “knee” points are reached at approximately 10 coefficients per element for h =
1/8,1/16,1/32 (i.e., when each element is connected to 10 other elements on average
final accuracy has been achieved). This is also the point where the oracle would
ordinarily demand more subdivision but we artificially limited it. The significance
of the factor 10 lies in the fact that it characterizes the sparsity of the associated
matrix. Instead of n? interactions we have approximately 10 * n interactions, which
supports our claim that the resultant algorithm is linear in the number of elements.
An informal survey amongst users of the system [65, 23] has shown that these factors
vary from about 9 to 10 linkups on average per element. These observations were
made across different scenes (including scenes with significant occlusion), different
order basis functions (constant to cubic), and different e parameters.

In practice we will not limit the finest subdivision level artificially, but instead
allow the oracle to stay on the downward line on the left rather than force it onto
one of the horizontal curve paths. To illustrate this point consider the following
observation. Using approximately 4000 interactions (vertical dashed line) we can
achieve an accuracy of only about 22% when considering full matrices only. If we use
the oracle to allocate the 4000 interactions without limiting the subdivision level, we

can reach an accuracy of about 11% (see the horizontal dashed lines).
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When letting the oracle decide where to put subdivisions it gets its power from
the ability to leave some subdivisions coarse while making others very fine. It is hard
to relate this to the classical notion of h since interaction occur across many levels of
h. However, we can make the following observation. Define an effective h by taking
the 4th root of the number of coefficients. Doing so has consistently (for the data
reported here and below) resulted in an exponent of p = 1.2 for O(h?). We can think
of this as one way to to characterize the sparsity we achieve. At this point we can
not give a theoretical justification for this number, but it occurs consistently.

The next experiment shows a different configuration for which once again we have
an analytic solution. Figure 10 shows heightfield plots of the analytic solution, an
error surface for the computed solution using piecewise constant basis functions with
1 vanishing moment (Haar; top right), 2 vanishing moments (Flatlet 2; bottom left),
and 3 vanishing moments (Flatlet 3; bottom right). For each of the computations
a total of 8000 individual couplings were computed (h was limited to 1/32). This
experiment shows how increasing the number of vanishing moments, while keeping
everything else constant, decreases the error and also creates a smoother error. From
it we can see that for the same amount of work we can generate better solutions by
increasing the number of vanishing moments.

Finally we show the results for increasing both the number of vanishing moments
and the smoothness of the basis functions. In this case we show the results for the
same configuration as used in Figure 9. The basis functions are the multi-wavelets
with 1, 2, 3, and 4 vanishing moments (piecewise Legendre bases of order 0, 1, 2, and
3 respectively). Figure 11 shows the convergence behavior (fitted lines) for a sequence
of experiments. Once again we measure relative L! error as a function of the number
of Gy; allocated by the oracle. We find that the ratio of the slopes is almost exactly
1:2:3: 4 as one would expect from the O(h?), p = 1,2,3, 4, approximation property
of the underlying space. As observed in the context of Figure 9 we have effective p
values, with respect to A, of 1.2, 2.4, 3.6, and 4.8.

When plotting the data as we did in Figure 11 on a scale counting the number
of coeflicients computed we are not accounting for the increased amount of work per

coupling when using higher order basis functions. To take advantage of the higher
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Error: Haar basis

Error: Flatlet2 basis Error: Flatlet3 basis

Figure 10: In the upper left the analytic solution plotted as a height field for the
configuration at the top, a receiver of 2 x 2m at right angles to an emitter of 1 x 2m.
On the top right the difference of the computed solution and the analytic solution
for the Haar basis. The bottom left shows the difference of computed versus analytic
solution for a piecewise constant basis with 2 vanishing moments, and on the bottom
right using a piecewise constant basis with 3 vanishing moments. (Adapted from [28])
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Figure 11: Using the test configuration of Figure 9 again this graph shows relative L'
error as a function of the number of couplings generated for the multi-wavelet family
with 1-4 vanishing moments. (Adapted from [28])
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Figure 12: This plot shows the same data as Figure 11 but this time with relative
L' error as a function of the number of kernel evaluations, which is higher for higher
order basis functions per coupling. Kernel evaluations are roughly proportional user
experienced work. (Adapted from [28])
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order basis functions, quadrature rules of higher order, which are more expensive,
need to be used. Since we are doing 4 dimensional product integration (two surfaces,
each with 2 parameter directions), the cost of the quadratures grows as a 4th power
of the number of sample points required. Using Gaussian quadrature the number of
samples in each dimension can be set equal to the number of vanishing moments. We
can account for the work increase by plotting relative L' error as a function of the
number of evaluations of G4, which more closely relates to user experienced compute
time. Doing so results in the plot in Figure 12. Here the higher order basis function
curves are translated over to the right by log(M*4)°.

In this graph we can see that for a given amount of error, say 1% or 0.1% the
cubic basis functions (My) will give us the desired accuracy for the least amount of
work. Only for errors above approximately 4% do the linear basis functions provide
the most efficient solution. This justifies the conclusion that in the case of radiosity
(we will see that it is different for radiance) higher order basis functions generally
outperform lower order bases (i.e., linear is better than constant, quadratic better
than linear, and cubic better than quadratic).

Figures 13 and 14 show a sampling of images which have been computed with the
WR system by different users over the past 18 months. At the top of Figure 13 is
an interior scene from [28]. It uses multi-wavelets with 2 vanishing moments. The
input consisted of 161 polygons, which were meshed into 40000 elements, giving rise
to 340000 couplings. The computation time was 100 minutes on a 50MHz R4000 SGI
computer.

Below it are four images taken from Teller et al.[66]. They used the WR solver as
a component in an out-of-core radiosity system capable of dealing with very large ar-
chitectural databases. It uses extensive visibility analysis to cluster computations into
subtasks which can be solved in core. On the middle left is an overview of an entire
furnished floor of Soda Hall on the UC Berkeley campus. It contains 54,448 quadri-
laterals which were meshed into 734,665 elements and generated 8,366,229 couplings.

Linear basis functions were used and the computation time on a 50MHz R4000 SGI

9M; and My maintain their relative position since Mi uses as many sample points as My, which
is not numerically necessary, but was done to avoid aliasing problems.
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platel (entire floor)

plate2 (office)

plated (library)

plate5 (sculpture)

Figure 13: Example images from users of the WR. system.
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Stainedglass Basement

Figure 14: Example images from users of the WR system.

computer was 48.5 hours. The middle right and bottom show close ups of individual
rooms and hallways.

Figure 14 shows two images from Gershbein et al.[24]. They added a facility to
include texture maps in the WR system and take their effects into account during the
solution process. Texture maps are used to modulate both emission and reflection
properties, allowing the user of the system to increase visual complexity without
increasing geometric complexity. On the left is an image of a stained glass window.
The entire wall containing the window is a modeled by a single quadrilateral and an
emissive texture (the window) and a reflective texture (the surrounding brick). The
scene contained only 23 quadrilaterals, 10 texture maps and was meshed into 1800
elements connected by 13000 interactions. Solution time using cubic basis functions
(multi-wavelets with 4 vanishing moments) was 36 minutes on a 50MHz R4000 SGI
computer. On the right is another scene using emissive and reflective textures. It was
modeled with 99 quadrilaterals and 62 textures. These resulted in 9500 elements and
90000 interactions using linear multi-wavelets. The solution time was 10 minutes on
a 50MHz R4000 SGI computer.







CHAPTER 2. RADIOSITY 71

2.6 Summary and Discussion

We have discussed the radiosity equation and in particular two approaches to solving
it efficiently, Galerkin radiosity and hierarchical radiosity. Unifying them under the
framework of wavelets has allowed us to reap the benefits of both approaches, higher
order basis functions and asymptotic improvements from O(n?) to O(k* + n), where
k is the number of input surfaces and n the number of elements the environment is
meshed into. We showed that the kernel function of the radiosity operator satisfies
a generalized Calderon-Zygmund property justifying the application of results on the
sparse realization of Calderon-Zygmund operators in wavelet bases. The resulting
wavelet radiosity algorithm performs as predicted by theory both in terms of the
benefits of higher order basis functions and the benefits of sparsity with increasing
numbers of vanishing moments. Implementing the algorithm led us to consider an
oracle function which identifies the important entries in the sparse linear system,
which approximates the solution of the original integral equation.

Because of the historical development out of HR the bases used up to this point
were limited to tree type wavelets, which decouple neighboring intervals, lead to sim-
ple realizations of the non-standard form, and require pushpull operators to consoli-
date the representations at the different levels of resolution. This lead to great code
simplifications in the form of tree structured subdivision. It also means that there
are no continuity constraints between neighboring elements per se. The connection
with wavelets and their much more general context suggests that many interesting
bases, some of which might work even better for the radiosity problem, are awaiting
their use.

So far we have not directly addressed the discontinuities in the kernel function
itself, which arise from the visibility term. The polynomial oracle we have employed
reacts to these by subdividing further along the resulting shadow boundaries. Al-
though asymptotically a valid strategy, it appears advantageous to consider discon-
tinuity meshing, relaxing the currently used uniform subdivision. This approach has
already been demonstrated for constant basis functions by Lischinski et al.[43| and

awaits its generalization to higher orders. Another potential avenue to address this
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issue would be the use of adapted wavelets as proposed by Andersson et al.|2].

In the algorithm as implemented we have only considered refinement strategies,
but not yet the clustering problem (i.e., grouping sets of small input surfaces into
groups). This led to the k? dependence in the asymptotic bound argument. Recently
a number of researchers have published algorithms to address this issue [59, 62, 38, 50
and we look forward to further developments in this area in particular.

As evidenced by the many papers published, which aim to extend and improve
the basic HR algorithm, we believe that the use of multi-resolution hierarchical rep-

resentations is firmly established at this point and will continue to grow.



Chapter 3

Radiance

3.1 Introduction

In the first part of this dissertation we discussed the radiosity equation and how
wavelets can be used to solve it efficiently. The second part is devoted to the radiance
equation. Recall that radiosity described light transport under the assumption of
diffuse (uniform in all directions) reflection and emission. This implies an idealization
which is often violated in practice. In particular we would like to be able to describe
reflective and emissive properties which exhibit directionality. The extreme example
in this category is mirror reflection in which light coming from a particular incoming
direction will exit in only one outgoing direction. Most materials exhibit properties
which are best described by reflectivities which are in the regime between diffuse and
mirror reflection. These are typically referred to as “glossy” materials.

Our treatment of radiance attempts to capture the regime of glossy materials.
Purely mirror reflectivity is best treated with methods other than finite elements due
to the numerical problems of modeling the Dirac delta distribution like response of a
mirror material.

The radiance equation in the form used today in computer graphics (see the next
section) was first formulated by Kajiya as the “Rendering Equation” [37]!. Few results

have been reported on attempts to solve the general rendering equation because of

IKajiya actually used a slightly different physical quantity in describing transport than we do.

73



CHAPTER 3. RADIANCE 74

the enormous cost involved in doing so.

There have been some attempts at extending radiosity to handle specular or glossy
reflections [35, 56, 57, 41]. Immel et al.[35] used a discretization of the sphere of direc-
tions to describe transport of light as a function of surface parameters and directions.
They pointed out that their approach was wholly impractical due to the large size
of the resulting linear system, but it did yield view independent solutions for scenes
which contained glossy reflectors. Shao et al.[56] used a form of procedural refinement
to maintain the basic framework of radiosity. They introduced weightings into the
usual form factors between surfaces to account for directional effects. These weight-
ings were refined on successive iterations of the solution algorithm to converge to the
desired answer. Shirley [57] and Saec and Schlick [41] used Monte Carlo ray tracing
to estimate the transport between surfaces in the presence of glossy reflectors. Sil-
lion and Puech [60] used a method integrating mirror reflection and diffuse reflection
through a hybrid raytracing and radiosity approach.

The most immediate antecedents of the method described in this thesis are those
given by Sillion et al.[61] and Aupperle and Hanrahan [6]. Sillion et al.[61] were
the first to apply a finite element framework to the general glossy case. They used
constant basis functions over surfaces and parameterized the directional properties
of light with the use of spherical harmonics basis functions. Using this technique
they achieved a unified framework using finite elements as distinct from the earlier
hybrid algorithms. Aupperle and Hanrahan [6] extended their earlier HR work [32]
to glossy reflectors, demonstrating the first instance of an algorithm which exhibits
linear growth in the number of couplings.

Our extension of WR to wavelet radiance in some sense mirrors the extension of
HR to hierarchical radiance performed by Aupperle and Hanrahan. We will show
below how wavelets provide a framework to analyze hierarchical techniques for the
radiance problem and extend them to higher order. As a result improvements in

performance similar to those achieved in the case of radiosity will be found.
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Figure 15: Geometry of the canonical three point transport with radiance originating
at some surface X and being reflected at Y in the direction of Z.

3.2 The Radiance Equation

In this section we review the basic derivation of the radiance equation. This presen-
tation borrows heavily from [19, Chapter 2.

The fundamental radiometric quantity we are interested in is Radiance. Radiance
is a function of spatial and directional coordinates. Its units are @"%, or power per
unit area per unit solid angle. Note that the area is perpendicular to the direction of
the solid angle. Why is this a sensible quantity to use? Using the image of photons
as particles it makes sense to consider the number of photons going by a point in
space (), in a particular direction (&), in an instant. This quantity is of course zero
since space, direction, as well as time are zero. Defining this quantity infinitesimally
(i.e., considering photons going through a small area in a small set of directions in
a small amount of time and letting all of these quantities go to zero) we naturally
arrive at the density of particles p(u)cos@ at a point, in a single direction, at an
instance. Here and in the following p = (Z,4) is used as a coordinate free way of
talking about a point and an attached directed line. The factor cos @ arises from the
orientation of the small area which we considered. Since we do not want to tie the

density to a particular surface it makes sense to separate out the term cos . We thus
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have radiance, L(p) giving us the density of flux at p.

Based on the above motivation and in order to not tie ourselves to any particular
parameterization we can consider L to be a function defined on M? x H?, i.e. the set
of all points on some two dimensional manifold (not necessarily connected), and a set
of directed line segments attached to each point & € M2, which is isomorphic to a
hemisphere. M? will be the set of all surfaces in our scene. In all our considerations
below we will assume opaque surfaces and hence H? will always be the hemisphere
above a given surface point and characterize all line segments going through that
point. The fact that H? is equivalent to [0, 1] simplifies our approach, since we are
already dealing with a [0,1]? parameterization of surface patches. Thus radiances
are members of the space of finite energy functions which map M? x H? into the
reals, L*(M? x H% R). We equip this space with the standard inner product (f,g) =
Tuzscnz F()g(p)dp, where du = do - dA describes the appropriate measure. The
fact that this is the right measure follows immediately from the observation that the
measure of rays is a function of the diameter of the beam (d&) and its orientation
(dot product) with respect to the receiving surface element (dA).

To describe surfaces and how they reflect light we use the bidirectional reflection
distribution function (BRDF) f,. This function, f,(&',%,dJ) = fr(u, ), describes
the probability of a given photon arriving from &' at § transitioning to & and thus
gives us the right quantity to use with radiances. We use the symbol pu, = (¥, ) to
denote the 2 parameter family of line segments anchored at 4 going in some direction
. Note that due to Helmholtz reciprocity we have f,.(&',4,d) = f(J,¥,d).

Distinguishing between incoming and outgoing quantities (subscript ¢ and o re-
spectively) for now, we can write the outgoing radiance (due to reflection) for all
= (§,0) as

Lo(py) = /HZ Fr (b ) Li(payy) i,
where dy,, = i, - di’ is the appropriate measure on the set of lines at a given point 3/
with normal vector 7,,. More intuitively speaking, we compute the number of outgoing
photons at ¢ (on some surface) for any of the lines p, by summing up all the photons
coming in from all directions L;(u;) weighted by the probability that they will be
reflected to p,
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This formulation has some drawbacks. It involves two functions defined over all
surfaces, the outgoing radiance L,, and the incoming radiance L;. Furthermore when
writing functions with respect to some set of smooth basis functions we will generally
have difficulty representing L; since even for environments with no occlusion, in which
L, will have no discontinuities, we find that L; is discontinuous as a function of the
angular parameter. These discontinuities arise from the fact that as the line p;, at 3
varies, the point visible from 3 in the direction —&’ will move across diferent surfaces
in the environment [12].

In order to express the entire equation in terms of outgoing radiances only we
begin by defining a unary minus operator on line segments. Given a line segment
1= (7,) we let —p describe the line segment anchored at the point & visible from
in the direction o, —p = (&, —&J) (see Figure 15). Given two points  and ¥ in a scene
which can “see” one another we can write the line connecting them as p = (y,d)
or —u = (#,—) depending on which way we traverse it. Because radiances are
conserved along a ray in the absence of a participating medium we observe that
Li() = Lo(—p). In words, the incoming radiance at 3 from direction & is the same
as the outgoing radiance at  in the direction —& if Z is the point visible form ¥ in

the direction . Using this fact we may now write

Lo(ity) = [, £ty ) Lol =14 dit, (11)

Note that we have hidden a geometrical search task in the expression —pu;, (i.e., given
y and &' we need to determine the surface point x in the direction &' to look up its
outgoing radiance in the direction —J’).

Accounting for emitted radiance (source terms) as well we get the radiance equa-

tion
L(p,) = L%(wy)+ L (uy)
= L‘f(y,y)+/H2 oty s 1) L(— ) iy,
= L(py) + T(L)(py)

where we used superscripts r and e to denote the reflected and emitted components

of radiance respectively. The symbol 7 is used to denote the transport operator.
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Note the similarity to the radiosity equation (1). Instead of B(%) we have L(uy,)
(i.e., our quantities are defined over a 4 dimensional parameter domain instead of a
2 dimensional one). While the reflectance p in the case of radiosity was outside the
integration, it is now inside the integral in the form of f.. This follows from the fact
that in the case of radiosity no directional dependence was included in the reflectance
properties. The kernel function consisted only of G in the case of radiosity. Below
we will see that this is in fact a parameterized version of the measure dy;, itself. The
basic structure of the radiance equation falls once again into the class of Fredholm
equations of the second kind, and once again we are dealing with a smooth kernel
function, justifying our pursuit of wavelet methods for the approximate solution of
this equation.

We now examine some of the properties of 7 which will be helpful in our later

analysis.

3.2.1 Properties of 7

To understand some of the properties of 7 better we recall our way of arriving at it.
Initially we distinguished between incoming and outgoing radiances in terms of which
we can write

Lo=L:+SL;
where § denotes the scattering operator. Following a suggestion by Arvo et al.[4] we
introduce the symbol ‘H to denote the operation of taking an outgoing radiance into

incoming radiance, HL, = L;. Substituting we arrive at
Ly= L. +S&eHL;

from which we find 7 = S o H. Applying H to both sides of the latter equation and
reordering we arrive at

Li = Lf +H o SL

where we defined a somewhat unusual quantity L = HLS.

We now show that H = H* since for arbitrary f and g we have

M) = [ (HHWgu)du

M2
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:lLumfbﬂmmMu
= [, f0g(=v)dv

= [ [W)(Hg)w)dv
= (f, Hg)

where we used the fact that the measure of u is the same as the measure of —p.
Similarly we have & = ST which follows trivially from Helmholtz reciprocity. Conse-
quently we have 77 = H o S and the observation that incoming quantities observe
the adjoint transport operator.

We emphasize that all these observations are intricately linked to the inner product
used (e.i., a different inner product would yield different notions of the adjoint of all
the involved operators). For example it might be possible to define an inner product
such that 7 = 7. While this is an interesting open problem we will not pursue it
here, since we prefer to use the natural inner product on line space, and in any case

there is no need to have T =TT,

3.2.2 The Question of Importance

Recently a number of papers in the graphics community [63, 7, 12, 48] have shown
that the computation of illumination for a given scene can be greatly accelerated if
we give up our goal of producing a view independent solution and instead compute a
view dependent solution.

The derivation is motivated by the fact that we only aim to minimize the error of
the computed solution at our sensor (e.g., a virtual CCD camera). Let R(u) describe
the probability of our sensor producing a response to radiance arriving along p. Now
define L, to be the solution to the formal operator equation (1 — T)L, = R. The

response of our sensor to the incoming radiance L; is described as
(B, Ly = {(1—T)LsL)

= (Lo, (1= THL;)
= (Lo, (1 = HoS)L;)
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= (Lo,(1 —HoSYHL,)
= (Lo,H1l =S oH)L,)
= (HLo,(1—T)Lo)
= (L; L%)

The last equation shows the well known fact that the response of our sensor to incom-
ing radiance can be computed from the incoming radiance, L;, at the light sources due
to the formal transport problem which arises when treating the sensor as a radiance
source with “emittance” profile R. This quantity is referred to as importance. The
above algebraic relationship explains why we can use the same algorithm to solve
both for importance and radiance. Importance is defined as the solution to the same
operator equation as radiance, only the boundary condition is different.

The fact importance is propagated using the same integral operator and its solu-
tion algorithm, allows us to use data structures which treat importance as if it were
another set of wavelengths of light. Recall that visible light is typically modeled as
a linear combination of some small set of basis colors such as red, green, and blue
(r,g,b). Since we assume no coupling between different wavelengths, each one of these
corresponds to an instance of the solution algorithm. In practice this is realized by
making all color quantities be vector quantities. The instance of our operator and its
solution due to importance fit into this framework as well. For example, if we choose
to consider the receptivity of our sensor as a function of 3 basic wavelengths as well
we could treat all power in the system as a 6 vector and transport this 6 vector just
as we would the (r,g,b) 3 vector of a system which does not use importance. In our
implementation we have chosen to consider importance as a gray quantity resulting
in a 4 vector of wavelengths. The question that remains is that of how much “power”
our sole source of importance should emit. Since the operator is linear the magnitude
does not matter, it enters as an overall scaling into the error criterion. In practice
we have found that the numerical behavior of our algorithm is more balanced if the
total power of importance coming from the virtual observer is approximately of the
same order as the total power of all visible light emitters.

That we should be able to use this uniform treatment of colors and importance(s)
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may seem obvious from a mathematical point of view, but has not always been taken

advantage of in previously published algorithms [63, 7].

3.3 Galerkin Methods for Radiance

Independent of the parameterization used we can write the operator equation we wish
to solve as
(1-T)Lo=(1-SoH)L,=L;

Since 7T is a linear operator we can study the inversion of (1—7) using linear operator
theory.

A Galerkin approach to the inversion of 1—7 projects the operator into a subspace
spanned by some finite basis [21]. Assuming an orthonormal (w.r.t. the parameter
domain) basis a linear system of the following form results

V‘i,j : lq;j = lfj + ZTijmnlmn

mn

for some unknown expansion coefficients l;; of L with respect to a basis {N;;(u)}.
The fidelity of such a projection and its generated solution is intimately linked to the
basis functions used and their properties. For example, we will generally choose bases
which span approximation spaces of some fidelity O(h?) where h is the sidewidth of
some domain subdivision and p the order of approximation.

So far we have only discussed the radiance operator as an abstract entity. In
order to apply a Galerkin method to it and derive an algorithmic prescription for
an approximate numerical algorithm we need to choose some parameterization of the
radiance operator. There are several choices which have different implications. We

now turn to examining these

3.3.1 Parameterizing the Radiance Operator

In this section we describe the particular parameterization of the radiance equation
that we will be using in our algorithm together with some alternatives. Throughout

Z, 1/, and 2 will describe points on surfaces, where radiance originates at # and is
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reflected at 3/ in the direction of 2" (see Figure 15). Typically there are parameters
intrinsic to a surface which parameterize these quantities (e.g., Z(u,v)). We will
abstract from that fact in the following discussion to simplify the notation.

There are two common ways of parameterizing the radiance equation. One, which
we will call the directional parameterization makes (outgoing) radiance a function

of a point on a given surface and a direction attached at this point (i.e., writing
= (2,4))
Lo(¥,&) = Ly(y, &) +f 5@, 9, 0)Lo(Z(H, &), ') 7y -
where we have made the dependence of #, the point visible from % in the direction
W', explicit. 7, gives the normal of the surface at y.

The spatial parameterization describes L, as a function of two points on a given

pair of surfaces

- LA s — = =3 — dAm
Lo(#,2) = L. 9) + [ | £:@ 59L& §)C@ 1)~ do

In both cases the symbol L¢ describes emitted radiance and f, denotes the BRDF. G'is
the geometry factor accounting for visibility and the differential element to differential

element form factor

. (e - (T—3)) oy - (F— 7))
G(E, ) = D V(@)
|17 — ||
which is in fact a parameterized version of the measure du, = G%=dz.
Choosing a spatial parameterization, and hence a basis, of the form {N;(Z)} x
{N;(3)} we have L(Z,9) = 3, linn N (Z) No(y). The transport coefficients Tjjpn are
then defined as

Tijmn = (T (NiN;), NjnNy,)
:=/f/Wx%mmm S NG)N(Z) do dy dz
where k*(Z,4,2) = fo(Z,7,2)G(Z, )%= is the spatial kernel. Note that the coefficients

T jmn appear to be eight dimensional since ¥ occurs twice. However, the integral is

still only over six dimensions as one would expect. Using this observation we may
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split off one of the basis functions in 3/, say N, and interpret the T;;,,, as expansion

coefficients of a modified spatial kernel function £

BE5,2) = K(@5)Nn() (12
~ 3 TymnNm@ NN ()

In the case of a directional parameterization the basis set would typically be of the
form {N;(Z)} x {N;(J)} with L(Z,J) = X lmnNm (&) Nn(&). The spatial parame-
terization had only three free parameters (¥, v, Z) in a natural way. The directional
parameterization starts out with four parameters (Z,d', ¥, d). Since only points 2 and
i which “look at each other” will couple across the integral however this parameteri-
zation too has only three free parameters as expected. For example, one can chose to
express T as a function of (%,d) or &' as a function of (Z,¥), resulting in two different

expressions for T;jmn

T"i,jmn = (T(NiNj)quNn)
= f fy fM k(' (2, 1), ¥, &) Non () No (@) Ni (§) N (&) da dy dw
- ﬂ h/; 2 k"d(gfa g} Q)N?n(f)Nn(Q’)Nz(@NJ(Uj) dw"dy dw
W Jy
with the directional kernel k*(J',¢,d) = fo(J',9,0)n, - &'

Once again the T}jmn, admit to an interpretation as coeflicients in the expansion
of a modified kernel function k2

k(@ 9,0) = k(& @ 9),7,3)N.(&'(&,9)) (13)
~ Y TN @ NN
and k¢,
k@, 3,0) = kT, 7, 0)Nn(@@,d)) (14)

~ Y TijmnNa(@) Ni(§) N; ()

iin
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Figure 16: Ilustration of the matchup of support between basis functions. On the
left basis functions with spatial parameterization. Their supports (dotted respectively
dashed outlines) match at Y. On the right basis functions with directional parame-
terizations. A basis function with spatial support on X and some directional support
(spread of angles) does not match up cleanly with the spatial support of Y.

3.3.2 Discussion of Parameterizations

When trying to decide which parameterization of radiance to use a number of issues
arise which we will turn to now. Both spatial and directional parameterizations share
the feature that the Galerkin method effectively expands kernel functions which are
modified. In the case of the spatial parameterization we saw above (Equation 12) that
instead of expanding k£* we end up expanding k;,. In the directional case we gave two
choices (Equations 13, 14) k¢ and k%. In any case the original kernel is multiplied
with one of the basis functions and the parameterization of the measure itself. As a
consequence, the properties of the modified kernel function determine the behavior of
the algorithm. For example, suppose we use piecewise polynomial functions as bases.
In that case the modified kernel will be of higher polynomial order.

A major practical difference between the two parameterizations arises immediately
when computing the quadratures inherent in the definition of Tijm,. Suppose our
bases have finite support, as is most often the case. The 6D integral of the spatial
parameterization can be evaluated in a straightforward way with a product quadrature
rule since the domain of the integrand is a 6D hypercube. We say that the supports
of the basis functions match by definition (see the 2D illustration on the left in

Figure 16). This is not the case for the directional parameterization.
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Suppose we consider some basis function on surface X with support (#,dJ’) (see
the 2D illustration on the right in Figure 16). This rectangle of support in parameter
space corresponds to a (convolution) cone of directions in world space. The only time
there is any exchange between X and a basis function on Y is when the spatial support
of Y intersects this cone. This intersection will in general be awkwardly shaped with
respect to the spatial support % of a chosen basis function on Y. Similarly, if we
choose to fix £ and ¥ to correspond to the spatial support of some basis functions
we will only have exchange for that portion of directions &'(Z,%) which overlap the
directional support ' of the basis function on X. Again a region which is generally
awkwardly shaped. Consequently product rules are hard to apply and suffer from
precision problems [13].

On the other hand in the absence of real clustering algorithms using a spatial
parameterization makes the number of basis functions for a given patches’ outgoing
radiance an a priori function of the input complexity. However, it is not clear how
much this difference bears out in practice since the directional approaches still need
to identify and process all primitives inside the directional support of a given patches’
basis function. Further research and comparison of methods is needed to fully assess
the impact of this difference.

From now on we will limit ourselves to the spatial parameterization since this is

the parameterization we have chosen for an implementation.

3.3.3 Bounding the Number of Interactions

Earlier we argued a bound of O(k?+n) on the total number of coefficients enumerated
in the case of radiosity. The key to the argument, after translating the abstract
Calderon-Zygmund property into geometric language, was the observation that only
a small constant number of surfaces can have an angle subtended which is too large
for hookup at a given subdivision level. This argument extends in a straightforward
fashion to the case of radiance as pointed out by Aupperle [5]. In the case of radiance
we have not one hemisphere over which this argument is applied, but two hemispheres,

one incoming, one outgoing. As in the case of radiosity we can bound the error in the



CHAPTER 3. RADIANCE 86

solution above by giving a bound on the difference between the approximate kernel
as computed by ProjectKernel and the actual kernel.? Unfortunately the radiance
kernel is not of the proper form to directly apply the Calderon-Zygmund properties,
but we can reduce it to a concatenation of two such operators.

Suppose we are using constant basis functions only (a sufficient condition to argue
the asymptotic bound even for higher order basis functions). We begin by letting
F, = sup|f,| over the supports in question. Using this bound® we can now ignore
[ entirely in the involved integrals. Assuming that the basis functions are bounded
(as they are in our case) we can also replace the presence of N, in k with its upper
bound. Since we are using a spatial parameterization and constant basis functions

only for the sake of this argument we are left with showing

|G(&, §)G(4, Z) — G(Zo, 5o) G (#o, Z0) |

observes an angle subtended bound. Once again Ty, %, Zo are chosen to be the
midpoints of the supports of areas involved.

Note that the integral operator corresponding to the kernel function G(z,y)G(y, 2)
is simply the second power of the ordinary radiosity operator, G2. With this obser-
vation we can immediately reuse our arguments from the case of radiosity. If a given
element 4 in the radiosity case interacts with an element 7, and j only interacts with
a constant number of other k, then the total number of basis functions with 7 in the
middle can at most be this “constant number squared.” This is still only a constant
number of basis functions, the property we need.

The bound on such a concatenation is simply the product of the individual bounds

leading to
it i gt g 2 (IR, (IELY
”kn(‘(f)y?i,) - kn(woayﬂazﬂ)” S (/ - -
’n‘";,;y Tyz
for a triple of surfaces away from the singularity (the case touching the singularity is

handled just as it was in the case of radiosity and is not repeated here). ||| gives the

2 Again taking advantage of the boundedness of the radiance operator when mirror reflection is
excluded (see Arvo [4]).
3The bound is infinite for mirror reflection, thus we must exclude it.
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length of the longest dimension involved and r,, stands for the radius vector between
x and y, and similarly for ry.

Once again we have the crucial bound involving this time a product of angles sub-
tended. If the product of these two angles subtended is small enough our error will be
small. From this follows immediately the claim that subdivision will eventually bring
the error below any strictly positive bound. The total number of triples involving
the middle surface is again bounded by a small constant based on the observation
that the two hemispheres above y (one incoming, one outgoing) can only have a small
constant number of surfaces with angle subtended larger than some threshold. At
worst all these pairs of surfaces cause recursion. In practice we can generally do
much better since the distribution of outgoing power as a function of some incoming
direction is not uniform anymore. In some sense the uniform case is the worst case for
this argument. In any case, we still have only a small constant number of such “pairs
which are too large” at each level of the hierarchy, leading to a bound of O(k® + n).
This time the dependence on the number of input surfaces k is cubic since the initial
refinement is over all triples of (mutually visible) surfaces.

While in the case of radiosity the features of the kernel function G were responsible
for the (local) number of interactions created we now have a dependence on both G
and f,., the BRDF. The asymptotic argument relies on our ability to bound f,., which
leads to the exclusion of mirror reflection from our implementation. Mirror reflection
corresponds to a Dirac delta distribution for f,. Given some finite upper bound the
algorithm is most sensitive to the actual variation in the kernel function. Very peaked
BRDFs require fine subdivision in the peak area to model it in a piecewise polynomial
fashion, while away from the peak only few piecewise polynomial basis functions are

required.

3.4 Implementation

In this section we discuss some of the implementation details which arose in our

approach and how they were addressed.
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As mentioned above we use a spatial parameterization with multi-wavelet (piece-
wise polynomial) bases. This approach is a direct extension of the earlier WR work
reported in |28, 54|. The main difference is the added number of dimensions. Using a
spatial parameterization, the directional dependence is parameterized with respect to
other surfaces, resulting in basis functions whose domain is [0, 1]*. Consequently the
quadrature rules are still product rules. Instead of being four dimensional as in the
case of radiosity where two basis functions over [0, 1]? interacted across the radiosity
kernel, they are now six dimensional with two basis functions over [0, 1]* interacting
across the radiance kernel with the middle two dimensions matching up.

Coefficients of basis functions are not tied to individual surfaces anymore but

rather to pairs of surfaces

typedef struct Basis{
Element 1i;
Element j;
float coeffs[M][M] [M][MI;
Basis children[2][2];
List<Link> gather;

&

where M is the number of vanishing moments. Each basis is coupled to some set of
other bases in the system, those with which it interacts due to the action of the oracle.
These interactions are the links which govern the exchange (gathering) of power.
Instead of having only links between surface elements there are now links between
pairs of surface elements, with the middle surface matching up. These are the 7.,

of our expansion

typedef struct Link{
Basis 1ij;
Basis mn;

float couplings[M] [M] [M][M][M][M] [M][M];
¥



CHAPTER 3. RADIANCE &9

The resulting data structures follow closely the ideas presented by Aupperle and
Hanrahan in [6]. Visibility is determined as described by Teller and Hanrahan [67].
The actual code of our radiance implementation is a strict superset of our earlier WR
code. The quadrature used is straightforward Gaussian quadrature [52]. Since we use
a spatial parameterization simple product rules suffice. In the following sections we
address some individual details associated with the particular implementation of the

radiance solver.

3.4.1 ProjectKernel

Once again a simple recursive procedure [32, 28| considers the coupling between sur-
face pairs (bases) and naturally accounts for all power transfers while maintaining

some error threshold

ProjectKernel( Basis ij, Basis mn )
error = Oracle( ij, mn );
if( Accept( error ) || RecurLimit( ij, mn ) )
Tijmn = Quadrature( ij, mn );
else
if ( PreferredSubdivision( ij, mn ) == ij )
ForAllChildren( c, ij )
ProjectKernel( c, mn );
else
ForAllChildren( c, mn )

ProjectKernel( ij, ¢ );

Note that we only subdivide one of the bases. Since its support is a four dimensional
domain it would be natural to divide all dimensions in half, resulting in 16 children.
Instead we follow the suggestion of Aupperle and Hanrahan [6] and divide only one
of surfaces associated with a basis function. The result is that we have only four
children, leading to a considerably smaller branching factor. When doing so it is
important that the decision as to which element associated with a basis (i or j) is

subdivided, be made consistently. Suppose when refining 75 with respect to mny we
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decide to subdivide ¢, and when refining 7 with respect to mn, we decide to subdivide
j. In this case we will have an inconsistent notion as to what the children of 77 are.
This must be prevented. In order to make the decision of PreferredSubdivision be
unique it is based on properties of 77 and mn in isolation. In particular we subdivide
the larger of the two elements (as measured in angle subtended from the point of view

of the other one).

3.4.2 Shading Model

As a BRDF we use a sum of a pure diffuse component and a microfacet model. We use
the approximation to the Beckmann distribution together with an approximation of

the Smith shadowing factor and an anisotropy control term all proposed by Schlick [51]

felt,u, v, w) = %ﬂz(ﬂa(w)
v
9(v) = r+o(l—r)

S ()

B P
aw) = \/p2 +w?(l - p?)

where t = H - N is the cosine of the angle between the local surface normal and the

half angle vector between incoming and outgoing directions; v and v’ are the cosines
of the incoming and outgoing directions respectively with the normal; w gives the co-
sine of the half angle vector with the preferred direction of the anisotropy model. The
parameters r,p € [0, 1] control roughness and anisotropy respectively. The Fresnel
factor was set to one. The images in Figure 24 show the use of the anisotropy factor.
The approximation as given is not normalized and its directional-hemispherical re-
flectance is not independent of incoming angle. However, its directional-hemispherical
reflectance is bounded by 1 which suffices to avoid energy gain.

We chose this model since it is based on a well established theoretical model
(Beckmann/Smith) but easy to implement and evaluate (due to the Padé approxi-
mation). Physically however this model is still unsatisfying since its parameters are

phenomenological and its directional-hemispherical reflectance is dependent on the
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incoming ray direction. Clearly better models would be desirable for use in computer
graphics. We point out that nothing in the algorithm as we implemented it actually
depends on this particular BRDF and it could easily be exchanged for another.

3.4.3 Oracle

The oracle is implemented as a polynomial estimator which tests whether the kernel
over the support of the basis functions in question is almost a polynomial of order
M — 1. Given the samples used in the quadrature for the coupling coefficients we
construct an interpolating polynomial with Neville’s method [64] (see Appendix B for
implementation details). Taking a set of samples of both the actual kernel and the
interpolating polynomial we estimate the distance between the two. Using this kind
of estimator is straightforward and independent of the BRDF actually used. However,
since we are point sampling the kernel function we may miss important features in
it. In the case of radiosity this was not an issue since the reflectance was uniform in
all directions. For radiance the reflectance properties can become very peaked and it
is easy to miss the all important peak of such a distribution. Aupperle [6] first made
this observation and used a geometric analysis over a given transport triple to bound
individual terms in his shading model. We adopt a similar approach. Asin Aupperle
we use geometric analysis to put interval bounds on incoming and outgoing angles.
If a spatially varying anisotropy factor (a(w)) is included we must also bound the
range of angles of the preferred direction (“the scratches”) over the reflector. Instead
of “hardwiring” the analysis for a given shading model as Aupperle did we proceed
by directly applying an interval evaluation of our BRDF to bound the total range of
values taken on [46]. Let At, Av, Av', and Aw be the individual interval bounds.

Using interval arithmetic we get
Afy = fr(At, Av, A'U"J Aw)
Afr = (froms frma) gives the min and max values of f, over the surfaces in question.

This spread in the value of f, is used as a weight of the error estimate derived by the

polynomial oracle. Let v be this error estimate. We scale it by

1+ 7(1 = ) (froe = From)



CHAPTER 3. RADIANCE 92

The factor or r normalizes the BRDF since its peak value is proportional to =1

The factor (1 — r) insures that the penalty scaling increases for more peaked BRDF
functions where the danger of aliasing is mmich larger.

This augmented oracle has been successful in finding the peak of a BRDF and
insuring the sufficient subdivision occurs around the peak. Figure 20 shows the oracle
in progress. Notice the detail in the meshing as the error threshold is lowered. In
particular for very peaked reflectances (r = 0.001) we can see in the images “islands”
of fine meshing in the region of the reflection peak. Another example for anisotropic
reflectors is shown in the images at the top of Figure 24. Notice in particular how
the mesh follows the high anisotropy gradients of the reflection (most noticeable in

the green part).

3.4.4 Accept

The function Accept is similar to its counterpart in the case of radiosity. It uses a
product of kernel error and power (brightness refinement). As before we can employ
multi-gridding by reducing the error criterion on successive iterations. Radiosity
computed a view independent solution. In the case of radiance this is much too
expensive in terms of both storage and time. We have therefore used importance
driven refinement as well.

As pointed out earlier importance can be treated as just another color channel (our
importance is “gray”) and we have implemented it in this way. Each scene contains
one special quadrilateral which models our virtual CCD camera. It is 1em? and the
only source of importance. The final image is generated by evaluating all outgoing
radiance basis functions connected to this quadrilateral. It is also possible to assign
importance emission values to any other primitive in the scene, but we have not done

so at this point.

3.4.5 PreferredSubdivision

If the error over a given interaction is found to be too large the constituent pair with

the larger angle subtended is subdivided. There are four possibilities. A, or A, may
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be too large from the point of view of A,, or A, may be too large from the point of
view of either A, or A,. In each case a unique decision is reached (see the discussion
above considering the creation of only four children) just as was done in Aupperle
and Hanrahan [6].

3.4.6 Gather and PushPull

The iterative solver is implemented as before. Given a set of links (iterations) we
move radiance from one end of the interaction (basis ij) to the other (basis mn),
multiplying it with the couplings stored in the link. Each such iteration, which starts
at the roots of all the basis hierarchies, is followed by a PushPull up and down
the basis function hierarchies. The only difference to the function PushPull in the
radiosity system is the fact that the radiance PushPull extends over four dimensions,

not two.

3.4.7 Separation of Directional and Isotropic Radiance

In environments which contain both purely diffuse and glossy reflectors it is desirable
to distinguish between diffuse and glossy transport. This approach avoids the cost of
the extra directional dimensions in transports which are independent of direction, for
example reflection off a diffuse surface.

We take advantage of this by classifying a given link into one of the following
categories. A link is called

e diffuse if both source and destination are diffuse. In this case only the usual
radiosity couplings Tjjmn, 7 = 0 and n = 0, need to be computed and associated

with the given link

e glossy if the receiver element exhibits glossy reflection. In this case the source
may itself be diffuse or glossy. The diffuse case is simply characterized by cou-
pling coefficients Tjjmn for which n = 0. This corresponds to writing L(Z,y) =
BfT—f) and only using the constant basis function in 3. Otherwise these trans-

ports are characterized by the full range of subindices on T}, and represent
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the canonical case with all coefficients computed

o muzed if a glossy source interacts with a diffuse reflector. In this case the set

Tijmn reduces to one for which j = 0 and we only compute the remaining 7.

During the solution process radiosity coefficients are kept at elements while radiance
coefficients are kept in a separate tree data structure corresponding to the hierarchy
of radiance basis functions. Gathering is performed across diffuse links just as in
radiosity (i.e., the radiosity of the source is moved across the link, multiplied with
the transport coefficients and added to the coefficients of the receiver). Gathering
of radiance occurs across glossy and mixed links and is only distinguished by the

dimensionality of the quantities being moved and multiplied with coupling coefficients.

3.5 Results

The above algorithm has been implemented as part of our rendering testbed [28, 54,
24, 67]. In order to verify the algorithm and its implementation we have considered
a number of configurations. These configurations were designed to both stress the
numerical algorithms and to be verifiable in an independent manner. In this section
we describe three of these configurations and give results from simulations which show
behavior consistent with a theoretical analysis.

The first test configuration is shown in Figure 17. A diffuse emitter is placed
above a glossy reflector. We examine the irradiance on a diffuse receiver wall. Due to
the relative orientations any transport to the wall has to occur across a single bounce
off the reflector, creating an intersection of the directional lobe of the BRDF with the
wall. The irradiance on the wall is equal to
B(Z)

i

B = [ [ #&3.290@1N=70,7) dAsdA,

where & is located on the source A, i on the reflector A,, and Z on the receiver wall.
Because of the relative ratio of size of source/reflector and the distance to the receiver
wall a one point quadrature rule will incur an error on the order of 107*. In other

words, the irradiance on the receiver follows the pointwise evaluation of f, itself to
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Figure 17: Geometry of small source/reflector test configuration. The source is in-
clined 45° to avoid any direct illumination of the receiver wall. The reflector is inclined
15° to cause a significant intersection between the directional lobe of the BRDF and
the receiver wall.
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Figure 18: Relative L! error for the small source/reflector configuration as a function
of number of interactions allocated by the oracle and used for transport. From top
to bottom we plotted multi-wavelets of 1, 2, and 3 vanishing moments.

within 1074, This is used as the reference solution to which to compare our computed
solution. Note further that f,.(Z, 7, 2)G(y, 2) has a very high dynamic range. f, itself
ranges from unity (directions which have only a diffuse contribution) to % (i ranges
over 2 orders of magnitude due to the denominator ranging from (1m)? to (9m)2.
The particular value of r used for the graph in Figure 18 was 0.01.

Figure 18 shows the convergence behavior of multi-wavelet bases with M = 1,2,3
vanishing moments. The error is relative L' error defined as

Ia, |E(2) = E(2)| dA,
Ja, 1 E(2)] dA;

where F(z) denotes the computed solution. This integral itself is evaluated with a

repeated trapezoid rule 3 subdivision levels finer than the irradiance computation.

In this way any error incurred in computing the error integral itself is prevented
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Figure 19: Relative L' error for the test configuration as a function of number of
kernel evaluations. From top to bottom (left to right) we plotted multi-wavelets of 1,
2, and 3 vanishing moments.

from contaminating our convergence measurements. The independent variable in
the resulting graph gives the number of couplings allocated by our oracle and the
associated radiance/importance refinement procedure and consequently used during
the computation of transport.

The plot shows clearly the convergence behavior of the three different types of
bases. The data points have been least squares fitted with lines. The resulting slopes
have ratios very close (within 3%) to 1 : 2 : 3 which are the theoretically predicted
ratios for the given order of basis functions. However, when plotting the data in this
way we are ignoring the increasing work necessary for higher order quadratures which
are required by higher order basis functions. Figure 19 shows the same data, but this
time plotted as a function of the number of kernel evaluations which more closely

measures the actual work performed by the algorithm. Due to the sixth order scaling
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of the samples for a 6 dimensional quadrature rule the higher order basis function
data points are moved over to the right. In fact the quadratic basis function data
points move over so far that quadratic bases only become competitive at very high
accuracy requirements.

The images in Figure 20 (frontal views of the receiver wall) show the oracle in
progress. The top row shows the perfectly diffuse case (r = 1), the middle row
a more directional case of r = 0.01 and the bottom row a very peaked BRDF for
r = 0.001. In each row the first image has an error on the order of 10%, the second
on the order of 1% and both show the associated meshing. The final image shows final
accuracy with linear basis functions at a finest allowed subdivision level of 25e¢m. We
can clearly observe the increased meshing where the kernel function has the highest
variance. Note in particular the separating “islands” of fine meshing as r is decreased.
One is in an area where the variance is dominated by diffuse reflection the other in
the area where the lobe of the BRDF intersects the wall. The pattern of light on the
wall shows clearly the pinching off of the peak in the directional lobe of the reflectance
function as r is decreased and demonstrates the action of non-diffuse transport.

One aspect which is not stressed by the above configuration is any significant area
integration over the light source or the reflector surface. The difficulty with such a
configuration is the need to find an independent means of verifying the computed
answer. We now turn to such a configuration.

Figure 21 shows a diagram of a diamond shaped light source over a base polygon.
The light source is located at the far end, while the eye is at the near end looking
down at an angle of 45°. A picture of this configuration can be seen in Figure 22.
The roughness parameter was set to r = 0.01 for a fairly peaked response. There is
also a diffuse component of d = 0.1 which can be seen at the far end right below the
light source. The error in the computed solution was estimated by an independent
integration module which evaluated the radiance at a given point on the reflector
with respect to the eye by using a 7** order Gauss quadrature over the light source.
Evaluating this function pointwise at a grid 3 levels below the subdivision grid on

the reflector produced a numerical answer with significantly higher precision than
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Figure 20: Images of small source/reflector test configuration for different roughness
values (r = 1,0.01,0.001; top to bottom) and different error criteria (10%, 1%, final
accuracy; left to right).
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Figure 21: Geometry of large area source/reflector configuration. The source is par-
allel to the reflector at the far end, while the eye is inclined by 45° towards the
reflector.

image of diamond light source image of example of grid for above

Figure 22: Images of large area source/reflector test configuration. On the left the
radiance as seen from the eye; on the right the induced meshing (r = 0.01; linear
basis functions).
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Figure 23: Relative L' error for the configuration in Figure 21 as a function of kernel
evaluations. From left to right we plotted multi-wavelets of m = 1,2,3,4 vanishing
moments.

our computed solution. The convergence results are plotted in Figure 23 for multi-
wavelets of m = 1,2, 3,4 vanishing moments respectively. Once again we can see the
characteristic convergence rates (fitted lines).

Schlick’s BRDF [51] also allows for an anisotropy factor, which we took advantage
of in Figure 24. It uses 3 colored light sources to show the resulting reflections.
Figure 24 shows a rendered image of this configuration on the top left and with
the corresponding meshing on the reflector on the top right. Note the fine level of
subdivision in the areas where the radiance changes most rapidly. This simulation
used linear basis functions, a roughness parameter of » = 0.1, and an anisotropy factor
of p = 0.1. The preferred direction of the anisotropy model (“scratches”) was given
by the family of hyperbolas xz * y = +¢ (note the singularity in the middle). Using

this anisotropy factor which was spatially varying further shows that the refinement
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Figure 24: Top left: configuration with 3 light sources and an anisotropic reflector;
top right: the induced meshing. Below is a sequence of views rotating about the

center. Note the moving highlights (r = 0.1,p = 0.1; linear basis functions).
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oracle captures the important details reliably. The sequence of images in Figure 24
shows a spatial plot of the resulting radiance field by rotating the eye 90° around the
model. Notice the motion of highlights above the floor as is characteristic for glossy
reflectors.

Figure 25 shows one of the typical effects when simulating glossy reflectors. The
floor is glossy while the far wall is modeled as a diffuse, textured reflector. Depending
on the glossiness of the floor the reflection is more or less “smeared” out. In the
upper left is the diffuse case (r = 1) while in the lower right a highly specular case is
seen with (r = 1/2048). To characterize the “peakiness” of the latter value we can
relate it to the angle about the mirror direction at which the value of the BRDF has
fallen off to 1/2 peak: 0.82°. For such peaked reflection responses a finite element
technique as we employed it is probably not competitive with a raytracing approach.
However, it served as a stress test for our code and was meant to probe the limits of
the numerics.

We next considered a scene in which multiple glossy bounces occur. Figure 26
shows nine multi-gridding refinement steps (i.e., each image from top left to bottom
right represents a decrease of the error criterion by v/2 followed by refinement and
an iteration of the operator) of a simulation involving multiple glossy reflection. It
contains a single area light source (diameter 25¢m) above and to the right of the
viewer’s eye position. The walls are modeled as pure glossy (i.e., metallic) reflectors
with r = 0.03125, corresponding to a halfangle spread on the peak of the BRDF of
6.6°. All other surface elements are pure diffuse reflectors.

The highlights on the left and right are paths involving one glossy reflection be-
tween the light source and the eye. The blurred images of the floor in the metallic
walls correspond to a diffuse followed by a glossy reflection. Finally there is a fainter
highlight on the left wall close to the corner. This corresponds to a double glossy
reflection (light to right wall to left wall towards the eye). Table 27 gives some of the
relevant statistics for this scene. The basis functions used were linear (2 vanishing
moments). All timings were performed on a 150MHz R4400 SGI computer. Note that
the times are dominated by glossy link refinement as it is the most expensive part of

the computation. There is also a rhythm noticeable in the refinement steps. Every
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Figure 25: “Smearing out” due to a glossy reflector. From left to right, top to bottom
the floor has an r value of 1, 1/4, 1/8, 1/32, 1/128, and 1/2048.
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Figure 26: These images show a multi-gridding refinement of a simple scene with
multiple glossy reflections.

iteration radiosity radiance | interaction | A time
coefficients | coefficients triples
1 56 282 462 2m
2 96 549 1320 Tm
3 160 1092 2811 12m
4 260 2307 6573 29m
5 360 3570 11040 356m
6 476 6873 22206 85m
/i 612 9489 32040 T4m
8 1024 16902 58524 | 188m
9 1276 20034 71997 | 104m

Figure 27: Statistics for Figure 26. For linear basis functions each radiosity coefficient
consists of 4 floats, while each radiance coeflicient holds 16 floats.
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second refinement step has a marked increase in cost followed by a refinement step of
similar cost. This is due to the length of the transport paths over which refinement
occurs (e.g., the double glossy bounce across the two glossy walls).

Finally Figure 28 shows the same environment with a colored cube added to create
more complicated transport paths and force some partial visibility refinement. The
front and right side of the cube are diffuse, while the left and back side (neither one
directly visible) are pure glossy reflectors of blue and green color respectively. The
top of the cube is a white pure glossy reflector. The far wall now shows some green.
This is due to a path involving a triple glossy transport originating at the light,
bouncing off the far wall, the back of the cube, off the far wall again, and finally into
the observer’s eye. Similarly the blue reflection on the left wall a triple glossy bounce
from the light source, across the left wall, onto the left side of the cube, back onto the
left wall and finally into the eye (see the diagram at the bottom of Figure 28). Note
that the light source placement was chosen such that the backsides of the cube do not
receive any direct light. The image shown in Figure 28 used linear basis functions,
and had 2725 radiosity coefficients (each 4 floats), 63959 radiance coefficients (each
16 floats), and 272433 transport triples. Total compute time for 11 multi-gridding
refinement steps (similar to the refinement shown in Figure 26) on a 50MHz R4000

SGI computer was 50 hours.

3.5.1 Performance Issues

We have profiled the current wavelet radiance implementation to understand better
where it spends its time. All percentages we give in the following discussion are
for radiance with linear basis functions and an environment containing significant
occlusion.

About 20% of all cycles are spent in the polynomial interpolator oracle. This is
the single most expensive function which has room for improvement. In the case of
constant basis functions the original HR code used a simple point to disk form factor
approximation, whose evaluation cost was very low. In the case of radiosity going to

a polynomial estimator oracle for higher order basis functions was only a modest cost
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Eye

Figure 28: A more complicated environment with glossy reflectors and significant
interreflection as shown in in the diagram. The letter D indicates a diffuse bounce,
while G indicates a glossy bounce. Note the paths involving multiple glossy bounces.
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increase. This is not so for radiance. Because the kernel is 6 dimensional the cost of
a polynomial estimator increase by a 6th power of the number of vanishing moments
as well. For example, going from 2 samples to 3 samples in each dimension increases
the cost per polynomial estimator evaluation by a factor of ~ 11.4. In contrast, we
hypothesize that an oracle based on powers of angle subtended could be competitive
with the original hierarchical radiosity /radiance oracle.

Another costly part of the overall computation is given by visibility tests. These
accounted for about 25% of all cycles in our profiled runs. This cost is more difficult
to decrease since visibility tests will continue to be important and the current im-
plementation already uses a fairly optimized visibility oracle due to Teller (based on
work reported in [67]).

Some other observations we made are more qualitative, in that they are based on
our (and our colleagues) subjective experience in using the system. For example, the
use of memory in the current system is problematic. Our current implementation was
designed to facilitate experimentation with bases of different orders (constant through
cubic). Consequently all coefficient and interaction (i.e., the Tj;,,) data structures
are built dynamically. In the case of linear basis functions and radiance this yields
a total of 256 floating point numbers per link with a pointer overhead of 254 (to
allow C indexing into dynamically sized arrays). If instead we built a system which
“hardwired” linear basis functions, pointer overhead would disappear, resulting in
roughly half the memory requirements for a link. For cubic basis functions a single
link contains 65536 Ty coefficients and a similar amount of pointer overhead! In
the case of radiosity this cost scaling was not nearly as dramatic affording us the
luxury of a fairly general implementation.

The use of tree wavelets is also more problematic in the case of radiance. Tree
wavelets, especially when no discontinuity meshing is employed, require fairly fine
subdivision to capture details of the resulting radiance and to avoid objectionable
artifacts. In the case of radiosity the extra cost of higher order basis functions and finer
meshing was not as dramatic, allowing us to generate images with little perceptible
error at reasonable cost. Once again, the more dramatic cost scaling of radiance

makes this approach less feasible and we feel that the use of non-tree wavelets and /or
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Figure 29: The two images compare the solution computed with constant (left) and
linear basis functions (right). Both have been refined so as to have equal cost (as
counted by number of kernel evaluations).

discontinuity meshing will lead to large efficiency gains.

3.6 Summary and Discussion

In this chapter we have described a new algorithm for the computation of radiance in
the presence of glossy reflectors using multi-wavelet bases. The resulting algorithm
has been shown to converge to the correct results in a number of test configurations for
which we have independent means of verifying the answers. The rate of convergence
is consistent with the theoretically predicted rate and the benefits of higher bases
(i.e., smoother answers and smaller error as a function of work) have been realized.
As was done in the earlier work concerning WR [28, 54| we have in effect extended
the hierarchical technique to higher orders: in the case of radiosity the work reported
in [32] and in the case of radiance the work reported in [6]. The benefits are similar.
The quality of the computed images increases markedly when going from piecewise
constant bases to piecewise linear (see Figure 29 for two solutions computed at the
same cost). In the case of radiosity the work ﬁer entry in the matrix system scales
as a fourth power of the number of kernel evaluations, while in the case of radiance

it scales as a sixth power. In the case of radiosity this led to a relationship between
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user experienced work and error which clearly favored higher order basis functions
(see [28, 54]). In the case of radiance this tradeoff is not as clear. Higher order
basis functions only become competitive at very high precision requirements (see
Figures 19, 23). In practice we have found that the cost increase for linear basis
functions is not too high while yielding numerically more accurate as well as better
looking pictures. So far we have employed quadratic and cubic bases only for the
plotting of the graphs. Cubic bases are prohibitively expensive. Unless some major
optimizations in the code can be found we do not expect cubic bases to find much
application because of their high cost.

More complicated environments remain challenging for our current algorithm im-
plementation. For example, there are significant aliasing problems due to the regular
point sampling nature of the quadrature rules. The images in Figures 26 and 28 used
only linear basis functions, nonetheless we employed three point Gaussian quadra-
ture. A two point rule is theoretically sufficient, but in practice it led to too much
aliasing for these configurations. Some traces of this aliasing problem are still visible

near the far corner of the room (Figure 26).



Chapter 4

Conclusion

4.1 Summary

In this dissertation we have described and analyzed a class of algorithms based on HR
and its extension to radiance. The first part of the thesis was devoted to radiosity
while the second treated radiance. We proceeded by analyzing HR and GR and
showing that HR is in fact an instance of a Galerkin technique by interpreting HR.
as equivalent to the use of the Haar basis in a non-standard wavelet based operator
realization. Doing so allowed us to apply the analytical tools of wavelets. In particular
we showed that radiosity belongs to a class of operators characterized by smooth
kernel functions which satisfy a (generalized) Calderon-Zygmund property. Having
established this property we were able to use a very general theorem introduced by
Beylkin et al.[9] to argue that wavelets with vanishing moments can be used to create
sparse realizations of the radiosity operator. Analyzing the geometric arguments at
the foundation of HR we recognized that they provided a geometric interpretation of
the more abstract Calderon-Zygmund operator bounds. This allowed us to apply the
geometric insights into the linear bound on the number of necessary coeflicients back
to the more general Calderon-Zygmund claim.

Implementing this algorithm we found that it in fact realizes more sparsity with
increasing number of vanishing moments, leading to solutions which required less

work for a given allowable error. In particular the highest order (and most vanishing
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moments) basis functions gave us the best error per work. In order to realize the
asymptotically linear bound on the number of interactions created we had to design
an oracle function for higher order bases, which identifies the important entries in the
resulting matrix system. Our polynomial interpolator oracle took the prescription
of vanishing moments literally by testing whether the kernel function is a low order
polynomial over the support of a given set of basis functions interacting.

We proceeded in the second part to apply the insights into the use of wavelets
for the radiosity problem to the more general radiance equation. Radiance allows us
to introduce glossy reflectors. The underlying machinery of WR was extended in a
straightforward way by using the spatial parameterization of the radiance equation.
The shading model of Schlick [51] was employed including the anisotropy factor. The
oracle continued to be of the polynomial estimator type, albeit of 6th order now
instead of 4th order as in the case of radiosity. A number of test configurations, for
which independent means of checking our computed answers existed, were simulated
and the results quantitatively analyzed. We found that just as in the case of radiosity
higher order basis functions realized smaller and smoother errors. In contrast to
radiosity we found however that the cost of quadratures is so much higher for 6D
integrals than it is for 4D integrals that higher order basis functions beyond the
linear case are hardly competitive on a scale of error per work. Linear basis functions
through present a major improvement over the constant case.

In both chapters we discussed a number of implementation issues, some of which
may lead us in the future to pursue alternate strategies from the ones explored in this
thesis. In the next section we consider some of the issues in particular the contrast

between radiosity and radiance as pertains these choices.

4.2 Implementation Choices

So far we have only used tree wavelets (i.e., multi-wavelets whose filters (h,g) for
neighboring basis functions do not overlap). As a consequence we were able to use
simple data structures and could eliminate the use of detail functions (v) entirely

by effectively replacing them with the equivalent set of smooth functions (¢). The
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resulting basis function systems have the property that neighboring intervals (areas)
completely decouple and surface elements have a one-to-one correspondence to the
basis functions. This allowed us to easily argue our recursive enumeration scheme for
the generation of all important transports. It also means that there are no continuity
constraints between neighboring surface elements. At first sight this certainly appears
as a disadvantage since the human eye is very sensitive to discontinuities in the
computed answers. In practice it only becomes an issue if the error criterion is set
so high that these discontinuities are above the display’s intensity resolution. For
high precision answers the results are satisfactory. However, in many applications
the computed answer is judged solely on its “looks”, even though it may still contain
large amounts of error from a physical point of view. For these applications continuity
enforcing wavelets would be preferable.

The usual construction of wavelets in fact produces functions which overlap and
thus ensure (variable) degrees of continuity across neighboring basis functions. We
have not used such functions yet. In order to use these successfully a number of issues
need to be addressed. The recursive enumeration scheme we used would need to be
modified. In particular with overlapping wavelets there is no unique identification
of surface elements and basis functions anymore. Consequently when using a non-
standard realization of the operator an enumeration scheme has to make extra efforts
to avoid the multiple accounting of energy and cannot use simple geometric arguments
anymore. Further, we took advantage of the fact that for tree wavelets a given detail
function can be immediately replaced by its constituent smooth functions (one level
finer). This is not as straightforward for overlapping wavelets, since the constituent
smooth functions are shared by neighboring wavelets. One avenue to address this
would be to use the standard realization of the operator. Since successively finer
detail functions are added and no over representation occurs (detail functions at finer
levels are linearly independent of those at coarser levels) there is no danger of multiple
accounting of energy. However, the enumeration scheme has to ensure that for a given
region of detail, hookups throughout the hierarchy with all relevant functions occur
(see Figure 6).

Recall that the standard realization requires O(n logn) interactions. Even though
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the asymptotics are worse from the theoretical analysis point of view, it is not clear
that the extra factor of logn makes a noticeable difference. Extensive experiments
for flatland radiosity were reported in [54] comparing standard and non-standard re-
alizations. In these experiments no appreciable difference was found between the two
approaches. This matches observations by other researchers who compared standard
and non-standard realizations [36].

As pointed out earlier one difficulty with the standard realization is the control
of error in the quadratures. Since couplings are never replaced but only added, the
errors in any couplings at coarser scales have to be reduced at the same rate that
more detail functions are added. This requires recomputation of earlier couplings,
possibly offsetting the other advantages of the standard realization.

A way to retain the advantages of the non-standard realization with tree wavelets,
while addressing the disadvantages of visual discontinuities due to missing overlap,
might be to add a final reconstruction step. For example, Lischinski et al.[43] used
such an approach in the context of discontinuity meshing for HR. After some number
of iterations using piecewise constant basis functions they perform a final iteration
of the integral operator evaluating it at specifically chosen points to construct inter-
polating polynomials of higher orders for smooth display. This procedure yields very
smooth results, but is somewhat adhoc since the operator is projected into a piecewise
constant, subspace for purposes of inversion, while the display occurs supposing that
the solution comes from a higher order space.

It may be possible to address this issue with the use of bi-orthogonal systems of
wavelets. One could choose the primal basis to consist of piecewise constant functions
while using a dual hierarchy which has much higher regularity [15]. By arranging the
primal basis functions to be the ones under the integral operator we would have
a simple solution method using only piecewise constant functions. The PushPull
function would be used to switch from dual back to primal hierarchies after each
iteration (independent of the operator realization we choose). The final display would
occur using the dual functions which can be constructed to have arbitrary regularity.

In the case of radiosity the cost of quadratures was not too high and the fact that

only diffuse reflection occurs led to fairly stable quadratures. For radiance we found
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aliasing due to the regular nature of samples of the integrand taken by the quadrature
routine, to be a problem. At the same time increasing the number of samples in our
Gaussian product quadrature leads to explosive growth in the cost due to the 6th
order scaling. Gaussian quadrature rules are also very sensitive to discontinuities as
they arise due to visibility changes. The power of a Gaussian quadrature rule comes
from its high polynomial order. If the integrand however is not a polynomial the
error in the integral estimate can become rather large. Taken together, we can see
that although Gaussian quadratures are asymptotically optimal they can suffer from
high sensitivity to discontinuities, and systematic (aliasing) errors due to their regular
sampling nature. The fact that we use product rules leads to a 4th order (radiosity)
resp. 6th order (radiance) scaling of the cost. There may be other quadrature rules
which do not suffer from these problems and additionally exhibit a less dramatic cost
scaling. Since quadratures are one of the main expenses in our algorithms this is an
important issue that needs to be explored further.

Throughout we have not, addressed questions of discontinuity. Recall that the ker-
nel function contains the visibility function v(.,.) which is discontinuous. Employing
the wavelet arguments for Calderon-Zygmund operators we had to argue the smooth-
ness of the kernel function to argue the asymptotic complexity of our algorithm. In
our case the kernel function (both for radiosity as well as radiance) is only piecewise
smooth. Our current implementation relies on the subdivision oracle to capture these
discontinuities. Whenever two elements interact across a discontinuity the polyno-
mial estimator will find that the kernel is not well approximated by a polynomial and
cause subdivision. In this way any discontinuity is handled the same way as the pole
in the kernel function. Lischinski et al.[43] have demonstrated in the case of radios-
ity that significant economies can be gained from the use of discontinuity meshing
(i.e., aligning the subdivision boundaries with discontinuity features). They did so
for the case of constant basis functions. To extend their approach to higher orders we
need to construct multi-wavelets on triangular basis elements with the added degree
of freedom to choose the subdivision point freely, rather than be forced to use the
midpoint. This is a trivial if tedious exercise and we give the basis functions and two

scale relation for the case of linear triangular elements in Appendix A.
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4.3 Future Directions

The radiance problem remains hard and costly to compute. Hierarchical methods
have clear advantages over naive finite element approaches and we have seen that
increasing the order of the elements in a hierarchical scheme leads to further im-
provements. Without these efficiencies the problem would hardly be tractable. With
these efficiencies it remains costly and further improvements are needed. We already
suggested some implementation choices above which would lead to interesting inves-
tigations to understand the various tradeoffs.

The most pressing problem at this point is the cubic dependence of the overall
algorithm on the number of input surfaces. This problem can be alleviated with
a clustering algorithm, which groups surfaces into larger ensembles. First steps in
this direction have recently been taken [59, 38, 62]. We are confident that it will be
possible to address this problem adequately in the future.

As other researchers move into the field of wavelet algorithms for the radiance
problem opportunities for comparison between different approaches appear. For ex-
ample, our implementation uses the spatial parameterization. In contrast the algo-
rithm published by Christensen et al.[13] uses the directional parameterization. While
we use the non-standard realization, they use the standard realization. At this point
comparisons are still difficult, but we expect to learn more about the various tradeoff
between these different approaches.

In our implementation we have limited ourselves to planar quadrilaterals rather
than allowing more general surfaces such as bi-cubic patches. Clearly extending the
set of primitives would be desirable. The mathematical formulation as given in this
dissertation continues to be valid and we hypothesize that visibility determination is
the main problem in moving to more general primitives. As pointed out above, going
to triangular domains is not difficult from the point of view of basis construction.
This too would further increase the set of primitives allowable.

The BRDF used in this dissertation is a very efficient (Pade) approximation to a
model derived from physical principles. Nonetheless it is still not completely phys-

ically realistic and it would be desirable to remedy this by employing physically
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realistic BRDF models. More fundamentally, we would like to permit very general
reflection functions. This would give users of such a system more freedom in matching
real materials not just qualitatively but quantitatively, clearly a step necessary if we
hope to reach our goal of photo realistic rendering,.

We suspect that to reach the ultimate goal of an efficient, photo-realistic renderer,
a range of techniques will need to be combined. For example, it seems clear that
there are regimes, such as the diffuse case, in which finite element techniques are
very efficient, while others, such as pure mirror reflection, are clearly more efficiently
modeled with raytracing techniques. Efficient algorithms will need to be able to unify
these techniques and understand how to switch between them. We do believe that
wavelet approaches will have a solid place amongst the techniques used to perform

illumination computations.



Appendix A

Linear Multi-wavelets on

Triangular Domains

Heckbert [33], in his examination of Galerkin methods for Flatland radiosity, showed
that considerably more accurate solutions can be computed when using discontinuity
meshing. Recently, Lischinski et al.[43] demonstrated a similar result for 3D radiosity
using a HR algorithm in which the subdivisions of surfaces are chosen to align with
discontinuities in the radiosity function. Such discontinuities occur for example along
shadow boundaries. In order to implement discontinuity meshing for higher orders we
must satisfy two requirements. First, the elements must not be constrained to be rect-
angular since even for rectangular input surfaces discontinuity boundaries can occur
in any direction. Second, given triangular elements we must allow the subdivisions
to occur anywhere along the edges.

Such constructions are possible using the ideas of multi-wavelets generalized to
triangular domains and making the two scale relation a function of the subdivision
points. As an example of such a construction we give here the case of linear elements.
Higher orders can also be achieved by the same procedure.

We begin by defining a canonical support domain of s € [0,1], ¢ € [0,1 — s]. With
this domain and the ordinary inner product over it three orthonormal basis functions

are given by
loo(s,t) = V6(1 —2s —2t)
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1 S

Figure 30: This figure shows the geometry for triangular linear elements. The canon-
ical domain is s € [0,1] and t € [0,1 — s|. The support domains of the four children
are numbered 0-3, while the subdivision points along each axis are named (a,b,c),
each of which is in [0, 1] as a parameter of the respective edge.
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Lo(s,t) = V6(2s—1)
los(s,t) = VB(2t—1)

Letting a, b, and ¢ denote the subdivision points along the respective sides of the
triangles (see Figure 30) we get the two scale relation for the smooth function co-
efficients as a function of the parameters (a,b,c) as follows (subscripts denote one
of three basis functions, while superscripts denote one of four child support areas as

indicated in Figure 30)
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where we used the letter s to denote the coefficient with respect to a basis function
as given by the super/subscripts. Since the basis functions are orthonormal the two
scale relation is identical for Push as well as Pull.

The derivation proceeds by orthonormalizing the Lagrange polynomials which
span all linear functions on a triangular domain. This is followed by a contraction
and reparameterization of each of the orthonormal basis functions on each of the
four children. The coefficients in the two scale relation then follow from taking inner
products of the child functions against the parents (in effect expanding the parent
function with respect to the child functions). This construction generalizes to higher

order elements as well, although the expressions become more involved.
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Polynomial Estimator Oracle

When the refinement function is called we employ an oracle to decide whether a given
transport needs to be subdivided. We know that a given transport is sufficiently sub-
divided if the kernel is locally (over the support of the basis functions) approximately
a polynomial of order no higher than the basis functions employed. Let M — 1 be
the order of basis functions. To generate our polynomial estimate we take advantage
of the sample points needed by the quadrature. In order to perform a quadrature
we need to generate M samples at the Gauss points along each dimension (4D for
radiosity, 6D for radiance). These samples define an interpolating polynomial. We
do not actually construct this polynomial, but instead use Neville’s algorithm [64] to
evaluate the polynomial at selected points directly. Since all our rules are product
rules we can evaluate all quantities along each dimension in turn and in this way
reduce everything to a 1D Neville function.

Below we give pseudocode for the 4D case, the 6D case being exactly analogous
save for two more dimensions over which to iterate. We being with a single array of
the Gauss points in 1D for a particular order of quadrature M, which is used across
all four dimensions. The first step is to evaluate the kernel at all the cross product
points, resulting in a 4D array of kernel values. Given different set of test locations,
which are also used for every dimension, we evaluate the polynomial interpolator at
all such test locations. The polynomial interpolator uses the kernel samples generated

for the Gauss rule to uniquely define a multivariate polynomial which interpolates all
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the values. Comparing this estimate with the actual kernel value and summing over

all such errors we arrive at our PolynomialEstimator value:

float gauss_points[M];
float value_at_gauss_points[M] [M] [M] [M];

EvaluateKernelAtPoints( value_at_gauss_points, gauss_points );

estimate 0;
for( i = 0; i < no_of_new_samples; i++ ){
for( j = 0; j < no_of_new_samples; j++ ){
for( 1 = 0; 1 < no_of_new_samples; 1++ ){
for(m = 0; m < no_of_new_samples; m++ }{
float po = Polint4( gauss_points,
value_at_gauss_points,
test_locations[i],
test_locations[j],
test_locations[1],

test_locations[m] );

float ke = EvaluateKernel( test_locations, i, j, 1, m };

estimate += abs( po - ke );

return estimate;

It remains to show how to realize Polint4. The function Polint4 takes a set

of sample locations and the array of corresponding values and successively reduces
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the interpolation problem to lower dimensions. Consider a bi-linear interpolation
problem. Given four values at the corners, compute any value in between. We can
first perform two interpolations in the first dimension (along each of two parallel
edges) and then interpolate between these to get the final value. This basic idea

extends to higher dimensions

float
Polint4( float x[M],
float £[M][M][M][M],
float u, float v, float s, float t )

float y2tmp[M];
for( int i = 0; i < M; i++ ){
float y3tmp[M];
for( int j = 0; j < M; j++ ){
float y4tmp[M];
for( int k = 0; k < M; k++ ){
yatmp[k] = Polint( x, f[i][j1[k], t );
+
y3tmp[j] = Polint( x, y4tmp, s );

b
y2tmp[i] = Polint( x, y3tmp, v );
}

return Polint( x, y2tmp, u );

Finally the function Polint is the one dimensional Neville algorithm. We refer

the interested reader to Press et al.[49] for an efficient implementation.
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