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Abstract

In this paper, we develop an approach to studying probabilistic spaces of boolean
functions, namely recovering exact formulas for the event probabilities in terms
of the moments. While this involves analyzing a large number of moments,
there are situations in which this seems feasible to do; for the m-fold AND of
a probability space of functions, there is a formula involving coefficients with a
geometric intepretation (and which is otherwise quite simple). We investigate
the coefficients involved in the k-SAT problem, where we give a formula for the
1-SAT coefficients and are able to understand a few of the 2-SAT coefficients.
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Abstract

In this paper we develop an approach to studying probabilistic spaces of boolean
functions, namely recovering exact formulas for the event probabilities in terms of the
moments. While this involves analyzing a large number of moments, there are situations
in which this seems feasible to do; for the m-fold AND of a probability space of functions,
there is a formula involving coefficients with a geometric intepretation (and which is
otherwise quite simple). We investigate the coefficients involved in the k-SAT problem,
where we give a formula for the 1-SAT coefficients and are able to understand a few of
the 2-SAT coefficients.

1 Introduction

In this paper we begin an investigation of a set of problems via the following philosophy. Let
F be a probability space of Boolean valued (i.e. B = {0,1} valued) functions on a fixed set
S5 i.e. the events of the space are functions f:.5 — {0,1}. Viewing the elements s € S as
random variables, we can calculate the moments of the probability space with respect to the
elements of 5. In fact, because the random variables are {0, 1} valued, s™ = s for all n > 1
and s € 5, and we can restrict our attention to moments of the form

E(T)défE{Ht},

teT

for subets T C S. Once we understand these 2° moments, s = |S|, in principle we can recover
the probability of every event and reconstruct the space.

In complexity theory one typically has a sequence of sets of Boolean functions on n
variables, Fj,Fa,..., indexed by their complexity, such that 7, is derived from previous
F;’s in a simple way. For example, F,,, might consist of all m-fold AND’s of i, i.e. AND’s
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of m elements of Fq, or might consist of all depth m NAND tree’s with F; leaves, i.e. F,
consisting of all NAND’s of two elements of F,,_y. In such a situation, if we impose a
probability distribution on F; and impose a probablistic form of the deriving rule, then
the F,, become probability spaces. One can attempt to study such spaces by the method
suggested above. One might express pessimism at the fact that 22" moments are involved
in the method and must somehow be understood. Nonetheless, we will show in this paper
that this method can be used to study such problems and, at least in the case of m-fold
AND, yields interesting connections with geometry. It is the hope that these methods, when
better understood, might yield lower and upper bounds in complexity theory, i.e. that one
might be able to understand the moments well enough to tell whether or not certain event
probabilities vansish. Based on the connections with geometry we also suggest a possible
homological approach to lower bounds, which may not require analyzing the entire event
probability recovering formula.

In the case of the m-fold AND of a fixed space, Fi, recovering event probabilities yields
simple summations involving certain coefficients which are independent of m (depending only
on 7). These coefficients have a geometric interpretation, essentially the Euler characteristic
of an abstract simplicial complex. We study these coefficients and complexes in the example
of the “random k-SAT” problem. Here the author only has an explicit formula for the
coefficients for the case k = 1 (where much about the original problem is easy to understand).
For k = 2 the author has computed these coefficients for small values of n; these calculations
suggest a simple formula for the first of these coefficients, which we prove true in general;
we also calculate general formulas for the second and third coefficients, which turn out to be
fairly simple. We make some further progress towards understanding these coefficients, but
at present we do not understand them well enough to estimate the summation involving them
which gives the event probabilities. The proofs we give are based on a general fact about
Euler characteristics of simplicial complexes, proposition 5.1, which is essentially a special
case of the Cech cohomology computation; the idea to express the Euler characteristic in
terms of the “overcover” was suggested to the author by Michael Ben-Or, for which the
author is indebted to him.

To better understand the coefficients and sums involving them, in the possible absence
of simple formulas for the coefficients (for k > 2), we study the geometry of the associated
simplicial complexes. We consider their reduced! betti numbers, since the reduced Euler
characteristic is just the alternating sum of the reduced betti numbers. These complexes
often, but not always, have the property that all but one of the reduced betti numbers
vanish, i.e. real reduced homology occurs only in one dimension. We prove that this is always
the case when k& = 1 (more strongly, we show this for homology over the integers). While
this phenomenon of the purity of the reduced homology is fairly common in combinatorics
(see, for example [Bj684]), the methods used there do not directly apply here— in fact our
simplicial complexes do not even have their maximal faces all of one dimension. Yet, at least
for £ = 1, there is a purity phenomenon, the Euler characteristic coming entirely from this
one dimension; for £ = 2 there exist counterexamples, but the smaller simplicial complexes,
in particular that responsible for the first coeflicient described in the previous paragraph, has

'The reduced betti numbers are the same as the betti numbers except that the 0-th reduced betti number is
one less than the 0-th betti number. Reduced homology, obtained by augmenting the standard chain complex
by Z, and the resulting reduced betti numbers, are much more convenient for the present discussion.



purity for n = 2,3,4. We believe that further understanding the geometry involved could
yield information about the resulting coefficients, and might give insights into a possible
approach to lower bounds based on homology, which we explain in the conculsion.

In order to perform computer-aided calculations of the betti numbers, we develop some
techniques which seem to work well in practice. They are based on the Laplacian of the chain
complex. They yield an especially quick way of checking whether or not a betti number
vanishes, or of computing a betti number of small size (relative to the size of the chain
complexes).

In §2 we discuss the general method and the geometric interpretation of m-fold AND
coefficients. In §3 we recall the k-SAT problem, give a formula for 1-SAT coefficients, and
give and remark on a table of 2-SAT coefficients for small values of n. In §4 we prove the
purity for the 1-SAT complexes and give the results of computations showing that purity does
not hold in general. In §5 we give some general techniques for computing Euler characteristics
to be used later. In §6 we prove the simple formula for the first 2-SAT coefficient, and derive
a formula for the second coefficient. In §7 we derive a formula for the third coefficient, and
prove that in general the i-th 2-SAT coefficient is given by a system of linear recurrences
whose coefficients are polynomials in n. In §8 we describe the method used for homology
calculations

We conclude the paper with some remarks about further directions of study of this
method. Many upper bounds, i.e. constructions, in complexity theory and combinatorics
are based on counting arguments, which is essentially a “first-moment” analysis of a proba-
bility space. Here we suggest that it is not impossible to perform a complete analysis of the
moments, at least in certain cases. We hope that further study of these methods and the
connection with geometry may yield results not provable by presently known techniques.

The author learned of the k-SAT problem from Miklos Santha and Jacques Stern. Michael
Ben-Or made a suggestion on the calculation of the coefficients, which lead to proposition 5.1
and the proof of equation 3.3 (and, in general, sections 6 and 7). The author wishes to thank
them for discussions and comments, as well as Lynne Bulter, Vasek Chviatal, Bruce Donald,
Michael Hirsch, Richard Stanley, Fernandez de la Vega, and Avi Wigderson.

2 Generalities

Let us return to the general situation of a probability space, F, of Boolean valued functions
on a fixed set 5. Since the expected value of a {0,1} valued random variable is just the
probability that it equals 1, we have

Ex(T) ¥ Ex {H t} = Prer {flr =1},

teT

where f|r denotes f’s restriction to T'. Similarly, for disjoint subsets, A, B of S we have the
probability that an element of 7 is 0 on A and 1 on B is

Prier{fla=0, and flp =1} = Pl‘fef{(H(l -s) ]I 3) = 1}

s€EA sEB

=E{H(1—3>Hs}= > (-DFE©).

s€EA s€B BCCCAUB

o



In particular, for a Boolean function ¢ on 5 we have

Prier{f=g}= ) (-D)EQ),

occcs

where O is the subset of § where g takes the value 1, and in particular,

Prrer{f =0} =) (-1)IE(C). (2.1)

ccs

The above formulas enable us to recover the event probabilities from the moments of the
space. They are restatements (or a concise proof) of the inclusion-exclusion principle.

Given probability spaces Fi,...,F,, of Boolean functions on 5, we define probability
spaces NAND(Fy, F3), AND(Fy,. .., Fpy), ~F1, etc. in the obvious way (e.g. NAND(Fy, )
is obtained by independently choosing f; in F;, ¢ = 1,2, and taking their NAND). By
AND,,,(F) we mean the space obtained by independently choosing fi, ..., f,, in F and taking
their AND. It is easy to evaluate the E(T)’s of these derived spaces in terms of the old spaces.

Proposition 2.1

E-s(T)= Y (-1)E=(T),  Eanp(m,..5m)(T) = Ex(T)- - Ex,(T),
RCT

Exano(r,0)(T) = Y (-1)PIEx(R)Eg(R).
RCT

As an example of the above, given n let F; be the space of Boolean functions on n
variables with each of {z1,77,...,2,,7,} occuring with probability 1/2n. Let F; for i > 1
be given by NAND(F;_q, Fi_1). Given a Boolean function, f, let i( f) denote the smallest ¢
for which f occurs in F; (with non-zero probability). It is easy to see that i(f) measures the
circuit depth complexity of f to within a constant factor. The author has tried to understand
the moments and resulting formulas in this case, but has made very limited progress in doing
so at present.

As another example, let F; be a probability space of Boolean functions on S consisting
of N functions, fi,..., fx each occuring with probability 1/N, and let Z;,O; denote the
sets where f; is 0,1 respectively. Let F,, be given as AND,,(F;). By equation 2.1 and
proposition 2.1 we have

N -\ m
i
Prrer, {f =0} =) ¢ (N) ) (2.2)
=0
where the ¢; are independent of m and are given by

¢ = E (_1)|R|_
R contains exactly ¢ of the O;’s

These ¢; can be given a geometric interpretation. Namely, let

Ai = {T C S|T contains < i of the Z;’s} = {T C S|T is a subset of < i of the O;’s}.



Then A; is an abstract simplicial complex, i.e. is closed under taking subsets, and we have

Py (D (=BT = Y (-1l = —z(Az-):NZ_lfaj(Ai),
4=0

R contains < i of the O;’s TeA;

where Y is the reduced Euler characteristic, and fzj are the reduced betti numbers (see
[Mun84]). In summary we have:

Proposition 2.2

Pricr, {f=0} = ici (%)m,

1=0

where the c; are given by the reduced FEuler characteristics

(—1)¥le; = ¥(Aiz1) - R(A:)

of the associated abstract simplicial complezes A;.

3 Random k-SAT

We now study a specific example, namely that of the “random k-SAT” problem; we begin
by describing random 3-SAT. For a given n we consider the family 7, given as AND,,(F;),
where 77 consists of the 8(3) non-trivial (i.e. # 1) disjunctions of the variables z1,...,2,
and their negations. In other words, F,, is a randomly chosen 3-CNF formula with m clauses.
The random 3-SAT problem asks for what values of m is this formula likely to be satisfiable.
For example, the standard counting argument shows that

Pryer, {f = 0} > 1 - 2*(7/8)™,

and so for any € > 0 we have that for m > (e+logg /72)n the formula is exponentially unlikely
to be satisfiable. One can also show that there exists a constant ¢ > 0 such that for m < en
a random 3-CNF is likely to be satisfiable. One can ask if there exists a threshold ratio of
m/n, i.e. a constant o such that for any € we have that for m < (@ — ¢)n and > (a 4+ €)n it
is respectively likely and unlikely that a random 3-CNF of length m is satisfiable; if so, one
can ask how Prycx, {f = 0} for m near an.

Originally, the random 3-SAT arose as a model for testing heuristics used to solve 3-CNF’s
(see [CF90] and the references there). Proving that an algorithm almost always returns a
satisfying assignment for m,n in a certain range shows, in particular, that random 3-CNF’s
in this range are almost always satisfiable.

In general, one can form the random k-SAT problem for any fixed k& and ask similar
questions. For k = 1 it is clear from the “birthday paradox” that for m < v/n and m > /n
the random 1-SAT will respectively satisfiable and unsatisfiable with high probability; one
can ask for fixed g > 0, letting n — oo with m = |fn], is there a limiting probability of
satisfiability and what is it. For k = 2 it has recently been shown (in [dIV92],[CR92], and
by A. Goerdt [dIV]) that the threshold constant is 1; it remains to analyze what happens
for m near n. For k > 2 it is not known whether threshold a constant exists; for some



¢ > 0 it has recently been shown (in [CR92])that for m/n < ¢2¥/k the formula is satisfiable
with high probability (which one can compare with the obvious threshold upper bound of
logak j(3k—1) 2); it is also known that the threshold ratio upper bound of logg /7 2 for 3-5AT
can be improved upon slightly (by de la Vega, [dIV]).

Here we study the coefficients ¢; resulting from proposition 2.2, and we write ¢ or c?’k to
indicate the dependence on n, k. Since a non-trivial disjunctions of k variables is 0 precisely
on a subcube of codimension k£ of B", we are studying the complexes .A?’k of subsets of B”
which contain at most 7 codimension k subcubes.

For k = 1 one can easily write down an explicit formula for the ¢;’s:

Theorem 3.1 For k =1 and any n we have

(=)™ (=2)(), fi<m,
1 if i = 2n,
0. otherwise.

c; =

Proof For A C B" let ¢,(A) denote the number of codimension 1 cubes it contains. For
A, B € B"" ! let A B denote the subset of B® whose restriction to z,, = 0, 1 is, respectively,
A, B. We have

0, if neither A nor B are B"~!
tn(A* B) =1n_1(ANB)+ ¢ 1, if exactly one of A, B are B*~! ;. (3.1)
2, if both A and B are B*"!

The above allows us to determine the ¢;’s, analyzing each of the three cases for A, B seperately,
viewing C' = AN B as fixed. For example, for the first case one observes

3 (—1)M4=Bl = $7 (1)l Z{ gllAI+1 iij ?:'5 g } =~ (3.9)
AB A

{(A,B)|C=AnB,
A#Bn#£B}

The above sum contributes to ¢; for every C with +(C) = i. Analyzing the other two cases
yields ¢ = —¢™! + 2¢77! for i < n — 1, from which the theorem easily follows.

|

For k = 2 we do not know of a simple formula for (all) the ¢;’s. A computer-aided
calculation gives the following values of co,...,en, N = 4(}):

n=2 cp=1,¢0=-4,6,-4,¢c4=1

n=3 3,-12,6,24,-18,-24,16,12,0,-8,0,0,1

n=4: 15,-72,84,48,-84,0,-152,192,0,128, -192, 24, —56, 48,0, 32,0,0,-16,0,0,0,0,0, 1

n = 5: 105,-600,1020,0,—-1500, 1440, —1320, 1280, —10, —1040, 2760, —3360, 640, 960, —2080,
3000, —1120, —400, 960, —960, 96, 240, —320, 160, 0,0, 80,0,0,0, —32,0,..,0,¢c40 = 1

Of course, the ¢; with ¢ large, say ¢ > roughly 3N/4 are easy to determine, because they
result only from R C B™ of small size (i.e. |R| = 1,2). More interesting is the pattern of the

co’s, which suggests:
63’2 =1-3-5---.- (2n o 3) (33)



We will prove this and derive formulas for ¢;, ey as well in sections 6 and 7. It would be
intersting to find general formulas for the ¢;’s and to have other proofs of formulas like the
above; perhaps there is a way to prove the above by relating AT to AZ in some geometric
way (e.g. via a covering).

As an example, consider Ag’z, the complex of subsets of B® which contain no adjacent
vertices. There are six maximal faces: two containing four vertices (corresponding to B3
points of XOR 0 or 1), and four contain two vertices (the four pairs of antipodal points).
It not only follows that —)2(.48‘2) = 3, but that Ag,z has the homotopy type of a boquet of
three circles, and so all but one of the reduced betti number vanishes. This purity of the
reduced homology is true in many (but not all) cases computed by the author, and will be
proven for k = 1, i.e. for all A?’l, in the next section.

Note that for large n almost all subsets of B™ contain no codimension 2 subcube, and
so ¢g is a sum over (—1)IFl of almost all of the 22" subsets of B". Equation 3.3, and in
general these calculations, suggest that there is a great deal of cancellation occurring in these
coefficients.

We also give a calculation of 3-SAT coefficients, although at present we can say little
about them (except for ¢/"® with ¢ > roughly 7(7)):

n=3 c¢p=1¢ =-8,28,-56,70,-56,28, —8,cg=1

n=4: 7,-32,64,—-288,976, —928, —960, 928, 2396, —1536, —2144, —352, 2184, 1312,
—544, —-1568, —460, 384, 736, 256, —184, —256, —96,0,88,32,0,0,-16,0,0,0, 1

n =25 57,-720,4800,—-21840, 76340, — 181664, 218840, —4400, —262020, 273600, —290016,
188880, 310620, —272960, —101440, —112224, —12040, 23920, 410960, 36000, — 148952,
—113040, —238240, 35200, 78130, 53664, 131840, —13280, 71600, —90480, —8216, —90080,
—5920, —30720, 57880, 7296, 27920, 8320, 11840, —5920, — 15880, 1920, —9480, —6080,
—6920, 6720, 1520, 960, 2760, 2880, 720, —1600, 800, —320, —800, —880, 0, 0, —320, 0, 256,
160, 0,0, 80,0,0,0,0,0,—-32,0,..,0,c50 =1

The explicit formula for c?’l can be used to calculate the satisfiability probability in the
interesting range of m. For k& = 2 the behavior of m near the threshold range of 1 -n is
unknown, and a study of the above coefficients may yield results. Of course, calculating the
probabilities using the ¢;’s and equation 2.2 involves a lot of cancellation, and so it does
not suffice to merely get good estimates on the c?’k (although this would be an interesting
intermediate step for k > 2).

Proposition 3.2 For any fized § > 0, taking n — oo and m = |fn|, the probability of
unsatifiability tends to the limit
(-

Proof By the above this probability is
s : L -1 n
1 -1 n+1 —92) n (i) =1 ( ¢ " )i,
+§( )(=2) (z) o + ;( i)
Coverting the i*’s to a sum of i¥) with 0 < j < s via Stirling numbers of the second kind,

7 (recall z(F) = k!(})), the above follows easily using 7™ , = m?*/2Fk! + O(m*~1); see
appendix A for details.



4 A purity theorem for 1-SAT coefficients and some homol-
ogy calculations

In order to better understand the c?‘k and possible relationships among them, we consider
the complexes A?’k. While it is often the case that abstract simplicial complexes arising in
combinatorics are homopotic to a boquet of spheres, and therefore have all but one of their
reduced betti numbers vanishing, these complexes usually have some nice properties, such as
the dimension of the maximal faces are constant (and equal to the dimension of the spheres
of which it is a boquet, up to homotopy). Although this is not true for almost all of the A?’k,
we still have purity for k& = 1:

Theorem 4.1 H;(A™' ,Z)=0forj#2" +i—n—2.

Question 4.2 For which k,n,t is there purity in the reduced homology of A?’k? In those
cases, does A?’k have the homotopy type of a boquet of spheres?

We note that purity does not hold in general, as can be verified by computer-aided calcula-
tions. For k = 2,n = 3, we have that purity holds for the reduced betti numbers in all cases
except i = 4, where hy = 7 and hy = 4. For k = 2,n = 4, the author has verified purity in
the case 1 = 0,1, where all but respectively hz, hg vanish, and that it fails in ¢ = 2, where
both ﬁg, hg don’t vanish.
Proof (Of theorem 4.1.) The heart of the theorem is to develop a homology analogue to
equation 3.2 and similar such equations (and to induct on n). So fix a set T (eventually we
will take T = B"~1) with ¢ elements. As before, we define A B to be the disjoint union of A
and B (e.g. B"! + B"~! was earlier viewed as B"); # extends to an operation on simplicial
complexes, called the join. For a C' C T consider the collections of subsets of T * T defined
by

R(C) = Rp(C) " {A+B|A,BCT,ANn B = C},
and define R’ similarly but requiring both A and B to be proper subsets of T'. For an abstract
simiplicial complex, C, of T' define R(C) to be the union over all R(C)’s with C' € C, and
define R'(C) similarly; both are simplicial complexes. The main tool we develop is:

Theorem 4.3 R,R' shift reduced homology by +t,+t — 1 respectively, i.c. I;’j+t(72((,')) -
H;(C) and H;4,—1(R(C)) = H;(C), for all j and C.

We first describe how to complete the proof of theorem 4.1 based on this theorem. The
analogue of equation 3.1 is that for ¢ <n — 1 we have

A} = RI(AFT UR(AL),
where we have omitted the k = 1 superscripts in all of the above A’s. Noticing that
RI(AF) NR(ALL) = RI(ALS),
yields the Mayer-Vietoris sequence

o H (RATTD) — B (RUAR)) @l (R(AITD) — 8 (AY) = Hjoa (RIAISD) = -

8



The theorem follows by induction, applying theorem 4.3, and verifying by hand, say, the case
n=1.

Proof (Of theorem 4.3.) First we check the theorem for C being the empty complex or
the complex generated by one subset. The general case follows from this by considering the
covering induced on R(C) or R/(C) induced by the covering of C by its maximal faces, and
using the generalized Mayer-Vietoris principle (which is the spectral sequence associated to
the induced Cech double complex). For details, see appendix A.

5 More on Complexes

Let S be a fixed set of size s > 0, and let P(.5) denote the set of all subsets of S (including
0 and S). For A C P(S), we set

v(A) = > (1Ml

AeA

If A is closed under taking subsets, we say A is an abstract simplicial complex or an ideal
or a decreasing system on S; similarly for closure under supersets and increasing system.
When A is an abstract simplicial complex, v is minus the reduced Euler characteristic of any
realization of A, i.e. ¥ = —x in the previous notation. If s € S has the property that A € A
iff A~ {s} € A, we say s is irrelevant to A, in which case obviously v(.A) = 0.

Given U C P(5) we define

usi & {B C S|B contains < i elements of ¢ },

and we say that U is an overcover of A when A = US°. We will be interested in computing
v of the USPs for certain U’s (such as those described in sections 3 and 4).

Given U C P(S5), we define covy to be the collection of subsets W C U such that UW = 5,

where UW denotes the union of all elements of W, i.e. = UwewW, a subset of S; covy is
obviously an increasing system on U.

Proposition 5.1 v(covy) = (=1)°v(A) for A =U=C,

Proof Follows easily from inclusion-exclusion, namely

v(A) = - Y (-1)1Bl = - 3 (-nBl=— 3 (-pHr 3 (—1lBl

B¢A BD at least one Ueld WU W+ {BluWcCB}

Z (_1)[W|{ g—l)s ifuw =9 } _ I/(COVu)(—l)S.

otherwise
WCU,W#D
Od

The above proposition enables us to calculate v(U<') from data on covy as follows. For
i > 1 we define S) to be the set of all subsets of S of size i (in particular S®) ¢ P(S)
and S() is canonically isomorphic to §). Given A C P(S), we define A to be the subsets
T € 5 whose union of elements is a set in A.



Theorem 5.2

N _ —ipr ] =1
V(.A())— Z(_I)IJI + ( . )

JeA ¢

Proof It obviously suffices to prove the formula for A consisting of one subset of 5, which
reduces to:

Lemma 5.3 Letid = S0, A= 5. Then

Y AD) = f(s,i) 4 (-1y-in (z— :)

Proof We argue by fixing i and inducting on s. If s < i the formula clearly holds. If A ¢ §()
does not cover .5, then it covers exactly one proper subset of 5, and the sum of (—1)|A| over
all A covering a proper subset 7' C S is clearly, by induction, f(|T,4). Hence

v(AN) == 30 (- = —Z(f)f(t,e‘)

Aécov, t=0

(where in the above sum we can omit 1 < ¢ < i — 1, but not £ = 0 which contributes 1 for
0 C I); the above equals f(s,7) by a standard summation formula for binomial coefficients
(see, e.g., [Knu73], page 58).

O

To apply the above, consider the natural map ¢:U4() — §, namely W ~ UW, and
B = (covy)¥, which is an increasing system on #(; clearly ¢(B?) is an overcover of YS!,
(Notice that «(B°) may be a multiset, i.e. ¢ restricted to B* may map two elements to the
same set; this is no problem since all the above generalizes trivially to multisets.) We get:

Corollary 5.4

v(UST) = (=1 Y0 F(WLL).

Wecovy

We finish this section by making a few more remarks concerning proposition 5.1. The
proposition can be viewed as follows: given 4 C P(S5), we define emp;; to be the collection
of subsets W C U such that NW = ), and we say that U covers A C P(S)if U C A and
UreuP(U) = A. The proposition is equivalent to the fact that #(.A) = —v(emp;,) when U is
a cover of A. (As such it is a special case of the Cech cohomology computation.)

We remark that given A, i is an overcover of A iff i is disjoint from A and contains all
the minimal (with respect to inclusion) subsets of S not in A; similarly I is a cover of A iff
U is a subset of A and contains all the maximal elements of A.

Finally we remark that since covy and emp;, are closed under taking supersets, their
complements are abstract simplicial complexes. This leads to an infinite family of simplicial
complexes with the same (up to sign) value of v; in the case of evaluating 2-SAT coefficients
we have only found two members of this family to be useful.

10



6 2-SAT coefficients: ¢; and ¢

With notation as in the previous section, we will take § = B™ for some value of n, and let ¢/
be the collection of codimension 2 subcubes of B (we write /" to emphasise the dependence
on n when needed). So U<* is just the A?’z of section 3.

Theorem 6.1 For any n > 2,
cg’z = V(,Ag’z) — V(USU) = V(COVun) =1-3.--.- (2’!3 — 3).

Proof It suffices to show the last inequality, which we do by induction on n. For n = 2
this can be verified by hand. For n > 2, fix coordinates z1,...,z, on § = B”, and let
U = Po 1 Py I O, where P; are subcubes where z,, = i, and O are subcubes not involving
Z,. We have
v(covy) = Z (_1)|P0|+|P1]+|O|’
F,UuPuO=S

where the summation extends over all P; C P;, O C @. Consider for fixed P; the contribution
to the RHS (right-hand-side) of the above for all relevant O C ©. Each element of P; can be
viewed as a codimension one subcube of B®™!, and @ elements as subcubes of codimension
2 of B"71; if we fix Py, Py, letting C;, i = 0,1 being the set of points in B"! not covered
by the elemnts of P;, then C; are each the empty set or a subcube of codimension |P;|, and
we have Po U P; UO = § iff O, viewed as a subcube of B"~1, covers Cy U Cy. In particular,
if Cp U is not the entire B"~!, then clearly it does not intersect at least one subcube of
codimension 2, U € O, and this U is irrelevant to the O’s satisfying FoU P, UO = § for
those fixed P;, P,; in this case there is no contribution to the RHS of the above. Otherwise
CoU Cy = B™ !, and the contribution to the RHS is clearly (—1)Fel+Pily(covym-1).

It remains to see how we can have CoUC; = B™!, which can be broken down into several
cases. The first way is to have Cp = B"~! and C; anything but B®~!, meaning P, = §§, and
Py # 0; the total contribution of this is

v(covym—1) >, (=1l = y(covym-1)(-1).
PLCP1,P1#0

The second way is the reverse, which gives the same contribution. The third way is Py =
0 = Py, contributing v(covym—1). The only other way one can have Co U C; = B! is for
Co,C1 to be complementary half-cubes; this can happen in 2(n — 1) ways, each contributing
v(covym-1). The total sum is therefore

v(covyn—1)(2n — 3).
O
In what follows we derive a formula for V(.AT’Z), in a similar but much messier analysis.
Let B%™ be (covy)(?), so that v(B2") = v(A}?), which we denote v(n). Given a subcube

U of B™ of codim 2, let ij” be the subset of 2/(2) consisting of W with UUJW = 5; clearly
v of this complex is independent of which U is chosen, and we denote this value by #(n). U (2)

is the union of P}z), 02 and “cross terms” Po—P1,Po— O,P; — O where A — A’ denotes
pairs with one element from each of A, .A’, and have
p(B3™) = E (M1)|P0—P0|+|P0—Px|+"'+IO—O|,
Po—FPo€Po—Po,Po—P1€Po~P1,...,0-0€0-0
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where Py — P; denotes a typical element of Py — Py, etc. Consider the contribution to the
RHS of the above with all but O — O fixed. Letting Cp, Cy be as before, i.e. Cy being the
points of B™~! not hit by any U € Py coming from a Py — (anything) pair, and letting D
be the points hit by U € O coming from P; — O pairs, we see that the RHS contribution
summing over all relevant O — O’s is either v(n — 1), #(n — 1), or 0, according to whether
D union the complement of Cp U Cy is (1) empty, (2) a subcube of codimension 2, (3)
anything else; the point is that anything else necessarily contains two distinct elements of
0, yielding an irrelevant element of @), A similar remark holds for V(B?}”) assuming U is
taken independent of z,, the contribution to the RHS being either #(n — 1) or 0. A messy
case anaylsis yields:

Theorem 6.2 v(2) = -3, ¥(2) = —1, and for all n > 3,
v(n)=(1-2n)v(n—1)+4(2n—-3)(n— 1)(n - 2)0(n — 1), #(n) = (2n — 5)#(n — 1).

In other words, for all n > 4 we have

and
ci(n)=-2n(n—-1)[1-3----- (2n — 5)].

Proof The values of ¥(2),7(2) can be checked by hand. The proof of the recurrences is a
messy case analysis, whose details are given in appendix B.

O

7 2-SAT coefficients: ¢; and higher coefficients

In this section we reorganize the method for computing ¢g, ¢y into one which enables us to
compute ¢y and shows that ¢; is given by a system of linear recurrences. Let B®™ be (covu)(k)
with U as before. Fix k, and set v(n) = vy(n) = v(B*").

Theorem 7.1 For any k there exists an integer I and a collection of integers vi(n),...,vi(n)
related by the recurrences:

vi(n+1) =Y Pij(n)vj(n)

i>i
Jori=0,...,1 and all n > 2k, where P;;(n) are fized polynomials. Furthermore, Py(n) is
either ta; or £(2n + a;) with a; an odd integer.

This theorem, and the calculations for k = 1,2, 3 suggests:
Question 7.2 For any k is it true that
v(n)=Q(n)[1-3-5----- (2n — 2k — 1)]

for some polynomial Q of degree 2k — 2 (and similarly for the 2-SAT coefficient cp_1(n))?

12



If we knew more about the P;;’s and v;(ng) for some ng we might be able to settle the above,
which does hold for k = 1,2, 3.

The general method used to prove the above theorem also permits us to calculate cy(n)
without too much pain. In the below v(n) = v(B>"), #(n) = v(By") (with notation as
before), and vz, vs will be described later.

Theorem 7.3 We have that for n > 4,

vin+1) = —v(n)+ 8(5)(n—3)o(n)+ 4(3)(3n— T)rs(n)+ 96 () (3n — 8)vs(n)

pin+1) = (5—2n)i(n)+ 4(n—2)vz(n)+ 4(2n—5)(n—2)(n— 3)vs(n)

vs(n+1) = (2n — 3)vz(n)

vs(n+1) = (2n — 5)ws(n)
and

v(4) =27, b(4)=4, wv(4)=3, wvs(4)=1.

In particular for n > 3 we have
v(n) = (2n* — 14n° 4+ 33n® — 33n 4+ 15)1-3 .- (2n - 7),

and
ca(n) =n(n—-1)2n* —8n+7)1-3----. (2n—T7).

Proof We begin by describing the general method. Fix k, consider all unions of < k — 1
codimension 2 cubes, W C B". We say that W is similar to W’ if there is a symmetry of B"
(i.e. a permutation of {@1,...,z,} followed by a map taking each z; to z; or 1 — z;) mapping
W to W'. Clearly there are only finitely many similarity classes of W’s (for arbitrary n,
where a W in B” determines a class in BY for all N > = in the obvious way), each one
specifiable by the first < 2k — 2 coordinates z; (i.e. each W similar to one which is the union
of cubes given by fixing two coordinates among z1,...,22;,—2). Fix one representative for
each similarity class, Wy = 0, Wh,..., Wy, and let v;(n) = V(Bﬁ,?), where B’,Ij\’;L denotes those
subsets of 4(¥) whose union with W covers all of B". v;(n) is defined for all n big enough so
that B™ contains a subset similar to W;, which is certainly true for n > 2k — 2.

We begin by arguing that there is a recurrence for vp(n + 1) in terms of v;(n). vp(n) is a
sum over all k element multisets on {Pg, Py, O}; as before we view the O®) summation last
and consider fixed subsets of the other multisets on {Po, Py, @}. So consider all such fixed
subsets (i.e. subsets of U(*) avoiding O(k)) whose image in Py, Py, O is Py, Py, O respectively.
By theorem 5.2 we have

1P|+ P+ |0 -1
wn+1)= 3 (—1)PolHIPIHOM 1(| ol |k1|_1| | )VOU(PDHPO(”) (7.1)
Fy,P1,0

where the v in the above is the v; corresponding to the W in the similarity class of OU(PoN P )
(this always being a union of codim 2 subcubes), and the summation extending over all
Po, P1,0 with O U (Po N P1) a union of < k — 1 subcubes. (In the above formula O consists
of < k — 1 subcubes, so the fact that we omit @*) does not affect theorem 5.2

We break the above sum into a number of cases. The first is Py = P; = (0. In this case
we only get a contribution when |O| = 0, yielding a contribution of v(n).
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The next case is Py = (), P; # (). The total contribution is

|le| Z(—l)p1+iOI+k—1 (Pl “;|_O|1— 1) (lpll)yo('n);

pi=1 0 P

since zgfzo(—l)pl (ﬁ'{)Q(pl) for any polynomial @ of degree < M — 1, and since |Py| > k
assuming n > 2k 4+ 1, the above sum is just

— ¥ (~1)lota (1?_—11) ol
0

which is just —vp(n) (again only |O| = 0 contributes).

The case P, = (), Py # () gives the same contribution.

The only remaining cases are when both Py, P; are nonempty. It suffices to consider the
cases when each | P;| is at most k, for if one is larger and the other is nonempty then Py N P
is the union of at least k codim 2 subcubes; also one can assume |O| < k — 1. Using the
symmetries of B", it suffices to consider a finite set of cases (namely those where each P; is
given by fixing 2,41 and one coordinate among z1,...,Zt_3, and each O is determined by
fixing two coordinates among the first 2k — 2). Each such case contributes a constant term
(coming from (—1)Fol+IP1|+0]+k-1 (|P°|+|‘z1_|‘1"|0|_1)) times a »; term times the number of ways
the term can arise from symmetries, which is clearly a polynomial in n. Hence we have

vo(n 4 1) = Poo(n)ve(n) + - - + Por(n)vi(n)

for all n > 2k with fixed polynomials Fj;.

The same argument shows that all the v;’s satisfy such a recurrence. Clearly we have
P;; = 0if W; is not, after applying some symmetry of B", a subset of W;. Ordering the W;
so that their size is non-decreasing with 7 gives P;; = 0 for 7 > j.

Next we consider Ppo. When both Py, P; are nonempty, the only way that O U (FPon P;)
can be empty is for O = @ and for Py, P; to consist of complementary half-cubes (in their
images in B™, which can happen in 2n ways); since |Py| + |P1| 4+ |O| = 2 in this case, it only
contributes for k = 1,2. Hence we have Ppo = —1 for £ > 3 (and = —1 — 2n,—1 + 2n for
g 21

Next consider P;; for j > 0. The contribution to P;; from the cases where one or both
of P; are empty is —1; the contribution when Py, P; are each of size one and consist of
complementary half-cubes contributes only when some O with 2+ |0| > k is a subset of W,
which occurs only when W; consists of £ — 2 or k — 1 codim 2 subcubes; in these cases the
total contribution is easily seen to be —2n,2n respectively. When both Py, P; are nonempty,
aside from the case where Fp, Py consist of complementary half-cubes, there are only a finite
number of other possibilities (truly finite, not merely up to B™ symmetry), since we must
have O U (Fo N P1) C W;. In each of these finite cases we have Py # Pi, for otherwise
Po N Py would contain a half-cube which contains 4(3) codim 2 cubes; hence the (Py, P1,0)
possibilities can be paired off into pairs in which the first two members are switched. Hence
P;j is —1 plus an even constant and possibly plus +2n.

In the rest of this section we summarize the k = 3 calculation, leaving the details for an
appendix. Set v, as before, and set v;(n) = vy, for i = 1,...,5, where Wy = {z122, 2123},
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W, = {2122, T122}, W3 = {2122, 7173}, Wy = {2122, F123}, Ws = {2123, 2324} (here z;2;
denotes the subcube with 2; = z; = 0, 2;7; the subcube z; = 0,2; = 1, etc.). Clearly v5(n) =
v4(n) = 0for n > 3. A not too long analysis of the cases (|P1|, | P|) = (1,1),(2,1),(3,1),(2,2)
(no others are of interest) yields the recursion

v(n+1)=—v(n) +8 (Z) (n—3)p(n)+ 4(;) (3n — T)va(n) + 96 (Z) (3n — 8)ws(n) (7.2)

(see appendix C for details).
One can use the above to easily get the recurrences for the other v’s. For example, #(n+1)
equals the RHS of the above with the following substitutions:

. . 1
ViU, Vi /D,
A(3)
1 4(n — 2) 4(";%)
V3, = V1, —ny Vs
4(3) 4G " 4

This is because # = vy7, and we can consider all 4(3) images, W, of U under B" symmetries
and take 7(n + 1) as the average of the vy’s. Then the exact same analysis which yielded
equation 7.2 can be applied, except that vw(n) terms must be replaced by the average of
vwuw (n) averaged over all U images, W. For example, when W = U, then finding the
average of vyyuw(n) is a matter of determining for the 4(3) different W’s what is the shape
of WU W. There is one W for which one gets U itself, one yielding W3, 4(n — 2) yielding
W, etc.

This same averaging trick shows that v3(n 4+ 1) is the RHS of equation 7.2 with the
substitutions:

1 ~ 2
Vi V3, Vzbkr @VI% Vi @Vaa

all others mapped to zero, and similarly for v5 and 1. A calculation (which the author did
by computer) using theorem 5.2, yields:

v(4)=27, p(4)=4, r(4)=3, w(4)=1, 1) =0,

from which the rest easily follows.

8 Betti number calculations

In performing numerical experiments, especially involving simplicial complexes on the set B4,
we needed to develop fast methods of calculating betti numbers and/or checking if a certain
betti number vanishes (if all but one of the betti numbers vanish, then the remaining one
can be computed from the Euler characteristic, which is relatively very quickly computable).

The problem of computing homology with integer coefficients has received a fair amount
of attention recently (see [DC91] and the references there). Computing the betti numbers,
i.e. the rank of the homology groups, i.e. the dimension of the homology groups with real
coefficients, would seem to be a much easier task since torsion is ignored. This task seems to
have received little attention so far, but we suspect that in many applications (such as ours)
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it is sufficient to know the betti numbers, or at least interesting to know them when there
are insufficient resources to compute homology over the integers.

Our observation is that if one is only interested in the betti numbers, working with
homology with real coefficients, one can introduce Laplacians of the chain complex, which
are integral, sparse, positive definite matrices vanishing on a space of dimension equal to the
betti number. In particular, if the betti number is small or one only wants to check whether
or not it vanishes, one can perform a simple (randomized) iterative method, which requires
only linear space in N = the maximum number of faces of a given dimension, as opposed
to the quadratic space needed to compute the rank by the obvious method; in practice the
amont of time needed is much smaller as well (we will explain why, although we do not
attempt to formalize this here).

Recall that the betti numbers, h;, are the dimensions of the homology groups, H; =
ker(9;)/Im(0;41) of the chain complex,

Fit1 34
'—>C§+1HC£‘% 1‘_1—>’--—>C0=0, (8.1)
where C; is the space of formal R-linear sums of oriented i-dimensional faces, i.e. subsets of
the abstract simplicial complex of size i + 1, and 9; is the boundary map.

If the number of ¢-dimensional faces is d;, then computing h; = dim( H;) naively involves
computing the rank of a d;y; X d; matrix and of a d; X d;_; matrix. Also, typically one of
dit1 is considerably smaller than d; and one is considerably larger (for practical matters,
“considerably” is taken to mean a factor of 2 or more). Working with the Laplacian seems
to greatly simplify the calculation.

Recall that for an arbitrary chain complex of vector spaces over R (or Q or C for that
matter) as in equation 8.1, as soon as we endow each C; with the structure of an inner
product, we get maps d;:C;—1 — C; (i.e. the transpose of 9;), and thus a Laplacian (similar
to [Wel80] or [GHT78]), A;:C; — C;, for each i, defined by

A; = 0,107, + 0]0;.

For chain complexes where each C; a finite dimensional R-vector space, the analogue of
harmonic theory (see [Wel80, GH78]) involves only elementary linear algebra, and says:

Proposition 8.1 (Harmonic theory) For each i we have C; decomposes into orthogonal
subspaces
C; = ker(A;) @ Im(09;4107,;) & Im(0]0;).

The Laplacian is positive definite on the latter two summands and is invariant on each.
Elements of ker(A;) are called the harmonic forms, and are in 1-1 correspondence with H;
(via f w f’s equivalence class in H;). 8;4107,, is invariant on the middle summand and
vanishes on the other two, and similarly for 80;.

In our case, C; is simply R%, which we view as an inner product space with the standard
Euclidean inner product. Then * is just the usual matrix transpose, and the 9;’s, 9¥’s, and
A;’s are all integral matrices. The sum of any row of 879; is clearly bounded by i(n —17+ 1),
where n is the total number of vertices of the abstract simplicial complex, and similarly
0i+10},1 row sums are bounded by (i 4 1)(n — ). Since A; is a symmetric matrix we have

Al < in—i4+ 1)+ (i + 1)(n —2).
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Let B be a bound for ||A;||, such as the right-hand-side of the above. Then B — A;
is a symmetric positive definite operator, its eigenvalues are all < B, and the eigenspace
corresponding to the eigenvalue B is just the (possibly trivial) space of harmonic forms. We
can calculate its largest eigenvalue(s) by the “power method” aka “simple vector iteration”
method (see [SB80], page 354), namely by picking a random v € R% and repeatedly applying
B —A; tov and normalizing v. The result with almost surely converge to an eigenvector v; of
largest eigenvalue. We can repeatedly generate more eigenpairs by choosing a random v, and
then repeatly applying B — A;, projecting onto the subspace orthogonal to the previously
discovered eigenvalues, and normalizing. This suggests the following randomized algorithm:

Algorithm 8.2 To test whether or not h; = 0, pick a random v and perform the simple
vector iteration for B — A;. To calculate h; when h; > 0, continue the iteration method until
an eigenvalue < B oeccurs.

Crutial to the above algorithm is that A;, the smallest non-zero eigenvalue of A;, should
not be very close to 0. We require the machine to have enough precision to distinguish B
from B — ;. Also, under the simple vector iteration the component of the random vector
which is orthogonal kernel of A; will decay like (1 — A;/B)™ where m is the number of
iterations. So the larger A1/ B, the better the convergence to an eigenvector; notice that one
can experiment with small values of B (i.e. not known to be bounds for A;) in the above
method, and see if the limiting eigenvector has a positive eigenvalue with respect to B — A;;
similarly, one can also replace B by anything larger than a bound for ||A;||/2. The above
suggests:

Question 8.3 How small can Ay be? How small is \| typically?

The fact that A; satisfies an algebraic equation whose coefficients can be bounded gives a
very weak worst-case lower bound. For a worst-case upper bound, if A is a chain complex
which is a cycle of length N (i.e. N maximal faces of size 2 connected to form one cycle), then
Ap for Cy is clearly 2 — 2 cos(27r/n) =~ 272/N2. On the other hand, calculations performed by
the author (e.g. those described in §5) never produced a A; as small as 1, and we suspect
that typical A;’s are much larger than worst-case A;’s.

Of course, the above question restricted to complexes of dimension 2 is just a question
about graphs, where much is known. We point out that A; for “random” graphs is typically
quite large (i.e. see [Fri91] and the references given there), while for many interesting graphs
Ap is small. Thus it may not be interesting to look at only a naive notion of a random
complexes.

It is important to note that in the above algorithm we do not need to have an apriori
lower bound on A; to detect the vanishing of a betti number. For if the iteration scheme
produces a vector of Rayleigh quotient B(1 — n) after m iterations, with 2m# sufficiently
greater than 1/2log N —loglog N, then with “high probability” B cannot be an eigenvector.
More precisely, we have:

Proposition 8.4 Let A be a symmetric matriz with all eigenvalues non-negative, and largest
etgenvalue B. If v is a vector such that A™v has Rayleigh quotient < B(1—1), thenlog K —
loglog K + C' > 2mn for a small constant C, where K = K(v) = is the ratio of ||v||?/||v']|*
where v' is the projection of v onto the eigenspace of B.
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For the proof and further discussion see the appendix. In the above, for a random vector
v, K(v) is typically roughly of size v/N. In examples tested by the author, such as the
complexes A?’z, t=0,1,2, N was as large as 12,000 or so, and the smallest 1 encountered
was roughly 1/20. In such cases slightly more than a hundred iterations suffices to check the
non-vanishing of a betti number.

One might be concerned that the above is only a randomized algorithm. Assuming that
we can distinguish B from B — A;, the above will always give a lower bound (almost surely
an upper bound). If one has sufficient resources, one can obtain a randomized upper bound,
or the exact answer, via:

Algorithm 8.5 To calculate h;, calculate the rank of A; over ¥, = Z/pZ. This rank is
always < d; — h;, with equality holding for almost all p. If resouces permit, calculate the rank
over Z (or over F,, for sufficiently many p) to get the exact answer.

Note that this is an improvement over computing the ranks of ;11 and of d; whenever one
of d;41 is substantially bigger than d;. In practice the rank computing algorithms probably
require quadratic space.

9 Concluding Remarks

We comment on further research in progress. Another situation in which the m-fold AND
arises is in non-deterministic communication complexity, where the following question arises.
Given a subcollection of entries, C, of an 7 X s matrix, how many submatrices which are
subsets of C' does it take to cover C'? Here a submatrix is any subset of the matrix determined
by specifying a subset of columns and a subset of rows. Letting F; be the space of submatrices
with uniform distribution (each of which can be viewed as a boolean function of rs variables),
the question is for which m does the characteristic function of C first appear (i.e. occur with
non-zero probability) in the m-fold AND of F;. Here one can write down a formula for the
¢;’s involving certain summations. The author has yet to investigate this matter further.
Another interesting question is can one evaluate the formulas for the event probabilities
(perhaps times an appropriate integer) modulo p for some primes p? If the probability is
nonzero when reduced modulo p, then one gets an upper bound for complexity. Perhaps this
could be used to improve certain constructions based on counting arguments (which, as men-
tioned in the introduction, use only the first moments of the probability space). One might
also be able to obtain lower bounds, but of course one would have to show the probability
vanishes for a lot of p’s, or else modulo p™ for one p but for a sufficiently large value of m.
One way of reducing modulo p, when the coefficients of the formula come from a geometric
object, is to apply a p-group of symmetries to the object and to consider the orbits of size 1
(all others yield 0 modulo p). While a non-zero formula might vanish modulo p, a homology
approach give more information. That is, assume the formula can be interpreted as a reduced
Euler characteristic of a simplicial complex, and assume that one can prove that when the
formula is zero the entire reduced homology necessarily vanishes. Then one can reduce
the simplicial complex by the actions of cyclic groups, and any non-zero reduced homology
in the reduced complex implies non-zero reduced homology in the original complex. This
homological approach is more general than reducing the formula modulo a fixed prime, for
one can apply a sequence of cyclic groups of arbitrary order. This approach has had some
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success in combinatorics, as in [KSS84]. This leads us to asking whether the above formulas
can be interpreted as the Euler characteristic of a complex with the aforementioned property.

In view of the random 3-SAT and the suboptimal bound given by the first moment
method, it seems natural to conjecture that other upper bounds given by first moment meth-
ods may not be optimal. Consider Valiant’s monotone majority construction (see [Val84]).
There he considers a 2d-th level iterated NAND construction with Fy = {z1,-- -, 2,1}, with
n odd, the z; equally likely and 1 occuring with probability .236067977 - - -. He proves that
for d = (5.3---)logy n a random element of Fy; computes the majority function with high
probability; he gives a first moment argument. It seems natural to conjecture that the true
constant may be lower.

We mention that one can apply proposition 5.1 repeatedly, but that in this work only one
application is used. For example, we use the fact that v of Ag’z is the same as that of the
family of all collections of codim 2 subcubes which cover B®. Applying the proposition once
more yields the complex of all families of covering collections of codim 2 subcubes, having
the property that the family contains each codim 2 subcube in at least one of its collections.
The fact that v of this complex is the same as the others is interesting, although the author
has not found it to be of use in evaluating 2-SAT (or 3-SAT) coefficients.

We remark again that, as de la Vega points out (in [dIV92]), it would be interesting to
understand random 2-SAT for m near n. The exact formula for £ = 1 is managable in the
interesting range m &~ /n because one can get a simple expression for ¥, ¢;i(*) for any s, n.
Is the same true for 2-SAT?

Ultimately one would like to study this method for more exciting spaces, such as the
iterated NAND space described in §2. But even the m-fold AND space has enough interest
and mysteries at present to merit further study.

A Details of Proofs

Proof (Of proposition 3.2.) We simplify the sum by using Stirling numbers of the second
kind (see [Knu73]), 77" defined by 2" = ¥, rf'z®) with z(¥) = E!(7). We have

i(_z)i (7:) - Z ( 2)1( ) Tk 2 ZTk E (?__:)n(k)(—Q)‘ = in(k}T;?l(—Q)k.

1,0<k<m 7 k=0
The desired probability becomes

1

L o

(an(m)i':: _ 2m—1n(m—1)1.;:_1 L i ) . (11)

For any fixed integer ¢ we have

1 B2am 2 ﬁ
m=qp(m—q) .m N il
e fa i (2 5 (1+0(1/m)) S (1+0(1/m)) (1+0(1/m))
by virtue of the fact that 'r,n m?* |25k 4 O(mF=1), which can be seen from the relation
o, = (m=-2)rml 4l (see [Knu73]). This last relation also implies that 7)r_, <

(m—2)-- (m + 2k — 3)/2”%' from which it follows that for any € > 0 there is a ) such that
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truncating the series in equation 1.1 after @) terms introduces an error of no more than e. It
follows that the desired probability is within O(1/m) of

1—§:fq—z= (1-e?4).

q=0

O

Proof (Of theorem 4.3.) In what follows, we write A ~ B to mean that A and B have
the same reduced homology, and we write §¢ B? for the d-dimensional sphere and ball,
respectively, and - = B for the point. Notice that = is well defined modulo ~, as follows
from the (split) exact sequence

0 Hp1(X+Y) = Hi(X XY) = Hy(X)® Hy(Y) = 0

(see [Mun84], page 373), and the Kiinneth formula (and its functoriality). Also note that
A% -~ - for any A (which follows from the above or from the fact that A - is a cone over A
and hence acyclic). Also, it is well-known that 5° % S¢ is isomorphic to §°T4+! (see [RS82]
for example). In formulas involving abstract simplicial complexes and spheres or balls, the
reader can identify the abstract simplicial complex with any realization of it; when dealing
modulo ~, the reader can alternatively can think of 5% or B? as any fixed abstract simplicial
complex with the same homology as the d-dimensional sphere, e.g. S? as the set of all subsets
of size < d+ 1 of a set of d + 2 elements.

We begin by proving theorem 4.3 in two simple cases. For any C' C T, let C~,8(C)
denote the chain complexes of, respectively all subsets of C', and of all proper subsets of (.

Lemma A.1 R(0),R'(0) are respectively homeomorphic to S*~1,52 x [0,1]. (Le. any
realization of R(0) is topologically homeomorphic to S=!, or there exists a triangulation
of S*=1 whose vertices correspond 1-1 with R(D) and whose faces correspond; similarly for

R'(9).)

Proof R'(Q) contains {A+0 | |[A] <t —1} and {@* A | |A] <t — 1}}; each of these is
isomorphic to a sphere S*~2. The maximal faces of R/(}) are of the form A (T — A) ranging
over A C T with 1 < |A| <t — 1, which is easily seen to be a triangulation of §'=2 x [0, 1],
where §*72 x {0} is the {A x 0} sphere and S*=2? x {1} is the antipodal map applied to the
{0+ A} sphere. (In other words, we view S¢~2 as the unit sphere about the origin in R*~1, fix
points py,...p; € S*72 which are the vertices of an equilateral simplex; consider the sphere
of radius 2 about the origin and the equilateral simplex with vertices —2py,..., —2p;; etc.)
R(0) is the union of R’(Q) and the “polar caps,” T+ @ and @ + T, which clearly yield the §*~!
sphere,

Lemma A.2 For any proper subset C' of T, R(C~) ~ R'(C~) ~ -.

Proof Viewing T as C' (T — C'), we see that R(C~) = C~ * C~ * Ry_c(0), recalling that
Rr_c is R viewing things as subset of 7' — C. But €'~ is isomorphic to the ball B*~! with
¢ = |C], and is therefore ~ -, assuming C' # 0, so R(C~) ~ -. As for R'(C~), the situation
is more complicated. Viewing R'(C~) as a complex over C'* C' * (T — C) * (T — C) in the
obvious way, we have that R'(C™) = F; U I, U F5, where F; = C~ *+ S(C) + (T — C)™ 0},
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F,=8(C)+«C+0*(T—C)",and F3 = Re(0) * (T — C)~ + (T — C)~. We will calculate
the homology of R/(C'~) by the above covering,.

Clearly F; ~ - fori=1,2,3; we have FiNF; = S(C)*S(C)#P* D ~ 5725 52 ~ G263,
The Mayer-Vietoris sequence then gives F; U Fy ~ 5?2, To analyze the homology of
(F1 U F3) N F3, we note that F; N Fy ~ - for ¢ = 1,2,and AN N F3 = N Fy ~ §%3;
the MV sequence for (F; U F3) N F3 = (F; N F3) U (F; N F3) implies that it is ~ §2°72,
Finally, the MV sequence for F; U F, U F3 written as the union of Fy U F; and F3 then yields
Fiy U F> U F3 ~ -, which is the desired result

O

Now consider a general simplicial complex C and its maximal faces, M1, ..., M,. We can com-
pute the homology of R(C) from the Cech double complex (analogous to the Cech-de Rham
double complex, as in [BT82], §8) resulting from the induced covering R(M; ),..., R(M,")
(which is not a “good” cover, i.e. some intersections of the R(M;")’s are not acyclic!). One
can carry this out directly to prove the theorem (i.e. by induction on r, using the Mayer-
Vietoris sequence), but it is perhaps easier to deduce the theorem by comparing the functors
C+ R(C) and C ~ C # §*=1. The latter functor is well-known to shift reduced homology by
t (see [Mun84], page 371), but one can also compute the homology of C + 5*~! by the induced
covering, M{ * St=1 ..., M % §*=1. For each functor the resulting Cech double complex
(as in [BT82], §8, except with all arrows reversed), is the abutment of a spectral sequence
(E,,d,) with E" = HP? O being the boundary map on chains (as in [BT82], page 165, &
corresponding to d, and arrows reversed). By the above two lemmas the two E;’s are the
same (i.e. each EP" are isomorphic as Z-modules), and from functoriality of the two functors
it is clear that the d; coincide. Hence they abutt to the same limit, and so the two functors
behave identically on homology.

The same proof holds for R', comparing it to %52

O

Proof (Of proposition 8.4.) For v € RV with K = K(v) as in proposition 8.4, it is easy to
see that the Rayleigh quotient of w = A™v is

(Aw,w) St B+ MA/B)*™(K —1)
(w,w) = 50 1+ (\/BP™(K—1)

Denote the right-hand-side of the above by f(A). By differentiation we find that f(A) is
minimized for the unique A such that f(A) = (2m 4 1)A/(2m), i.e. such that
2m 4+ 1 1

S oZimAl g = 1.
A+ oA 1) =1

Setting A = 1 — z/(2m + 1) and approximating e~ for A2+ yields

|

T E~1

from which we easily deduce the proposition (details omitted).
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It should be noted that for a random choice of v € R we have that K(v) is typically
proportional to v/N, and that there is a constant C such that the probability that K exceeds
Cay/N, for any @ > 1, is < 1/a (assuming any reasonable model of a “random” vector
in RV, such as choosing each component with a normal distribution with mean 0, uniform
distribution in [—1, 1], etc.).

B Details of ¢; or k = 2 calculation

We begin with v(n), i.e. evaluating v(B*").

1. D=0,ie. O— P, =0 fori=0,1.

(a) Po — Py # 0. Viewing the summation as first over P; — P; and then Py — Py, it
suffices to take P; — Py = () (or else we get an irrelevant element of Py — Py). We
consider the subcases:

i

ii.

iii.

Py — Py = 0; here the total contribution is all variables fixed except for

FPo — Po # 0 (and the sum on O — O, of course). The O — O sum for each

Py — Py # 0 yields a (=1)IPo~Poly(n — 1), and summing over all P, — Py # 0

gives a total of —v(n — 1).

| Po — Py| = 1; we consider the Py subcube, Up, and the P; subcube, Uy, of the

Py — Py pair, viewing them as half-cubes of B"~1— as half-cubes they can be

equal, complementary (i.e. disjoint), or skew (otherwise):

A. Equal. This means that Cy U C} is at most half of B®"!, so in all sums
over @ — O there is an irrelevant element.

B. Complementary. In this case the only way to avoid an @ — O irrelevant
element is for Pp — Py to consist of one pair, {Ug, U}}, with U] skew to Up.
The Py — P; piece can be any of 2(n — 1), and Uj can be any of 2(n — 2)
given Ugp. Each contributes 7(n — 1), since Co U C} is the complement of a
codim 2 subcube of B®~!, for a total contribution of 4(n—1)(n—2)#(n—1).

C. Skew. Again Py — Py must consist of the single element {Uy, U}} with U}
skew to Up, for a total contribution of 4(n — 1)(n — 2)#(n — 1) again.

|Po — P1| > 2; to avoid O — O irrelevance we must have Py, — P; consisting

of two elements, {Up, U1} and {Uj, Uy}, with Py — Py consisting of the single

element {Ug, Uy}, such that Uy, Uy are complementary and U}, is skew to Uj.

Similarly we get —4(n — 1)(n — 2)#(n — 1), the minus sign coming from the

fact that this time |Pp — Po| + |Po — P1| is odd.

(b) Po— Po =0, P, — P, # 0— same as case (a).
(¢) Po— Py =0 = Py — P. We divide into three cases:

i.

ii.

Py — P; = 0. This obviously contributes a v(n — 1).

| Po — P;| = 1; again we consider the single element, {Uy, Uy} of Py — Py, and
consider the three possibilities for Uy, Uy:

A. Equal. We get no contribution because of the irrelevant @ — O piece.

B. Complementary. This can happen in 2(n—1), each contributing —v(n—1),
for a total of —2(n — 1)v(n — 1).

22



iii.

C. Skew. This can happen in 2(n—1)2(n—2) ways, each contributing —&(n—
1), for a total of —4(n — 1)(n — 2)#(n — 1).

|Po — P1| > 2; to avoid O — @ irrelevance we must have Py — Py consisting

of two elements, equal either {Uy, U1}, {U{, U1} or with 1 and 2 reversed;

futhermore, in the former case, we must have Up, U] skew (2(n — 1)(n — 2)

possibilities), and Uy having two choices given Ug, U}. The total contribution
is 8(n — 1)(n — 2)i(n — 1).

2. D consists of one element of O, which can happen in 2(n — 1)(n — 2) different ways

(= 10]).

To fix ideas say that D is the intersection of half-cubes U, U’. We consider a

number of cases:

(a) Py — Py # (: summing lastly over Py — P; and Py — O we must have Py — P; =
() = P; — O to avoid irrelevance. We consider the image, Z, of Py — Py in Py, i.e.
the P; elements occuring in Py — Py:

I

ii.

iii.

7, is empty. Then Po— Py = (), Po— Py can be anything # 0, and Po—O consist
of any nonempty subset of Py each paired with D. The total contribution for
each D is #(n — 1).

7, is one half-cube. 77 must be either U or U’, and then Py — Pp must consist
of the single element which is the complement of D in Z;. The image of Fy— P,
in Py must be one or both the half-planes of Py — Fp; similarly for the image
of Py — O in Py. For each D we get eighteen possibilities, contributing in all
—2i(n — 1) for each D.

7, is two or more distinct half-cubes. The fact that Py — Py # () gives an
O — O irrelevance.

(b) Po— Po =0, P, — P, # )— same as case (a).

(c) Po— Pob =0 = P, — P;. Consider the number of half-cubes, mg,my of Py, Py
occuring among Fy — Py, P; — O. Since D is nonempty either ng or ny is nonzero.

i.

ii.
iii.

ng > 0,n7 = 0: then P — P = P, — O = 0, and Py — O consists of any non-
empty subset of Py paired with D. The contribution for each D is —#(n —1).
ng = 0,n1 > 0: the same.

ng = 1 = ny: Let the images be Uy, U;. We consider the cases where Uy, Uy
are:

A. the same. this gives O — @ irrelevancy.

B. complementary. There are 2(n— 1) possible Uy, U; pairs. For each pair we
must sum over the number of ways that Py — P, P; — O can have images
U; in P; and D in O. Letting A = {Up, U1}, B = {Uy, D},C = {Uy, D},
this is equivalent to summing (—1) parity of all subsets of { A, B, C'} which
cover Up, Uy, D. This gives 2, which we mulitply by each one’s contribution
of #(n — 1) and the 2(n — 1) ways it can arise, for a total contriubtion of
4(n — 1)o(n — 1) (for each D).

C. skew. Here Up, U1 must be complements of U, U’ in order to avoid irrel-
evancy. There are two ways of chosing Uy, Uy, and the same {4, B,C'}
argument shows that we multiply this by 2 for a total of 4#(n — 1) per D.

23



iv. ng = 2,n1 = 1: Let Uy, Uj and U; be the images in Py and P;. There are only
two possibilities to avoid irrelevance: Uy = U, Uy = U’, U} = U, or the same
with U, U’ reversed (where - denotes the complement). Each of these reduces
to counting which of {A, B,C, D, E} cover Uy, U}, Uy, D, which A, B,C as
before and D = {Ug, U}, E = {U}, D}. This complex has v = —2, giving a
total contribution of —47(n — 1) for each D.

v. ng = 1,ny = 2: the same.

vi. ng,nq > 2: this forces O — O irrelevance.

The total contribution to v(n) from all the above parts are:
(1-2n)y(n—-1)+42n—-3)(n—1)(n—2)o(n—1)

Next we analyze i(n) = v(By") for a fixed subcube W of codim 2 in B". We fix such a
W, which we can assume lies in O, and viewing W as a codim 2 subcube of B"~! we have
W is the intersection of two half-cubes @, Q" which we fix.

The same cases as before can be studied, and they yield:

1. (a) i —-#(n-—1).

ii. A.0
B. Here the unique pair of Py — Py must be {@,Q’'} to avoid irrelevance, i.e.
Q = Up, Q' = Uj or Q@ = U§,Q" = Up. So we get a total contribution of
2i0(n - 1).

C. Skew. As in the previous case we get 2i7(n — 1) for similar reasons.
i. —20(n — 1), since, again, {Up, Uj} must be {Q,Q'}.
(b) same as case (a).
(¢) 1. p(n—1)
i. A. 0
B. -2(n — 1)v(n).
C. Here {Up, U1} must be {Q,Q’} to avoid irrelevance, yielding —2#(n — 1).
iii. To avoid irrelevance {Up, Uj} must be {Q,Q'}, yielding 4i(n — 1).
2. Here D must be, of course, W. Modulo this fact everything else is unchanged.
(a) i. p(n-1).
i, —20(n— 1)
iii. 0
(b) same as case (a).
(c) i mg>0,n=0: -(n—1).
ii. mg = 0,mq > 0: the same.
ili. ng =1 = ny:
A.0
B. complementary. 4(n — 1)(n — 1)
C. skew. 4(n — 1)
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iv. mp = 2,nq = 1: —4¥(n — 1) for each D.
v. ng = 1,n7 = 2: the same.
vi. o, N1 2 2: 0

The total contribution to #(n) from all the above parts are:

(2n — 5)p(n — 1).

C Details of the ¢y or £ = 3 calculation

The only details left are to verify the recurrence for vo(n+1). For (| Fol, | P1|) equal (0,0), (0, #
0),(# 0,0) the total contribution is —vg(n) (as is seen by the same considerations as those
used to compute FPyo). The following other (|Fol,|P1|) cases contribute; we list the cases up
to symmetry (including, in some cases Py, Py swapping symmetries); below f(m) denotes
f(m,3) = (=1)*(";"), vi denotes v;(n) and |v;| denotes the number of sets similar to Wj in
B" (and similarly for 7), so |v1| = 2n4("}), |vs| = 2(2), |us| = 4(3)4("7?) /2.
= (1,1). The cases of interest are (Pp; P;) =
L. (z1;%7). For |O] = 1 we get 2nd(3) 7 times f(3) = 1. For |O| = 2 we get 2n times
f(4) times the sum of |v;|y; for ¢ = 1,3, 5.
2. (z1;22). For |O] = 1 the possibilities are:
(a) zyxy. This gives 2n2(n — 1)0f(3).
(b) Zyz,. This gives 2n2(n — 1)r3 f(3).
(c) x1x3. This gives 2n2(n — 1)4(n — 2)11 f(3).
(d) @3e4. This gives 2n2(n — 1)4(";%)vs f(3).
For |O| = 2 we get the same »; terms, 1 = 1,3, 5, with f(3) replaced by f(4) (and

no other terms).

= (2,1). The cases of interest are Py = {#1, 2} (always introducing a factor of 4(3;) which
we omit from the following), and P, =
1. Z7. For O = ) this yields 2f(3)#. For |O| = 1 the cases are O =
(a) Tyzg. Gives 2f(3)0.
(b) z173. Gives 2f(3)vs.
(c) zyz3 or Tyzs. Gives 2£(3)2-2(n — 2)u.
(d) zzz4. Gives 2f(3)4(n;2)v5.
For |O| = 2 we get the same v; terms with ¢ = 1,3,5 and f(3) replaced by f(4).
2. z3. Here O must be a subset of {z,z3,z225}, for a total of 2(n — 2)v; times

£(3)+2f(4) + (5) = —1.
= (2,1). This is the same as = (1,2).
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= (3,1). Up to symmetry the only case of interest is P = {1, 72,23} and P, = Z7. The
choice of Py gives a factor of 8(2), that of P, gives a factor of 3 (we can have Py = 77
for i = 1,2,3). Then O must be a subset of {Zyz2,Z723}, for a total contribution of
f(4) +2f(5)+ f(6) = 1 times vy time the previous factors, 8(7)3.

= (3,1). This is the same as = (1, 3).

= (2,2). Up to symmetry we must have P, = {z1,2;}, P; = {Z1,%3}, and O a subset of
{2173, 122}, giving a total contribution of 4(3)vs(f(4) + 2f(5) + f(6)).

The total of all these terms yields the formula stated previously for vo(n + 1).
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