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Abstract

This thesis presents an algorithm for computing the 3-d convex hull of imprecise
points using floating point arithmetic. The algorithm produces a set of “thick”
facets that contain all exact convex hulls of the data. It is based on Quickhull and
Beneath-beyond. Parameters for the algorithm include the precision of the data
and the maximum angle between adjacent facets. This allows the user to simplify
the output and may reduce the exponential growth in output size as dimension
increases. It is the first 3-d convex hull algorithm to work with fixed precision
arithmetic. We derive a bound for the maximum width of a facet when certain
restrictions are satisfied.

The algorithm produces a data structure called a locally convex box complez.
Similar to a simplicial complex, a boz complez is a graded DAG of sets called bozes.
Each node of the DAG is a face of the box complex. A face represents a vertex,
edge, facet, or other feature. Its box bounds the possible locations of the face. A
box complex is locally convez when hyperplanes define the boxes for facets, and the
hyperplanes for adjacent facets meet in a convex angle.

The thesis also presents an algorithm for point inclusion in box complexes and
polyhedra. It identifies a subset of the vertices. The subset has odd parity if the
point is inside and even parity if it is outside. It is the first point-in-polyhedron
algorithm to work in general dimension on arbitrary inputs with fixed precision
arithmetic. It is the first point-in-polyhedron algorithm to work when the only

geometric information is bounding boxes.

Thesis Advisor: Professor David Dobkin
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Chapter 1
Introduction

In computer-aided design, a designer works in front of a computer terminal. The
computer can display architectural drawings, a schematic model, or a solid model.
It acts as an electronic drawing tablet or modeling medium. For example, it can
display a model of a car and a mannequin sitting in the front seat. Besides replacing
drafting tables and clay models, it can compute properties of the representation.
For instance, “Does the mannequin fit between the front seat and the steering
wheel?” With a real model, the question is easily answered. With a computer, the
question must be transformed into a computation. Geometrically, the question is
equivalent to asking if the mannequin and steering wheel intersect. The computer-
aided design system can test if the intersection of the steering wheel and mannequin
1s empty.

The field of computational geometry studies the solution of geometric problems
by computers. Computational geometry has traditionally dealt with precise sets of
points, e.g., an edge, a line, or a polygon. But real world data is imprecise. One
says the temperature of a room is 68 degrees; one does not say the temperature
is the real number 68.34216431877... or even say 68.32 + 0.03. Most data is only
known to some small number of digits. Data may also be imprecise because of
representation or computation. For example, the number 1/3 does not have a finite
decimal representation. Also, roundoff error makes computed values imprecise, e.g.,
roundoff error can shift the intersection of two nearly parallel lines.

With imprecise data, simple questions may not have an answer. For example,

1



2 1. Introduction

asking “Is point A above or below line L?” is different than asking “Is imprecise
point A above or below line L?”. In the former case, A is either above, below,
or exactly on L. In the later, A has a region of possible locations, e.g., a ball. If
the region for A is clearly above or clearly below L, then A is above or below L.
Otherwise the relationship between A and L is ambiguous. The ambiguity occurs
when the maximum error due to imprecision is greater than the distance from the
point to the line.

Error analysis determines the maximum error due to imprecision. It is an
important part of scientific experimentation and numeric methods. It is largely
ignored in computational geometry. Most algorithms for computational geometry
are defined for points with real or rational coordinates. Furthermore, to simplify
the presentation of an algorithm, researchers usually assume, for example, that
points are not coplanar, lines are not vertical, and four planes do not meet at a
point. These relationships are called singularities or violations of general position.
Theoretically, the assumptions are justified because the domain of geometry is
point sets, singularities cause “inconsequential but lengthy details,” singularities
do not occur with random data, and singularities can be removed by symbolic
perturbations [Edelsbrunner & Miicke 1988; Yap 1990; Emiris & Canny 1991].

These assumptions fail when a programmer implements a geometric algorithm
with floating point arithmetic. Floating point hardware fixes the number of digits;
floating point arithmetic causes roundoff error; and singularities may occur. Ad
hoc solutions do not always work.

This thesis proposes imprecise data as an alternative domain for geometric
algorithms. Imprecise data is represented by a set of possible locations, e.g., all
edges from the origin to the point (1,0) that are within 0.1 of the x axis. Imprecise
data has the useful property that an algorithm defined for imprecise data works

correctly when implemented with floating point arithmetic.

1. Point-in-polyhedron and convex hull

The thesis develops two algorithms: point-in-polyhedron and convex hull. When

defined on precise points, both problems have a long mathematical history.
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Point-in-polyhedron reports whether a point is inside or outside a bounded poly-
hedron. Point inclusion goes back at least to Jordan [1887]. He initiated a proof
that every simple closed curve separates the plane into two pieces: inside and out-
side. A corollary is the parity test: A point is inside a simple, closed curve if
and only if a ray crosses the curve an odd number of times. Most algorithms for
point-in-polyhedron use a generalization of the parity test.

The convez hull of a set of points is the smallest convex set containing the points.
Informally, the convex hull is a flat surface that wraps around the points. In the
1720s, Newton used the convex hull to determine the behavior of a real algebraic
plane curve near a singular point. In 1752, Euler proved his famous equation:
V —E+ F =2, In 1970, McMullen proved the upper bound conjecture about the
number of faces in a convex polytope. [Berger 1990; McMullen & Shephard 1971]

There are many algorithms for computing the convex hull of a set of points.
The first 2-d algorithm was by Graham [1972]. In 3-d, the gift-wrapping algorithm
[Chand & Kapur 1970] starts with a point know to be on the convex hull (e.g.,
the point with the minimum x-coordinate). The algorithm locates two other points
that define a supporting plane (all points must be on one side). Then it repeatedly
selects a free edge and locates a third point that defines a supporting plane. In this
way, it wraps a set of facets around the point set.

The convex hull is unique if data is precise and points are in general position.

In 3-d under these conditions, all facets of the convex hull are triangles.

2. Imprecision

This thesis concerns three problems of computational geometry: singularities,
fixed precision arithmetic, and imprecise data. As shown in this section, imprecise
data subsumes the other two. Imprecise geometric data consists of geometric fea-
tures, e.g., points, edges, and polygons. Their topology is the same as the topology
of precise geometric features. The geometry differs. The geometry of a precise or
imprecise feature is the set of points assigned to the feature. With precise features,
the geometric dimension is the same as the topological dimension. For example,

an edge is a subset of a line and a polygon is a subset of a plane. With imprecise
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features, the geometric dimension is no less than the topological dimension.

A ball or cube are examples of imprecise vertices. A cylinder or rectangular solid
are examples of imprecise edges. Their geometries delimit the possible locations
of a feature. So the actual vertex is anywhere within the ball or cube, and the
actual edge is anywhere within the cylinder or rectangular solid. The geometry of
an imprecise feature is an approximation. The only requirement is that the feature

can not be outside of the specified region.

The geometry of an imprecise feature can always be widened as long as it is
still contained in the geometry of incident, higher-dimension features. This is how
we handle imprecision. We specify the geometry with an easily manipulated shape.
The three shapes we use in this thesis are bounding boxes (maximum and minimum
coordinates for the feature), §-boxes (the §-region around a precise feature), and
polytopes (the bounded intersection of half-spaces). A boz is the shape associated
to a feature. A box is large enough to contain any imprecision due to the input.
So if a point’s coordinates are known to an accuracy of 0.5, the point’s box is at

least 1.0 wide.

A geometric algorithm uses computation to determine the relationship between
features. Most implementations of geometric algorithms use fixed precision arith-
metic that causes roundoff error. We compute the maximum roundoff error for a
computation. We account for the roundoff error by widening the feature’s box by
the maximum roundoff error. In this way, imprecise data subsumes fixed precision

arithmetic.

A geometric algorithm may use computation to create new features. As with
input data and roundoff error, we make the new feature’s box wide enough to
account for imprecision errors. Note that a new feature’s box contains the boxes of
subordinate features. For example, the box for an edge contains the boxes for the

edge’s endpoints.

Imprecise data causes a fundamental change in geometric relationships. This
is illustrated by the algorithms in this thesis. The underlying problem is that a
geometric relationship may be ambiguous. For example in point-in-polyhedron, the

point may be within roundoff error of one of the polyhedron’s boxes. It could be
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on the surface of the polyhedron, but it also it could be inside the polyhedron or
outside the polyhedron. We call this ambiguous relationship “can’t tell”.

The possibility of a can’t tell relationship effects the design of an algorithm as
well as its output. For point-in-polyhedron, we shot a ray from the test point. If
the test ray intersects the polyhedron near more than one facet, we can not tell
which facet it crosses. Similarly with the gift-wrapping algorithm for convex hull,
we can not always tell if adjacent facets form convex angles.

With precise features, the analogue of a can’t tell relationship is a singularity.
Examples of singularities are “coplanar”, “equals”, and “vertical”. A singular-
ity (or degeneracy) is a geometric relationship that is undone by an infinitesimal
perturbation.

Existence of a singularity is often equivalent to a computation equaling zero. If
so, the singular points for a relationship defines an implicit surface. With a random
distribution, the probability of a point being on a surface is zero. So singularities
are also called measure zero events.

If singularities do not occur for a set of points, then the points are in general
position. General position is usually assumed to simplify geometric algorithms. As
discussed above, a researcher is justified in ignoring singularities. Unfortunately,
the theoretical assumptions may be violated when implementing a geometric algo-
rithm. Numbers are represented by a fixed number of digits, floating point arith-
metic causes roundoff error, and inputs come from non-random distributions. Yap

presents the dilemma:

Degeneracy in computational geometry is a general phenomenon. So
in what sense can we justify its neglect in theoretical algorithms? One
justification is that explicit handling of degeneracies obscures the cen-
trality of the non-degenerate cases: degeneracies normally involve an
overwhelming number of cases that are disproportionate to their like-
lihood of occurrence. But an implementor of these algorithms must

handle the degeneracies when they do arise. [Yap 1990, p. 350]

Similar dilemmas occur wherever real numbers are used, e.g., numeric meth-

ods, computer graphics, computational geometry, and scientific programming. For
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example, a ray tracing algorithm computes the reflection of a ray at a surface.
With floating point arithmetic, the computed intersection of the ray with the sur-
face could actually be below the surface. An implementor must detect this case,
otherwise the ray will be reflected back to the original direction when it re-intersects
the surface.

Imprecise data subsumes singularities when the boxes for imprecise features are
open sets. Then any feature can be perturbed infinitesimally, and all potential

singular relationships are can’t tell relationships.

3. Previous work

The effects of fixed precision arithmetic and singularities are active topics in
computational geometry. There are three main approaches: simulating infinite
precision, error analysis, and epsilon values. Other approaches include symbolic

reasoning and perturbations.

3.1. Infinite precision. There are several ways to simulate infinite precision:
rational arithmetic, symbolic perturbations, and variable precision arithmetic.
With rational arithmetic, the goal is to limit the maximum number of digits
required [cf., Sugihara 1989]. For example, Milenkovic [1989b] computes an arrange-
ment of pseudo-linear lines with 2n+1 bit arithmetic where n is the input precision.
With rational arithmetic, implementations can accurately detect singularities.

With rational arithmetic and symbolic perturbation, singularities of a computa-
tion can be consistently removed [Edelsbrunner & Miicke 1988; Yap 1990; Emiris &
Canny 1991] The method is called Simulation of Simplicity. It evaluates a sequence
of determinates with rational arithmetic. The first non-zero determinate determines
the computed relationship. The sequence is defined so that a singularity can not
occur.

With variable precision arithmetic, singular results can be resolved at higher
precision [Dobkin & Silver 1988; Dobkin & Silver 1990; Karasick et al 1990]. Least-
significant-bit-accuracy computation can also be used [Kulisch & Miranker 1983;
Ottmann et al. 1988].
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The problems with simulating infinite precision are:

o Input data is seldom precise, especially if produced by measurement or com-

putation.

o Multiplication and other operations increase the required number of signif-
icant bits. For example, intersecting line segments with rational endpoints

can increase the bit requirement by eight-fold [Fortune 1992a).

o Symbolic perturbation does not control the direction of perturbation nor does
it limit the creation of very small features. For example, Simulation of Sim-
plicity computes a non-degenerate convex hull from multiple copies of the

same point.

o Even with least-significant-bit accuracy, singularities are not transitive. For
example even if edges A and C are computed to be coplanar with edge B,
edges A and C may be convex. The lose of transitivity allows inconsistent

results that can invalidate an algorithm.

o Computer hardware usually operates on fixed precision numbers. Higher

precision requires slower, software implementations.

3.2. Error analysis. In numeric methods, inverse error analysis is a successful
approach to fixed precision arithmetic [e.g., Golub & van Loan 1983]. A computa-
tion using fixed precision arithmetic produces a somewhat erroneous result. That
result may be the exact result of precise arithmetic on a different input. The com-
putation is stable if the input yielding the exact result is a small perturbation of the
actual input. Inverse error analysis bounds the perturbation with some function of
the input data and precision of the arithmetic.

Fortune [1989] uses inverse error analysis for a 2-d convex hull algorithm. He
proves that his algorithm computes a convex hull that is the exact convex hull
for a small perturbation of the input. Milenkovic and Fortune [Milenkovic 1988;

Fortune & Milenkovic 1991] produce an arrangement that is the exact arrangement
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for pseudo-linear lines. Greene and Yao [1986] produces an arrangement for a
perturbation of the input lines that only intersects at lattice points.

A problem with inverse error analysis is that it does not guarantee proper-
ties that are useful for later computations. As contrast, Li and Milenkovic [1990]
and Guibas, Salesin and Stolfi [1990] guarantee that their 2-d convex hulls remain
convex despite perturbations of the vertices.

Forward error analysis computes the maximum roundoff error for a computa-
tion. Guibas et al [1989] partitions the result of a computation into three regions:
positive, negative, and within roundoff error of zero. They propose an e-geometry.
Interval arithmetic is an automatic method to bound roundoff error [Moore 1979];
each operation expands the interval to include roundoff error. If intervals overlap,
the computation can be done at higher precision [Kao & Knott 1990], the problem
can be sub-divided [Mudur & Koparkar 1984], or features can be merged [Segal &
Sequin 1988]. More sophisticated methods include statistical inference of roundoff
error [Vignes 1988], automatic computation of partial derivatives [Iri 1984], and
automatic search for computational instabilities [Miller 1975].

A problem with forward error analysis is that the computed maximum error
may be overly pessimistic. If the intervals become too wide, relationships are lost.
For example Segal’s algorithm for combining polyhedra can reduce the union of
polyhedra to a single point [Segal 1990].

Hopcroft and Kahn [1989], and Hoffman et al [1989; Hoffman 1989a; Hoffman
1989b] use symbolic reasoning to determine relationships when fixed precision arith-
metic yields ambiguous results. They call their approach the reasoning paradigm.
A problem with the reasoning paradigm is that it may be intractable without
additional assumptions. For example, their intersection algorithms require feature
separation for the input polyhedra.

Random perturbations of the input may reduce the chance of singularities. For
example, Corkum and Wyllie [1990] randomly rotate a polyhedron before testing
the crossing parity of a ray. With ill luck, the algorithm must be restarted on a

new rotation.
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3.3. Epsilon values. Many geometric algorithms do not work with fixed precision
arithmetic. A common method of implementing these algorithms is to define a
small constant that is typically named “EPS” or “EPSILON”. The constant EPS
determines when two numbers are considered equal or a result is considered zero.
When a predicate is nearly zero, the predicate is treated is if it were exactly zero.
This is the same as treating nearly singular relationships as if they were singular.
Using a constant EPS may delay the ill-effects of fixed precision arithmetic but

does not solve the problem of imprecision. Some of the undesirable results are:

o Broken topology and delayed blowup. Two computations may report incon-
sistent topological relationships for geometric data. The inconsistency can
propagate through the program until it causes a hard error such as a core
dump. The hard error may occur long after the inconsistent computations

were made.

o Micro-features. The output may contain undesired features that are smaller

than the precision of the input data.

o Scale limitations. As the input size increases, the implementor may fail to

find a successful value for the constant EPS.

3.4. Summary. Fixed precision arithmetic adds thickness to an implicit surface.
If a point is too close to the surface, a computation may incorrectly report that
it is above, below or on the surface. If several computations return inconsistent
results, the algorithm can fail catastrophically. Proposed solutions include sim-
ulating infinite precision, inverse error analysis, forward error analysis, symbolic
reasoning, and perturbations. These solutions may require software implementa-
tion of arithmetic, produce results with unknown or undesirable properties, assume
preconditions of the input, or restart the algorithm on detecting a singularity. In
practice, a constant EPS is picked and fingers crossed.

If singularities are rare events, inconsistencies are unlikely to occur. With mod-
erate data sets and low dimensions, such an assumption is reasonable and the effect
of an occasional singularity may be unimportant. Problems occur when singulari-

ties become common events. This can happen with large data sets or large outputs.
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4. Contributions of this thesis

This thesis looks at two different kinds of algorithms. Point-in-polyhedron takes
a geometric structure and returns an inside/outside answer. Convex hull takes a
set of points and returns a geometric structure.

The algorithm for convex hull returns a data structure of imprecise facets and
lower dimensional features. The facets are wide enough to contain the boundary
of all possible exact convex hulls of the points. Adjacent facets form a convex
angle and satisfy a maximum angle constraint. Another algorithm can use the
data structure to answer queries about the convex hull of the point set. It can rely
on convex angles between adjacent facets.

The maximum width of a facet of the convex hull depends on the input precision,
roundoff error, and convexity constraints. Improving these parameters, reduces the
maximum width. In the limit, the convex hull of imprecise points is the same as
the convex hull of precise points.

Imprecise data has several advantages. The most important is that algorithms
work on existing hardware for all inputs. Though several researchers have consid-
ered fixed precision arithmetic, few allow imprecise data [an exception is Hopcroft
& Kahn 1992].

Imprecise data is an approximation to a precise structure. Often, the precise
structure is not needed or undesirable. For example, the precise structure could
contain small features that are irrelevant to the result. In high dimensions, the
size of a precise structure can grow exponentially. For example the convex hull of
5000 points in R® can use 15 megabytes of storage [Fortune 1992a]. With imprecise
data, the number of features is bounded by the precision available instead of the
input size. By reducing the precision, the output size is reduced.

There are two complementary approaches to imprecision. One is to minimize
the effect of imprecision and the other is to bound its effect. We emphasize bounded

€rror.
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The contributions of this thesis are:

o A practical approach to computational geometry based on imprecise data.
Imprecise data subsumes fixed precision arithmetic and singularities. Fur-

thermore, it reduces the size of the output.

o Algorithms for point-in-polyhedron and convex hull on imprecise data. Both
algorithms are implemented in 2-d and 3-d. The convex hull algorithm
(Quick-hull) is the first 3-d, convex hull algorithm to work with fixed pre-
cision arithmetic. The point-in-polyhedron algorithm (Pointin-polyhedron)

is the first one to work in general dimension with fixed precision arithmetic.

o A mathematical structure, the bozx complez, for modeling imprecise data. A
box complex has a simple data structure. This data structure is the input
of Point-n_polyhedron and the output of Quick_hull. Each facet and lower

dimensional feature of a box complex is a full-dimensional set in R,
o A correctness proof for Point_in_polyhedron.

o Specializations of the box complex: the locally convez boz complex and the
convex box complexr. A box complex is locally convez if all neighboring facets
form clearly convex angles. It is a convez box complez for a set of imprecise

points if it contains all exact convex hulls of the points.

o A correctness proof in general dimension that Quick-hull produces an convex
box complex. If a set of balance conditions are satisfied, Quick-hull runs in

O(nlog h+ h) where n is the size of the input and A is the size of the output.

o An error analysis for Quick-hull in 2-d that bounds the maximum width of
a facet. An error analysis for Quick_hull in 3-d that bounds the maximum

width of a facet when certain restrictions are satisfied.
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5. Thesis outline

Chapter 2 discusses imprecision, convex hulls, and box complexes. A box com-
plex is a graded DAG of sets of points called bozes. Its trace is the union of its
boxes. An algorithm on box complexes works irrespective of the precision used for
data or arithmetic. Chapter 2 concludes with a set of computations and operations
that are useful for imprecise data and arithmetic.

Chapter 3 describes a point-in-polyhedron algorithm based on the parity test.
It works independently of the precision of the arithmetic. In three and higher
dimensions, the algorithm is the first to use comparisons alone when the point is
away from the surface. It is also interesting because the algorithm never determines
if a test ray crosses a facet. Instead it determines when a test ray can not cross a
facet, and uses this information to reduce point inclusion to the parity of a subset
of the vertices.

Chapter 4 introduces the convex hull problem and an algorithm for precise data
and arithmetic. The algorithm combines the Quickhull algorithm [Eddy 1977 and
others] with beneath-beyond [Kallay 1981]. We introduce a simple data structure
for general dimension convex hulls, and discuss the limitations of this and other
algorithms under imprecise data and arithmetic.

Chapter 5 adapts the precise convex hull algorithm to imprecise data and arith-
metic. The resulting algorithm merges coplanar and concave facets.

Chapter 6 analyzes the maximum width of a facet in Quick hull. The first half
determines a 2-d bound while the second half determines a 3-d bound under an
input restriction.

Chapter 7 discusses the 2-d and 3-d implementation of Quick-hull and shows
pictures of its output. The implementation allows the user to explore all aspects
of the algorithm. For example, the user can watch a slow movie of Quick-hull with
one frame for each event in a window. With imprecise data and arithmetic, the
maximum size of the output is bounded by the parameters and dimension. For
fixed parameters and dimension, the empirical performance is O(n).

Chapter 8 concludes the thesis with a discussion of Quick-hull and box com-

plexes. Quick_hull is designed for general dimension. Using the correspondence
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between convex hull and Delaunay triangulations [Brown 1979], Quick_hull can be
adapted to Voronoi diagrams. Similar correspondences make it suitable for other
applications such as power diagrams [Aurenhammer 1991]. Issues to be resolved
include: defining imprecise Voronoi diagrams, building a geometry of locally convex
box complexes, merging redundant ridges, constructing new hyperplanes for facets
in 4-d, and visualizing 4-d structures.

Appendix A gives the proof of correctness for Pointin_polyhedron. We first
define the “realization” of a box complex and use realizations and homology theory
to prove a separation theorem for box complexes. Then we prove the reduction

theorem that justifies Pointin_polyhedron.
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Chapter 2

Imprecise structures and

computations

This chapter defines imprecise data, imprecise predicates, box complexes, convex
box complexes, and locally convex box complexes. The chapter concludes with the

basic computations and operations that are used in this thesis.

1. Imprecise data

“The objects considered in Computational Geometry are normally sets of points
in Euclidean space” [Preparata & Shamos 1985]. This is also the domain for
Euclidean geometry. The introduction discussed reasons why sets of points may be
inappropriate for geometric algorithms. The underlying reason is that programmers
implement geometric algorithms on computers, and computers can only represent
a measure zero subset of all possible point sets. This is one source of imprecision.
Two other sources are roundoff error due to floating point arithmetic, and input
error due to measurement.

Precise data is data consisting of real or rational numbers. Imprecise data
is data consisting of approximations to geometric features. The approximations
are due to finite representation, roundoff error, or measurement. Imprecise data is
traditionally defined as a probability distribution with a mean value and confidence

interval, e.g., 3.24 £+ 0.07. Statistical analysis determines the confidence interval of

15
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o o
\93 o L D

Figure 2.1: Two sets of boxes for an imprecise polygon. A box delimits the possible
locations for a face. The left-hand side consists of §-boxes and the right-hand side
consists of bounding boxes. Note that a box contains all subordinate boxes.

measured data. The confidence interval of a derived value is computed from the
original confidence intervals [e.g., Taylor 1982]. A simpler approach records an
interval of possible values for each quantity. Interval arithmetic defines addition,
subtraction, multiplication, and division on intervals [Moore 1979].

Imprecise geometric features are harder to define. The Cartesian product of
intervals defines a bounding box in R TFor example in R?, a rectangle could
delimit the maximum roundoff error for each coordinate of the intersection of two
lines. If the lines are nearly parallel, roundoff error can be large. If both lines are
almost 45% to the axes, the bounding box is much larger than the region of possible
intersections.

A probability distribution for a geometric feature would be more accurate, but
it is harder to compute. For example, if the location of a point has a normal dis-
tribution, the edge between two points would have a dumbbell shaped distribution
around a line segment. The width of the dumbbell depends on the likelihood of
extreme values for the points.

We adopt an intermediate representation. An imprecise feature is represented
by an open set of points in Euclidean space. The set of points, the feature’s boz,
delimits the location of the feature. A box can be any shape as long as the feature
can not be outside of the box. Figure 2.1 shows some examples.

An imprecise object is a collection of features (called faces) with their boxes
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and subordinate features. This collection is called a boz complez. Informally, a box
complex is like a polyhedron or simplicial complex with open sets instead of exactly
defined vertices, edges, facets, etc. Its topology is the same as the topology of the
corresponding polyhedron or simplicial complex. A later section gives a formal

definition.

2. Imprecise predicates

A geometric predicate performs a calculation on point coordinates and returns
a yes/no answer. For example, consider the line {z € R*| (h,z) = hay1} where
h is the line’s normal and hayy is the line’s offset. A point P is above the line if
(h, P) > hy41.

With imprecise data, a simple yes/no answer is not always possible. Consider
asking if an imprecise point is above a precise line. Let the box for the imprecise
point be a circle. The actual point is somewhere inside the circle. If the line inter-
sects the circle, the actual point could be above, below, or on the line. Following

Fortune [1992a], the predicate returns a can’t tell answer.

Fixed precision arithmetic complicates the picture. Fized precision arithmetic
is arithmetic on fixed precision, floating point numbers. Each operation can cause
roundoff error. If a point is too close to a line, roundoff error may change a yes
into a no or vice versa. We account for roundoff error by expanding a box by the
maximum roundoff error. Then if the expanded, imprecise point is above a line
by computation, the imprecise point must be above the line. The last section of
this chapter computes the maximum roundoff error for each predicate used in this
thesis. In this way, fixed precision arithmetic is subsumed by imprecise data.

An imprecise predicate is a geometric predicate on imprecise data using fixed
precision arithmetic. Its mazimum error is the sum of the maximum error due to
roundoff and the maximum error due to precision. Imprecise predicates are split
into two forms: strong and weak predicates. A strong predicate is true for all pos-
sible exact features and roundoff errors. A weak predicate is true for at least one

possible feature and roundoff error. The negation of a strong predicate is a weak
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clearly above

maybe above
clearly above or coplanar
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clearly below or coplanar*

error due to roundoff

/L clearly below

Figure 2.2: Clearly above and clearly below line for an imprecise point and a precise
line. Clearly above and clearly below line are strong predicates. Coplanar is a weak
predicate.

predicate and vice versa. To distinguish weak predicates from negated strong pred-
icates, strong predicates are always preceded by clearly or not and the negation of a
strong predicate is always preceded by maybe. So clearly above and not infront are
strong predicates; their negations are maybe below and maybe infront respectively
(Figure 2.2).

Weak and strong predicates are the same as Guibas et al’s [1989] e-predicates
an (—e)-predicates respectively. We use different terminology because our boxes
can be arbitrarily shaped, Also, Guibas et al. emphasize weak predicates while we
emphasize strong predicates. Fortune [1988] makes extensive use of e-predicates
to construct approximate 2-d convex hulls and triangulations. Segal [1990] defines
tolerance regions to determine weak predicates.

Li and Milenkovic [1990] and Guibas et al. [1990] use weak and strong predicates
with pre-computed epsilons. They describe algorithms for a 2-d e-strongly convex
§-hull. Their output remains convex despite ¢ perturbations in vertex coordinates,
and points are never further than § from the hull’s interior. Our approach has

similar properties.
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Our approach is to:

o Assume imprecise data. Roundoff error is handled by increasing the impreci-

sion of the data. The maximum error is computed.

o Design a mathematical construct for imprecise data, the box complex, that
is suitable for implementation on a computer. The next section defines box
complexes. Algorithms on box complexes work with whatever precision is

available.

o Describe the output with strong predicates so that later programs can depend

on the results. Li & Milenkovic and Guibas et al make similar claims.
o Seek practical solutions, since precision problems are practical problems.

The box complex is the key to this approach. It is a simple, flexible structure
that capture the notions of arbitrarily imprecise data and arithmetic. Designing
an algorithm for box complexes is more difficult than designing an algorithm for
points in Euclidean space. But an algorithm using box complexes will work with

arbitrarily imprecise data and arithmetic.

3. Box complexes

A box complex is an approximation to a surface in R 1. A box complex
can represent polyhedra as well as rather wild structures that self-intersect and
overlap in all dimensional components. The topology of a box complex is a slight
generalization of the topology of a simplicial complex or subdivision of a manifold.
The main contribution of the box complex is its geometry. Instead of a precisely
defined geometry, a box complex delimits the possible geometries with boxes.

Before defining box complexes, we review some of the mathematics used in this

thesis.

1The box complex and related proofs are joint work with Michael Hirsch.
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3.1. Mathematics of convex hulls. This section is a quick review of convexity,
hyperplanes, convex hulls, and simplicial complexes. The next section defines the
box complex.

We adapt the terminology of geometers and topologists [Brondsted 1983; Griin-
baum 1967; McMullen & Shephard 1971; Munkres 1984]. A set of points {x;} is lin-
early independent if the points only satisfy trivial relations of the form }~; Aijz; = 0.

The affine combination of a set of points {z;} is the set

{m [ w= Z)\i:c,-, ZAi — 1}

A convex combination is an affine combination with each A; > 0. A convez (resp.
affine) set is a set of points that is closed under convex (resp. affine) combinations.
An affine set of d + 1 independent points is a d-flat. The convez (resp. affine) hull
is the smallest convex (resp. affine) set containing a set of points.

A hyperplane of R? is the affine hull of d independent points. A halfspace of R?
is an unbounded, closed set whose boundary is a hyperplane. An outward pointing
normal equation defines a hyperplane and a halfspace. A point is above a hyperplane
if the inner product of the point’s coordinates and the hyperplane’s normal is greater
than the hyperplane’s offset. A point is coplanar with the hyperplane if the inner
product is zero. Otherwise it is below the hyperplane.

The convex hull of a finite set of points is a polytope. A polytope is the bounded,
finite intersection of closed halfspaces. A vertex of the convex hull is called an
extreme point of the point set.

A supporting hyperplane for a set of points intersects the boundary of the convex
hull of a set but not its interior. A face of a convex hull is the intersection of a
supporting hyperplane with the convex hull. All faces are convex polytopes.

A d-simplex is the convex hull of d + 1 independent points. A 0-simplex is a
point, a 1-simplex is a line segment, a 2-simplex is a triangle, and a 3-simplex is a
tetrahedron. A face of a d-simplex is the convex hull of a subset of its points. A
simplex is also the convex hull of a (d — 1)-face (its base) and a point (its apez). In
RY, a facet is a (d — 1)-face and a ridge is a (d — 2)-face. If d < n¥/2¢ —1(¢ = 0),
the maximum number of facets and ridges in a d-polytope of n vertices is O(nl¥/ 2)
[Klee 1966].
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A d-dimensional simplicial complez, or d-complez, is a set of i-simplices (0 <
i < d) where every simplex is a face of some d-simplex. A d-complex includes all
faces. The intersection of any two i-simplices of a d-complex is a common face (if
any). An abstract simplicial complez is a finite collection of non-empty sets that
includes all non-empty subsets [i.e., an abstract simplicial complex is a simplicial
complex without geometric information].

A polyhedron in R? is a finite set of plane polygons such that each edge is
shared by exactly two polygons, and no subset has the same property. We assume
a polyhedron is simple, i.e., its polygons only intersect at shared edges. Higher
dimensional polyhedron have the same twoness condition.

If X and Y are subsets of R?, two continuous maps h, k : X +— Y are homotopic
if there is a continuous map F': X x I — Y such that F(z,0) = h and F(z,1) =k
for all z € X. A set of points, X is contractible to a point if there exists a constant
function homotopic to the identity function on X. The unit ball is contractible to

a point.

3.2. Definition of box complexes. A box complex represents an imprecise
geometric object. Its topological structure is almost the same as the topological
structure of a simplicial complex. Both are defined by a graded DAG of faces with
edges between a face and its subordinates. Both are typically objects without a
boundary. The two differences are that a box complex allows non-simplicial faces,
and a boundaryless box complex satisfies an evenness condition instead of a twoness
condition (see below).

The geometric structure of a box complex is quite different from a simplicial
complex. An i-face of a simplicial complex is a convex subset of an i-flat. An 7-box
of a box complex can be any contractible subset of R?. It represents the possible
locations of the corresponding i-face. The only requirement is that a box contains
the boxes of its subordinate faces.

This section defines the box complex, related terms, and basic theorems. The

next section contains illustrations and examples.
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DEFINITION 2.1. A box complex B of dimension n in R® is a finite graded, directed
acyclic graph (DAG) that is labeled with contractible sets in R®. The partial order
defined by set containment is compatible with the partial order defined by the DAG.
Edges may go from level i to level i — 1 only. Only one edge is allowed between
nodes. The levels are 0 < i < n. We require that every node must be on a path
from level 0 to level n.

The DAG induces a partial order on the nodes. Every box complex will be
assumed to have an implicit top node of level n 4+ 1 and a bottom node of level —1

which are maximal and minimal, respectively, for this order.

For box complexes, we use the terminology of simplicial complexes. By a slight
abuse of notation we refer to both a node and its label by the same symbol, B;
When we wish to be specific, a node at level ¢ is a face B; of the box complex , and
the label of a node is a box Bj- c R4 Bj_l is subordinate to B;-, B;:‘l < Bj—, if there
is an edge between the respective nodes. Note that Bj-_l < B} implies Bj_l = Bj,
but not vice versa.

The dimension of face B;: is . An ¢-face is a face of dimension i¢. A 0-face is
called a vertez, an (n — 1)-face is a facet, and an (n — 2)-face is a ridge. The 2-
skeleton of a box complex is the set of i-faces in the complex. The set of neighbors
of an (¢ — 1)-face are the i-faces it is subordinate to. We also say, two :-faces
are neighbors if they have the same subordinate face. Two faces are incident if
connected by a path in the DAG.

The trace of a box complex, trace(B), is the union of its boxes. The width of
a face, width(B), is the diameter of the largest open ball contained in its box. An

ezact convex hull of a set of 0-faces is the convex hull of one point per 0-face.

DEFINITION 2.2. Let B be a box complex of dimension n in R? and let B" be a
n-face of B. The boundary of B", dB", is the sub-DAG B given by all faces and

their boxes that are below B™ in the partial order.
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DEFINITION 2.3. Let B be a box complex of dimension n in R® Let S =
{B},B},...B"} be a collection of n-faces in B. We define the contour? of S,
d5S, as follows.

Consider the s DAGs 0B}, 0B%,...0B". Each (n—1)-face occurs some number
of times in these DAGs. Delete all (n — 1)-faces that occur an even number of
times, and delete all other faces which no longer have paths to the top node. Then

0S5 is the union of the remaining DAGs.

The contour is found by taking the mod 2 union of ridges in S. It takes O(1)
time per ridge by marking facets in S. Visiting all ridges in S identifies those ridges
with a neighbor not in S.

The simplest example of a box complex is a n-dimensional simplicial complex
in R%. The box for each simplex is the simplex itself, which is a contractible set.
The DAG is exactly the same. Note that conventional notation for simplicial com-
plexes also blurs the distinction between the geometric simplex and the topological
simplex.

In this thesis, we will want the faces to represent an uncertainty in the location
of the vertices, edges, facets, etc. Thus, for the rest of this thesis, all bozes are
open sets. In the context of the point-in-polyhedron algorithm, the boxes will be,
in fact, convex open sets.

To satisfy this requirement in the example above, instead of labeling each node
with the corresponding simplex we can label it with the open e-neighborhood of
the simplex. This is still a contractible set and the necessary containment relations
are still satisfied.

In this thesis, we are interested in convex hulls and polyhedron. Both objects
are boundaryless. We achieve boundarylessness by the evenness condition below.
It is a slight generalization of the simplicial requirement that there exists exactly
two paths between any (i + 1)-face and (z — 1)-face. We need evenness instead of
twoness because the intermediate steps of Point_in_polyhedron preserve evenness

but not twoness.

2“Contour” is used in place of “boundary” to avoid confusion with the boundary of an open
set.
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DEFINITION 2.4. A box complex satisfies the evenness condition if for any t,j,k
there is an even number of paths from B;:'H to Bi~. One or both faces may be the

implicit top or bottom element of the partial order.

The following two lemmas verify the boundarylessness of the evenness condition

and of polyhedra.

LEMMA 2.5. IfB is a n dimensional box complex satisfying the evenness condition,
dB = 0,

PROOF. By the evenness condition, every ridge occurs an even number of times

in B. Since the ridges are the (n — 1)-faces of B, all DAGs are deleted from 0B. &

LEMMA 2.6. A polyhedron is a box complex that satisfies the evenness condition.

PrROOF. The construction is similar to a simplex. Each :-box is a subset of an
i-flat. The DAG and evenness condition is constructed from bottom up. A vertex
occurs in two edges of a polygon. Each edge of a polygon is an edge of another

polygon. Similarly, each (z — 1)-face belongs to exactly two i-faces. [

The Point-n_polyhedron algorithm successively reduces the dimension of a box
complex. In Appendix A, we prove that point inclusion in a box complex is equiv-
alent to point inclusion in a contour of the box complex. The following theorems
concern the preservation of box complexes and the evenness condition. The first
theorem proves a contour is a box complex. The second theorem will be used to
prove that a box complex (the contour) is preserved under projection to a hyper-
plane. Note that if the theorems were restated for simplicial complexes, the first

theorem is false and the second theorem is vacuous.

LEMMA 2.7. Let B be a box complex of dimension n in R? which satisfies the
evenness condition. Let B™ be a n-face of B. Then dB™ is a box complex of

dimension n — 1 satisfying the evenness condition.

PrOOF. Clearly, 9B™ is a box complex of dimension n — 1. We need to check

that there are an even number of paths from level ¢ + 1 to ¢ — 1 in the new DAG.
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Accounting for the implicit top and bottom nodes, the new DAG is exactly the
part of the old DAG below and including B™. The new top node is the node that
was B™. '

Given two nodes in dB™, they must be below B™, so all paths between them in
B are as well. Hence the number of paths between the two nodes is unchanged in

aB". i

THEOREM 2.8. Let B be a box complex of dimension n in R? that satisfies the
evenness condition. Let S = { B}, By,... By} be a collection of n-faces in B. Then

0S8 is an — 1 dimensional box complex that satisfies the evenness condition.

PrOOF. Clearly 95 is a (possibly empty) n — 1 dimensional box complex. What
must be shown is that it satisfies the evenness condition. We first show the evenness
condition for the ridges of 5, and then the evenness condition for lower dimensional
faces.

Consider the number of paths in 85 from B™""% to the top node. The top node
corresponds to one of the BP in B. In each dB!" there are an even number of paths
from B"? to the top [Lemma 2.7], thus there is an even number of paths in all
the DAGs {B"} together. Since each pair of nodes is connected by at most one
edge, B"~? is subordinate to an even number of nodes in all the DAGs together.
We need to show this property is preserved in 95. We analyze the two steps in the
construction of dS in turn.

If B»~2 < B™ ! and B™! occurs in an even number of dB}, it gets deleted
from the DAGs. Thus, an even number of paths from B"~? to the top node are
eliminated, preserving the parity of the number of paths.

The second step deletes all nodes that have lost paths to the top node. After
the second step, we are guaranteed an odd number of paths from B™~? to the top
node passes through any given B"~! (unless the number is zero). In the union of
the DAGs, this odd number of paths becomes one path, thus again preserving the
parity of the number of paths from B"~? to the top.

Now consider the number of paths from B*~! to B! (: <n —1) in dS. Any

i-face between the two is on a path from top to bottom, so by construction it is
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retained in every OBP containing B't'. Thus the number of paths from B! to
B! in S is the same as in B itself. ]

The next theorem is immediate from the definition of box complex and evenness.

THEOREM 2.9. Let B be a box complex of dimension n in R?. Let V C R be a
m-flat which we may identify with R™. Suppose that for each B € B, VN B} # 0.
Suppose also that V N B} is a contractible open set for every Bi. Let B’ be the
DAG given by the DAG for B, but with each box changed from B; to Bj nv.
Then after identifying V with R™, B’ is also a box complex of dimension n in

R™. If B satisfies the evenness condition, so does B'.

3.3. Examples and related structures. Given a simplicial complex C' embed-
ded in R?, a box complex can be used to represent nearby simplicial complexes.
(In Appendix A, we show that the converse is true, i.e., that a simplicial com-
plex can be used to approximate a box complex.) Let the simplices of C' be the
nodes of a graph. Then the containment relation for the simplices induces a graded
DAG structure on the graph. Label each node with an é-neighborhood of the cor-
responding simplex and it is easy to see that the labeled graded DAG is a box
complex.

One can think of this box complex as representing all possible mappings of
(' which are é-close to the original embedding. A vertex appears somewhere in
its box B?

9 i.e., the box represents the location of a vertex with uncertainty. The

uncertainty may be due to round-off error, experimental error, computational error,
or other causes.

A similar construction works equally well for other combinatorial structures
such as polyhedra and smooth triangulations of submanifolds in R

The boxes of a box complex can be any shape without holes. In this thesis,
we use two bounding boxes and §-boxes. A bounding box is a polytope with axis
parallel sides. It is widely used in computational geometry to improve the efficiency
of an algorithm. The right hand side of Figure 2.1 is a box complex with bounding

boxes.
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Figure 2.3: Subgraphs for the evenness condition of a square. Each subgraph
contains two paths.

DEFINITION 2.10. A 6-box is defined by an oriented hyperplane and a positive
and negative offset from the hyperplane. The positive offset defines a parallel
hyperplane called the facet’s outer plane, and the negative offset defines its inner
plane. The width of a §-box is §. The box is clipped at the projection of the facet’s
subordinate boxes to the hyperplane. The clipped box may be implicit.

Note that the 6-neighborhood of a facet is contained in a (26)-box and the §-box
of a point is a (6/2)-ball. Figure 2.1 included an example of é-boxes.

Box complexes allow a rich variety of structures in R?. Some examples are lines
segments, squares, bow ties, all possible points, all possible curves between a pair
of points, and all possible curves between all possible pairs of points. Figure 2.3
shows two subgraphs of a square for the evenness condition. Figure 2.4 shows a
variety of box complexes.

The topology of box complexes is nearly the same as the topology of other repre-
sentations for subdivisions of a manifold. Besides simplicial complexes, the princi-
ple representations are Baumgart’s winged-edges, Guibas and Stolfi’s quad-edges,
Dobkin and Laszlo’s facet-edges, and Brisson’s cell-tuples. Each representation
specifies topological information via a data structure and routines for traversing
the data structure. Geometric information is attached to the data structure.

We defined the box complex instead of adapting an existing representation
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Figure 2.4: Examples of box complexes. If a box is not explicitly defined, it is
the convex hull of its subordinates. The upper left examples are also represented
by other models. The upper right example puts one vertex (a ridge) in four edges
(facets). It is not valid in models that require a twoness condition for boundary-
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lessness. The bottom three examples are instances of imprecise data.
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for several reasons. The primary motivation was the intermediate structures con-
structed by Point_in_polyhedron. Point_in_polyhedron projects the contour of a
subset of the facets to a hyperplane, and recursively solves point inclusion in the
projected contour. Box complexes provide a representation that is easily reduced
a dimension, allows for more than two uses of a ridge, and delimits imprecise data
with boxes. Other representations are either specific to a dimension, limited to

simplices, or require a twoness condition.

Like a simplicial complex, the box complex is a mathematical construct with
a natural representation as sets of faces. For many applications (e.g., Quick-hull),
the natural representation is sufficient. For 3-d and 4-d applications that satisfy a
twoness condition, one of the existing representations can represent box complexes.

We briefly discuss each representation below.

Baumgart’s winged-edge structure was the first topologically complete, com-
puter model of bounded polyhedra [Baumgart 1975]. Winged-edges represent a
polyhedron by sets of edge nodes, face nodes, and vertex nodes. Each edge node
references its neighboring faces, vertices, and edges. This specifies the correspond-

ing DAG of a box complex by explicitly defining the edges to and from each 1-face.
Guibas and Stolfi [1985] define quad-edge structures for subdivisions of 2-d

manifolds. A quad-edge links an edge into 4 rings of edges: the edges around its two
neighboring faces, and the edges around its two incident vertices. Explicitly listing
the vertex ring allows subordinate vertices of an edge to be the same. Operations
on quad-edges corresponds to an algebra for traversing the primal, dual, and mirror
image of a subdivision. Each operation takes unit time. If subordinate vertices are

distinct, a quad-edge structure is equivalent to a box complex.

Dobkin and Laszlo [1989] define facet-edge structures to extend quad-edges to
3-d manifolds. They use “facet” for the 2-dimensional faces of a 3-dimensional
polyhedron. A facet-edge links an edge of a facet into two rings of facet-edges: the
ring of edges about a facet and the ring of facets about the edge. Facet-edges are
also given for the dual representation. As the DAG for a box complex, the primal
structure lists the edges between 1-faces, 2-faces, and 0-faces. The dual structure

lists the edges between 1-faces, 2-faces, and 3-faces.
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Brisson [1989] defines cell-tuple structures in general dimension. In the notation
of box complexes, a cell-tuple is a tuple (B}, Bi,...,B}_;) such that B;: < B;+1.
In terms of the DAG, a cell-tuple is a path from the bottom to the top of the
DAG. Brisson’s cell-tuples satisfy the evenness condition with two paths for each
subgraph.

Mathematically, a box complex is an open cover for its trace (a manifold). An
open cover for a manifold is a set of open sets whose union is the manifold. Brisson
proved that cell-tuple structures represent all subdivisions of a manifold [Brisson

1989]. Since box complexes include cell-tuple structures, they include subdivisions.

3.4. Convex box complexes. The Point_in_polyhedron algorithm will use the
full flexibility of box complexes. The convex hull algorithm, Quick-hull, requires
less flexibility and additional geometric constraints. We define two specializations

of box complexes to represent the convex hull of imprecise points.

DEFINITION 2.11. A convex box complex for a set of imprecise points P is a box

complex such that:
o Its trace includes the boundaries of all exact convex hulls of P.

o The union of its trace with its interior includes all points in P.

A convex box complex allows rather weak approximations. For example, any
box complex is convex if one of its boxes is R%. The definition is strengthened by
bounding the maximum facet width. As the maximum width goes to zero, a convex
box complex becomes a closer and closer approximation to a precise convex hull.
A convex §-wide box complez is a box complex whose maximum facet width is 6.

The Quick-hull algorithm creates a convex box complex as its last step. Prior

iterations of the algorithm create a locally convex box complex of é-boxes.
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Figure 2.5: Convex and locally convex box complexes. The left-hand figure is
convex and locally convex. The right-hand figure is locally convex but not convex.

DEFINITION 2.12. A locally convex box complex for a set P of imprecise points is

a box complex of §-boxes such that
o Its 0-skeleton is a subset of P.

o Each §-box contains a point (the centrum) that is below the hyperplanes of
the 6-boxes of neighboring facets.

As shown in “f R is clearly convex!”3, the second condition makes each ridge
clearly convex. Quick-hull always satisfies the evenness condition with two paths.
The orientation of a facet is the orientation of its hyperplane. A facet’s orientation
induces a coherent orientation of its ridges and neighboring facets. In Quick-hull,
we compute the centrum to be near the center of the facet (see “centrum for a
facet! below for details). Figure 2.5 shows some examples.

The next lemma shows how to turn a locally convex box complex into a convex

one.

LEMMA 2.13. Let C be a locally convex box complex for a set of imprecise points
P. If the set P is contained in all outer halfspaces of C, C is a convex box complex
Ia¥ P,

ProOF. The trace and interior of C' contains the intersection of halfspaces defined

by the outer planes. So the trace and interior of C' contains the trace of P. The

3The dagger symbol “f” indicates a computation that is defined at the end of this chapter.
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vertices of a facet are above its inner plane. So the boundary of an exact convex
hull of the vertices is above the inner planes and below the outer planes. Since the
convex hull of a set of points includes the convex hull of any subset, its boundary

is in the trace of C. [}

4. Basic computations and operations

This section gives the basic computations and operations used in this thesis.
They may be useful in other algorithms. When mentioned in the thesis, they are
flagged by “1”. Operations specific to Quick-hull are flagged by “}” and defined in
Chapter 5. The basic computations determine angles and hyperplanes. The basic
predicates determine the orientation of a point to a hyperplane and the orientation
of a simplex. Other basic operations are defined in terms of these predicates and
computations. Point_in_polyhedron uses the orientation of a point to a hyperplane.
Quick-hull uses everything in this section.

The predicates return one of three results: yes, no, or can’t tell. A predicate
returns can’t tell when its the magnitude of its computation is smaller than the
maximum error due to roundoff and imprecision.

Roundoff error effects addition, subtraction, multiplication, division, and square
root. It does not effect comparison. Following Wilkinson [1965], fixed precision
arithmetic is same as exact arithmetic followed by rounding the result to the nearest
floating point number. The maximum, relative roundoff error for a single operation
is the machine roundoff 3. Fixed precision arithmetic is modeled by the float

operator fI() from the reals R to the floating point numbers Ry C R:

fl: R— Ry: fl(z) =z(1+6) 6] < B
flzDy)=(x0y)(1+6) [|§|<p (Oe{+—*/yt zy€eR;

The IEEE standards for floating point arithmetic (IEEE 754 and 854) support
this model [cf. Goldberg 1991].

For example in 2-d, the distance of point P = (py, p2) to the line with normalized
coefficients h = (hy, ha, h3) is (h,(P,1)). When computed, each operation causes
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roundoff. The exact, computed result is:

(((Rap1)(1 4+ 61) + (hap2)(1 + 62))(1 + 63) + hs)(1 + b4)

where §;, < f is the roundoff error for the k’th operation. The point P is clearly
above the line if its distance from the line is greater than the maximum error due
to roundoff.

We use a symbolic math package such as Maple [Char et al 1988] to determine
the partial derivatives of each error term. The sum of the magnitudes of the
partial derivatives for round-off error terms is the sensitivity (o) of the computation
[Miller 1975]. The sensitivity times 3 gives the maximum roundoff error for the
computation.

For example, P is above the line if

(h,(P,1)) > of
The sensitivity, o, is the sum of the magnitudes of the partial derivatives for d:
o= > |hip| + | DY hipil + [(h,(P,1))| + 2nd order terms
i=1..2 i=1..2

We ignore second order effects because machine epsilon is small, round-off errors
tend to cancel, and the probability of maximum precision errors is nearly zero.

If the point is imprecise, its §-box is a (§/2)-ball. The point is above a line only
if the ball is above the line. This holds if the distance of the ball’s center to the
line is greater than the maximum roundoff error plus 4.

A more complicated case occurs when the precision of a point cannot be sep-
arated from the roundoff error of a computation. In this case, we use a bounding
box for the point’s box. For example in 2-d, the area of a triangle P, P, P5 is
proportional to
P21 — P11 P22 — P12

P31 — P11 P32 — P12
where p;; is the j’th coordinate of P;. With explicit terms for roundoff error and

precision, the computation becomes:

((p21 + p21 — P11 — p11)(1 + 61)(ps2 + p3z — P12 — p12)(1 + 62)(1 + 63) —
(paz + paz — p12 — p12)(1 + 84)(pa1 + p31 — p11 — p11) (1 + 65)(1 + 6))(1 + 67)
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where é; < 3 is the roundoff error in operation k, p;; is the j’th coordinate of F;,
and p;; is its actual precision error. This expression ignores second order roundoff
errors due to adding and subtracting the precision terms. The area of a triangle is
positive if the expression is greater than the maximum error due to roundoff and
imprecision (see “orientation of a simplex!” for details).

The rest of this chapter lists the basic computations and operations. We first
list primitive computations and predicates. We then discuss convexity and list some
basic operations that are defined in terms of the primitives. Each section discusses
the operation in general dimension and gives its computational complexity as a
function of the dimension. Calculations are given for 2-d and 3-d. “F” refers to a
facet, “P” refers to an imprecise point, “R” refers to a ridge, and “S” refers to a

set.

4.1. Primitives.

angle of a ridge

The cosine of the angle formed by a ridge’s neighboring facets is the inner product
of their normalized hyperplane coeflicients: (fal,sz). The interior angle for the
facets is the supplementary angle: cos™*(—(h1, hy)). For this thesis, the interior
angle is always used.

The parameter # for Quick-hull sets the maximum interior angle. Two facets
are f-coplanar if the interior angle is in the range [0,27 — 0]. The parameter f is
used to determine if neighboring facets of a ridge form a clearly convex angle (see
“if R is clearly convex'). It is entered as the maximum, computed cosine that
includes roundoff error and normalization error.

The inner product uses O(d) operations.

LEMMA 2.14. Let d be the dimension and § < 0.01(d 4+ 1) be machine epsilon.
Gliven normalized hyperplane equations, the roundoff error in computing their angle
cosine is 1.01/3d.

PrROOF. The cosine is equivalent to the inner product of two normalized equa-

tions. For vectors z and y of length d, the inner product has an error bound of
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1.018d({|z|, |y|) [e.g., Golub & van Loan 1983, 3.2-5]. The inner product is at most
1 because (z,y) < ||z||||y]- |

In Quick_hull, the hyperplane equations are not exactly normalized because of
roundoff error. In 2-d (resp. 3-d) the absolute error in a coefficient is at most 3.53
(resp. 4.50), see “hyperplane through a simplex!. So the maximum roundoff error

is 4.518 (resp. 5.51f3). If the user specifies a bound for f, we assume that the

bound includes the maximum roundofl error.

hyperplane through a simplex

In R?, exactly d independent points defines a hyperplane. These points also define
a (d — 1)-simplex. To create an oriented hyperplane for a facet, we use a simplex
consisting of an apex (a point) and an oriented base (a ridge of d — 1 points).
We compute the coefficients of the hyperplane through the simplex by standard
methods [e.g., Bowyer & Woodwark 1983]. It takes O(d®) operations. The normal
equation’s offset places the apex exactly on the hyperplane. Orientation of the
hyperplane is set by the topological orientation of the ridge.

The hyperplane’s coefficients are normalized. If normalization causes overflow,
the largest magnitude coordinate becomes the unit normal. Roundoff error effects
normalization. By partial differentiation, the sensitivity of 2-d (resp. 3-d) nor-
malization is less than 3.5 (resp. 4.5) [inner product error terms contribute 1/2
apiece].

The following is a subtle point: A computed hyperplane is the ezact hyperplane
with the given floating point coefficients. So a computed hyperplane through a
simplex is not an imprecise object. Then we can use the hyperplane’s coefficients
as precise values instead of a range of possible values. A side effect of this decision
is that the simplex’s vertices may be above or below the hyperplane. We compute
the maximum deviation of a vertex from a hyperplane.

Note that our use of precise hyperplanes differs significantly from Guibas et al
[1989]. Their “e-butterfly” is the set of all possible hyperplanes through a simplex
(In 2-d, all possible lines through two points). We have found that a single precise

hyperplane is easier to manipulate than the set of all possible hyperplanes.
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if P is clearly above (below) a hyperplane

An imprecise point P is clearly above (resp. clearly below) a precise hyperplane
H if the signed distance of P to H is clearly positive (resp. negative). This is
equivalent to evaluating the hyperplane’s normal equation at the point. It takes
O(d) operations.

Let (h1, ha, ..., has1) be the hyperplane’s coefficients and (p1, ps, ..., pa) be the
point’s coefficients. The distance of P to H is clearly positive (resp. negative) if it

is positive (resp. negative) and

| > hipi + hapa| > p+op

i=1.d
where p is the point’s precision, o is the computation’s sensitivity, and g is the
machine epsilon.
In three and higher dimensions, we use balanced addition (e.g., (1+2)+(3+4))
instead of left-to-right addition. By partial differentiation, the sensitivity in 2-d is:

o = Z |hipi| + | Z hip;| + | 2 hip; + hs| + 2nd order terms.

i=1,2 1=1,2 i=1,2

In 3-d the sensitivity is:

o = Z |hipi| + | Z hipi| + | Z hipi| + | Z hip; + ha| + 2nd order terms.

i=1..3 1=1,2 1=3,4 =133

In both cases, the last term is the distance computation. Since we are only con-
cerned about values that are nearly zero, the last term has a second order effect
and can be ignored.

If p > 0, we must account for roundoff error in normalizing the hyperplane
equation (see “hyperplane through a simplex'”). If the maximum coordinate is A,
the maximum error due to normalization in 2-d (resp. 3-d) is TAS (resp. 13.5Af).

Note that the sensitivity depends on the magnitude of the point’s coordinates.
Let P’ be the arithmetic center of the point set. Translating the point set by — P’
would reduce the average coordinate but would introduce an additional roundoff

error of up to:

O Ipsl + > 1pi)B.
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This would cause a larger total error for many of the points.

In 3-d, if addition were performed left to right instead of balanced, the 5th error
term would be |hip; + hap2 + haps|. When the distance is nearly zero, the current
5th term is approximately |h1p; + hapa|. So balanced addition reduces o. Another
potential improvement is the Kahan summation formula [Kahan 72], but it only
bounds the error to twice the absolute value of each summand. While not helpful

in 3-d, it would reduce roundoff error in higher dimensions.

orientation of a simplex

The orientation of a simplex is positive (resp. negative) if its signed volume is
positive (resp. negative). The volume of a simplex is proportional to the magnitude
of a d x d determinant®. In general dimension this is equivalent to finding the L-
U decomposition of a matrix and multiplying the diagonal elements. Gaussian
elimination with partial pivoting solves this in O(d®) operations [e.g., Golub & van
Loan 1983]

The volume of d + 1 points Py, Py, ..., Py is clearly negative or clearly positive
if
P, — Py
Py~ FPo || > Eprec+0f
P — B

where &, is the maximum error due to a point’s precision, and o3 is the maximum
roundoff error. Symbolic differentiation determines &,.. and . Let p be the
maximum precision error of a point and A; be the maximum magnitude of the :-th

coordinate. Then the maximum error due to a point’s precision is bounded by:

2p,
Eprec 4 3p(A1 + Ag) + 12p% + 2nd order terms,
gp(A]AQ + AQA;; + AlAg) + 36p2(A] + Az + A3) + an order terms,

4This computation is not used in Point-in-polyhedron or in Quick-hull. It is used for the
counter-clockwise test and its higher dimensional equivalents (see “if R is clearly convex!”).

S -
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S

@ center point

Figure 2.6: Clearly convex angles may wind more than once around an interior
point

and when the computation is nearly 0, its sensitivity is bounded by:

QAla d =1
o < { 6A1A; + 2nd order terms, d=2
40A1A2A3 + 2nd order terms, d =3

4.2. Other operations.

if R is clearly convex

A ridge is clearly convex if its angle is less than 6 (see “angle of a ridge!”) and if its
neighboring centrums are both clearly below the opposite hyperplane (see “if P is
clearly above!). If all ridges of a box complex are clearly convex, the box complex
is locally convex.

A locally convex box complex may wind its facets more than once around an
interior point. The problem is easily illustrated in 2-d where a sequence of convex
angles can form a loop in the surface (Figure 2.6). In 2-d, Quick-hull partitioning
prevents this situation from arising. In 3-d, facets could wind. An example is
shown in Chapter 7. To prevent winding in Quick_hull, we perform an additional
test when the angle angle is less than 7/2. For acute angles, the arithmetic center
of the initial hull must be clearly below both hyperplanes.

All computations use O(d) operations in R?.

The remainder of this subsection concerns the convexity test. We prove that it

is correct and that an angle test is insufficient. The subsection concludes with a
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Figure 2.7: Facet centrums are needed to distinguish convex from concave angles
discussion of Fortune’s 3-d convexity test and the counter-clockwise test.

THEOREM 2.15. Two facets form a convex angle if each centrum is below the other

facet’s hyperplane.

PrROOF. The line segment between the centrums is interior to both half spaces.
Similarly all line segments for points between the centrums and the hyperplanes’

intersection are interior to both half spaces. i

LEMMA 2.16. Testing the angle between hyperplanes is insufficient for distinguish-

ing concave angles from convex ones.

ProOOF.  Without loss of generality, consider hyperplanes that are parallel to
all but the z and y axis, symmetric about the y axis, with the origin at their
intersection (Figure 2.7). The concave and convex cases are only distinguished by

marking the facets. |

In other words, facets may form a convex angle but not hyperplanes. For this
reason, Fortune’s test of 3-d convexity [Fortune 1992] does not extend to non-
simplicial facets. His test compares two simplicial facets. If the outer product of
the hyperplane normals has the same direction as the common edge, the facets

are convex, otherwise they are concave (Figure 2.8). With simplicial facets, the
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Figure 2.8: Fortune’s [1992b] test for 3-d convexity.

common edge lies on both hyperplanes. With non-simplicial facets, the common
edge is unrelated to the intersection of the hyperplanes and the test is not valid.
In 2-d, by using the XY plane in R?, Fortune’s test is valid since all ridges are

“parallel” to the Z axis.

In 2-d, another way to distinguish concave from convex angles is the counter-
clockwise test. Given a sequence of three points, the counter-clockwise test deter-
mines if the sequence turns counter-clockwise. It identifies convex angles between
successive edges of a polygon. If the exterior of the polygon is to the right, edges
are convex if their vertices are counter-clockwise.

The counter-clockwise test consists of determining the sign of the area formed
by the three points. In 3-d and higher dimensions, the counter-clockwise test
generalizes to the sign of the volume of a simplex (see “orientation of a simplex!”).
It is equivalent to testing a point against the e-butterfly of hyperplanes through a
(d — 1)-simplex [Guibas et al 1989].

The counter-clockwise test is used for precise convex hull algorithms [e.g., Gra-
ham 1972] and for imprecise, 2-d convex hull algorithms [Fortune 1989; Guibas et
al 1990; Li & Milenkovic 1990]. As others probably have done, we attempted to
use the counter-clockwise test for fixed precision arithmetic in 3-d. A problem is
that 3-d facets may have more than 3 vertices. Each simplex of a facet’s vertices
can define different hyperplanes. Repeated merges can then arbitrarily perturb the
original hyperplane. As done in Quick_hull, a simplex can be assigned to each facet,

but there does not appear to be a consistent way to pick the other vertex for the
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counter-clockwise test.

if P is maybe above (below) a hyperplane

A point is maybe above (resp. maybe below) a hyperplane if it is not clearly below
(resp. clearly above) the hyperplane (see “if P is clearly above!”).
Both computations take O(d) operations.

if R is clearly concave

A ridge is clearly concave if its angle is less than @ (see “angle of a ridge!”) and if
its neighboring centrums are both clearly above the opposite hyperplane (see “if P
is clearly above!”).

Both computations use O(d) operations in R?.

if R is coplanar

A ridge is coplanar if it is not clearly convex nor clearly concave (see “if R is clearly
convex! and “f R is clearly concave!”).

Either test takes O(d) operations in R%.
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Chapter 3
Point_in_polyhedron

Is a point inside or outside a polyhedron? This is a basic geometric operation
for point membership classification. For example in constructive solid geometry,
objects are composed by set operations on primitive and previously constructed
objects. Point inclusion is the first step in adding an object to a representation.
Point classification is also important for clipping, geometric intersection, and ray
tracing [Tilove 1980; Hanrahan 1989].

A standard algorithm for Point-n_polyhedron shoots a test ray from the point.
One counts the number of facets crossed by the test ray. If an even number are
crossed, the point is outside of the polyhedron; if odd, the point is inside. This is
called the parity test.

As often happens with geometric algorithms, there are a number of special cases
to worry about. For example, an edge could be exactly coincident with a ray, or
the ray could intersect a vertex. In 2-d, an infinitesimally rotated, horizontal ray
avoids these cases. Since the ray is horizontal, incidence is equivalent to comparing
y coordinates. Since y coordinates have a finite representation, an infinitesimal
rotation avoids all incidences [Preparata & Shamos 1985].

The problem is more complex in three and higher dimensions. The parity test
remains valid but a fixed rotation does not avoid all incidences. Consider a ray
that intersects an edge. If the rotation is fixed, it may be in the same direction
as the edge. If so, the rotated ray still intersects the edge. Furthermore, with

fixed precision arithmetic, a computation can not always tell whether or not a ray
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intersects an edge.

This chapter presents a point-in-polyhedron algorithm that avoids such prob-
lems. It is the first point inclusion algorithm to work in general dimension for
arbitrary inputs and fixed precision arithmetic. In addition, it works even if the
only geometric information is bounding boxes. The algorithm uses the parity test
but it never determines that a ray crosses a facet. In brief, it locates facets whose
boxes intersect the test ray, finds the contour of these facets, and recursively runs
the parity test on the contour. It ends when the contour is a subset of the polyhe-

dron’s vertices.

The parity test on simple polyhedra is an application of the Jordan-Brouwer
separation theorem and its generalizations [cf., Munkres 1984, Th. 36.3]. Jordan in
1887 initiated a proof that every simple closed curve separates the plane into two
pieces. This was proved in 1905 by Veblen and generalized to arbitrary dimension by
Brouwer. The Jordan-Brouwer separation theorem states that a set homeomorphic
to a sphere separates R? into two components. One of the components is bounded
while the other is unbounded. The bounded component is the sphere’s inside while
the other is its outside. A corollary states that a ray from the inside crosses a
sphere an odd number of times. If a polyhedron, this is equivalent to counting the
number of facets crossed by a ray. The even/odd parity of the number of crossing

is the erossing parity for the point.

Several solutions have been published for point inclusion in 3-d. The simplest is
to randomly rotate the polyhedron before counting the facet crossings [Corkum &
Wyllie 1990]. If the ray intersects an edge or vertex, the polyhedron is rotated again.
The second solution is to merge faces when a singularity is detected [Kalay 1982].
The third solution is to locate the closest feature and then test the orientation of

neighboring facets and edges [Horn & Taylor 1989].

The fourth solution is quite different. Instead of casting a single ray, it casts all
rays from a point. It indirectly counts the crossings of each ray by projecting each
oriented facet to the unit sphere, and integrating the signed, projected areas. If a
ray crosses two facets, their surface patches have opposite sign and cancel. So if a

ray crosses an even number of times, the corresponding surface patches contribute
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zero to the surface integral. If a ray crosses an odd number of facets, it contributes
one surface patch to the surface integral. If the sum is the sphere’s area (resp. zero,
area/2), the point is inside (resp. outside, on) [Lane et al 1984]. This approach
is practical and robust when arithmetic is sufficiently precise to distinguish three
possible values.

We seek a general dimension algorithm that is independent of the arithmetic’s
precision. The other algorithms are either dimension specific or may fail under
fixed precision arithmetic. Kalay’s and Horn and Taylor’s algorithms are specifi-
cally for 3-d. They also include many special cases. Simulation of Simplicity uses
precise arithmetic. With fixed precision arithmetic, Corkum & Wyllie’s algorithm
may never find a rotation that avoids singularities. If the arithmetic is sufficiently
imprecise, Lane et al’s algorithm can not distinguish the three cases.

The algorithm presented here works in general dimension with imprecise data
and arithmetic. The algorithm is intriguing because it reduces point inclusion to
the parity of a subset of the vertices. It never identifies a facet crossing. Of the

four solutions, it is closest to Kalay’s.

1. Point_in_polyhedron algorithm

The following algorithm works with precise and imprecise data. Pointin-
polyhedron(B, P, d) returns clearly inside, clearly outside, or can’t tell. The first
two are strong predicates for P inside or outside of a polyhedron B in R All
sources of imprecision are captured by the boxes of B.

After presenting the algorithm, we will discuss precise data, bounding boxes,
and §-boxes. These effect the classification subroutine but do not effect the algo-
rithm itself. Point-in_polyhedron uses d orthogonal test rays (we use the d positive
axes originating at P).

The classification subroutine, Classify(F,P,d), classifies facet F' for the d’th test
ray from point P. It returns in front if the test ray intersects F’s box. It returns
not infront if the test ray does not intersect. It returns can’t tell if the test ray and
its opposite ray intersects F’s box. The last case occurs if P is inside the box, or if

the box wraps around P. With precise data and arithmetic, can’t tell only occurs
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let Sy be a set of facets (the front half), initially empty
for each facet F of B
Class= Classify (F, P, d)
if Class = can’t tell
return can’t tell
if Class = in front
append F to Sy
ifd>1
return Pointin_polyhedron(S}’s projected contour, P, d-1)
else
if S¢’s parity is odd
return clearly inside
else
return clearly outside

Table 3.1: Algorithm for the recursive function Point_in_polyhedron(B, P, d). The
algorithm tests if point P is inside polyhedron B in R?. It returns clearly inside,
clearly outside, or can’t tell. Each recursive call projects the contour of Sy to the
perpendicular hyperplane to the test ray. Instead of d = 1, the recursion can
terminate at d = 2 with the point inclusion algorithm of Preparata and Shamos

[1985].

when P is on the facet. Figure 3.1 illustrates the possible cases.

Point.in_polyhedron is a recursive algorithm that reduces the dimension of the
problem. At dimension d, it divides the facets ((d—1)-faces) into the front half and
the back half. The front half consists of those facets in front of the point. The back
half consists of those not infront of the point. Their intersection is the contour.

See Table 3.1 for the algorithm.

Point_in_polyhedron is simplest when each test ray misses all lower dimensional
features. For example, in R? the facets are polygons. Let the point be inside the
polyhedron. Let the test ray go through exactly one polygon. Point_in_polyhedron
projects the edges of the polygon (its contour) to the perpendicular plane through
the test point. Point-in-polyhedron becomes point-in-polygon. Let the second test

ray go through exactly one edge (note that the test point is inside the polygon).
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test ray

in front
point
R R >
test ray
not in front
oint test ray

can't tell

Figure 3.1: The orientation subroutine returns in front, not infront, or can’t tell.
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Point_in_polyhedron projects the vertices of the edge to a perpendicular line through
the test point. Now there’s two vertices with the test point between them. The
third test ray (there’s only two possibilities) goes through one or the other vertex.
Since the size of Sy is odd, Point_in_polyhedron reports that the point is clearly
inside the original polyhedron.

The following subsections discuss what happens when data is precise, boxes are
bounding boxes, or boxes are é-boxes. These change the orientation subroutine
but do not change Point_in_polyhedron. Then we sketch the correctness proof for

Point-n_polyhedron (proved in Appendix A).

1.1. Precise data and arithmetic. If data and arithmetic are precise, a test
ray either crosses or does not cross a facet. If the test ray crosses a lower dimen-
sional feature, then it crosses all incident facets. There are two cases in Pointin_
polyhedron. If d = 1, then the only faces are vertices and the point is inside if an
odd number of vertices are crossed. If d > 1, then at the recursive call to Point_
in_polyhedron, S; consists of all facets crossed by the test ray. Taking the contour
of S; is the same as merging these facets together and returning their boundary
ridges. This reduces the singular case to the non-singular case above.

Figure 3.2 shows the steps for R%. The test ray crosses three edges. Their
contour consists of two vertices. Pointin_polyhedron projects the vertices to the
perpendicular through the test point. This is the same as stretching the figure at
the vertices and intersecting it with the perpendicular. The reduced problem is the
same as the original because the stretched figure does not change the insideness of

the point.

1.2. Bounding boxes. If data and arithmetic are imprecise, the boxes for the
polyhedron are open sets. First consider what happens when the boxes are bound-
ing boxes. It is easy to tell if a test ray intersects a box (just compare coordinates),
but it may not cross the facet itself. Point_in_polyhedron still works because it only
needs to determine those facets that could be crossed by the test ray.
Point_in_polyhedron is exactly the same as in the precise case. Figure 3.3 illus-
trates the process. Again there are two cases. If d = 1, the bounding box for a

vertex is either crossed or not crossed. So parity determines point inclusion. If
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o) o s = s g s

test ray test point

4 testray
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® projected vertex

& test point

e projected vertex

Figure 3.2: Pointin_polyhedron reduces point inclusion to a lower dimensional
problem. It identifies the crossed facets, stretches the figure at their contour, and
intersects the stretched figure with the perpendicular hyperplane.

O _ projected vertex
O R'—>
test ra
®-cccpe (] Veennn > point
| O (m] l l projected vertex

Figure 3.3: Pointin_polyhedron with bounding boxes. As in the precise case, Point.
in_polyhedron identifies the facets whose boxes intersect the test ray, stretches the
figure at their contour, and intersects the stretched figure with the perpendicular
hyperplane.
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Class= ClassifyBoundingBox (F, P, d)
if d > 1 and Class = can’t tell
Class= ClassifyHyperplane (F, P, d)
if d > 2 and Class = can’t tell
Contour= project F’s contour to a hyperplane along the test ray
if VRecontour ClassifyRidge (R, P, d-1) = not infront
Class= not infront
else if VRrecontour ClassifyRidge (R, P, d-1) = in front
Class= in front
else
Contour= project F’s contour to the test ray’s perpendicular hyperplane
if Pointin_polyhedron(Contour, P, d-1) = clearly outside
Class= not infront
else
Class= can’t tell
return Class

Table 3.2: Classify (F, P, d). Classification subroutine for facet F relative to point
P’s test ray in R%.

d > 1, then Theorems 2.8 and 2.9 show that the reduced structure is still a box
complex. The argument that point inclusion is the same is more complicated. The
problem is that the actual polyhedron could be anywhere in the boxes. We sketch
the proof in a later section.

Note that we need very little geometric information about the location of a
facet and its faces. Point-in_polyhedron is the first point inclusion algorithm to

work with bounding boxes alone.

1.3. §-boxes. The problem with bounding boxes is that they can sweep out a much
larger volume than necessary. We use bounding boxes for the initial classification of
a facet, and §-boxes if the initial classification is can’t tell. In an application, other
box descriptions could also be used. The pseudocode for Classify with é-boxes is
in Table 3.2.

Each step of Classify(F, P, d) is discussed below.
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1.4. Pseudocode steps for Classify.

Class= ClassifyBoundingBox (F, P, d)

See Section 1.2 for an explanation.

if d > 1 and Class = can’t tell

If d =1, the bounding box and é-box of a facet are the same. If d > 1, the é-box

can be much smaller than the bounding box.

Class= ClassifyHyperplane (F, P, d)

The test ray is the positive d’th axis originating at P. This step determines whether
or not the test ray crosses F’s hyperplane H. If P is or could be between the inner
and outer plane for H, ClassifyHyperplane returns can’t tell. If the test ray crosses
H, ClassifyHyperplane returns in front. Otherwise, ClassifyHyperplane returns
not infront. See “if P is clearly above H'” for computing the distance of P to H.

Crossing is detected by multiplying the signed distance to H by H’s d’th coefficient.

if d > 2 and Class = can’t tell

If d = 2, F’s hyperplane and bounding box determines its box. If d > 2, P can be
near F’s hyperplane but outside of F’s box. The following steps determine if this

is the case.

Contour= project F’s contour to a hyperplane along the test ray

First we exactly project F’s contour to a hyperplane along the test ray. If either the
test ray or a ray in the opposite direction entirely misses the projected contour, then
it entirely misses the original contour. The current implementation of Classify(F,
P, d) just uses the recursive call to Pointin_polyhedron described below. So the

details for these steps are incomplete.
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if VRrecontour ClassifyRidge (R, P, d-1) = not infront

ClassifyRidge(R, P, d-1) is the same as Classify(R, P, d-1) except that the test rays
differ.

else if Vrecontour ClassifyRidge (R, P, d-1) = not behind

This condition can be determined in the previous step. A ridge is not behind the

point if the ray opposite to the test ray does not intersect the ridge’s box.

Contour= project F’s contour to the test ray’s perpendicular hyperplane

The previous projection fails if the facet lies in the perpendicular hyperplane or if
the contour wraps around the test point. We resolve these cases by exactly project-

ing the contour to the perpendicular hyperplane and running Point_in_polyhedron.

if Point_in_polyhedron(Contour, P, d-1) = clearly outside

If the test point is outside of the projected contour, then the test ray must miss the
facet. Otherwise, the test point is inside the facet’s bounding box or the test ray
lies in the facet’s hyperplane and the facet’s contour wraps around the test point.

Note that a different test ray could resolve the last case.

2. Correctness proof for Point_in_polyhedron (sketch)

LEMMA 3.1. Allridges in the contour of a front half are not infront and not behind

the test point.

PROOF. Pointin_polyhedron partitions the facets into a front half and a back half.
The front half contains all facets that are in front of the test point. These facets
and their subordinates are not behind the point. Similar all facets and subordinates
in the back half are not infront of the point. The contour is in both the front half
and the back half. L
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COROLLARY 3.2. Let B be the projection of the contour’s boxes to the perpendic-
ular hyperplane. Then P ¢ trace(B).

THEOREM 3.3. Let B be a 0-box complex and P be a point in R' — trace(B).

Inclusion of P in B is equivalent to the odd parity of a multiset of vertices of B.

PROOF. A 0-face complex is embedded in R', so a test ray and its opposite
intersect every O-face of the complex. The algorithm partitions the facets (i.e.,
vertices) into those which the test ray does not cross and those which the opposite
ray does not cross. Vertices in the front half are crossed by the test ray but not
by its opposite. The reverse holds for vertices in the back half. By the evenness
condition, there is an even number of vertices in a 0-face complex. So an odd
number of vertices are crossed if and only if either half contains an odd number of
vertices. If B is a simplex, it consists of two vertices. Consider points in neither
vertice’s box. If a point is between the vertices, it is clearly inside B, otherwise it

is clearly outside B. i

The proof of correctness for higher dimensions is in Appendix A. We first con-
struct a realization for B, i.e., a simplicial complex that has the same DAG as B.
The boxes of B contain the realization in each dimension. We prove the point
inclusion theorems for a realization, and then prove that all realizations give the
same results. We use homology theory to prove these theorems.

The correctness proof comes in three parts. The first part proves that box
complexes separate R? into multiple components. The second part proves that the
parity test distinguishes inside points from outside points. The third part proves
that point inclusion in a box complex is equivalent to point inclusion inside the
projected contour of the front half.

The key theorem follows:

THEOREM 3.4. Let H be a plane perpendicular to a test ray through a point p,
and C be the contour of p front half in a box complex B. Let C' be the projection
of C' to H. If the boxes of C' are convex, the crossing parity of p relative to B is

the same as the crossing parity of p relative to C".
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PROOF. [proof sketch] Translate the front half along the test ray until it is on the
positive side of H. Similarly, translate the back half until it is on the negative side
of H.

The contour still connects the front half to the back half. Its boxes were
stretched rectilinearly. The boxes of the neighboring facets were also stretched.
Since no topological changes were made and all boxes are contractible to a point,
the stretched structure is still a box complex. It looks like the old box complex
with a “fat middle”.

The realization is similarly stretched. Since the intersection of the test ray
with the stretched realization is unchanged, the crossing parity of the point is
unchanged. Now intersect the stretched boxes with H. The intersection is the
same as the projection of the contour’s boxes to H. A test ray in H must have the
same crossing parity as the original test ray.

By Theorem 2.9, we still have a box complex. Retriangulating the intersection
of H with the stretched realization gives a realization for the intersected boxes. The

intersected realization has the same crossing parity as before. [

Pointin_polyhedron is an implementation of this theorem with Theorem 3.3

ending the recursion. With Appendix A, this completes the proof of correctness:

THEOREM 3.5. Let B be a box complex and p be a point in R* — trace(B). If the
boxes of projected contours are convex, Point_in_polyhedron computes the crossing

parity of p.

If the projected contours are non-convex, Pointin_polyhedron usually computes
the crossing parity of p. If it doesn’t, it reports can’t tell. This occurs when both

the test ray and its opposite intersect a box.
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3. Complexity analysis of Point_in_polyhedron

The tolerance region of a facet’s hyperplane is the intersection of its bounding

box with the region between its outer plane and inner plane.

LEMMA 3.6. Let n be the number of faces in a box complex.! If the point is outside
of all but a constant number of tolerance regions, the space and time complexity

for Point_in_polyhedron is O(n).

Proor.  Classify(B, P, d) is non-recursive if points are outside the tolerance
regions. It processes each face no more than once with O(1) work per face. Point_
in_polyhedron performs O(1) work per face. A recursive call to the orientation
subroutine has the same complexity as Point_in_polyhedron with points outside of
tolerance regions. The size of the maximum contour is n which bounds the space

complexity. [

4. Summary

Point_n_polyhedron is a point inclusion algorithm that allows approximate geo-
graphic information. Its input is a point and a polyhedron represented by a box
complex. Its output is clearly inside, clearly outside, or can’t tell. Unless a point
is inside many tolerance regions, Point-in_polyhedron takes O(n) space and O(n)
time where n is the number of faces.

Point-in-polyhedron is the first point inclusion algorithm to work in any dimen-
sion, on data that is arbitrarily imprecise, and with arithmetic that is arbitrarily
imprecise. It works even if the only geometric information is bounding boxes. Its
boxes may be useful for other applications. Point_in_polyhedron is unique in that

it tests point inclusion by determining the parity of a subset of the vertices.

!Note that n is O(ml%2]) where m is the number of vertices and d is the dimension.
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Chapter 4
Convex hull

Consider the convex hull in arbitrary dimensions. This is a well understood problem
with many applications and algorithms. It is used in pattern recognition, statistics,
polyhedron intersection, and image processing. In 3-d and higher dimensions, it is
used for Delaunay triangulation, Voronoi diagrams, and power diagrams. Auren-
hammer [1991] gives a thorough review of the literature. He describes applications
in file searching, cluster analysis, collision detection, crystallography, metallurgy,
urban planning, cartography, image processing, numerical integration, statistics,
sphere packing, point location, and others.

Chapter 2 reviewed the mathematics for convex hulls. This chapter presents
a general dimension algorithm with good average case performance. The algo-
rithm uses precise data and arithmetic. Like other algorithms designed for precise
arithmetic, it does not work with imprecise data or arithmetic. At the end of
this chapter, we present some of the problems caused by imprecision. In the next

chapter, we extend the algorithm to handle imprecision.

1. Quickhull and beneath-beyond algorithms

The 2-d Quickhull algorithm [Eddy 1977; Bykat 1978; Green & Silverman 1979;
Floyd 1976] incrementally constructs a convex hull. Like its namesake, Quicksort,
Quickhull repeatedly partitions the point set. At the beginning of each iteration,

Quickhull associates an outside list of points to each edge. Each point on an outside
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create an initial hull from a simplex of points
partition points into the edges’ outside lists.
for each edge with a non-empty outside list
pick the leftmost, furthest point on the list
form a triangle of the point and edge
remove any points below the two new edges
partition the remaining points into the new edges’ outside lists
replace the old edge with the two new edges

Table 4.1: 2-d Quickhull algorithm for precise data and arithmetic

list is above the corresponding edge (see Table 4.1).

A furthest point is the point on an outside list that is furthest from the facet’s
hyperplane. A processing level of Quickhull consists of processing all old facets
before processing a newly created facet. Consider adding the furthest point to the
convex hull. Quickhull partitions the remaining points on the outside list into the
two newly created edges. Consider those points that are outside one of the edges.
Unless the input is designed to be bad for Quickhull, about half of the points will
go to one edge and the other half to the other edge. If the partition is always
bad then Quickhull runs in O(n?) time. But the normal case is the length of long

outside lists decreasing geometrically per processing level.

LEMMA 4.1. If the length of long outside lists decreases geometrically per process-
ing level, Quickhull runs in O(nlog h + h) time where n is the size of the input and
h is the size of the output.

PrROOF. The number of processing levels is O(log k). A point is partitioned no
more than once per processing level. The total number of edges created is O(h).
FEach step occurs either a constant number of times per edge or per partitioning of

a point. |

In 2-d, the furthest point above an edge is a vertex of the convex hull, so points
can only be above one of the new edges. This is not true in 3-d and higher. Consider

the convex hull of many points on a sphere. The initial hull would be a tetrahedron
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create an initial hull from a simplex of points
for each unprocessed point
delete facets that are below the point
add the point to coplanar facets
add the point to horizon faces

Table 4.2: Beneath-beyond algorithm for computing the convex hull with precise
data and arithmetic.

of four of those points. Points above one edge of the tetrahedron would be above
two of its facets.

The Beneath-beyond algorithm [Kallay 1981; Preparata & Shamos 1985] con-
structs a convex hull for any dimension. It is named after terminology in [Griinbaum
1967]. A point is beneath (resp. beyond) a facet if the point is below (resp. above)
the facet'. A coplanar facet is a facet that is coplanar with the point. A horizon
face is a face that has an incident facet below the point and another incident facet
above the point. A point is added to a face or facet by taking the convex hull of
their union. Table 4.2 gives the algorithm.

Beneath-beyond is a direct implementation of the following theorem [Griinbaum

1967, Th. 5.2.1]:

THEOREM 4.2. Let H be a convex hull in R?, and let p be a point in R — H.
Then G is the convex hull of pU H where the facets of G are defined by:

1. A face f of H is a face of G iff there is a facet F' of H such that f < F' and
p is below F.

2. If f is a face of H, then the convex hull of pU f is a face of G iff either (a)
p is in the affine hull of f, or (b) p is above one facet of H containing f and

below another.
Beneath-beyond explicitly modifies the facial structure of a convex hull. A
simpler version suffices if faces may be simplicial complexes. Consider the simplicial

1IO avoid confusion, we use “above” and “below” in this thesis instead of “beneath” and
1
“beyond”.
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create an initial hull from a simplex of points

for each unprocessed point
find a facet below the point
find the horizon of facets above or coplanar with the point
make a cone of new facets from the point to the horizon
merge coplanar facets
replace facets within the horizon by the cone

Table 4.3: Algorithm for modified Beneath-beyond on facets with precise data and
arithmetic.

complex for a face. Call its simplices, cofaces of the face. All cofaces of a face
belong to the same affine hull. Similarly let a cofacet be a (d — 1)-dimensional
coface. Cofacets can be merged after each iteration or as a post-processing step.

Lower dimensional cofaces can be merged at the same time.

THEOREM 4.3. Let H be a convex hull in R? and let p be a point in R — H.
Then G is the convex hull of p U H where the facets of G are defined by:

1. A facet F of H is a facet of G iff F' is above p

2. A facet not of H is a facet of G if it has a simplicial decomposition of (a)
cofacets of a facet F' of H coplanar with p, and/or (b) simplices whose apex
is p and whose base is a ridge with one incident facet below p and the other

incident facet above or coplanar with p.

PrRoOF. Let each face of H be a simplicial complex of cofaces. If a facet is in H
(resp. () then all of its faces are in H (resp. ). By Theorem 4.2, if p is below a
facet Fin H, F' is also in G. Also from Theorem 4.2, if a ridge r has one neighbor
above p and the other below p, the simplex of r with p is a cofacet of G. By the
convexity of a facet, all ridges in the affine hull of a cofacet are bases of cofacets in
the same facet. If p is coplanar with a facet F' in H, it is in its affine hull. Since

F’s ridges are also in the affine hull, all cofacets belong to the same facet. |

By Theorem 4.3 a simpler version of beneath-beyond suffices (see Table 4.3).
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create an initial hull
partition points into the facets’ outside lists.
for each facet with a non-empty outside list
pick the furthest point on the list
find the horizon of facets above or coplanar with the point
make a cone of new facets from the point to the horizon
merge coplanar facets
remove any points below the cone
partition the remaining points so that each point is on one outside list
replace facets within the horizon by the cone

Table 4.4: Quick_hull algorithm in R? with precise data and arithmetic.

Each step of this algorithm is subsumed by steps in the Beneath-beyond algorithm,
so the analysis of Preparata & Shamos [1985] carries through:

LEMMA 4.4. The worst-case complexity of modified Beneath-beyond is O(nM)

where n is the number of points and M is the maximum number of faces.

2. Quick_hull with precise data and arithmetic

The 2-d Quickhull algorithm is extended to R? by replacing its triangulation
step with one iteration of Beneath-beyond (see Table 4.4). Unlike 2-d Quickhull,
the furthest point for a facet is not necessarily an extreme point of the entire point
set. If an extreme point is above multiple facets, the partitioning step assigns it to
only one facet. The furthest points for neighboring facets may be interior to this
extreme point?.

Guibas et al [1990] and Clarkson et al [1992; cf. Fortune 1992a] give a con-
vex hull algorithm which performs the same steps as Quick-hull but in a different
_Z—T?partitioning step could assign a point to multiple facets if a heap stored the furthest
point for each facet. This would complicate the data structure and add a O(nlogn) factor to

the average-case complexity analysis. Empirically in 3-d, the furthest point is almost always an
extreme point.
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order. They use beneath-beyond on a random permutation of a point set in gen-
eral position. They retain the old triangulations to speedup selection of a visible
facet. Chazelle [1991] derandomizes the algorithm to get an asymptotically opti-
mal deterministic algorithm (O(Amax + 7108 Amax) Where hpyay is the maximum size
of the output). Boissonnat and Devillers-Teillaud [1989] use a similar method for
Delaunay triangulations.

These algorithms locate a facet that is below the point (if any), by traversing the
DAG of old triangulations. Quick-hull tests exactly the same set of hyperplanes for
a point, but it organizes the tests differently. Instead of testing all hyperplanes for
a given point, it tests all points for a given hyperplane. In Quick_hull the partition-
ing happens after adding each new point. In the other algorithms, “partitioning”

happens before adding a new point. We prefer the former because:

o Quick_hull maintains a list of outside points for each facet while the others
maintain a DAG of old triangulations. The lists are often smaller than the
DAG. The size of the DAG is O(nl%2]), or about d times the size as the final
output [Fortune 1992a].

o Empirically, the average time complexity of Quick-hull is O(nlog h+ k) where
h is the size of the output. Consider the convex hull of a sphere of points
inscribed in a cube. Quick_hull runs in O(n), while the other algorithms run
on average in O(nlogn). Output sensitivity becomes increasingly significant

as the dimension increases.

o Empirically, Quick-hull inserts fewer interior points into the convex hull than
the other algorithms. As shown above, Quick-hull only processes points that
are extreme points of the points assigned to a facet. If a vertex of the convex
hull is above just one facet of the preceding hull, Quick_hull removes all inte-
rior points to its cone. The other algorithms may insert some of the interior
points before the vertex. As shown in Chapter 6, selecting extreme points is

also important for bounding the error due to fixed precision arithmetic.
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LEMMA 4.5. With precise data and arithmetic, if an extreme point of the convex
hull is above two or more facets at a partition step in Quick_hull, it must be

processed irrespective of which facet it is assigned to.

PROOF. Assume the contrary and consider the furthest point whose cone is above
or coplanar with the extreme point. The visible facets for the furthest point include
all facets that the extreme point was above. The extreme point is not above the
cone so it must be inside the convex hull. This contradicts its membership in the

convex hull. |

THEOREM 4.6. With precise arithmetic and data, the Quick_hull algorithm pro-

duces the convex hull of a set of points in R¥.

PrROOF. The Quick-hull algorithm is a specialization of the simplified, beneath-
beyond algorithm for convex hulls. In particular, Quick_hull partitions the points
into new facets and picks furthest points for processing. After a visible facet is
located in beneath-beyond, the processing is the same for both algorithms. By
Lemma 4.5, partitioning can not prevent an extreme point from being processed.
The termination conditions are the same, so the correctness of beneath-beyond

proves the correctness of Quick_hull. [

LEMMA 4.7. The worst case complexity of Quick_hull is O(n* M) where n is the

number of points and M is the maximum number of faces.

PROOF.  Quick_hull is the same as Beneath-beyond except for the partitioning

steps. At worst, n iterations can occur and each partitioning involves every facet.

This worst-case complexity is pessimistic because partitioning is usually bal-
anced and processed points are likely to be extreme points. In Chapter 6, we prove
that if some balance conditions hold, Quick-hull runs in O(nlog A+ k) time where
n is the size of the input and h the size of the output.
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LEMMA 4.8. The Quick_hull algorithm on point sets in R? adds a point to the hull

only if it is an extreme point of the points assigned to a facet.

Proor. A Quickhull iteration processes the point furthest from the facet’s
hyperplane. Since points are in general position, all points assigned to a facet are

inside the affine hyperplane through the furthest point. [

When implementing the algorithm in R?, the following is useful:

o If possible, build the initial hull from d maximum points, i.e., those with

minimum or maximum coordinates.

o Process the remaining maximum points first. This quickly builds an approx-
imation to the hull. If points are randomly distributed in a square then
diagonal maximum points will eliminate all but O(y/n) points [Golin and
Sedgewick 1988].

o Remove and partition points in a single step.
o During the partition step, identify the next furthest point for each new facet.

o When identifying the horizon, merge all facets below the point. This leaves
a single old facet for the replacement step. (This should not be done with

imprecise data).

3. Imprecise predicates and convex hull algorithms

The next chapter shows how to adapt Quick-hull for imprecise data and arith-
metic. Most of the changes are in the merge step. As it stands, Quick-hull, like
many other convex hull algorithms, does not work for imprecise arithmetic. This
section discusses some of the problems that may arise.

Consider the convex hull of cospherical points. If all but one point is restricted
to a ring, the convex hull looks like an ice cream cone with a bite taken out. If
the diameter of the disk is narrowed down to 2 -107%, the disk is nearly flat. If

the disk contains 20,000 points, most adjacent simplices do not form clearly convex
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Convex hull of 50001 cospherical points on the unit sphere
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Figure 4.1: Erroneous convex hull of 20,001 cospherical points on the unit sphere.
A 2-107% disk contains 20,000 points. The right hand figure is a 10~7 closeup. At
this scale, the other point is over 800 miles away.
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<180 L above A but below B
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Figure 4.2: Roundoff error may incorrectly report that a point is below a facet that
it should be above. If classification is inconsistent, a spike can result.

angles. The precise algorithm for Quick-hull fails  (Figure 4.1). One reason is
that points above two facets may be computed as above one facet and below the
other. Triangulating such a point leads to a facet oriented in the reverse direction
(Figure 4.2). Exactly the same problem will happen in Beneath_beyond and related
algorithms [e.g., Guibas et al. 1990; Clarkson et al. 1992].

The Graham Scan algorithm for 2-d convex hull [Graham 1972] compares polar
angles to sort points radially around an inside point. It tests for convex angles to
produce the convex hull. Both computations are equivalent to testing the orienta-
tion of a triangle by the sign of a determinate (see “orientation of a simplex!). Sort-
ing is by the angle. For collinear points, sorting is by distance from origin. When
building the hull, collinear points are treated the same way as concave points. If
collinearity is determined with precise arithmetic, Graham scan produces a convex
hull. With imprecise arithmetic, it may fail.

Consider a large number of uniformly placed points on one turn of a clockwise

spiral (Figure 4.3). They could be sorted for Graham Scan from innermost point

to outermost. If so the algorithm produces a degenerate hull of the first and last
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Y

Figure 4.3: If the Graham scan algorithm ignores roundoff error, sorting could be
in reverse order. If so, a degenerate hull is built.

points.

Chand and Kapur’s [1970] gift-wrapping method adds a facet to a contiguous set
of facets by rotating a hyperplane around an outside ridge. The maximum rotation
defines the next facet. Consider a large number of points on a sphere. In the precise
case, each point becomes a vertex of the convex hull. Consider what happens if
gift-wrapping treats near-zero computations as zero. Then nearly coplanar points
combine into a single facet. This can cause problems when gift wrapping comes
close to an old facet. The old facet’s vertices may be below the current facet, but
a new facet may undercut the old facet. Figuratively, imprecision causes wrinkles
in the surface where adjacent facets do not match up. (Figure 4.4).

Other convex hull algorithms suffer similar faults under fixed precision arith-
metic. The options are to ignore nearly coplanar points and get concave facets, or
to treat near-coplanarity as exact coplanarity and get inconsistent results.

Several 2-d algorithms work under fixed precise arithmetic. Fortune uses weak
predicates for testing orientation of 3 points [Fortune 1989]. His analysis guarantees
that the convex hull is the exact convex hull for a slightly perturbed set of points. Li
and Milenkovic [1990] make two passes over the points to guarantee that convexity

is preserved despite perturbations of the extreme points and all points are inside
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Figure 4.4: Gift-wrapping with nearly coplanar points treated as coplanar points.
Non-triangular facets may not meet in clearly convex angles.

or nearly inside their convex hull. Guibas et al [1990] produce similar results with
tighter error bounds by considering the hull as a whole.

Beichl & Sullivan [1992] have implemented a 3-d Delaunay triangulation pro-
gram. They first scale the data and apply a small random perturbation to get rid of
degeneracies in the input. This may introduce new degeneracies but for many point
sets, the probability is low. They then project the point set to a paraboloid and
find its convex hull. They use a variation of the gift-wrapping algorithm [Chand &
Kapur 1970]. They pick a “shelling” order for adding tetrahedron to the triangu-
lation. The key to their algorithm is using QR factorization for the InSphere test
and shelling order. QR factorization is a stable numeric method for solving the
least squares problem. Their code works for many cases but they do not have an
error analysis.

A review of the literature did not find a 3-d convex hull algorithm that worked

with fixed precision arithmetic.



Chapter 5
Quick_hull with imprecision

As discussed above, imprecise data and arithmetic can invalidate the assumptions of
convex hull algorithms. This chapter presents a convex hull algorithm that produces
a box complex. Like Pointin_polyhedron, the algorithm allows for imprecise data,
fixed precision arithmetic, and singularities. It is built on the precise arithmetic
version of Quick-hull.

If points are in general position, Quick-hull produces the convex hull of the
points. In this case, the steps performed by Quick.hull are the same as those
performed by the precise arithmetic version of Quick-hull. The only difference is
that Quick-hull tests every ridge for convexity. With precise arithmetic, these tests
are superfluous since every pair of adjacent facets must be convex. With imprecise
data and fixed precision arithmetic, convexity can not be guaranteed.

If points are not in general position, Quick_hull produces a convex box complex
that approximates the convex hull. It uses §-boxes. Informally, it is a polytope
with “thick” facets. The trace of its facets contain all possible convex hulls of the
points.

At the end of each iteration, Quick_hull produces a locally convex box complex.
The iteration is as before: pick a furthest point, find its horizon, make a cone of
new facets to the horizon, and merge non-convex facets. This chapter discusses
the changes that must be made to the last step. The next chapter gives an error
analysis that bounds the maximum width of a facet when certain conditions are

meet. Chapter 7 discusses the implementation of Quick hull and gives examples of

69



70 5. Quick_hull algorithm

its output.

The key to Quick_hull is how it merges non-convex facets. If this is done indis-
criminately, the width of a facet can become as wide as the diameter of the point
set. The steps used by Quick_hull are: retriangulate concave ridges, merge and
redefine coplanar, newly created facets, merge remaining non-convex new facets,
merge non-convex facets across the horizon, and incorporate the new facets if they

are better than the old facets.

1. Introduction

To handle imprecise data and arithmetic either the input or output domain is
restricted. Hopcroft and Kahn [1989] restrict the input domain. They intersect a
convex polyhedron with a half space using imprecise coordinates and arithmetic.
Their input is a polyhedron in general position, i.e., no four vertices are coplanar
nor three vertices collinear.

Bentley and Faust [1982] produce an approximate convex hull by subdividing
the plane into strips, finding the outlying points, and computing the convex hull of
these points. In 3-d, they subdivide space into cubes.

Sugihara and Iri [1989] restrict the output of their Voronoi diagram algorithm.
While they guarantee topological correctness (each site has one Voronoi region and
neighboring regions share one edge), geometric correctness is only guaranteed for
precise arithmetic. If arithmetic is imprecise, they make a best effort at correctness.
With single-precision floating point and careful implementation of the incircle test,
they produced a Voronoi diagram that appears correct for one million, uniformly
distributed points in the unit square.

We prefer the results of Li and Milenkovic’s [1990] and Guibas et al’s [1990] 2-d
convex hull algorithms: guaranteed topological correctness and guaranteed bounds
for geometric error. Users of their algorithms can depend on strong convexity
constraints and bounded errors for points. We develop a convex hull algorithm
that satisfies similar constraints. It differs from theirs by using boxes to define an

approximate convex hull. It also works in R? as well as R?.
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concave ridge

Figure 5.1: A non-convex facet may cause a concave ridge.

In the precise version of Quick_hull, imprecision can cause the following prob-

lems:

1. The horizon may not be convex. It may contain concavities and folds. For
example Figure 5.1 shows three facets (A, B, C) that are below a point.

Triangulating the horizon causes a concave ridge.

2. Coplanarity is not an exact relationship. For example, Figure 5.2 shows one
end of a cylinder of points. If a point is added above the end, the ridges may

be too flat to be clearly convex.
3. New facets may be concave or coplanar with old facets across the horizon.

None of these cases could happen with precise data and arithmetic. For example
in Figure 5.1, the new point is above facet C' and coplanar with D. With exact
data, it would have to be above D as well.

This chapter resolves these problems by expanding the step merge coplanar

facets.
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coplanar ridges

convex ridges =

Figure 5.2: Adding a point to a cylinder of facets may cause many coplanar facets.
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2. The Quick_hull algorithm

Figure 5.3 shows Quick_hull at the start of one iteration. It has selected the
furthest point above one of the facets. The furthest point is called Ppyshes:. Facets
below Ppyuest ave interior facets; the others are exterior facets. The contour of
the interior facets is the horizon. Its ridges are horizon ridges and its vertices are
horizon vertices. The exterior neighbor of an horizon ridge is an horizon facet. The
other exterior facets incident to an horizon are near-horizon facets.

Quick-hull builds a cone of new facets to replace the interior facets (Figure 5.4).
Each new facet has a hyperplane defined by d points called the facet’s simplez. The
simplex has an apez (usually Ppiest), and a base (usually an horizon ridge). The
simplex’s vertices are the simplicial vertices of a facet. The facet’s other vertices
are its coplanar vertices. A cone facet uses Ppypest as its apex and horizon vertices
as its base. A chord facet is a facet of horizon vertices. A flipped facet includes
Ppurihest as a coplanar vertex.

For each facet, Quick hull classifies non-vertex points into two lists: the outside
and coplanar list. Points on an outside list are clearly above the corresponding
facet’s hyperplane and maybe above its outer plane. P ues is the furthest point
on an outside list. Points on a coplanar list are clearly below the facet’s outer plane
and maybe above the facet’s inner plane. The remaining points are clearly below
the all outer planes. Points can be on multiple coplanar lists but only on one
outside list. If a point is above multiple facets, it was placed on the outside list of
the facet that it is furthest above. See Table 5.1 for the algorithm.
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near horizon
facet

horizon
facets

P
furthest

horizon ridge

Figure 5.3: Quick_hull after finding the horizon for Ppyes¢. There are three interior
facets below Pjyrihest and six horizon facets that are not below Ppiest-

: g N chord ridge  chord facet

cone ridge

cone facet

coplanar vertex

simplices

154
furthest
/—>

\simplicial vertex/ G

horizon ridges

flipped facet
and its apex

Figure 5.4: Quick-hull after creating a cone of new facets and after completing an
iteration. In between, it retriangulates a concave ridge and merges two pairs of
coplanar new facets. The simplex for one pair was flipped. All horizon ridges are
convex.
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create an initial hull (initial hull)
partition points into outside and coplanar lists (partition all)
while there exists a furthest point Pfyes for any facet F repeat

find the horizon for Pj.shes: starting with F (find horizon)
make a cone of new facets from Pfyyihest to the horizon (make cone)
merge concave and coplanar ridges (merge cone)
merge concave and coplanar new facets (fix cone)
if cone is better than the old, interior facets!® if better
partition points into outside and coplanar lists (partition points)
attach the cone to the horizon?
merge coplanar horizon facets (fix horizon)
else else
raise outer planes to clearly include me;,,esﬁ
partition outside lists of modified facets* (partition outside)
when done
raise outer planes to include coplanar points and vertices (raise outers)
_-:’Fsymbo] “t” is the flag for operations defined in the “Operations” section at the end
of this chapter.

Table 5.1: Quick_hull algorithm using imprecise data and arithmetic. The corre-

sponding procedure names are in parenthesis.
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The rest of this chapter expands each step of Quick_hull, proves that Quick-
hull produces a convex box complex, and determines its worst-case computational
complexity. We ignore the cost of combinatorial operations. This chapter uses
operations and computations defined in “Basic computations and operations” of
Chapter 2, and other operations defined at the end of this chapter.

We first give the conditions satisfied by Quick-hull and then list its parameters.

LeEMMA 5.1. Quick-hull produces a convex box complex of the set of points if the

following conditions are satisfied:

—

initial hull produces a convex box complex,

2. outside lists contain all points maybe above an outer plane,

&2

no operation creates new outside points,
4. each iteration produces a locally convex box complex, and

5. raise outers produces a convex box complex.

PROOF. At this level of detail, what matters is the outside points. Each iteration
removes at least one point from the outside lists. Since new outside points are not

created, Quick_hull terminates when no point is outside. |
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Input parameters Output parameters
n input size h  hull size
d  dimension ¢ max facet width
A input diameter m max facet size
f  machine roundoff | ¢g max roundoff error
p  point precision €, max centrum precision
f max angle M  max interior size, etc.
¢ max twist V  max embedded, concave ridges

Table 5.2: Input and output parameters for Quick-hull. See text for explanation.

3. Quick_hull parameters

The complexity analysis in this chapter and the error analysis in the next chapter

uses the input and output parameters in Table 5.2.

The input to Quickhull is a set of n points in R%. In order to bound the
maximum output size to O(nl#2), d < n¥/2*¢ _ 1, (¢ =~ 0). The diameter of
the point set is A. We assume that a A ball around the origin includes all of the
points. The machine roundoff is 5. The maximum precision of an input point is
p. The user may specify the maximum convex angle # and maximum twist (. If
a maximum convex angle is given, it is at least 37/2 (for error analysis). Twist
measures how twisted two facets are relative to their common ridge. We use the
maximum twist to bound the maximum facet width. See “twist of a merge*” for
more details.

The output of Quick_hull is a convex box complex. The total number of facets
and ridges is k. The maximum value of A is O(nl?2l) [Klee 1966]. The maximum
facet width is 6. The maximum number of ridges in a facet during Quick_hull is m.
The maximum roundoff error in testing distances for coplanarity is €g. Using the
sensitivity analysis in Chapter 2, it can either be recorded for each computation,
or bounded in terms of A. The maximum computed size of a centrum is €,. This
includes p, the roundoff error in computing the centrum, and the roundoff error in

testing if the centrum is below a hyperplane. The maximum number of embedded
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concave ridges in merge cone is V.

The parameter M is the maximum of several parameters: Miyerior the maximum
number of interior facets, Mperge 1/m’th of the maximum number of merges in
merge cone or fix horizon, and My, the maximum number of facets coplanar with
a point in raise outers. An upper bound for m and M is h; empirically m and M

are small. In 2-d, m = 2.
LEMMA 5.2. ¢, = p+ 2¢g.

PROOF. Since the centrum is computed, its center point can be up to eg from
the hyperplane. Its radius is p. Testing a neighboring hyperplane can introduce an

additional error of €g. ]

LEMMA 5.3. In 2-d, g = 3AB+2nd order terms. In 3-d, eg = TAB+2nd order terms.

PRrOOF. From “if P is clearly above!”!, the sensitivity of the distance computation
in 2-d is

o = E |hipi| + |Z hipi| + |Z hipi + hs| + 2nd order terms.

i=1,2 i=1,2 i=1,2

¢ bounds the roundoff error when the distance computation is nearly zero. So the
third sum is nearly zero and the second sum is nearly hs. The normal equation H
is normalized so hi, hy < 1. Expanding the first sum gives three 1st-order terms,

each less than A. In 3-d the sensitivity 1s:

o= Y hipl + 1Y hipil + | Y hipil + | Y hipi + ha| 4 2nd order terms.

1=1..3 1=1,2 i=3,4 1=1,3

Similarly, the last sum is nearly zero and the first three sums are less than 7TA. §

IThe symbol “§” is the flag for computations and operations defined in the “Basic Computa-
tions and Operations” section at the end of Chapter 2.
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LEMMA 5.4. In 2-d,{ =2 and M = 3.

PrROOF. Each edge has exactly two vertices and its centrum is the arithmetic
mean of the vertices, yielding ¢ = 2. Since Prurthest 1s the furthest point above
an edge, outside points are above exactly one edge with precise arithmetic. With
imprecise arithmetic, Pppest is is above at most two edges because each centrum
is clearly below its neighboring edges. Since each edge has exactly two vertices,
the horizon is exactly two vertices. A coplanar point or edge is coplanar with at
most one edge in the clockwise or in the counter-clockwise direction. A point is
one side or the other of a vertex so the number of non-convex horizon edges is at

most three, and the number of coplanar edges for a point is at most three. [ ]

We now discuss each step of Quick-hull. See Table 5.1 for the overall algorithm.

4. Initial hull and partition all

Initial hull starts with the subset of points that have a maximum or minimum
coordinate in some dimension (called the mazimum points). In the case of ties, one
point is selected arbitrarily. A point set in R? has between 1 and 2d maximum
points. Using this subset as a starting point, Quick_hull produces a convex box
complex. Table 5.3 gives the algorithm.

Up to d — 1 maximum points may be unused after creating the initial hull.
These may be added before executing partition all by the same Quick-hull iteration
as normal points. In 3-d this can quadruple the volume of the initial hull while
doubling the number of initial facets. If done, the number of facets for partition
all is O((2d)1%/?]) instead of O((d + 1)l%/2l) so the computational complexity of
partition all is not changed. The total computational complexity for the other
steps of Quick-hull remains the same.

The explicit test for convexity gives us:

LEMMA 5.5. Initial hull terminates. If it succeeds, it creates a locally convex box

complex.
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let S be a most distant pair of maximum points.}

until maximum points exhausted or S contains d 4+ 1 points
determine a maximum point P furthest from the flat through S*
add P to S

until all points exhausted or S contains d + 1 points
determine any point P furthest from the flat through S*
add P to S

if S contains less than d + 1 points
fail Quick_hull

create an initial hull from S*

if the initial hull contains non-convex ridges*
fail Quick_hull

partition the remaining points into outside and coplanar lists¥

Table 5.3: Algorithm for initial hull and partition all.

The most expensive operations are determining the maximum points and, if
needed, determining the furthest of any point to a flat through S. These operations
have a computational complexity of O(dn). The expensive part of creating the
initial hull is creating d hyperplanes at O(d®) per plane. The last section of this
chapter gives the computational complexity for each operation flagged with “}”.

The other operations are less expensive, yielding:

LEMMA 5.6. The worst case computational complexity for initial hull independent
of partition all is O(dn + d*).

Partition all removes interior points from further consideration and initializes
the outside and coplanar lists. If a point is clearly above a hyperplane it appears
on one outside list. Otherwise the point appears on all appropriate coplanar lists.
Partition all also identifies the point on each outside list that is furthest above its

hyperplane. For more details and a complexity analysis, see partition points below.
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let Pryrthest be the furthest point on facet F’s outside list
let S; be a list of interior facets initialized to F
let S; be a list of horizon ridges, initially empty
for each facet F in .5;
for each unprocessed ridge R in F?
let F,, be R’s neighboring facet
if Ppurthest is clearly above F).’s hyperplane'
append F), to 5;
else
append R to S},

Table 5.4: Algorithm for find horizon.

Other initial sets of points can be used in place of maximum points®. For exam-
ple, Golin & Sedgewick [1988] use the diagonal maximum points; these are particu-
larly effective for axis-aligned point sets. Another possibility is the set of maximum
+1, -1, and 0 combinations of coordinates. A larger set of initial points usually
creates an initial hull with more facets and a larger interior. This makes partition
all more expensive while increasing the probability that a point is immediately
rejected. Careful design of partition all can reduce the number of computations,
especially in 2-d [Golin & Sedgewick 1988; Kao & Knott 1990]. The optimal initial

set and partition all depends on the point distribution and is not explored here.

5. Find horizon

After initialization, every point that is outside the hull is on an outside list.
Each outside list includes a point, Py est, that is furthest above the corresponding
hyperplane. Find horizon takes Ppyppest for a facet and returns a horizon of ridges.
Table 5.4 gives the algorithm.

2A poor choice for the initial set of points is the first d + 1 non-degenerate points. If used,
partition all would locate the points furthest from each facet. Like maximum points, these points
would be on the convex hull but the cost of finding them is relatively high.



82 5. Quick_hull algorithm

LEMMA 5.7. Find horizon terminates and returns a non-empty horizon. The hori-

zon is the contour of the facets that are clearly below Ppyyipest-

PRrROOF. Find horizon terminates when the hyperplanes of all neighboring facets
are maybe above Py The hyperplanes of all the facets define a convex poly-
tope, s0 Pprihest can not be clearly outside all of them. There is at least one
hyperplane it is maybe below. At worst, that facet’s ridges will be the horizon.

The horizon is a contour by construction. [ |

LEMMA 5.8. The total worst-case computational complexity for find horizon is
O(ndmM).

PROOF.  Find horizon is called at most n times. Testing hyperplane distance
takes O(d) operations. Processing occurs for interior facets and horizon facets.
Each interior facet has at most m ridges. There are no more than M interior facets

and one horizon facet per ridge. |
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for each horizon ridge R
make a new facet F with Pjp,ps: as the apex and R as the base
orient the new ridges of F to be coherent with R
pair up new ridges*
construct an oriented hyperplane through F’s vertices!

Table 5.5: Algorithm for make cone.

6. Make cone

Make cone takes Ppypest and a horizon from find horizon, and returns a cone of

new facets based on horizon ridges. Table 5.5 gives the algorithm.

LEMMA 5.9. The new ridges of make cone are coherently oriented with the horizon

ridges.

PROOF. The interior facets are coherently oriented by precondition. This induces
an orientation of the ridges and (d — 3)-faces of the horizon. Since the ridges have
the same orientation, each (d— 3)-face has an opposite orientation in its two ridges.
Each new facet is a simplex with a ridge as its base and Pp,est as its apex. The
boundary of the new ridges consist of a (d — 3)-face of the horizon and Pryrpest-
Since the (d — 3)-faces have opposite orientation in neighboring new facets, the
intervening new ridge has opposite orientation. All new ridges pair up so the

orientation is coherent. |

LEMMA 5.10. The union of exterior facets from find horizon and new facets from

make cone is a face complex.

PROOF. Each pair of adjacent horizon ridges share a (d— 3)-face. Since the initial
hull is a simplex and make cone is the only part of Quick-hull that adds facets, the
(d—3)-face is unique. Make cone creates new ridges from a (d—3)-face and P shest-
Since each (d — 3)-face occurs in two ridges of the horizon, each new ridge occurs
twice. Each horizon ridge occurs twice, so the evenness condition holds for ridges.

Lower dimensional faces implicitly satisfy the evenness condition. Each new facet’s
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chord ridge
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chord facets

concave ridge horizon facet
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Figure 5.5: Creating chord facets from two concave ridges. The first figure shows
the new facets after make cone. The second figure shows the chord facets created
by retriangulating the concave ridges.

inner and outer plane contains its vertices. The boxes for intermediate features are

defined implicitly. By Lemma 5.9 the orientation is consistent. |

The only computation is constructing a hyperplane and setting the centrums.
The former takes O(d®) and the later O(d), giving:

LEMMA 5.11. The total computational complexity of make cone is O(nd*mM).

7. Merge cone

Merge cone merges the new facets from make cone in order to remove coplanar
and concave cone ridges. It creates chord facets and flipped facets, and merges cone
facets. At the end of merge cone, all ridges between cone facets are clearly convex.
Coplanar facets are merged and a new hyperplane is created (see “if R passes the
simplex test?”). Concave facets are retriangulated (Figure 5.5). Table 5.6 gives
the algorithm.

Most of merge cone exists for bounding the facet width in 3-d and higher dimen-
sions. In 2-d, there is only one cone ridge (Pyrest) so either it is clearly convex or

make cone returns an empty cone.
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while a cone ridge is not convex?*
let S be the set of non-convex cone ridges

for each concave ridge R in S
build a non-concave cone facet F¥
remove F’s ridges from S*
build chord facets for F by recursively calling make cone and merge cone
merge non-convex chord facets into F¥

for each coplanar ridge R in S
if R fails the simplex test!
build a flipped facet F from R’s neighbors?
else
build a cone facet F from R’s neighbors?
remove F’s ridges from S*

if there a fewer than d cone ridges
reject the cone

Table 5.6: Algorithm for merge cone.
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Each iteration of merge cone removes a cone ridge by merging facets. It does

not create new cone ridges from Pyhest, s0 the following lemma holds:

LEMMA 5.12. Merge cone terminates with a cone of facets from Plyhest to the

horizon.

LEMMA 5.13. The ‘total worst-case computational complexity of merge cone is
O(nd*>mM).

PrOOF. It costs O(d) to test a ridge. Each processed ridge causes the retesting
of no more than 2d — 3 ridges (the ridges of two facets minus their horizon ridges
and the processed ridge). The cost of testing is subsumed by the cost of defining
a new hyperplane, O(d®). Inner and outer planes can be adjusted at the end of
merge cone for a cost of O(d*mM). By definition of M, no more than mM ridges
can be non-convex per merge cone. There can be no more than n top-level calls.

8. Flix cone

Fix cone takes a cone of new facets from merge cone. At the end of fix cone,
every new ridge is clearly convex and every horizon ridge is clearly convex or marked
for merging in fix horizon. Table 5.7 gives the algorithm.

Box complexes are preserved under merging (see “merge facet?”) and non-

convex ridges are removed. This proves:

LEMMA 5.14. At the end of fix cone, all new ridges are clearly convex. The union

of new and exterior facets is a box complex.
LEMMA 5.15. The total computational complexity of fix cone is O(ndMm?)

PROOF.  The cost of retesting ridges after a merge is subsumed by the cost of
finding the best merge. At most mM ridges can be merged at a cost of O(dm?)
per merge. Note that testing only non-convex ridges would reduce the cost of

“determine best merge?”. i
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for all non-convex chord ridges, cone ridges, and horizon ridges R¥
determine best merge (F into F,,) for RT
if F, is an horizon facet
rename F as F}
else if F' is an horizon facet
mark F for merging into F,*
else
merge F into F.t
if there a fewer than d cone ridges
reject the cone

Table 5.7: Algorithm for fix cone.

9. Partition points

Partition points takes a cone of new facets and a list of outside and coplanar
points. The list consists of the outside and coplanar lists for all interior facets.
It returns a partitioning of the points into facets of the cone; each point is either
clearly inside, on one outside list, or on a set of coplanar lists. Table 5.8 gives the
algorithm.

Partition all does the same for all points of the input and all facets of the initial
hull. Partition outside does the same for outside points of modified facets and all

interior facets.

LEMMA 5.16. After partition points, clearly inside points from this or an earlier

iteration are clearly below all outer planes.

PROOF. After partition all, a point is clearly inside only if it is clearly below all
inner planes in the initial hull. So the lemma is initially satisfied. After that, a
point becomes clearly inside only if it is clearly below all inner planes of the cone.
The outer plane for a facet passes above the adjacent inner planes because an inner
plane is below vertices that an outer plane is above. Because all inner planes meet
at a clearly convex angle, an outer plane is above all inner planes. Similarly an
outer plane is above all inner planes of interior facets. So an outer plane can not

become below a previous inner plane, nor below a previously inside point. [
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for each point P
let C be a set of coplanar facets initialized to empty
let F, be a potential outside facet initialized to empty
for each facet F
if P is clearly below F’s outer planef
if P is maybe above F’s inner plane!
add F to C
else if P was outside and P is clearly above F’s hyperplane!
if P is further above F than F,
set £, to F
else /* P coplanar or P straddles F’s outer and hyperplane */
raise F’s outer plane to include P1
add F to C
if F, is defined
add P to F.,’s outside list
if P is further away, update F,’s furthest point
else if C is non-empty
add P to the coplanar list of facets in C
else

/* P is clearly inside and no longer needed */

Table 5.8: Algorithm for partition points.
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Since the maximum number of new facets is mM and the cost per facet per

point is O(d) , the following lemma holds:
LEMMA 5.17. The total worst case complexity of partition points is O(n?*dmM).

Unless the point set is designed to be bad for partition points, Quick_hull should
partition the outside points of the interior facets fairly evenly among the outside
lists of the new facets. Since there is at least d new facets, the average length of
an outside list will often decrease by at least some constant. This is not true for

short lists, but then the cost of partition points is bounded by the output size.

LEMMA 5.18. If mM is bounded, long outside lists shorten geometrically per pro-
cessing level, and the number of deleted vertices is a bounded proportion of all

vertices, the total complexity of partition points is O(ndlog h + dh)

PrOOF. The third clause bounds the maximum size of the box complex to O(h).
So after outside lists are short, the remaining partitioning cost is O(dh). Since
long outside lists decrease geometrically, the maximum number of levels with long
outside lists is O(log k). Each level partitions n points into no more than mM?

facets apiece, giving the desired result. ]
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for all non-convex ridges R}
determine best merge (F into F,) for Rf
merge F into F,'

Table 5.9: Algorithm for fix horizon.

10. Fix horizon

Fix horizon removes non-convex horizon ridges. When done, all ridges of the
hull are clearly convex. Table 5.9 gives the algorithm.

Since fix horizon explicitly tests for convexity, the following is true:
LEMMA 5.19. Fix horizon produces a locally convex box complex.
LEMMA 5.20. The total computational complexity of fix horizon is O(ndMm?).

PROOF. The cost of retesting ridges after a merge is subsumed by the cost of
finding the best merge. At most mM ridges can be merged at a cost of O(dm?)

per merge. |

11. Raise outers

At the end of each iteration, Quick-hull produces a locally convex box complex.
After the final iteration, Quick_hull executes raise outers to produce a convex box

complex. Table 5.10 gives the algorithm.

LEMMA 5.21. For a point p, let the set S;(p) be the neighborhood of facets whose
inner planes are maybe below p. For all p, Si(p) includes all facets whose outer

planes are maybe below p.

PROOF. Assume that a point P fails this Lemma and consider the realization of
P that is furthest above the polytope defined by the outer planes (Figure 5.6). It
must be above some facet C'. As a coplanar point or vertex, it is below the outer

plane of some facet A and above its inner plane. There exists at least one facet
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for each facet F
for each unprocessed coplanar point or vertex P of I
let S; be a list of interior facets initialized to F
for each facet F; in S;
for each unprocessed incident facet F), of Fi
if P is incident to F,.}
add F,, to S;
else if P is maybe above F,’s inner plane!
add P to F,’s coplanar list
raise F,’s outer hull to clearly include PT
add Fn to St'

Table 5.10: Algorithm for raise outers.

Facet C Facet B
Facet A

Figure 5.6: A coplanar point can not be above a distant facet. Assume P is above
Facet C even though it is below C in the figure.
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B between A and C' whose inner plane is above P. By local convexity, these facets
are convexly related. So the inner plane C is also above P. But this contradicts the

belowness of C. |

LEMMA 5.22. Raise outers produces a convex box complex.

ProOF. By Lemma 5.16, inside points are inside all outer planes. By Lemma
5.21, raise outers places coplanar points and vertices below all outer planes. By

Lemma 2.13, it produces a convex box complex. ]

LEMMA 5.23. The total computational complexity of raise outers is O(ndmM).

PROOF. There are up to n coplanar points and vertices. The maximum number
of inner planes below a point is M, so the maximum facets tested per point is mM.

Each test costs O(d). ]

12. Summary

THEOREM 5.24. Quick-hull produces a convex box complex in worst case time:
O(ndSmM + nMdm® + nzde).

PROOF. At the end of fix horizon, every ridge is clearly convex (Lemma 5.19). At
the end of raise outers, the box complex is convex (Lemma 5.22). The termination
lemma for Quick-hull (Lemma 5.1) completes the correctness proof for Quick-hull.

Except for initialization, find horizon and raise outers, each step of Quick-hull
contributes to the total computational complexity. Make cone and merge cone
create hyperplanes at a cost of O(d®). Determining the best facet can cost O(dm?)
in fix cone and fix horizon. If all outside points are always above one facet, partition

points can partition each point n times. |

If one ignores the constraints of locally convex box complexes, h, m, and M can

be as large as O(nl%2]) [Klee 1966]. If so, the worst case complexity is O(n*l49/21+1),
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This compares poorly with Beneath-beyond at O(nl#21+1). But empirically in 3-d,
Quick-hull is O(n) instead of O(n®) (Figure 7.7 in Chapter 7). Why? The number
of ridges per facet is usually small (if not, the number of adjacent big facets is
small-at least in 3-d); partition points divides an outside list into multiple outside

lists; M is empirically a small constant; and the convexity constraints bound h.

LEMMA 5.25. If m, M and d are bounded, long outside lists shorten geometrically
per Quick_hull level, and the number of deleted vertices is a bounded proportion

of all vertices, the total computational complexity of Quick_hull is O(nlog h + h).

PrRoOF. By Lemma 5.18, the result holds for partition points. Asin Lemma 5.18,
the maximum size of the box complex is O(h) and the total cost after outside lists
are short is O(h). Similarly, the maximum number of levels with long outside lists
is O(log k). No more than n points can be processed per level; giving the desired

result. |

In 2-d, partition points almost always divides the outside list of one interior
facet into two new facets. The exception occurs when the furthest point is not
really the furthest point because of round-off error. If so, the furthest point may be
deleted from the hull at a later iteration. If this seldom occurs and if partitioning
decreases the length of a long outside list by at least some constant, then the time

complexity of Quick-hull is optimum.

COROLLARY 5.26. In 2-d, if long outside lists shorten geometrically per Quick_hull
level and the number of deleted vertices is a bounded proportion of all vertices, the

time complexity of Quick-hull is O(nlogh).

LEMMA 5.27. If @ < « is the maximum ridge angle and A the radius of the point

set, then the maximum number of facets in 2-d is 2 /(7 —0) and in 3-d is 16 /(7 —0)*.

PrRoOF. Consider a great circle of the A sphere around the point set. By the
angle constraint, it can cross at most 27 /(7w — ) regular facets. So the minimum
diameter of a regular facet is A(m — 6). If facet diameters differ, we can enlarge

narrow facets and divide wide facets without increasing A. In 2-d, the diameter
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is the facet length; in 3-d, the facet area is at least the same as a circle of that
diameter, m(A(7 — 0)/2)?. Dividing into the surface area of a d-sphere (2rA [2-d];
47 A? [3-d]) gives the result. |

LEMMA 5.28. If A is the radius of the point set, and p = 0 is the centrum precision,
the maximum number of facets in 2-d is 7 A/\/2pA and in 3-d 8A/p.

PrROOF.  Use the same construction as before and let 6 be the angle between
adjacent facets. Let w be the width of a facet with a centrum in its center. Then
sin(r — 0) = 2p/w. As above, w = A(m — 6). Since p ~ 0, we can approximate the
angle to get w = +/2pA 3. As above, taking the ratio with the surface area of a
d-sphere gives the result. [

COROLLARY 5.29. If maximum precision and d are fixed, long outside lists shorten
geometrically per Quick-hull level, and the number of deleted vertices is a bounded

proportion of all vertices, the total computational complexity of Quick-hull is O(n).

Clarkson et al [1992; Fortune 1992a], Guibas et al [1990], and Boissonnat and
Devillers-Teillaud [1989] prove their probabilistic convex hull and Delaunay trian-
gulation algorithms run in average time O(nlogn + k') where A’ is the maximum
output size. Chazelle [1991] use derandomization to get the same results determin-
istically.

These algorithms are not output-sensitive. Qutput-sensitivity is important for
convex hull algorithms because the output size can be much smaller than the worst
case size. In 2-d, Kirkpatrick and Seidel [1989] found an optimal, output-sensitive
algorithm for convex hull in O(n log k). The optimal output-sensitive result for 3-d
is Chazelle and Matousek, J. [1991]. Note that if the preconditions of Lemma 5.25
are meet, Quick_hull achieves the optimal output-sensitive result in all dimensions.

If points are in general position and Quick_hull selects outside points randomly,
Clarkson et al.’s average-case analysis applies to Quick-hull. As argued in Chapter

3This implies that cos(m — 8) = /1 — 2p/A ~ 1 — p/A. Since we specify an angle constraint
via its cosine (see “if R is clearly convex!”), the two methods of constraining convexity are similar.
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4, the two algorithms are fundamentally the same. Both algorithms add one point
at a time, and both determine an interior facet by partitioning the point through
prior, intermediate hulls. The difference is that Quick_hull uses the locally, furthest
point above a facet and it handles non-convex ridges. Though Quick_hull’s furthest
points makes the selection order deterministic, the furthest point is more likely
to be an extreme point than a random point. Empirically, Pphest 1s usually an

extreme point.

13. Operations for Quick_hull

This section gives further details about operations used in the Quick_hull algo-
rithm. When mentioned in the thesis, they are flagged by “1”.

Each subsection expands the pseudocode steps for the procedures of Quick_hull
(see 5.1). Steps common to several procedures are listed alphabetically first. The
title of a sub-subsection is the same as the name of the pseudo-code step. “F”
refers to a facet, “P” refers to a point, “R” refers to a ridge, and “S” refers to a

set.

13.1. Common pseudocode steps in Quick_hull.

centrum of a facet

For a ridge to be clearly convex, a point of each facet must be below the other
facet’s hyperplane. The point is called the facet’s centrum. The centrum must be
close to the center of the facet. Otherwise, a merge can increase the maximum

facet width by an arbitrary amount.

DEFINITION 5.30. Consider a facet in R? whose vertices define a convex polytope
in a hyperplane. A centrum for the facet is a point of the polytope such that for
any half plane through the point, the absolute value of the ratio between maximum

positive distance and minimum negative distance is at most d — 1.

Consider a centrum whose precision is p and a neighboring hyperplane through

an edge of the facet (Figure 5.7). Since the centrum bounds the ratio, the maximum
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centrum
@ m

Figure 5.7: In 3-d, if a neighboring hyperplane intersects a centrum for a facet, the
facet’s vertices are at most 3p from the hyperplane.

distance of a vertex to the neighboring hyperplane is bounded. The error analysis
in the next chapter depends on this bound.

Vertices of a §-box may be non-coplanar and its ridges may form a non-convex
polyhedron. To define a centrum for an imprecise facet, we project the vertices to

the facet’s hyperplane and take their convex hull.
Radon proved the following in 1916 [cf. Grinbaum 1961]:

THEOREM 5.31. Any polytope in R*! has a centrum. The ratio 1 : d — 1 is tight

for a simplex (its centrum is the arithmetic mean of its vertices).

The following brute force algorithm will find a centrum. It is not used in
practice. First take the convex hull of the projected vertices. For each diameter of
the convex hull, construct perpendicular lines at 1/d and (d — 1)/d. The strip of
points inside the lines satisfy the centrum property for that diameter. The centrum
is any point in the intersection of all the strips.

The cost of determining the centrum is dominated by the cost of finding the
convex hull. This yields:

LEMMA 5.32. Let n be the number of vertices in a facet in R? and assume precise

arithmetic. The complexity of finding the centrum is
O(nlog n + nl@-1/2+1)

Computing the convex hull of each facet is prohibitively expensive. In the
current implementation of Quick-hull, a facet’s centrum is the arithmetic mean of its
vertices. We take the following liberty with our analysis: complexity analysis uses
the arithmetic centrum but error analysis uses the computed centrum. Additional
error introduced by using the arithmetic centrum may be accounted for by the
maximum twist parameter of Quick-hull (see Chapter 6). A better algorithm for

selecting the centrum is left as a open problem [cf. Griinbaum 1961].
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create a hyperplane and inner and outer plane for a simplex

A new facet in R? has d vertices. Its vertices define a simplex given as an apex (a
vertex) and an oriented base (a ridge of d — 1 vertices). A hyperplane is computed
for the simplex (see “hyperplane through a simplex!”). The facet’s centrum is its
arithmetic center (see “centrum for a facet*”). The inner plane is defined to be low
enough to clearly include the vertices. Similarly the outer plane is defined to be
clearly above the vertices (see “lower an inner plane?” and “raise an outer plane?”).

The error analysis in Chapter 6 requires a minimum separation between the
outer plane and hyperplane. In 2-d, it is 3¢, 4+ 3€g, and in 3-d, it is 10¢, + 4eg.
Empirically, these are excessive, with €, a better minimum separation.

The computational complexity for creating a hyperplane, centrum, inner and

outer plane is O(d”) (see the respective subsections).

determine best merge (F into F,) for R

In fix cone and fix horizon, Quick_hull performs a locally-optimal merge whenever

‘a ridge is non-convex. Either the neighboring facets of the ridge are merged, or
one of the facets is merged into another neighboring. In either case, the remaining
facet’s hyperplane is retained.

The operation “determine best merge?” locates the neighbor whose hyperplane
is closest to one of the non-convex facets. It could be the other facet or it could
be a different facet. If it is the other facet, ridge R is deleted in the merge (see
“merge facet F into facet F,,¥”). If it is a different facet, the merge will change one
of the hyperplanes for ridge R. In fix cone, a horizon facet can only merge into the
neighboring cone facet.

To determine the locally-optimal merge, We compute the new inner and outer
plane for each possible merge(see “raise outer plane*” and “lower inner plane?”).
The merge that minimizes the facet width (outer_plane-inner_plane) is the best
merge. Other evaluations may be used (see “thickness of a set of facets”).

Let m be the maximum number of vertices or ridges in a facet. Testing a
possible merge compares each vertex to a hyperplane at a cost of O(dm). Testing

all merges for a ridge then costs O(dm?). This can be expensive for large facets. If
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P
furthest

coplanar ridges

Figure 5.8: Merging two facets in merge cone can make Pyppes: a coplanar vertex.
The choice depends on the simplex test.

a facet contains more than 10 ridges, only non-convex ridges are tested. This does

not change the error analysis of Chapter 6.

if R fails the simplex test

In merge cone, Quick_hull reconstructs the hyperplane for a merged facet. In 3-d,
two choices are considered for the facet’s simplex (Figure 5.8). Either P s 1s the
apex or the common, horizon vertex is the apex. The later case creates a flipped
facet.

The simplex test compares the two possibilities. If Ppyyhest is closer to the new
base than the horizon vertex, the facet is flipped; otherwise Pppese is the new
apex (see “build a flipped facet!” under merge cone below). In four and higher
dimension, there are several choices for the simplex of a merged facet. The best
choice for Quick_hull has not been determined yet.

The simplex test takes O(d®) operations in R

The effect of the simplex test is to keep facets reasonably compact. Without
it, a coplanar vertex could be far above the facet’s hyperplane. The simplex test

bounds the maximum expansion of facet width as follows:
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added point —

<2a

Figure 5.9: If a point passes the simplex test, it is no further than double the
distance to the simplex’s base

LEMMA 5.33. Assume precise arithmetic in 3-d and consider a ridge R that passes
the simplex test. If the ridge is a above the hyperplane at the simplex’s base, the

new coplanar vertex is at most 2a from the hyperplane.

PROOF. Let d be the distance from apex to base. Consider a point on the ridge
that is also d from the base (a closer point would be closer to the hyperplane)
(Figure 5.9). Let « be the angle between the ridge and the plane, sin(e) = a/d.
The height of the point is dsin(2«) which is less than 2dsin(«). |

lower an inner plane to clearly include P

If P is at worst § below the corresponding hyperplane (see “if P is clearly below a
hyperplane”), the inner plane is at least é.

After this computation, P is clearly above the inner plane. Note that é includes
the additional roundoff error due to adding roundoff and precision.

It takes O(d) operations in R¥.
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merge facet F' into neighboring facet F,

Merging two facets does the following:

o The new ridges are the union of the old ridges with common ridges deleted

(the mod 2 union).
o I,’s hyperplane is retained.

o The centrum is recomputed from the vertices of both facets (see “centrum for

a hyperplane*”).

o The inner and outer planes of F), are adjusted to clearly include the vertices
and coplanar points of F' (see “raise an outer plane?” and “lower an inner

plane?”).
o The outside lists of both facets are merged, as are the coplanar lists.

o To determine the new furthest point, the furthest point of F’s outside list
is tested against F,’s hyperplane (see “if P is clearly above!). If below
the hyperplane, the outside list is added as coplanar points (via “raise outer

planes of modified facets?” in Chapter 5). If above, the further of the furthest

points is selected.
LEMMA 5.34. Box complexes are preserved under merging neighboring facets.

PROOF. Merging neighboring facets is the same as coalescing two top level nodes
of a DAG and taking the mod 2 union of their subordinates. In terms of the
subgraphs that are used for the evenness condition, this is equivalent to taking
the union of two subgraphs and deleting 0 or more pairs of paths. Since no edge
becomes duplicated, the evenness condition is maintained. The box of the merged

facet contains the boxes of its subordinates. |

The computational complexity is O(d) per new vertex for adjusting the inner

and outer planes and computing the new centrum.
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raise an outer plane to clearly include P

If P is at worst § above the corresponding hyperplane (see “if P is clearly above a
hyperplane”), the outer plane is at least §. After this computation, P is clearly
below the outer plane. Note that § includes roundoff due to adding roundoff error
and precision.

It takes O(d) operations.

thickness of a set of facets

Before adding new facets to the hull, Quick hull evaluates the facets and the interior
facets that they replace. If the new facets are worse than the old ones, then the
hull is not modified. The evaluation depends on the application. If S is a set of
facets, We use max egs(outer_plane(f) — inner_plane(f)). An alternative is root-
mean-square of facet widths minus r.m.s. of the old facet widths. This balances
minimizing the maximum facet width with minimizing the average facet width.

The evaluation should match “determine best neighboring facet*”.

twist of a merge

In three and higher dimensions, consider merging facet F' into facet F), across ridge
R when F,’s hyperplane intersects F’s centrum. If a F’s ridges form a convex
polytope and R lies on both hyperplanes, then merging introduces an error of at
most d times the centrum precision see “centrum for a facet*”). With thick facets,
non-simplicial ridges and vertices are rarely coplanar with the hyperplane. We
adopt a more realistic ideal case: R is parallel to both hyperplanes and R supports
F’s vertices. As shown in Chapter 6, the maximum error due to a merge in the
ideal case is bounded.

The twist of a merge measures the deviation from the ideal case. Twist is
measured relative to the line through the centrum that is parallel to the intersection
of the hyperplanes. To simplify calculations, the line and all vertices are projected
to the nearest axis plane. The minimum and maximum distance to the line is
determined for the ridge vertices and for the other vertices of F'. Then twist is the

maximum ratio between the distance of a ridge vertex to the line and the distance
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of another vertex of F' to the line. The ratio depends on whether or not the ridge
vertices (and other vertices) are ;t)n the same side of the line or are on opposite
sides. Twist is not measured if the hyperplanes are nearly coplanar.

If the twist for a merge is greater than d — 1 (the centrum ratio), the merge is
worse than a merge under the ideal case. High twist occurs if the line through the
centrum passes close to the ridge vertices. Then coplanarity with the centrum does
not bound the deviation of a vertex from F},’s hyperplane. The worst case merge
occurs if the hyperplanes are twisted ninety degrees relative to each other. Then
the new facet width for F,, may be the diameter of F'.

If twist is greater than the maximum twist parameter (, a warning is reported.
The user may view the merge and reject the convex hull.

Intersecting two hyperplanes costs O(d®). If m is the maximum number of

vertices in a facet, the cost of testing twist is O(d® + m(d — 1)).

13.2. Pseudocode steps for top level.

if cone is better than the old, interior facets.

We use max(outer_plane — inner_plane) to evaluate a set of facets (see “thickness
of a set of facets*”). The facet widths for interior facets includes Pjynest- The cone

must include at least d facets, otherwise it has failed and the old hull is retained.

attach the cone to the horizon.

Replace each horizon ridge of the cone with the corresponding horizon ridge of the

hull. The interior facets are deleted and the new facets are added.

raise outer planes to clearly include P.

If Quick_hull retains the interior facets, it raises the outer planes of interior facets to
include Ppypest (see “raise an outer pla.nei”). Outer planes can be adjusted during
find horizon when interior facets are identified.

This operation takes O(d) per facet.
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partition outside lists of modified facets.

If an old outside point is now below the outer plane, it could still be outside a

neighboring facet. Each point is repartitioned with partition points.

13.3. Pseudocode steps for Initial hull and partition all.

let S be a most distant pair of maximum points.

The goal of initial hull is to produce a large volume at minimum cost. Since the
number of maximum points is at most 2d, an O(d?) algorithm is suitable; each com-

putation takes O(d) operations, yielding a O(d®) cost. Ties are broken arbitrarily.

determine a maximum point P furthest from the flat through S.

The flat through S is computed at a cost of O(d®) (see “hyperplane through a
simplex!”). Since |S| < d + 1, computing the flat is the dominate cost. When
|S| = d, testing the volume of a simplex is a good alternative (see “orientation of

a simplex!”). Ties are broken arbitrarily.

determine any point P furthest from the flat through S.

As above, the flat costs O(d?) to create. The total cost of testing each point is
O(dn). Ties are broken arbitrarily.

create an initial hull from S.

The set contains d+1 points. Initial hull creates a simplex and defines a hyperplane
and centrum for each facet (see “create a hyperplane!” and “centrum for a facet?”).
It defines inner and outer planes to clearly include the vertices.

It orients the hyperplanes to S’s arithmetic center. The orientation of a facet’s
hyperplane defines an orientation for each of its ridges. Once an initial orientation
is set geometrically, the remaining orientations for Quick-hull are set topologically.

The complexity is O(d?) per facet or O(d*) altogether.
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if the initial hull contains non-convex ridges.

Each ridge is tested for convexity (see “if R is clearly convex!).

partition the remaining points into outside and coplanar lists.

Partition all is the same as partition points. Its input is the list of new facets in

the initial hull. See the description of partition points for details.

13.4. Pseudocode steps for Find horizon.

for each unprocessed ridge R in F.

Find horizon finds all adjacent facets below Ppyest. One way to organize this is a
queue of unprocessed ridges. Whenever a facet F is appended to .5;, the queue is

mod 2 unioned with the ridges of F.

13.5. Pseudocode steps for Make cone.

pair up new ridges.

Linear search or hash lookup are practical solutions. It is not counted in the total

computational complexity since it does not use floating point operations.

13.6. Pseudocode steps for Merge cone.

while a cone ridge is not convex.

All cone ridges are tested for convexity and classified as either convex, concave or
coplanar (see “if R is clearly concave and “if R is clearly convex!”). If the number

of cone ridges falls below d, an empty cone is returned.

build a non-concave cone facet F.

Table 5.11 gives the individual steps and Figure 5.5 shows an example.
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while a cone ridge R is clearly concave'
let F be one of R’s facets
merge the other neighbor of R into F*
create a hyperplane and inner and outer plane for F*
determine the centrum for F*

Table 5.11: Algorithm for “build a non-concave cone facet F”.

Since the orientation of cone facets matches the orientation of horizon facets,
all cone ridges can not be concave. So the loop terminates with a cone facet F that
contains one or more coplanar vertices.

Except for the cost of getting the centrum, the cost per concave ridge is O(d°).

remove F’s ridges from S.

Merge cone removes the merged, concave ridges and F’s cone ridges from S. This
prevents retesting the ridges until the end of the current pass. This takes O(1) per
ridge.

build chord facets for F by recursively calling make cone and merge cone.

The new Pjpypest for the recursive call to make cone is the closest vertex in the
chord ridge to the current Ppyhest- Its adjacent ridges in the chord facet initialize
the triangulation; the other ridges are the vertex’s horizon. New ridges are created
as cone ridges and become chord ridges after the call.

When building chord facets, facets are not flipped. Such an event should be
rare since it implies a double fold in the horizon. As a result, all chord facets for a

cone facet share a vertex. The error analysis in Chapter 6 uses this property.

merge non-convex chord facets into F.

See Table 5.12. The chord facets from the recursive call to merge cone are
mutually convex but may be coplanar or concave with the cone facet F.

This operation takes O(d) for testing plus O(dm) for merging per facet.



106 5. Quick-hull algorithm

until F’s chord facet F. is convex?
merge F, into FT

Table 5.12: Algorithm for “merge non-convex chord facets into F”.

until F’s chord facet F, is convex.

This is the outer loop of Table 5.12.

F and F, share a vertex. So F. is convex if its centrum is clearly below F’s
hyperplane (see “if P is clearly below!”) and the angle between them is less than 8
(see “angle for ridge!”).

Note that F’s centrum may be coplanar with F.’s hyperplane. If so, I will be

merged in fix cone.

build a flipped facet F from R’s neighbors.

The simplex for the flipped facet consists of the chord ridge between neighboring
cone ridges and the remaining vertex in R. See “create a hyperplane!” and “centrum

for a facet?”.

build a cone facet F from R’s neighbors.

The simplex for the cone facet consists of the neighboring cone ridges. See “create

7

a hyperplane?” and “centrum for a facet?”.

13.7. Pseudocode steps for Fix cone.

for all non-convex chord ridges, cone ridges, and horizon ridges R.

First the cone is made clearly convex and then the horizon is made clearly convex
(see “if R is clearly convex!”). The error analysis in Chapter 6 assumes this order.

Fix cone returns an empty cone if the number of cone ridges falls below d.
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rename F as F),.

In fix cone, a new facet can not be merged into an horizon facet because the interior
facets may be retained. Instead the facet is renamed as if it were the horizon
facet; fix horizon will merge them. The hyperplane equation is duplicated and the

centrum recomputed (see “centrum for a facet?”).

mark F for merging into F,.

Similarly, an horizon facet can not be merged into a new facet. The facet is marked
for merging in fix horizon and its inner and outer planes are widened to include the

horizon.
13.8. Pseudocode steps for Fix horizon.

for each facet F of the horizon and their untested neighbors.

At the beginning of fix horizon, all facets are locally convex except for horizon

facets. These are explicitly tested. If any fail, their neighbors are retested.
13.9. Pseudocode steps for Raise outers.

for each unprocessed incident facet F, of F;.

This performs a depth-first search from F. Incident facets are those incident to a

vertex of F}.
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Chapter 6
Error analysis of Quick_hull

This chapter analyzes the maximum width of a facet at the completion of Quick-
hull. It gives separate bounds for 2-d and 3-d. The 2-d analysis is complete. The
3-d analysis holds if Quick_hull rejects inputs that cause a merge with twist greater
than ¢ (see “twist of a merget”!).

After make cone, ridges can be convex, coplanar, or concave. There are two
kinds of coplanar ridges (see “if R is clearly convex!”?): #-coplanar when the angle
between neighboring hyperplanes is greater than @, and p-coplanar when a centrum
is coplanar with a neighboring hyperplane A facet Fy is p-coplanar with facet F; if
Fy’s centrum is coplanar with F3’s hyperplane. #-coplanar when the angle between
neighboring hyperplanes is greater than 6, and p-coplanar when a centrum is copla-
nar with a neighboring hyperplane A facet is 0-coplanar with another facet if their
hyperplanes meet at an angle wider than 0.

Quick_hull merges facets to remove coplanar ridges and retriangulates facets to
remove concave ridges. At the end of an iteration, Quick-hull has tested every ridge
for convexity. So each iteration ends with all ridges clearly convex.

When created, a facet is just wide enough to include its vertices. The facet

may grow after merges with adjacent facets. Initially (in make cone), hyperplanes

I'The symbal “4” indicates an operation defined in Chapter 5.
?The symbol “” flags basic computations and operations that are defined at the end of Chapter
2.
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intersect at ridges radiating from Pjy.s. When such facets are merged, the hyper-
plane is redefined (see Figure 5.8 in Chapter 5). Redefinition stops at the end of
merge cone or when the merged facet spans too great an angle (see “if R fails the
simplex test?”).

At the end of merge cone, new facets are almost convex with each other. Intu-
itively, they form an umbrella over the old, interior facets. Unfortunately, hyper-
planes may not intersect at ridges. This makes it difficult to redefine hyperplanes
after merging facets. So merged facets in fix cone and fix horizon retain one of the
old hyperplanes.

At the start of partition points, all new ridges are clearly convex, but horizon
ridges need not be. Horizon ridges are checked by fix horizon and merged if nec-
essary. Raise outers is the final step of Quickhull. It turns a locally convex box
complex into a convex box complex.

We first perform the analysis for initial hull and other steps with little effect on
the final error. Then 2-d is done in detail, followed by 3-d.

1. Initial hull, find horizon, make cone, and partition points

Initial hull builds an initial hull from d + 1 independent points. It defines the
inner and outer planes to clearly include these points. Partition all assigns each
point that is outside the initial hull to one of the facets. If a point straddles both

hyperplane and outer plane, the outer plane is raised to include the point.

LEMMA 6.1. If inner and outer planes are the minimum possible, the maximum

width of a facet after initial hull and partition all is 3e,.

ProOF. The maximum computed size of a centrum is €¢,. The computed size
includes the precision p and roundoff errors in computing distances. A vertex on
the hyperplane has the same maximum size. So the maximum width of the inner
plane is €,. If a point is on a plane half between the the outer plane and hyperplane,

it can straddle both planes. So the outer plane can be 2¢, from the hyperplane. 1

Note that the error analysis below assumes a minimum outer plane that prevents

a point from straddling the outer plane and hyperplane (see “create hyperplane?”).
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Find horizon does not change facet widths. Make cone creates a cone of new
facets from Pjyrpest and the horizon ridges identified by find horizon. Each facet is a
simplex of new vertices. Partition points partitions potential outside and coplanar
points into the cone of new facets. The only geometric effect of partition points is

to raise an outer plane if a point straddles a hyperplane and outer plane.

LEMMA 6.2. Find horizon, make cone, and partition points, do not change maxi-

mum facet widths.

2. 2-d error analysis

Much of Quick-hull exists for problems that arise in three and higher dimensions.
When Quick-hull is restricted to 2-d, the algorithm is simpler. For example, it only
tests one edge in merge cone and two horizon edges in fix cone. To assist the error
analysis, we restate Quick-hull for 2-d in Table 6.1.

A facet may become wider whenever facets are merged. There are two reasons

for merging facets:
o Two new edges may not form a clearly convex angle, or
o a new edge and horizon edge may not form a clearly convex angle.

In either case, the angle may be more than 6 degrees (f-coplanar) or a centrum
may be coplanar with an edge (p-coplanar). A new edge and a horizon edge may
also form a concave angle. The rest of this section addresses each of these cases.
The partition line for Pppes is a line through Py and parallel to the edge
below Ppyihest- Because of partition points, all other points assigned to this edge
must be on or below this line. So any new points can not be further than the

maximum roundoff error (e5) above the line.
LEMMA 6.3. An outside or coplanar point is at most e€g above a neighboring edge.

PROOF. Each new vertex was the computed, furthest point above an edge. Other

points are at most ez further above the same edge (the grey region in Figure 6.1).
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create an initial hull (initial hull)

partition points into outside and coplanar lists (partition all)

while there exists a furthest point Ppyhes for any facet F repeat

find the horizon for Ppyhest starting with F (find horizon)

make two new edges from Ppyppest to the horizon (make cone)

if the new edges form a clearly convex angle if convex

if either new edge is coplanar with its horizon edge check horizon
tentatively perform merge

if the new edges are better than the old edges if better

partition points into outside and coplanar lists (partition points)

attach the new edges to the horizon (attach cone*

if either new edge is coplanar with its horizon edge if coplanar

merge the new edge and the horizon edge (merge facetst)

if the new edges are non-convex or worse than the old edges if worse

raise outer planes to clearly include Prypiest (raise outer)

partition outside lists of modified facets (partition outside)

Table 6.1: Quick-hull algorithm restricted to 2-d.

partition line

Facet B

————————————— —————————— —— ——— —— T — f— — ——————— —— -

interior facet for Pfu p——

Figure 6.1: A new vertex is furthest above an edge. Outside points are at most
roundoff error above a neighboring facet.
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centroid ratio
ab : 1:(d-1)

Figure 6.2: If new edges are 6- or p-coplanar, the deviation of Ppyhest from the old
edge is bounded.

Since new edges are above the old interior edge and partition points assigns a point
to the edge it is above, an outside point P can not be further than eg above a

neighboring edge. [

LEMMA 6.4. In 2-d, Quick-hull produces a convex box complex after each iteration.

It does not need raise outers.

PROOF. By Lemma 5.19, it produces a locally convex box complex. By Lemma
6.3, a point is at most €5 above a neighboring edge. This is lower than the minimum
outer plane, 3¢, + 3¢5 (see “create a hyperplane?”). So fix horizon in 2-d produces

a convex box complex. |

LEMMA 6.5. If two new edges are coplanar the maximum deviation of P st from
the old edge is
max(Asind, 2¢,).

PROOF.  Pprihest 15 on both new edges by construction. If the new edges are 6-
coplanar, the maximum deviation of the new edges from an interior edge of length
6 is §sin @ (Figure 6.2). The parameter A is the diameter of the point set. If the
new edges are p-coplanar, the maximum deviation of the edges at the centrumis ¢,
by definition of €,. The maximum deviation of the new edge is double this because

the centrum is the bisector. ]

LEMMA 6.6. If a new edge is p-coplanar with an horizon edge, the maximum devi-

ation of Ppyhest from the horizon edge is 2e,.
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centroid

.’
.....
e

=
&
g

vertex

Figure 6.3: Merging an old facet into a new facet can increase the width to 26+ 2¢,.

PrROOF. By Lemma 6.3, Ppyhest is at most eg above a horizon edge. If below a
horizon edge, the worst case occurs when the horizon vertex is on the horizon edge.
The horizon edge intersects the centrum so Pjy,uhest can be twice as far away (same

as Figure 6.2). |

The remaining possibility is a horizon edge that is p-coplanar with a new edge.

The horizon vertex could be below the horizon edge.

LEMMA 6.7. If the inner plane of an horizon edge is £ and the horizon edge is
p-coplanar with a new edge, the inner plane of the new edge is at most 2E 4 2¢,

after merging.

PROOF. A new edge exactly through the centrum is at most £ from the horizon
edge and at most 2€ from the inner plane. The new edge can be at most ¢, from

the centrum’s center point (Figure 6.3). ]

The partition line prevents unbounded error growth due to repeated merges of
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Figure 6.4: A partition line prevents rocking a facet more than once.

a horizon edge into a new edge. Consider (Figure 6.4). where Facet F; is an edge,
V is a vertex a below Fy. Before being added to Fy, V was Ppyes: for facet F5.
The partition line for Fy goes through V. A new furthest point P is ¢z above the
partition line (the maximum possible) and 2a from F. Facet F3 is a new edge from
P to V. It just misses the centrum for Fy. The radius of the centrum is y and the
top of the centrum is z below the partition line. The centrum is as high as it can
be without violating the centrum ratio.

Facet F, just made being clearly convex, so a is de,. Note that a << d so we

can estimate ¢ ~ z and e ~ d.

LEMMA 6.8. Consider horizon facets that are p-coplanar with a new facet. If the

minimum offset to the outer plane is:
d(e, + €5+ a + €ye5/a) — 2a

a second merge due to a p-coplanar ridge can not double the offset to the inner

plane.

ProOOF.  The first ratio is from the centrum property, the rest are by similar

triangles:
h+z 1 htec_h htf R
c+h+e d a+b a 2a+e a
gtk ¥ E__ =
¥ BRTY G’_Ep'i”y
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Substitute z for ¢ and d for e, and scale all variables so that A = d. Solving these

gives:

¢ = bdfa, z=c¢/d+2—-d=0bla+2—d (since ac= bd)

v = epld+ )] = cald+2)/F = eplb+ 20)/(af) = ep(b+ 20)/(dla + €9))
ab+ 2a* — a’d — adeg
a -f- Eﬁ

b = dey(a+es)/a—2a+ad+deg=d(e,+ €5+ a+eep/a) —2a

de, = az —dy="b+2a—da—eg(b+2a)/(a+ €)=

Increasing h lowers the centrum relative to F*. So Figure 6.4 represents a worst

case. |

COROLLARY 6.9. Consider horizon facets that are p-coplanar with a new facet. In

2-d, a minimum outer plane of 3¢, + 3¢5 limits the lower plane error to —4¢,.
Combining the above lemmas, we get:

THEOREM 6.10. In 2-d with Quick_hull, the maximum separation between outer

plane and hyperplane is:
max(Asin 6,2¢,) + ¢, + 3eg
and the maximum separation between inner plane and hyperplane is:
2max(Asinf,2¢,) + €,.

THEOREM 6.11. In 2-d with exact inputs and no angle constraint, Quick-hull pro-
duces a convex (8¢, + 3¢z)-wide box complex. In terms of p and 3, Quick hull
produces a a (8p + 100/3)-convex box complex. The polytope of its hyperplanes is

convex despite p perturbations of any extreme point.

PrRoOOF. The previous theorem bounds the maximum width of a facet. Lemma
5.2 gives upper bounds for €, and €z. The minimum size of a centrum is p which

enforces the convexity. ]
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There are three results to compare this with: Fortune’s [1989] inverse error
analysis, Li and Milenkovic’s [1990] e-strongly convex é-hull, and Guibas et al’s
[1990] similar result using global methods.

Using a variation of Graham scan, Fortune computes a 2-d convex hull that
is near the precise convex hull [Fortune 1989]. His analysis bounds the perturbed
input to 43A.

The other papers produce an e-strongly convex é-hull. This is a convex hull
in which any vertex can be perturbed by e and no point is further than é outside
the hull. Our convex §-wide box complex differs in that our vertices define the
topological relationships but not the geometric relationships. Our geometry is given
as the intersection of hyperplanes. Convexity is preserved despite a p perturbation
of an hyperplane intersection.

Li & Milenkovic [1990] produce an ¢-strongly convex (12¢ + 288v/23)-hull with
a two pass algorithm. The first pass, forward trimming, constructs a “spine of
vertebrae”. Adjacent vertebrae are clearly convex. Each vertebrae may be followed
by an “extender” edge. The second pass, backward trimming, removes reflex angles
from the extenders. The algorithm runs in O(nlogn). They prove that an hull is
e-strongly convex if each vertex is at least 2¢ from the chord between adjacent
vertices.

Guibas, Salesin, and Stolfi [1990] use global methods to achieve tighter bounds.
They prove that every set of points has a e-strongly convex ((1 + v2)e)-hull. They
reduce the convex hull problem to the convex hull of a dozen points, and use the
InStronglyConvex predicate from their [1989] paper on e-geometry. This gives them
a e-strongly convex é-hull where § = (5 + v/2)(e + €3) + €5. Their algorithm runs
in O(n?logn) time.

In 2-d, Quick-hull gives comparable error bounds. Their € is our p/2 while their
§ is our outer plane (about half the width of a facet). Their algorithms have not

been extended to 3-d. Note that their algorithms are not output-sensitive.
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3. 3-d error analysis

The following analysis considers bounds for the maximum facet width of Quick_
hull in 3-d. The analysis is straightforward but tedious. As Quick_hull progresses,
the constraints on neighboring facets decreases and the maximum width of facets
increases. One goal of Quick-hull is to prevent loops in this process, i.e., prevent a
facet from forever growing wider. This is achieved by processing the locally furthest
point at each iteration, by redefining the hyperplanes of new facets in merge cone,
and by limiting the maximum twist of a merge in fix cone and fix horizon.

Even though the error analysis of individual merges reflects the actual perfor-
mance of Quick_hull, empirically the error analysis overstates the maximum facet
width. The next chapter gives examples of Quick-hull’s performance on a variety
of inputs.

A limitation of the analysis is the maximum twist ¢ of a p-coplanar merge (see
“twist of a merge*”). Quick-hull rejects an input if it causes a twist greater than .
Empirically, the maximum twist for an input is about three. Note that ( includes
the centrum ratio which is also three. To see what ¢ should be small, consider the
extreme case of perpendicular hyperplanes and let it be the last ridge to merge.
The only way to get a ridge this badly twisted would be to have a badly twisted
box complex; but then the ridges wouldn’t be clearly convex. We conjecture that
the geometric constraints of a locally convex box complex prevents bad twists.

Note that ¢ also bounds two other sources of error expansion: missing simplex
tests and improper centrums. A missing simplex test occurs when a simplex test
succeeds for one vertex but would have failed for an earlier coplanar vertex (see
“if R passes the simplex test¥”). An improper centrum occurs when the arithmetic
center of a facet does not satisfy the centrum ratio (see “centrum for a facet?”).
This may happen with large asymmetric facets. Empirically, these sources have
minor effect. Indeed a p-coplanar merge with a high twist looks bad when viewed

graphically and has uncovered conceptual errors in Quick-hull.

A related issue is V, the maximum number of embedded, concave ridges. A
concave ridge in merge cone causes a retriangulation of two or more new facets.

The retriangulation could in turn cause additional concave ridges. An upper bound
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&y max deviation due to f-coplanarity

&s max deviation due to p-coplanarity

S max deviation of vertex above hyperplane
Eisiier max deviation of vertex below hyperplane
Ecoplanar Max deviation due to degenerate cone

Table 6.2: Error parameters for Quick_hull.

o successive p-coplanar merges

Es successive f-coplanar merges

Echordcone  merging a chord facet into a cone facet
Ediori coplanar vertex in a chord facet

Eeonis coplanar vertex in a cone facet

Etligped coplanar vertex in a flipped facet
Efipfurthest  Phurthest 10 a flipped facet

Table 6.3: Maximum deviations derived for merge cone.

for V is n, but empirically, V =1 and on rare occasion 2 or 3. We conjecture that
the geometric constraints of a locally convex box complex prevents large V’s.

The error analysis determines bounds for five error parameters (see Table 6.2).
[t starts with merge cone, and proceeds to fix cone and fix horizon. Degenerate

cones define Eqplanarr When possible, the error analysis is written for R,

4. Error analysis of merge cone

Merge cone turns the simplicial facets from make cone into cone, chord, and
flipped facets. Cone facets are adjacent to Ppyriest, chord facets are made of horizon
vertices, and flipped facets use Pphest as a coplanar vertex. Merge cone may widen
a facet whenever it merges two facets. There are several causes of merged facets:
f-coplanarity, p-coplanarity, chord facets, and flipped facets. Each is discussed in
turn (see Table 6.3).



120 6. Quick_hull error analysis

 1st coplanar ridge

7

Figure 6.5: Successive merges due to 0-coplanarity.

4.1. Cone facets and #-coplanarity. Merge cone merges f-coplanar facets that
intersect at a cone ridge. The facets passed the simplex test (see “if R fails the
simplex test?”). After merging the facets, merge cone defines a new hyperplane
whose apex is Ppyrihest. At worst, a single merge can leave a vertex Asin 6 above or
below the new hyperplane (see Figure 6.7 below).
4.1. Cone facets and f-coplanarity. 6-coplanarity can occur repeatedly during
one instance of merge cone. Each time it occurs, the width of the facet increases.
If the angle o between the new and old hyperplanes is large, the deviation of the
corresponding vertex can be large; but then, the size a; of the old facet must be
small. This inverse relationship prevents large deviations from the final hyperplane.
In 3-d, consider two successive f-coplanar facets in Figure 6.5. The final plane
is at the bottom. We want to bound the height of the topmost vertex. Construct

a stack of triangles as follows:

1. The base of the largest triangle is ridge ao. Its apex is the nearest point on

the second coplanar ridge.
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2. The base of the smaller triangle is the line a; from the previous apex to the

ridge vertex. Its apex is the nearest point on the first coplanar ridge.
3. Flatten the triangles into a planar figure.
4. Flip every other triangle to give them the same orientation.

5. The original angles between planes are no less than #. The apex angles (e.g.,
A) are no less than the original angles. Decreasing these angles to # increases

the height of each apex (The last picture in Figure 6.5).

The height of the final stack Hie is at least twice the height of the final apex
above the hyperplane.

If all points pass the simplex test, Lemma 5.33 limits the maximum height of a
coplanar point to 2H;yt;/2. Quick hull does not guarantee this condition because
flipping a simplex to an arbitrary vertex can cause a large deviation of Pfypsest from
the hyperplane. Instead, Quick-hull tests the vertex of the current, coplanar ridge
(see “if R passes the simplex test*”). The twist ¢ bounds the additional error due
to untested vertices that would fail the simplex test.

The construction is easily extended to an arbitrary number of merges. The

construction is an idealization in the following ways:

o Since merge cone performs all possible merges before retesting merged facets,
the stack of triangles in Figure 6.5 should really be an inverted tree. We
consider only one path through this tree.

o The stack of triangles assumes precise points and planes. While the planes
were constructed from the points, roundoff error can perturb the planes. We
ignore roundoff error because it most strongly affects flat triangles, it is small

relative to edge lengths, and a tall stack of triangles is unlikely.
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Consider an infinite stack of triangles (Figure 6.5). Let h; be the height of the
i’th triangle, a; the length of its upper edge, and «; the adjacent angle. The upper
angle for all triangles is 8. Note that 27/3 < 6 < 7.

The edge a; for triangle 7 is the base of triangle 2 4+ 1, so

sin oy
a; = da;_1|cosa;+
tan 0

hi = a;sing;

Given ag = 1, the total height for an unbounded number of triangles is:

. sin ar;
Heoii = Esmai H (cosaj—— |tan(;|)'

i>1 1<;<i

To get an upper bound for Hieal, first remove the trigonometric functions using
cosa < 1, sina < @, and tana > a (a < 7/2). Then consider successively longer
prefixes of the sum [Cai 1992]. Let T' = |tan #|. Note that T' > 0.
Hiiai = Zsin o; H COS @ (1 — tal;aj) < > a ][] (1 - %)
i>1 1<5<i i>1 1<
Call this sum H (a1, as,...) and let H, be the first n terms:

Hp(ony.yay,) = Z o; H ( —9%).

1<ign 1<%

Since all terms are non-negative, H, < Hotal - The following recurrence holds:

Hn(al,...,an) = o (1 — %“) -+ (1 o= %) Hn_l(ag,...,an).

To remove the dependency on a particular choice of angles, let H,, be the supremum
over all possible arguments.

o~ —

Hn_l(ag,...,an) S Hn_l(a’z,...,an) = Hn_l(al,...,an_l).

An induction argument proves that H, < |tan 8] for all n and therefore Higa <

limy— oo Hy,, < |tan 8|. The base case is:

moeo(-3) - T (F- %)

H < T
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For the induction step, assume that H,_; < T.

|8

H,

18
(1—5_‘—1—)(0[14-511) = T—
H, < T

This completes the derivation of Hype < |tan 6)|.

LEMMA 6.12. Under 0-coplanarity in merge cone with precise intersection of adja-
cent hyperplanes in 3-d, the maximum deviation of a vertex from a cone facet’s

hyperplane is:
&y = (Asind.

PROOF. By the above derivation, the maximum height of a stack of triangles is
|tan #]. By construction, the maximum height of a vertex above a hyperplane is

|tan #]/2. In the range 27 /3 < 0 < «, sinf > |tan 0]/2. [

4.2. Cone facets and p-coplanarity. p-coplanarity occurs when a centrum is
coplanar with an adjacent hyperplane. As with 0-coplanarity, merge cone merges
p-coplanar facets if they pass the simplex test. After merging, merge cone defines
a new hyperplane using Ppuest as the apex. Merging can occur repeatedly. We
limit the maximum deviation due to p-coplanarity by performing all merges before
retesting merged facets.

When facets are p-coplanar, their hyperplanes are no more than €, apart at the
centrum. The hyperplanes intersect at one ridge, so the other vertices are at most
de, from the plane (see “centrum for a facet”).

When successive facets are merged, consider the base ridge that is closest to
Prurthest- Construct a perpendicular hyperplane through the base ridge (Figure 6.6).
Using Ppyrihest as a focal point, map the other facets so that their base ridges are
on this plane. The mapped centrums will still intersect the mapped hyperplanes,
and the mapped vertices are at most de, from the other hyperplane. Because all
merges passed the simplex test, the actual vertices are at most (de, from the other
hyperplane (see “if R fails the simplex test}”). As with f-coplanarity, ( bounds the

effect of untested vertices that would fail the simplex test.
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Figure 6.6: Successive merges due to p-coplanarity.

Each inner loop of make cone processes at least 1/(d—1) of the adjacent coplanar

3. If merges do not create new p-coplanar ridges, the maximum number of

ridges
successive merges is logg_1(mM).

Merges can create new p-coplanar ridges, but the direction of deviation is usually
reversed. The deviation may increase when variations in roundoff error cause a new
p-coplanar ridge. Since these variations are bounded by the maximum roundoff
error, we consider new p-coplanar ridges to be a second-order effect.

As with 0-coplanarity, roundoff error in computing the hyperplanes has a
second-order effect (its strongest effect is on flat triangles, and it is small relative

to edge lengths). Discounting second-order effects gives us:

LEMMA 6.13. In 3-d under p-coplanarity in merge cone, the maximum deviation

of a vertex from a cone facet’s hyperplane is:

&, = (de,logy_y(mM).

3Each facet contains at most d—1 cone ridges, all paired with another facet. Each merge deletes
one coplanar cone ridge and removes 2(d—1) ridges from the current pass. Of the removed ridges,
the deleted ridge and other, adjacent coplanar ridges are double counted.
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4.3. Coplanar chord facets. When one or more adjacent cone ridges are clearly
concave, merge cone retriangulates the neighboring cone facets using recursive calls
to make cone and merge cone. It creates one cone facet, and one or more chord
facets with convex chord ridges. Chord facets share the same apex. On rare occa-
sions, a newly created ridge may again be concave. If so, the process is repeated.
The parameter V is the maximum number of embedded, concave ridges.

The chord ridge between the new cone facet and the first chord facet may be
non-convex. Merge cone merges chord facets into the original cone facet until the

chord ridge is convex. Details are in “merge non-convex chord facets!”.

LEMMA 6.14. The maximum deviation of a vertex above a cone facet’s hyperplane

is unchanged by merging coplanar chord facets into the new cone facet.

PROOF. Prior to the creation of a chord facet, its vertices were coplanar with one
of the concave cone facets. The new cone facet is above these facets, preserving the

prior bound. |

LEMMA 6.15. Let Epora be the maximum deviation of a vertex from a chord facet.
If the centrum of a chord facet is maybe above the cone facet, the maximum devi-

ation of the chord facet’s vertices below the cone facet’s hyperplane is: de, + Enora-

PROOF. A chord facet shares a vertex with the cone facet?!. By the centrum
ratio, de, is the maximum deviation of the chord facet’s hyperplane from the cone

facet. The second term is the maximum deviation of a chord vertex. ]

LEMMA 6.16. Let Eora be the maximum deviation of a vertex from a chord facet.
If a chord ridge is 0-coplanar, the maximum deviation of the chord facet’s vertices

from the cone facet’s hyperplane is: Asin 6 + Epora.

PROOF. The maximum separation of the hyperplanes is Asin 8, adding in Egera

gives the result. ]
Combining the above lemmas proves:

4This is the reason for disallowing flipped facets during recursive calls to make cone.
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LEMMA 6.17. Let Eqora be the maximum deviation of a vertex from a chord facet.
The maximum deviation of a vertex due to merging chord facets into a cone facet
is:

Ediord cone = Echord + maX(A sin 9, dfp)-

4.4. Cone and chord facets. The three sources of coplanarity can occur in any
order: coplanar chord facets, p-coplanarity and #-coplanarity. Fortunately, each

contribution to the total error can be separated out.

LEMMA 6.18. Assuming precise intersection of adjacent hyperplanes, the maxi-

mum deviation of a cone facet’s vertex is:
gcone = Schord.cone . gp + 50-

PROOF. A chord facet only occurs when a cone ridge was concave. Since the
recursive calls to make cone builds a new cone facet, we can ignore prior coplanar
chord facets. The deviation due to p-coplanarity depends on the height of the
processing tree for coplanar ridges. These ridges can be removed from the tree and
added up separately. The deviation due to f-coplanarity depends on the lengths
of the base edges. Removing p-coplanar ridges can only decrease the length of the
remaining base edges. So the total height of a tree of mixed ridges is bounded
by one coplanar chord facet plus a tree of all p-coplanar ridges plus a tree of all

O-coplanar ridges. [

Because of the recursive call to make cone, a chord facet is the same as a cone

facet. At the lowest level,
gchord(i) = gcone(i) - gchord(l) = gcone(l) = gp + 86-
At level 1,

Echordcone’) = Ecora®™ + max(Asin, de,)
gcone(i) = gchord_cone(i) -+ Sp + 89
Edord®? = Emora Y + max(Asind, de,) + &, + &
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Telescoping to level V' yields:
gchord(v) — (V —_ ].) maX(A Sin 0, dfp) —|— V(Sp + 59)

The V(&, + &) term is misleading since p-coplanar and f-coplanar ridges use
different vertices. Instead, £, bounds the total contribution of p-coplanarity. For
each f-coplanar ridge, induce an equivalent #-coplanar ridge for Py 5. As argued
in the proof of Lemma 6.18, these are bounded by a maximal tree of #-coplanar
ridges. So &,+ & bounds the total contribution of p- and f-coplanarity. Combining

previous lemmas gives:

LEMMA 6.19. Assuming precise intersection of adjacent hyperplanes, the maxi-

mum deviation of a vertex in a chord facet is:
Emora = (V —1)max(Asinb,de,) + &, + &.

COROLLARY 6.20. Assuming precise intersection of adjacent hyperplanes, the max-

imum deviation of a vertex in a cone facet is:

Econe = Vmax(Asind,de,) + E, + &.

4.5. Flipped facets. A flipped facet occurs when a cone ridge fails the simplex
test (see “if R fails the simplex test*”). When this happens, a vertex is further from
the simplex’s base than Pjpyupest- This situation is repaired by flipping the facet’s

simplex and making Ppyhest @ coplanar point.

LEMMA 6.21. Assuming precise intersection of adjacent hyperplanes, the maxi-

mum deviation of a vertex in a flipped facet is:
Etipped = Econe + max(Asinb, de,).
The maximum deviation of P45t from a flipped facet is:
Exip_furthess = max(Asin 0, de,).

PROOF. Either @- or p-coplanarity can flip a cone facet. Consider a worst-
case point P for #-coplanarity (Figure 6.7). The angle between the facets is 0, so
the maximum deviation of Pp,uest above the flipped simplex is ésin §. Adding in
Eeone bounds the maximum error. A similar derivation bounds the deviation for

p-coplanarity. &
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furthest

Figure 6.7: A flipped facet can leave Py hest, 6 sin @ above the hyperplane.

4.6. Summary of error analysis for merge cone. Merge cone produces cone,
chord, and flipped facets. The neighbor of a chord ridge may be a cone or flipped

facet. We defined the following error parameters:
& = (Asind
§, = (de,logyy(mM)
Eeone = E,+ E + Vmax(Asinb,de,)
Epippeda = &+ & + (V +1)max(Asind, de,)

gﬂ.ip_furthest == m&X(A Sil’l9, dﬁp)

They are used below.

5.0. Summary of error analysis for merge cone.

5. Error analysis of fix cone

At the end of fix cone, all new ridges are clearly convex, and horizon ridges are
either clearly convex or marked for merging. This allows “if cone is better than
interior® to evaluate the cone before attaching it to the horizon. If the cone is an
improvement,

When fix cone or fix horizon locate a non-convex ridge, they determine the best

neighboring facet for a merge (see “determine best merge*”). There are four cases:
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Eho_fipped  When a new facet is merged into a flipped or cone facet
Ehochora  When a new facet is merged into a chord facet
Eiwo_flippea  When two flipped facets are merged

Esiiter vertex above any facet

Table 6.4: Maximum deviations derived for fix cone.

concave new ridge, p-coplanar ridge, f-coplanar ridge, or degenerate cone (see

Table 6.4).

LEMMA 6.22. In fix cone, concave new ridges do not increase the maximum facet

width.

PROOF. Merge cone retriangulates concave cone ridges so cone facets can not be
concave. Since a chord facet after merge cone is clearly above Pjypest, chord can
not be concave with cone or flipped facets. If a flipped and cone facet is concave,
Prurthest 1s below a plane through existing vertices. If two flipped facets are concave,
either Ppyrihest s below a plane through existing vertices, or both flipped facets are
narrow. In the latter case, a simplex of their vertices lies below Ppyiest and Pryrihest
is at most Egip_furthest from the simplex. In all cases, Ppuhest can be added to an

interior facet without increasing the maximum outer hull. [ ]

If facet A is p-coplanar with facet B then Quick-hull merges facet A into facet
B. The order of merging in fix cone is: cone or chord facet p-coplanar with flipped
facet, chord facet p-coplanar with cone facet, cone or flipped facet p-coplanar with
chord facet, and flipped facet p-coplanar with flipped facet. The key lemma is a
3-d version of Lemma 6.7. The configuration below is the same as Figure 6.3 with
( instead of 2.

LEMMA 6.23. If the maximum deviation of facet A is £ and facet A is p-coplanar
with another facet B, the maximum deviation of A’s vertices from B’s hyperplane

is at most: ((€ + ¢€,).
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ProoF. If B’s hyperplane is exactly through A’s centrum, then the maximum
deviation of hyperplanes is ({ — 1)€. Facet A’s maximum deviation adds another

& term, and the maximum, computed radius of a centrum adds a (¢, term. ]
The following lemmas are immediate (note that Egipped < Exhoflipped):

LEMMA 6.24. If a chord or cone facet is p-coplanar with a flipped or cone facet,

the maximum deviation of one of its vertices from the flipped or cone facet is:

Erho_ﬂipped = C(gcone 4 Ep)-

LEMMA 6.25. After merging new facets into flipped or cone facets, if a new facet
is p-coplanar with a chord facet, the maximum deviation of one of its vertices from

the chord facet is:

grho_chord = C(grho_ﬂ.ipped + 6,0)-

LEMMA 6.26. If a flipped facet is p-coplanar with a flipped facet, the maximum

deviation of one of its vertices from the flipped facet is:

Stwo_ﬂ.ipped = C(grho_ﬂipped + ep)-

LEMMA 6.27. If two facets are O-coplanar in fix cone, their maximum deviation is

smaller than the deviations due to p-coplanarity.

PROOF. The merging facet’s hyperplane can deviate by Asinf from the other
hyperplane. But p-coplanarity increases the maximum deviation by at least ({ —
1)gc:oue- |

Degenerate cones and Fix horizon will not change the maximum deviation above

a hyperplane, so:
gouter = Stwo_ﬁ.ipped = Cs(gcone + Ep).

6. Error analysis of degenerate cones

Merge cone and fix cone fail to build a cone if the simplex test reports a negative

simplex or if fewer than d cone ridges remain. In this case, Py hest 1s added to an
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Enegsimplex ~ When a simplex is negative
Edegen_furthest When degenerate cone in fix cone
g

Table 6.5: Maximum deviations of Ppy.s: derived for degenerate cones.

interior facet as a coplanar vertex. This also occurs if the evaluation of the cone
is worse than the evaluation of the interior facets (see “if cone is better!”), but it

doesn’t effect the error analysis (see Table 6.5).

LEMMA 6.28. If the simplex test reports a negative simplex, the maximum devia-

tion of Ppynes: above an interior facet is:
Sneg_simplex = maX(A sin 9, dﬁp) + gouter'

ProOF. If the simplex of the merged cone facets is negative, its base ridge is
on the opposite side of Pphest from its coplanar vertices. If the simplex is flipped,
the maximum deviation of Ppyrest 15 Efip_furthest = max(A sin 0,de,) and Prythest
is inside the simplex. Since the simplicial vertices are already on the hull, the
hyperplane must pass under the outer planes of the interior facets. Hence the

result. Note that Eneg_simplex does not effect Egyer |

In merge cone and fix cone, a cone is degenerate if it contains fewer than d cone

ridges.

LEMMA 6.29. If fix cone or merge cone produces fewer than d cone ridges, the

maximum deviation of Pphest above an interior facet is:

gdegen_furthest = 2Euter

PROOF. The proof is similar to Eueg_simplex- Lhere are fewer than d cone ridges
so a new facet must undercut Pppese. The corresponding simplex uses horizon
vertices which are at most Euier from an interior facet. Ppyest could be Eyter

above the hyperplane. N
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E ho_horizon  Vertex below horizon facet

Table 6.6: Maximum deviations derived for fix horizon.

7. Error analysis of fix horizon

Fix horizon insures that all horizon ridges are clearly convex. This section con-
siders concave ridges, p-coplanar ridges, and #-coplanar ridges. The order of merg-
ing for p-coplanar ridges is: new facet p-coplanar with horizon facet and horizon

facet p-coplanar with new facet (see Table 6.6).
LEMMA 6.30. Concave horizon ridges do not increase the maximum facet width.

PROOF. Since all vertices are below the outer planes of horizon facets, a concave
horizon ridge can not increase an outer plane. Consider the new facet that forms
a concave angle with the horizon facet. Since the new facet is further above the
horizon facet than a coplanar facet would be, a concave horizon ridge is not further

below the horizon facet than a coplanar facet would be. |

The following is a consequence of Lemma 6.7 and the maximum deviation below

a hyperplane from fix cone, &wo_gipped:

LEMMA 6.31. If a new facet is p-coplanar with a horizon facet, the maximum

deviation of a vertex below the horizon facet is:

grho_horizon = C(gtwo..ﬁipped + E,o)-

As in 2-d, there is a danger of repeatedly increasing the facet width. Similarly

we depend on the partition plane for Ppypihest-

LEMMA 6.32. If a horizon facet is p-coplanar with a new facet, the maximum

deviation of a vertex below the new facet is bounded by &Eme_horizon-

PROOF. If two facets are just clearly convex, the maximum deviation from

avoiding p-coplanarity is 3¢,. Consider a plane through the centrum and a vertex
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3¢, below the facet. This corresponds to Figure 6.4 of Lemma 6.8. By Lemma
6.8, a minimum outer plane of 6¢, + 4¢3, prevents p-coplanarity from more than

doubling the deviation (to 6¢,). So Emo horizon dominates. ]

The following uses the same proof as used in fix cone.

LEMMA 6.33. If two facets are 0-coplanar in fix horizon, their maximum deviation

is smaller than the deviations due to p-coplanarity.

8. Summary

In the error analysis of fix cone, Equter 1s the maximum deviation of a vertex
above a hyperplane. In the error analysis of degenerate cones, Egegen_furthest 15 the
maximum deviation of a coplanar vertex above a hyperplane (i.e., Eoplanar). In the
error analysis of fix horizon, Emo_horizon 18 the maximum deviation of a vertex below
a hyperplane (i.e., Enner). Restating the corresponding bounds in terms of Econe

and €, gives us:

gouter < (3(8':011& + 6,0)
gcoplana.r S 2C3 (Scone + Ep)
gin.ner < C4(£cone + Ep)

To get a feeling for the size of these figures in 3-d, let A =1,V =1, mM =38
(the maximum number of adjacent p-coplanar ridges), and ( = 4. As noted in the
footnote for Lemma 5.28, the sin # term is approximately cos(w — ) when convexity
constraints determine the maximum facet diameter.

The errors build as follows:

& = 4sinf

E = 3¢,
Eecme < 5sinf 4 3Te,
Eouter < 320sin 6 4 2432¢,
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gcopla_nar S 640 Sin 9 ‘l" 4864Ep
Eimner < 1280sin 6 + 9728¢,

With these figures, the maximum width of a facet is:
Ecoplanar + Eimmer + 26, < 1920sin 0 + 14594e,.

This bound is pessimistic. Empirically, the maximum facet width for a cospher-

ical distribution is about 5max(3 cos(m — 6), 3¢,).



Chapter 7
Implementation of Quick hull

The author implemented Point_in_polyhedron and Quick-hull in 2-d and 3-d. Both
-algorithms take a list of points for their input; the input to Point_in_polyhedron
also includes edge lists. This chapter discusses the implementation of Quick-hull.
[t demonstrates the practicality of Quick-hull and the error bounds that Quick hull
achieves. At the end of this chapter, we demonstrate how the implementation helps

a researcher understand the internal behavior of Quick hull.

1. Demonstration of Quick_hull

We start with examples. Each example tests some aspect of Quick_hull. The
first figure shows the convex hull of two cospherical, regular polygons. The facets
inbetween the polygons are rectangles. This is mathematically correct in the real
number domain, incorrect if precise arithmetic was used to construct the convex
hull of the given data, and correct if roundoff error is taken into account. With
precise arithmetic, all or almost all of the facets would be triangles because the
input points are not precisely generated. The bottom figures show the effect of
roundoff error due to very small regular polygons. The basic structure is retained
but more and more facets must be merged.

The next three pages show random data. Random data, especially when
cospherical, is an effective test case because weak predicates indicate the lack of a

relationship. If regular data is used, then regularities in the data can mask incorrect

135
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input size h num. of facets and ridges/facet
input diameter 6 max facet width

max angle allowed | ( max twist

point precision

= Q:»DB

Table 7.1: Parameters for examples.

execution of the algorithm. We first show 2-d data. Since convex hull in R? is a
one dimensional polygon, the problem is constrained and easy to implement. The
3-d case is significantly more difficult. We show the effects of an angle constraint
and of roundoff error. The last two pages of figures show the intermediate steps of
Quick-hull.

In most 3-d examples, the back side is not shown. If it is shown, dashed lines
indicate the background edges. Irregularities along the edges of a figure are due to a
simple procedure for hidden line removal. The random distributions are uniformly
generated in the unit cube and then projected to the unit sphere, a spherical shell,
or a cubical shell. To test the effect of roundoff error, uniformly random points
are projected to a disk and the disk is projected to a sphere. If the disk is small
enough, roundoff errors are significant. A similar construction is used for regular
inputs. One or both poles may be included.

The inputs to Quick_hull include the number of points, the diameter of the point
set, the maximum angle, and the point precision. The results include the number
of facets generated, the average number of ridges per facet, and the maximum
facet width (see Table 7.1). All computations are double precision arithmetic with
machine roundoff 8 = 2.2 - 10716,

The maximum angle is given as the deviation from cos(w). A single merge of
new facets can widen a facet by max(Asinf,de,). The maximum facet width is
given as a multiple of the single merge width. In these examples, the worst case
multiple is § = 4.7. For angle constraints of spherical distributions, we treat the

deviation from cos(7) as if it were the centrum’s precision p (see Lemma 5.28).
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n=1002 A=2 =0 p=0 h=1500 3.3 é6=1.0

S\

n=2002 A=2-10"% 6=0 ) n=2002 A=2.10"% =0
p=0 h=1682 3.5 6=1.8 (=3.6 p=0 h=1061 3.9 6=23 (=20

Figure 7.1: Convex hull of two regular polygons on the unit sphere. The top one is
a 500-gon, the others are 1000-gons inside a very narrow disk. Note the rectangular
facets in the blow-up. The narrow disks make roundoff error significant. The disk

diameter of the bottom right figure is 2 - 1076.
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n=1001 A=2 n=1001 A=2
9: p:(]' h=1001 2

n=1001 A=2 n=1001 A=2
§=10"% p=0 h=34 2 6§=05 F=1072 p=0 =10 2 §=105

Figure 7.2: Tangent lines for convex hull of 1001 random, cocircular points. Note
the increased regularity as the maximum angle decreases. The maximum angle
theta for the bottom right figure is cos(8) = 0.99.
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n=10000 A=16=0 n=10000 A=1 6=10"°
p=0 h=526 3.0 p=0 h=416 3.1 §=0.36 ¢ =18

n=10000 A=1 ¢=10"5 n=10000 A=1 #=10"2
p=0 h=112 35 §=0.27 (=3.7 p=0 h=10 42 6§=024 (=0

Figure 7.3: Convex hull of 10,000 random points within 10~ of the boundary of
the unit cube. Note the simplified output as the maximum angle decreases. The
maximum angle theta for the bottom right figure is cos(#) = 0.99.
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n=10000 A=4.10"% 0=0
p=0 h=3327 39 6=22 (=3.0

n=5000 A=10"% =0
p=0 h=7036 3.3 §=20 ¢=24

AN

o

o)

=4y,
AT
SKTNER

A=8-10"7 =0
09 3.7 6=13 (=17

[y

n=10000 A=10"% =0 1
p=0 h=311 3.8 6§=2.0 ¢ p=0 h=

Figure 7.4: Convex hull of 10,000 random, cospherical points within narrow disks.
An additional point is at the opposite pole of the unit sphere. Note that the
diameters A decrease rapidly. The diameter of the smallest disk is 8 - 1077, Its
z-coordinates consist of 13 “9”’s followed by four other digits.
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Level 4 for n = 50000 A =2 =0

Level 2 for n = 50000 A =2 0
0 p=10"% Rh=93 3.0 §=1.6 ¢=2.0

0
p=10"% h=24 30 §=1.0 ¢

\\‘\
N 2
AN /S
) o |
it d |
AN |
> \\\ i
1
Level 6 for n = 50000 A=2 #=0 Level 15 for n = 50000 A=2 #=0
p=10"% Ah=351 3.0 §=1.9 ¢=2.0 p=10"% R=1207 3.7 §=4.7 (=23

Figure 7.5: Processing levels of Quick_hull for 50,000 random points within a 0.1
shell of the unit sphere. Note the regular structure produced by selecting the locally,
furthest point.
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142

=0

Level 6 for n = 10000 A =8-10"% ¢

Level 4 for n = 10000 A =8-10"% g=0

159 3.0 §=1.2 (=20

p=0 h

0 h=64 3.0 §=052 (=0

p:

Level 24 for n = 10000 A =8-10"% =0

Level 12 for n = 10000 A =8-10"% =0

p=0 h=3327 39 §=22 (=3.0

p=0 h=1755 3.5 §=1.6 (=3.0

Processing levels of Quick_hull for 10,000 random points in a 4 - 107°
disk on the unit sphere. Note that the structure of the distribution does not appear

until later. This is because the first Ppes: points are on the edge of the disk.

Figure 7.6
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Figure 7.7: Time comparison for Quick-hull (ghull) vs. Clarkson et al.’s [1992]
algorithm (hullio). Note the decreasing cost per point for Quick-hull. All points

are randomly distributed on the unit sphere. The maximum angle for Quick_hull
is cos™1(—0.999).
1

2. Statistics for Quick_hull

We compared the implementation of Quick-hull to Clarkson et al’s [1992] ran-
domized, convex hull algorithm. Dorward implemented the algorithm (hullio) in
general dimension and tuned it for performance [Dorward 1992]. As discussed in
Section 4.2, the two algorithms perform the same steps but in a different order.
Quick_hull partitions all of the points for a facet when the facet is created, while
Clarkson’s algorithm tests a point against each facet when it is added to the hull.

In addition, Quick-hull handles imprecise data and arithmetic while Clarkson’s
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—o— ghull Ale-3
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Figure 7.8: Output comparison for Quick-hull (qhull) vs. Clarkson et al.’s [1992]
algorithm (hullio). Note the slow growth for Quick-hull. All points are ran-
domly distributed on the unit sphere. The maximum angle for Quick-hull is
cos™1(—0.999).

algorithm assumes precise data and arithmetic.

Figure 7.7 shows that hullio’s performance is consistent with the O(nlogn)
analysis of Clarkson et al [1992]. It also shows that with increased input size,
Quick-hull’s cost per point decreases. The reason is that the maximum output
size for Quick_hull is constrained by the maximum angle between adjacent facets
[Lemma 5.28]. Figure 7.8 plots the total output size. Quick_hull’s growth in output
size is nearly flat, while the size of the precise convex hull grows linearly. In 4-d, the
size of the precise convex hull will grow quadratically, while Quick_hull’s growth

will become flat. For many applications, the exact facets are not needed.
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convex hull of random co-spherical points

Figure 7.9: Cost of coplanarity testing in Quick-hull on points in general position.
Without coplanarity testing (unnecessary in this case), Quick-hull runs about twice
as fast. The hullio plot line is for comparison.
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Figure 7.9 compares Quick_hull with and without coplanarity testing. The
upper-most plotted line shows Quick-hull producing the exact convex hull of the
input. Note that it is consistent with the O(nlogn) complexity of Clarkson et al’s
algorithm (duplicated as the bottom-most line). Since the points are in general
position, coplanarity testing is unnecessary. The middle line shows Quick_hull
with coplanarity testing turned off. As currently implemented, coplanarity testing
approximately doubles the execution time of Quick hull.

One advantage of Quick_hull over Clarkson et al.’s algorithm is that it always
processes a point that is locally furthest from a facet. While Clarkson et al. add a
random point to the hull, Quickhull usually adds an extreme point. This is best
seen if a cospherical distribution of points is inscribed in a cube. The cube is just
small enough to include one cospherical point on each face. In this case Quick_hull
uses two processing levels: one to build the initial hull of maximum points, the
other to add the cube’s vertices. Clarkson et al.’s algorithm will construct large
portions of the spherical hull only to destroy it when adding a cubical vertex.

Quick_hull collects statistics on all aspects of its behavior. Figure 7.11 shows
the most important statistics for executing Quick hull on 5,001 cospherical points
in a narrow disk. Because of fixed precision arithmetic only a fifth of the points are

vertices. The next page shows additional statistics. Some interesting features are:

o The errors due to merge cone are smaller than the errors due to fix cone and
fix horizon. Failed furthest points give the highest outer plane while fix cone

gives the lowest inner plane.

o Partition points incurs most of the cost. Work is measured in number of inner

products performed, or theirrequivalents.
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Figure 7.10: Advantage of Quick_hull’s partition points over Clarkson et al’s [1992]
algorithm. When a sphere of 10,000 points is inscribed in a cube, Quick _hull runs
more than twice as fast as hullio on 10,000 points. To prevent initialization from
identifying the cube, the cube is reduced so that each face includes one point of the
spherical distribution.
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917 vertices. 941 facets. 3.9 ridges apiece. 19 processing levels.
min. angle in facet 171 (-cos (x))=8.95499e-07

max angle in facet 3317 (log(1-cos(x))= -15.9546

max outer hull in facet 5960= 9.47e-15 ave.= 3.86e-15

max inner hull in facet 5845=-1.05e-14 ave.=-2.57e-15e

max hull diff. in facet 3778= 1.86e-14

Figure 7.11: Convex hull of 5000 cospherical points in a 4 - 10~° disk. The most
important statistics are here. A subset of the available statistics are on the next
page. The second column gives the total or max/min value. The other columns

give the value for every other processing level of Quick_hull.
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description all |1 3 5 7 9 11 13 15 17 19
**%% initialization ****

work done by initialization 45070 I 45070

*** findhorizan ****

num. of furthest points 1216 2 8 22 26 123 221 131 59 18 4

ave. distance above facet 5e-09 9.3e-07 1.5e-07 5.6e-09 9e-14 1.8e-14 T.8e-15 6.3e-15 5.9e-15 Se-15 6.8e-15
ave. number of interior facets 1 0.5 1 2.5 2.9 1.5 .81 0.66 0.54 0.5 0.5
max. number of interior facets 14 1 1 14 8 T 5 5 2 1 i

ave. number of horizon facets 5.3 3.5 4 5.8 6.3 5.2 5.2 5.3 5.5 5.7 6.5
max. number of horizon facets 19 4 4 19 11 10 14 12 10 10 10
ave. distance below horizon -2.8e-08 | -1.2e-06 -1.9e-07 -4.2e-07 -1.5e-07 -le-08 -1.9€-09 -4.6e-10 -1.2e-14 -l.4e-14 -l.4e-14
work done by findhorizon 8955 10 48 205 266 237 1549 915 418 130 32
work done by makecone 84513 91 416 1651 2145 8242 14924 9061 4251 1339 338
*** mergecone ****

num. of concave cone ridges 23 2 4 3 3 1

merge chord into cone facet 5 1 2 1

num. of coplanar cone ridges 1315 3 10 81 246 184 8T 35 9

num. of times all facets are coplanar 8 2 1

furthest point inside simplex T 3 1

num. of unflipped facets 761 2 8 52 145 96 50 19 6
num. of flipped facets 534 1 2 29 101 81 a5 15 3
num. of points inside simplex 2

ave. facets after mergecone 4.2 3.5 4 5.6 8 4.5 4.1 3.8 4 3.8 4.2
cone facets: num. vertices above 166 2 16 33 20 12 5

cone facets: ave. distance above 2.6e-15 3.4e-15 2.8e-15 2.6e-15 2.Te-15 2.6e-15 3.4e-15

cone facets: max. distance above 5.8e-15 5.1e-15 4.2e-15 4.6e-15 Be-15 4.4e-15 5.8e-15

cone facets: num. vertices below 100 1 T 16 8 8 3 2

cone facets: ave. distance below 1.2e-15 8.3e-16 1.6e-15 1.3e-15 1.6e-15 1.1le-15 1.9e-15 3.Te-186
cone facets: max. distance below 4.4e-15 8.3e-16 3.8e-15 3.Te-15 3.1le-15 1.9e-15 3.3e-15 4.3e-16
flipped facets: num. vertices above 167 1 1 14 28 21 10 6

flipped facets: ave. distance above 2.2e-15 2.4e-15 3.1e-15 2.1e-15 2.1e-15 2.4e-15 2.1e-15 2e-15

flipped facets: max. distance above 5.5e-15 2.4e-15 3.1e-15 3e-15 3.Te-15 5.5e-15 3.5e-15 2.6e-15

flipped facets: num. vertices below: T2 4 12 13 4 3 1
flipped facets: ave. distance below 1.9e-15 3.4e-15 1.9e-15 2.6e-15 2e-15 8.5e-16 4.4e-15
flipped facets: max. distance below 5.5e-15 4.3e-15 3.3e-15 5.5e-15 4.5e-15 2.3e-15 4.4e-15
work done by mergecone 50805 21 116 468 753 3899 9348 6289 3050 1116 294
work due to concave facets 1635 135 284 274 201 98

*** fixcone ***

num. of chord ridges 18 1 4 1 2 1

num. of non-convex chord ridges T 2 1

num. of non-convex cone ridges 301 5 52 49 22 10 2
num. of non-convex horizon ridges 788 3 13 81 166 86 41 13 2
num. of merges proposed 1729 3 14 106 347 227 115 40 4
merge new into horizon 1113 3 L:) 76 239 136 68 23 2
merge horizon into new 366 5 23 66 47 3o T

merge new into new 250 7 42 44 1T 10 2

ave. merged outer 3.Te-15 3.1e-15 3.Te-15 3.4e-15 3.6e-15 3.9e-15 3.8e-15 4.3e-15 3.9e-15
max, merged outer 8.9e-15 3.1le-15 8.3e-15 T.2e-15 T.6e-15 8.le-15 T.5e-15 8.9e-15 6.4e-15
ave. merged inner -4.1e-15 -3e-15 -4.2e-15 -4.2e-15 -4.1e-15 -4.le-15 -4.4e-15 -4.2e-15 -4.5e-15
max. merged inner -2.4e-14 -6.2e-15 -1.le-14 -9.2e-15 -9.le-15 -2.3e-14 -9.Te-15 -1l.le-14 -6.6e-15
work done by fixcone 54770 23 98 461 732 3969 10408 6811 3350 1217 160
*** cone better ****

num. of points added to hull 966 2 8 22 26 123 173 89 41 11 2

max. distance of added point 1.9e-06 1.9e-06 1.9e-07  2e-08 3.1e-13 9.5e-14  3.4e-14  2.Te-14 1.9e-14  le-14 1.Te-14
*** partition points **%*

ave. number of new facets 4.4 3.5 4 5.6 6 4.4 4.1 4 4.2 3.7 5.5
max. num. of new facets 19 4 4 19 10 9 8 T T 6 T

ave. length of outside list 16 160 T9 45 13 5.2 3.6 2.8 3.2 0.45
max. length of outside list 209 0 T54 809 521 118 96 65 55 T1 2

num. of times point is above 71025 4997 4982 9782 6960 6570 3107 974 380 165

ave. distance above a facet 6.9e-09 9.1e-08 5.2e-10 4.8e-13 6.8e-14 2.2e-14 1.2e-14 le-14 8.6e-15 1.1e-14

max. distance above a facet 1.9e-06 1.9e-06 6e-08 le-09 3e-13 8.2e-14 6.3e-14 3.5e-14 2e-14 2e-14

a point coplanar to a facet 17385 20 15 271 Td4 2148 3114 1567 738 203 15
work done by partition points 479195 19934 119049 49004 39036 20364 T490 3113 786 48

*** fix horizon ****

num. of merges 1203 3 14 100 233 149 T6 24 2

ave., merged outer 3.5e-15 3.1e-15 3.Te-15 3.4e-15 3.5e-15 3.8e-15 3.6e-15 3.8e-15 3.1e-15
max. merged outer 8.3e-15 3.1e-15 8.3e-15 7.2e-15 6.9e-15 8.1le-15 T.5e-15 6.4e-15 3.1le-15
ave. merged inner -3.8e-15 -3.1e-15 -4.2e-15 -4.le-15 -3.7e-15 -3.Te-15 -4.2e-15 -4.4e-15 -3.6e-15
min. merged inner -1l.1e-14 -6.2e-15 -1.le-14 -9.2e-15 -8.9e-15 -9.9e-15 -1.le-14 -8e-15 -3.9e-15
work done by fixhorizon 61191 156 687 4856 11972 T808 3938 1390 107
*¥EE cone worse *RE*

num. of failed furthest points 250 48 42 18 T 2

ave. num. of interior facets 1.5 1.5 1.4 1.4 1.6 1

max. num. of interior facets 3 3 3 3 2 1

ave. length of outside list 4.1 4.4 4.4 5 8.9 1.5
failed due to mergecone 15 5 2

max. distance if mergecone 4.5e-15 3.9e-15  3.4e-15

failed due to fixcone 105 16 1T T 4 2

max. distance if fixcone le-14 5.8e-15 6e-15 5.3e-15 4e-15 3.5e-15
failed evaluation 129 32 19 9 3

max. distance if failed 1.5e-14 T.le-15 Be-15 Te-15 4.6e-15

work due to failed furthest 2815 588 419 266 190 3

*** raise outers *¥***

num. of points tested 45628 45628
num. of points above facet 24 24
ave. distance outer raised 2.1e-15 2.1e-15
max. distance outer raised 4.Te-15 4.Te-15
work done by raiseouters 45628 45628
FHE (ther FREE

ave, twist for merged facet 1.2 0.74 1.3 1.1 1 1.2 1.2

max. twist for merged facet 8 1] 0.74 2 2.3 1.7 2 2

redundant ridges for merging 53 2 9 8 5 1

redundant ridges deleting a facet 4 1 1

total work 836433 45215 20610 121990 53567 61074 69417 39087 18887 6266 48466
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3. Visualization of Quick_hull

We used visualization to develop and implement Quick_hull. It was necessary
because of the counter-intuitive behavior of imprecise data and arithmetic. Quick-
hull displays its output and intermediate steps with Cheyenne, a device-independent
graphics package [Dobkin & Koutsofios 1988]. Almost everything in Quick-hull’s
data structures could be displayed graphically or by annotation. For example, we
verified geometric relationships by aligning a facet with the y-z plane.

One potential problem was that a large convex hull contains megabytes of infor-
mation. To display large convex hulls, Quick-hull allows selective viewing. Options
included: zooming, identifiers, distances, simplices, hyperplane intersections, copla-
nar points, outside points, precision balls, statistics, selective output of the data
structures, rotations, background display, and simplex volumes.

To study the execution of Quick-hull, each procedure includes trace output
that is optionally displayed. To study the behavior of Quick_hull, a movie facility
traces the execution of Quickhull within a geometric window. The important
intermediate steps of a Quick-hull iteration can be displayed.

The user controls Quick_hull by commands issued at the graphical display. This
allows for rapid exploration of the data structure and the algorithm’s behavior.
This was important for debugging, redesigning, and verifying the algorithm. Most
conceptual and non-trivial implementation errors were detected by extensive error
checks. At any time, the data structures can be checked for consistent topological
and geometric information.

To illustrate the above features, consider the effect of a conceptual error: not
testing acute angles against an interior point in “if R is clearly convex'. If this is
not done, Quick-hull can create a loop of facets with clearly convex ridges. In 2-d,
Figure 7.12 redisplays a figure from Chapter 2. Angles «, 3, v are locally convex
but facets a and b have reverse orientations. Such configurations can not occur in
2-d since Pjypiest partitions the remaining points into two. In 3-d though, it does
occur.

A geometric consistency test detected this problem (Table 3). Quick-hull dis-
played the offending facet graphically and as a data structure. The facet consists
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S

@ center point

Figure 7.12: Clearly convex angles may wind more than once around an interior
point

testhull: inside_point outside of facet 25646: dist 0.99 clearly? 1

25646 -1 -1 0 0 0 v:422* 10011* 6119@ h

ridges: r51952( -1.5 v6119 v10011 x12)
r51957 ( 0.3 v422 v10011 x12)
r46507 ( 0.3 v6119 v422 cx12)

hyperplane in=-1.7e-15 out= 0.025 off= 0.99
norm= 0.296735 0.711 872 -0.636543

Table 7.2: Error reported when executing Quick_hull. Redundant ridges are not
merged, and acute angles are not tested.

of vertices 422, 10011, and 6119. Vertex 6119 was the apex of the facet’s simplex
(indicated by ’@’).

The next series of figures show how Facet 25646 was built:

It starts by tracing Vertex 6119. This creates four new facets, two of which
include the corresponding horizon facets (Facet 22961 and 22965). Then
Vertex 2299 is added to Facet 21005. It creates four new facets, three of
which merge with the corresponding horizon facets. The next page shows
four of the five steps in adding Vertex 6472 to Facet 22965. The third page
shows the result. Facet 25646 is almost perpendicular to the other facets.

The local convexity of the facets is best seen in the last figure where Facet
24247 is horizontal. Facet 24247 consists of Vertices 422, 6119, 11373, and
2299. It is connected to Facet 25646 by Ridge 46507. Facet 25646 is folded
underneath Facets 24247 and 24248; it consists of Vertices 422, 6119, and
10011. Facet 25646 is connected to Facet 25644 by Ridge 51952. Like Ridge
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46507, Ridge 51952 is acute. Note that Vertex 6472 on Facet 25644 ends up
above Facet 25646 (The vertices of Facet 25646 have x-coordinates of 0.999,
0.998, and 0.996; Vertex 6472 has an x-coordinate of 0.999). Facet 25644 is
connected to Facet 25641 by Ridge 51945.

The fourth page gives a transcript of adding Vertex 6472 to the hull.
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Figure 7.13: Adding two vertices prior to the creation of Facet 25646.
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Figure 7.14: Four steps in erroneously processing Vertex 6472. These correspond

to the execution log below.
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Figure 7.15: The final step in erroneously processing Vertex 6472. Plus views of
three facets aligned with YZ plane.
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YokkxkxkkStart tracing at v6472 0.0014 above facet 18203 ¥¥¥iikoiomokok i
removeactive: facet 18203

findhorizon= for furthest 6472 on facet 18203
findhorizon.. interior facet 22965 dist 0.00046
findhorizon.. horizon facet 18202 dist -0.01 classify 1
findhorizon.. horizon facet 10539 dist -0.016 classify 1
findhorizon.. horizon facet 24248 dist -0.0021 classify 1
findhorizon.. horizon facet 18199 dist -0.0084 classify 1
findhorizon.. horizon facet 24247 dist -0.0002 classify 1
findhorizon.. horizon facet 20986 dist -0.0076 classify 1
findhorizon.. horizon facet 9703 dist -0.011 classify 1
findhorizon.. horizon facet 22961 dist -0.0015 classify 1
findhorizon: done

makecone= for point 6472 to horizon starting at 51937

*kkk%%Cone built for new facets about 6472 *¥***kkkknx

testridgelist= starting with cone ridge 51943, skipflipped?1

mergecone= of 8 cone ridges 51943 from new facets 25641
makenonconcave= 8 ridges with concave ridge 51944 and furthest 6472
mergefacets= 25640 and 25639 across ridge 51944

mergefacets= 25639 and 25637 across ridge 51942

makechordfacets= for furthest 6472, cone facet 25637, depth 1

makecone= for point 6119 to horizon starting at 51949

attachnewcone= attach chord facets 25644 in place of old cone facet 25637

xxx¥A*Cone of chord facets for new furthest 6119 **¥¥kxxkkx

testridgelist= starting with cone of new chord ridges ridge 51951, skipflipped?1
mergecone= of 1 cone ridges 51951 from new facets 25644

makenonconcave= 1 ridges with concave ridge 51951 and furthest 6119
mergefacets= 25643 and 25642 across ridge 51951

makechordfacets= for furthest 6119, cone facet 25642, depth 2

makecone= for point 422 to horizon starting at 51956

attachnewcone= attach chord facets 25646 in place of old cone facet 25642

******Cone of chord facets for new furthest 422 *¥***xxix

testridgelist= starting with cone of new chord ridges ridge -1, skipflipped?1
makechordfacets: finished depth 2

mergechordfacets= for cone facet 25646, point 422, chordlist 51957
testridgelist= starting with chord ridge 51957, skipflipped?0

mergecone: 1 chord ridges remain, first is 51957

testridgelist= starting with cone of new chord ridges ridge -1, skipflipped?1
makechordfacets: finished depth 1

mergechordfacets= for cone facet 25644, point 6119, chordlist 51952
testridgelist= starting with chord ridge 51952, skipflipped?0

mergefacets= 25638 and 25641 across ridge 51943

mergefacets= 25634 and 25636 across ridge 51938

mergecone: 1 chord ridges remain, first is 51952

testridgelist= starting with cone ridge 51945, skipflipped?1
capturevertices= inc innerfouter hulls of newfacets 108 for their vertices
fixcone= test all new and horizon ridges and merge if non-convex
testridgelist= starting with fixcone chord ridge 51957, skipflipped?0
testridgelist= starting with fixcone cone ridge 51945, skipflipped?0
bestmergeinside= find best merge for new facets across ridge 51940
bestmergeinside.. merge new facet 25636 into another 25635 across ridge 51940 outer 0.0014 inner -6.4e-05
testridgelist= starting with fixcone chord ridge 51957, skipflipped?0
testridgelist= starting with fixcone cone ridge 51945, skipflipped?0
testridgelist= starting with fixcone horizon ridge 51937, skipflipped?0
bestmergeinside= find best merge for new facets across ridge 51932
bestmergeinside.. need to merge new facet 25645 into old facet 24248 across horizon ridge 51932 outer 0.00052 inner -1.6e-15
markcoplanar: facet 25645 is coplanar to horizon facet 24248

testridgelist= starting with fixcone chord ridge 51957, skipflipped?0
testridgelist= starting with fixcone cone ridge 51945, skipflipped?0
testridgelist= starting with fixcone horizon ridge 51937, skipflipped?0
fixcone: done

evalcone: 0.0014

evalcone: 0.0021

attachcone= attach cone of new facets to horizon

fixhorizon= bestmerge non-convex ridges, starting with horizonlist 46503
bestmerge= find best merge for facets across ridge 19439

bestmerge.. merge facet 25645 into facet 24248 across ridge 19439 cuter 0.00052 inner -1.6e-15
mergefacets= 25645 and 24248 across ridge 19439

¥dddkfinished cone for furthest 6472 above facet 18203 giving 25646
2600 vertices 2203 facets 4.4 ridges apiece. 18 maxlevel

max possible facets 7998.5 max error 0.002 beta 2.22e-16

build 4178 , failed cones 1542, lost vertices 25 tot size 9604

max distance roundoff 1.6e-15 max new inner/outer plane 1.9¢-15
min angle in facet 25646 (-cos (x))= -0.99896

max angle in facet 10260 (log(1-cos(x))= -2.99984

max outer hull in facet 19436= 0.0047 ave.= 0.000851

max inner hull in facet 8935=-0.00439 ave.=-0.00045

max hull diff. in facet 25409= 0.00732 max twist=2.2 (;4 0)
thickness=0.00171 work=1.95e+06 lvl/logh= 4.89

work [nlogh= 37.8 work/n= 139 work/h= 405 dist/n= 98.8

Table 7.3: Transcript of Quick-hull adding Vertex 6472.
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Figure 7.16: Testing acute angles against a known inside point prevents the previous
error. The additional test changes the hull. The final result is displayed. Vertex
2299 is center left. Vertex 6119 is upper center. Point 6472 is coplanar and not
shown.



158 7. Quick_hull implementation




Chapter 8
Discussion

Traditionally, computational geometry has assumed real numbers and precise arith-
metic. If an implementation uses floating point arithmetic, it may fail when sin-
gularities occur or almost occur. This thesis introduces the box complex, a new
domain for computational geometry that subsumes roundoff error, measurement
error, representation error, and singularities. The primary feature of a box com-
plex is the box associated to each face. A box delimits the possible locations of a
face. Box complexes represent polyhedra, subdivisions of a manifold, open covers
of a manifold, and objects that self-intersect or overlap.

We analyzed two algorithms for box complexes: Point_in_polyhedron and Quick-
hull. The Point.in_polyhedron algorithm takes a box complex as input and produces
a clearly inside, clearly outside, or can’t tell output. We used homology theory to
prove its correctness. The Quick_hull algorithm takes a set of imprecise points as
input and produces a convex box complex as output. The trace of a convex box
complex contains the boundaries of all possible exact convex hulls of the input.

We proved the correctness of Quick-hull, analyzed its time complexity, and ana-
lyzed the maximum facet width at the end of Quick-hull. Given balance conditions
that are normally achieved, Quickhull runs in average time O(nlogh + h) where
n is the size of the input and k is the size of the output. The algorithm works in
general dimension and has been implemented in two and three dimensions. Empir-
ically, the maximum facet width is a small multiple times the maximum width due

to a single merge. We derived an upper bound for the maximum facet width in

159
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2-d, and under tested restrictions, derived the corresponding bound in 3-d.

Often the exact geometry of an object is neither available, computable, nor
desirable. Availability and computability is limited by measurement and roundoff
error. Desirability is limited by the time and space required for building and storing
a representation. This is especially true in four and higher dimensions since the
maximum size of a polytope increases exponentially with dimension. Often the
exact structure is not needed. A box complex can represent the level of detail

required of the application.

Another advantage of box complexes is strong predicates that are satisfied
despite perturbations of the data. For example, a Quick_hull user can guarantee
a strongly convex box complex by specifying the maximum angle between adja-
cent facets. If a strong predicate returns negative results, an algorithm may report
can’t tell or delay topological decisions by storing information. Pointin_polyhedron
delayed topological decisions by partitioning a surface into a front half and a back

half. Quick-hull delayed topological decisions by merging facets.

Much work remains to be done on box complexes. While homology was a
useful tool for Pointain_polyhedron, little is known about the geometric structure
of locally convex box complexes. The lack of knowledge showed up in the twist
parameter (. The principle study of the metric structure of polytopes is by the
Russian mathematician Aleksandrov [1950]. his work is available in Russian and in
German translation. Another Russian mathematician, Chernykh [1988], designed
an incremental algorithm for constructing convex hulls. Like locally convex box
complexes, it sandwiches exact convex hulls between inner and outer planes. The
algorithm looks incomplete (no centrums, no facet merging), but the description is

too abbreviated to refute. He does not bound the facet width.

For Quick-hull, additional reductions in maximum facet width are desirable. We
can classify bad merges and identify remedies. As illustrated by the statistics in the
previous chapter, several Quick_hull steps cause comparable maximum facet widths.
This indicates that wider facets may be intrinsic to Quick-hull. An alternative
remedy is iterative improvement: after completing a convex box complex, Quick-

hull can remove the widest facets and reprocess their vertices.
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The most important applications for Quick_hull may be in 4-d and higher
dimensions. In particular, Voronoi diagrams, Delaunay triangulations and power
diagrams are computable as convex hulls in one higher dimension [Brown 1979;

Aurenhammer 1991]. While Quick_hull was designed for R?, a number of issues

must be resolved:

o Quick-hull merges coplanar facets. After merging, the geometric intersection
of hyperplanes no longer corresponds to vertices. How is a facet of a convex

box complex turned into a Voronoi region?

o Quick-hull merges redundant ridges. In 4-d and higher, should a ridge be an
arbitrary box complex, or should fully redundant ridges be the only ones to

merge?

o An important part of merge cone was redefining the hyperplane. In 4-d and

higher, several choices exist. Which choice is best?

o Visualization of Quick-hull’s intermediate steps was crucial to the develop-
ment of the algorithm. What is the equivalent in 4-d and higher? Will 3-d

projections be required or can 2-d projections be effective?

A related issue is adjusting Quick_hull for applications. For example, Dobkin
and Kirkpatrick [1983] have a fast intersection algorithm based on a hierarchical
decomposition of a convex polytope. Quick-hull could produce a decomposition
in which each layer meets increasingly strong convexity constraints. At the outer
layer, it produces facets that include coplanar points. At this point, high precision
arithmetic or exhaustive search could resolve ambiguous situations.

Quick_hull is preprocessor for other applications. Given a set of points, it pro-
duces an approximation to the convex hull or Voronoi diagram. Included with this
approximation is a set of routines for querying the data structure. It may be useful
in applications wherever a neighborhood is sufficient to answer a query.

Other variations of box complexes may be useful for computational geometry.
For example, arrangements are an important structure [Edelsbrunner 1987]. A

box complex for an arrangement would represent nearly incident intersections of
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multiple hyperplanes. It may be best to cast the problem in dual space with
hyperplanes as 0-faces and intersections as facets. This allows the hyperplanes

to be exact. If done, 1-faces become important since they bound the cells of the

arrangement.



Appendix A

Correctness proof of

Point_in_polyhedron

This appendix gives the correctness proof for Pointin_polyhedron!. It reviews

homology and cohomology theory, constructs a realization of a box complex, proves
that realizations are homologous, proves a separation theorem for box complexes,
and proves the reduction of Pointin_polyhedron to the parity of a subset of the

vertices.

1. Review of Homology and Cohomology Theory

Homology theory and topology were originally developed in the 19th century
by Poincaré and others. They studied path integrals and the effect of the path on
the result. For example, in an open, convex, connected 2-d set, a vector field has
a potential function if its partial derivatives are equal. The potential of a point is
a path integral over the vector field. A necessary condition is that the integral is
independent of the path taken. In particular, the integral is 0 for all paths starting
and ending at a point. This may not be true if the domain is missing a point. Then
the integral of a circle around the missing point can be 27. In this case, there is an

infinite set of equivalence classes of cyclic paths: those i times around the missing

1 Joint work with Michael Hirsch.
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point. If 2 = 0, the path is the boundary of an open disk [see Massey 1980, Ch. 1
for more examples].

The one-dimensional homology is the study of equivalence classes of paths. A
path is zero in the homology if it is a boundary. Two paths are homologous if their
difference is a boundary. Consider a box complex in R?. Because a box complex
satisfies the evenness condition, a realization of the complex is a cyclic path. We
want to prove that the parity test is independent of the realization and valid. To
do this we need to show that all realizations are homologous and that all test rays
are homologous.

Homology theory is part of algebraic topology. It reduces certain aspects of
topological space to an algebra. In this section we will state some definitions and
quote some theorems from algebraic topology. We do this to establish the version

of the theorems. A good reference for this material is [Munkres 1984].

DEFINITION A.l. A simplicial d-chain is a formal linear combination of d-dimensional

simplices with coefficients in Z,.

Z, is the ring of coefficients consisting of 0 and 1. Other rings of coeflicients
are allowed, but we won’t need to discuss them. Since coefficients are only Z,, one
may (somewhat incorrectly) think of A; + Ay + ...+ Ay as being the union of the
simplices, A U Az U ... U Ag.

DEFINITION A.2. The boundary dA of a d-simplex A is the sum of the boundary
(d — 1)-simplices of A. The boundary of a simplicial chain is the sum of the

boundaries of each simplex in the chain. A chain is a cycle if its boundary is 0.

A simplicial d-chain is an abstraction of a collection of simplices. It may not
correspond with their geometry. For example, A + A = 0 because Z; coefficients
are added mod 2, but AUA = A.

However for our purposes, the algebra does reflect the geometry. Consider two
simplices Ay, Ay C R” situated so that they share a boundary simplex. Then it is
reasonable to say that the shared simplex should not appear in the boundary chain

A(A1+ Ay) = 0A; + 0A,. This agrees exactly with the algebra.
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Homology Theory is the study of equivalence classes of cycles. Two d-cycles
Cy,C; are equivalent if there is a (d + 1)-chain D such that 0D = C; + C,. The
ith homology group of a space X is written H;(X).

More formally, let X be a topological space, i.e., a collection of sets that is closed
under union and finite intersection. Let C,(X) be the set of n-chains of elements
of X. An n-chain is the formal linear combination of n-dimensional elements of X.
Define Z,(X) = kernel 8, = {c € C,.(X) : d(c) = 0}. The set Z,(X) is the set of
n-cycles. Define B, (X) = image Ont1 = On41(Cr1(X)). The set B, (X) is the set
of n-chains that are the boundary of an (n + 1)-chain. Then H, is the quotient
space: Z,(X)/B,(X). This means that the elements of H, are represented by
cycles and that two cycles are representations of the same equivalence class of H,

if their difference is a boundary.
THEOREM A.3. 0,0,41 = 0.

By Theorem A.3, a boundary is a cycle. For example, consider a 2-chain con-
sisting of a single 2-simplex. It is a triangle made of three edges and each edge is
between two vertices. The boundary of the 2-chain is the three edges, i.e., a 1-chain
of three 1-simplices. The boundary of the 1-chain is zero because each vertex occurs

twice (the evenness condition).
COROLLARY A.4. B,(X) C Z,(X)

THEOREM A.5. Let B C R? be an open contractible set. Suppose C' is a simplicial
n-chain in B,n < d. If 9C =0 (mod 2) then there is a (n+1)-chain D in B such
that C' = aD.

An example of Theorem A.5is an (n+ 1)-dimensional polyhedron D. Its bound-
ary is a list of facets, an n-chain C. The boundary of its boundary is 0 because
every n— l-dimensional edge of the polyhedron belongs to two facets (both elements
of C'). The theorem states that there is an (n + 1)-chain D whose boundary is C.
The polyhedron is D.

Cohomology is the dual concept to homology. Cohomology Theory is the study

of functions on simplicial chains to the ring of coefficients. The class of all :-chains
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with Z/Z, coefficients is C} = hom(C},Z,), i.e., formal linear combinations of
elements of C;. A co-chain v € C' is a member of the dual of C¥. So a co-chain
is a functional from chains to Z,. If {A;} is a basis for C;, then {y;(A;) = §;;} is
a basis for the cohomology group C* (§;; is the Kronecker delta). This defines an
isomorphism between C° and Cj.

Definitions of co-boundary, co-cycles, and cohomology groups are the same as
their dual versions under codimensions. For example, the coboundary operator ~
is the dual of the boundary operator § : Cpyq +— Cp. Thus v : CF — CP*!. We use
the reduced cohomology group H*(X). It has the property:

Hi(X) = Hi(X), i>0
| B(X)+Z,, i=0.

THEOREM A.6. Let X be an open subset of RY. Then X has k arc-connected
components if and only if H(X) = Z51.

The notation Z¥ means k copies of the natural numbers Z mod 2. For example
if X has 1 arc-connected component, then HO(X) = Z9 <= H(X) = Z;, <=
Hy(X) = Z3. So each class of Hy(X) is the chains of n copies of any point. A point
ro can be a representative for a class of Ho(X). Any other point z; is homologous
to zp because they are the boundary of the arc between them. So By(X) = X.
Because every 0-dimensional object is a cycle, Zy(X) is all possible chains of points
in X. Since all points are homologous, any chain C' is equivalent to a single point
whose coefficient is the sum of C’s coefficients. So distinct chains in the homology
have a single distinct coefficient, i.e., the 0’th homology of X is Z.

For a n-dimensional manifold M™, Poincaré proved that there is a natural iso-
morphism between H'(M) and H,_;(M). Alexander proved the following exten-

sion:

THEOREM A.7. (ALEXANDER DUALITY) Let K € R be a simplicial complex.
Then H*(R® — K) = Hy_;_1(K)
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DEFINITION A.8. Two continuous maps f,g : X — Y are homotopic if there exists
a continuous map F : I x X — Y such that F'(0,z) = f(z) and F(1,X)=g(x) for
any v € X. The function F is called a homotopy. Furthermore, homotopic maps
f,g9 : I — Y are homotopic rel endpoints if f(0) = ¢(0), f(1) =g¢(1), F(¢,0)=
f(0) VteI and if F(t,1) = f(1) Vtel.

2. Realizations of Box Complexes

To prove that Point_in_polyhedron gives the correct result, we introduce the
concept of a realization of a box complex. The realization does not enter into
the computer calculations, it is an abstract construction with which we prove the

correctness of Point_in_polyhedron.

DEFINITION A.9. A realization of a box complex B with boxes Bj is an n-dimensional
simplicial complex K = |JK* where K' is a subset of the i-skeleton of B. Then

level K* represents the i-faces of B in the following sense:
I K= Us; K! where K} C Bi. We say K} is associated to B:.
2. 0K = Upi-1p; B

We call K' the ith level of K.

Intuitively, realizations can be thought of both as things that approximate the
given face complex, and things that are approximated by the box complex.

That a realization approximates a box complex is essentially obvious from the
definition. By construction, K is a box complex with the same DAG as B. K&, C B’
“approximates” B’, and the boundary relations of the K%, are exactly the neighbor
relations of B*. If the boxes of B are subsets of i:-flats than K and B are the same.

Conversely, let B be a box complex approximating a polyhedron P. Then the
triangulation of the polyhedron itself is easily seen to be a realization of B. In this
case, the ith level of the triangulation is exactly the triangulation of the i-skeleton
of P.



168 A. Point_in_polyhedron proof

THEOREM A.10. Let B be a box complex in R? of dimension < d—1 which satisfies

the evenness condition. Then there exists a realization K of B.

ProoF. The proof is by induction on the levels of B and K.

The zero level of K, K, is constructed by picking one point from each 0-face
of B.

To construct K, consider a 1-face of B with box B'. By the evenness condition,
B! must have an even number of 0-faces in it, hence there are points z1, z3,..., 2y €
K°nN B! representing each such 0-face.

As there are an even number of z;, the class Y%, [z;] is 0 in Ho(B;Z;) and
belongs to°By(B; Z;). Hence, the z; bound a simplicial 1-complex Kp in B'.

K! is defined to be Ug K where the union is taken over the boxes of the
l-skeleton. K1 is then the part of K associated to B'.

Now assume that K' has been constructed. Given B, the box of an (i + 1)-face
B, let By,, Bs,..., B; be the boxes subordinate to B and let K; be the element of
K" associated to B;.

Let C = U;-:] K; Then by definition of the boundary operator:

[
9(C) =Y 0K
=1

By the evenness condition, there is an even number of paths between B and each
B;-*l. So each term of BK; occurs an even number of times in the sum. Therefore,
d(C)=0 (mod 2).

Since B is contractible, Theorem A.5 gives us C' = 9(D), where D is a simplicial
(i + 1)-complex and D C B. Let Ki' = D. Doing this for each (i + 1)-box

constructs K1 = |Jg K. |

As an example of a realization, consider the box complex for a 2-d pentagon
(Figure A.1). A realization selects a point for each 0-face and an edge between
each point. The realization could be a pentagon. The previous proof guarantees
the existence of a realization. The next proof says that all realizations are homol-
ogous. It constructs a higher dimensional set whose boundary is the realizations.

Consider two realizations for the pentagon. The 0-dimensional homology is all
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Figure A.1: Multiple realizations of a 1-box complex are homologous.

points that realize the vertices. The 1-dimensional homology is all edges between
the points, and the 2-dimensional homology is all strips between the realizations.
The 2-dimensional homology is made up for one rectangle for each edge. The
boundary of each rectangle is the realizations for an edge and the homology for its
vertices. Though the realizations for the pentagon are simple, the realizations and

the homologies between them can be quite convoluted.

THEOREM A.11. Two different realizations of the same box complex B are homol-

ogous within the trace of B.

Proor. To prove two realizations are homologous, we need to prove that they
are the boundary of a higher dimensional object. As in the proof of existence, we
construct this homology inductively on the levels of K.

Let K and L be two realizations of B. We inductively construct a homology M
between K and L.

K?° and L° differ in that they may be different points in the 0-boxes of B. For a
given 0-box B, let Mg = K3 UL and let M} be the straight line homology between
the pair of points in B. Let M' = |J M3 where the union is over all 0-boxes. Note
that IM} = Ug;<B ng UKJULY = KJULY and OM! = K°UL® . Thus M' is
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a homology between K° and L°. The homology M! contains the same number of
line segments as B has 0-faces.

Inductively, suppose we have produced M**!, a homology between K* and L.
M1 is | Mg where the union is over all 4- boxes and My is a homology within
B between Kj and L%. By definition, Mg = Us; <5 MBJ U K§ U L. By the
evenness condition, IM™*! = KU L. We now construct M**? by constructing
each M.

Fix B, a (i + 1)-box of B. For each B; subordinate to B, we have a homology

"""'1 between I&B and LB so that

U MENYUKF ULEY) = JOME") uoKg uoLy!

B,

= U( U Mp, UKp UL )UlJKs ULy,
B, By<B, ! B, B

— Uk, UL U UK, UU I,
B, B, B,

= 0 (mod 2).

Therefore there is a complex Mg in B such that

8M1+2 U z+1 1+1 U LEI—I

3. Separation Theorems

THEOREM A.12. Let K be a realization of a d-box complex B. Then Hy(K;Z,) =
Z% for some k > 0.

Proor.

Let 0 = S aaex AY, i.e., o is a d-chain that is the sum of all the d-simplices in
K. Every Al € K is in 0.

Then d(0) = 0K = 0 ga Kfa = Y pa OK%s = Y pa Y pa-14pa Kigly.

Since each B* ! occurs in an even number of B? the coefficients are all even

and hence d(¢) =0 (mod 2).
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Thus o is a d-cycle in Z;(K;Z3). Since K is a simplicial d-complex, its highest
dimensional chains are d-simplices. So o is not in By(K;Zy) and is in Hy(K;Z,).

This proves the theorem. [

COROLLARY A.13. Let K be a realization of a box complex B. Then R? — K has

at least two components.

PROOF. By Alexander duality, H(R? — K) = Hy(K;Z,;) = Z% for some k > 0,

hence by Theorem A.6, R — K has more than one component. [

REMARK A.14. Since K is a simplicial complex, it is compact. Thus only one of

the components of R* — K is unbounded and the rest are bounded.

This completes the first part of the proof of Point_in_polyhedron. The next part

defines the parity test and proves that all realizations give the same result.

DEFINITION A.15. An arc is in general position with respect to a realization K,
if it intersects K at the interior of K'’s facets and if at each intersection, it passes

from one component of R* — K to the other.

DEFINITION A.16. Let K be a realization and ¢ be an arc in general position
between points not in K. The mod 2 intersection number of ¢ with K is the

number of points (mod 2) in ¢N K.

THEOREM A.17. Let K and L be realizations of B, and let ¢ be an arc in general
position between points py, p; € R*—trace(B). Then the mod 2 intersection number

of ¢ and K is equal to the mod 2 intersection number of ¢ and L.

PrOOF. Let M be a homology from K to L. M may be represented by a map
of a “geometric complex” (i.e., a manifold except for co-dimension 2 singularities)
into R%. We may assume the map f is smooth away from the singularities and that
the curve ¢ never meets its singularities.

M N cis then a compact, one dimensional manifold with boundary, (M N¢) C
OM = K U L. We need to show that the number of points in K is the same as the

number of points (mod 2) in L.



1 A. Point_in_polyhedron proof

Consider the components of M N ¢. Some are between two points of L or
two points of K. These contribute 0 to either mod 2 intersection number. The
remaining components must be between a point of L and a point of K (since the
end points of ¢ are not in M). Thus, the mod 2 intersection number of ¢ with K is

the same as the mod 2 intersection number of ¢ with L. ]

DEFINITION A.18. Given a box complex B and a point p € R? — trace(B), the
crossing parity for p is the mod two intersection number of a realization K of B

and an arc from p to any point in the unbounded component of R? — trace(B).

THEOREM A.19. Given a box complex B and a point p € R? — trace(B), the

crossing parity for p is well defined.

PROOF. Given the results of the previous theorem, all we need to show is that
the mod two intersection number of an arc from p to a point in the unbounded
component (not in trace(B)) is independent of the arc.

The proof is quite similar to the proof of the previous theorem. Suppose we have
two arcs, ¢; and ¢y, from p to y; and y,, respectively. The unbounded component
is connected so we can extend the arc ¢, to go from p to y; without changing the
intersection number.

The arcs ¢; and ¢; are now homotopic to each other rel endpoints; let C' be
such a homotopy. As we did before, represent K as the image of a d-dimensional
geometric complex M mapped to R? Again, we may assume a transversality
condition between C' and M so that C' N M is a smooth 1-manifold with boundary
points in ¢; U ¢;. As before, we need concern ourselves only with the boundary
points on ¢; that are connected to boundary points on ¢z, and vice versa. These

are in 1-to-1 correspondence so the crossing parity is the same. [ |

If a realization for a box complex divides R? into two components, the crossing
parity is odd for points in the interior and even for points in the exterior. If the
realization divides R? into more than two components, the crossing parity is even
for the unbounded component, and either even or odd for all points in a bounded

component. So crossing parity classifies all points in R? — trace(B).
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This completes the second part of the proof of Point_in_polyhedron.

4. Reduction of Point_in_polyhedron

A point p can now be classified as inside or outside by testing its crossing parity.
We can use any realization of B and any suitable arc. There are two problems
though:

1. Constructing a realization for a box complex takes time.

2. With fixed precision arithmetic, we can not always tell if an arc crosses a

realization or guarantee that the arc is in general position.

It looks like we’ve come back to our starting point. We want to test if a point
is inside a polyhedron. By the Jordan-Brouwer separation theorem, crossing parity
classifies the point. Instead we represent the polyhedron by a box complex. We
construct a realization for the box complex. Qur polyhedron is one such realization.
The crossing parity w.r.t. the realization classifies the point. But we already knew
this.

Box complexes are useful because another solution to Pointin_polyhedron is
never constructing a realization nor computing the crossing parity. Instead we use
the strong predicates not infront and not behind. These predicates are independent
of the realization and the precision of the arithmetic. In terms of box complexes,
not infront means the realization for a box is clearly not in front of the test ray.
The realization could be anywhere in the box, and roundoff error could be anything
smaller than the maximum roundoff error.

Suppose we are given p € R%t!, a direction ¥ and a d-dimensional box complex
B with the evenness property. Let H be the plane through p perpendicular to @
which we may identify with R¢, and let 7 : R*™! — H be orthogonal projection
onto H. Let C' be the contour of p’s front half relative to @. Recall (Theorem 2.8)

that C is a (d — 1)-face complex with the evenness property.

DEFINITION A.20. The projection of C to H, which we write 7C, is given by the
same DAG as C with the label B} replaced by m(B}).
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Note that in general 7C' is not a box complex as there is no guarantee that W(Bj)
is contractible. Whenever this is guaranteed, 7C is clearly a d — 1 dimensional box

complex, however. By construction, we clearly will always have p ¢ trace(wC).

THEOREM A.21. Let H be the plane perpendicular to a test ray through a point
p, and C' be the contour of p’s front half in a box complex B. Assume that =C is
a box complex. Then crossing parity of p relative to B is the same as the crossing

parity of p relative to the projection of C.

PROOF. The idea of this proof is to show that mC' is embedded inside B in such a
way that the calculation of the crossing parity p relative to 7C' is exactly the same
as the calculation of the crossing parity of p relative to B.

Let By (resp. B_) be the front (resp. back) half of B. Let K be a realization
for B. Let K (resp. K_) be the part of K representing By (resp. B_), and let
Ky be the part of K corresponding to C. For X C R"*1, let Ty(X) represent the
translation of X in the ¥ direction by the amount .

By the compactness of K, there is a positive constant M € R such that Th(K4)
(resp. Tap(K_)) is entirely contained in the positive (resp. negative) side of H. We
construct a new box complex B’ as follows.

The DAG for B’ is that same as the DAG for B. Given a node B;: of B we must

construct the corresponding box of B’. There are three cases.

1. If B is in C, then
il i
te[—M,M)]
Intuitively, the contour is stretched out from well in front of H to well behind

H. Call the induced (d — 1)-box complex C".
2. If B is in By, then

B =Tu(B))u |J B
BfFeC
Bf < B;
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The front half is just translated to well in front of H, except the parts overlap-
ping the contour are stretched like the contour. Call the induced box complex

B o
3. Similarly, if B;: is in B_, then

7 7 !
BfeC
Bf < B}

The back half is similarly translated to well in back of H, except the parts
overlapping the contour are stretched like the contour. Call the induced box

complex B’ .

Since ¥ is perpendicular to H, each box in C’ N H is contained inside the
corresponding face of 7, thus any realization of C'N H is also a realization of 7C.

Now we construct K’, a realization of B'. If B} is in B_ or By then let K;B} =
T—M(KB;) and we say K = T_p(K_) and K} = T_p(Kp). These are clearly
realizations of the corresponding box complex.

If B! is in By then let

BfeC
Bf < B;

In this case we say

Ky =Tu(K)U | Ti(Ko).
te[-M,M]

In the first two cases Kp, is clearly a simplicial complex in Bj', but when
3

7
a simplicial complex with the piece-wise linear image of the product of another

Bt is in By, Ky, is not quite a simplicial complex. It is rather the union of
J

simplicial complex and a closed interval. After a suitable subdivision, however, we
may assume this image is a simplicial complex.

The following lemmata are immediate from the definitions.
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LEMMA A.22. The simplicial complexes K, K|, and K! are valid realizations of
B'_, the stretched contour C', and B_. The union K, U Ko U K' is a realization of
B

LEMMA A.23. Let K" = (K, UKo UK’ )N H. Then K" is a realization of C'.
Note that K" = K} N H.

We are now ready to prove the theorem. The crossing parity for p relative to
B can be computed using the ray in the @ direction. In the ¥ direction, B’ differs
from B only in that it has been translated further from p. So the crossing parity of
B' in the ¥ direction is the same as the crossing parity of B. Therefore the crossing
parity for p relative to B is the same as the crossing parity for p relative to B'.

Now consider the crossing parity for p relative to B’. It is independent of
the path with which we compute it (Theorem A.19) so pick a path from p to co
within H which meets K’ transversely and count its mod 2 crossing number. Since
K" = K'N H and the path meets K’ transversely in R**!, the path and K" must
be transverse in H, and thus this path gives the same mod 2 crossing number for
K'in R and for K” in H. Then by Lemma A.23 the crossing parity for p relative
to B’ is the same as the crossing parity for p relative to C inside H.

Combining the results of these two paragraphs we get that the crossing parity
for p relative to B is the same as the crossing parity for p relative to C inside H,

which proves Theorem A.21. ]

Pointdn_polyhedron is an implementation of this theorem with Theorem 3.3

ending the recursion. This completes its proof of correctness:

THEOREM A.24. Let B be a box complex and p be a point in R? — trace(B). If the
boxes of projected contours are convex, Point_in_polyhedron computes the crossing

parity of p.
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