DISASTER RECOVERY FOR TRANSACTION
PROCESSING SYSTEMS

Christos A. Polyzois
CS-TR-371-92

June 1992

Disaster Recovery for Transaction Processing Systems

Christos A. Polyzois

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

JUNE 1992

© Copyright by Christos A. Polyzois 1992
All Rights Reserved

Acknowledgements

I would like to express my deepest gratitude to my advisor, Hector Garcia-Molina. He has
been an endless source of knowledge, advice, help, and energy. Apart from a wonderful
advisor, he has also been an invaluable friend.

I would like to thank my readers, Rafael Alonso and David Hanson, for their comments
that improved this thesis as well as for their guidance and their always witty remarks during

these years. Many thanks also to Kai Li for his help.

Abstract

A remote backup is a copy of a primary database maintained at a geographically separate
location and is used to increase data availability. Remote backup systems are usually log-
based and can be classified as either 2-safe or 1-safe, depending on whether transactions
commit at both sites simultaneously or they commit first at the primary and are then
propagated to the backup.

This thesis describes 1-safe algorithms that can exploit multiple log streams to propagate
information from the primary to the backup. An experimental distributed database system
is used to evaluate the performance of these algorithms and compare the 1-safe with the
2-safe approach under various conditions. Techniques for processing read-only queries at

the backup are also presented.

ii

Contents

Acknowledgements
Abstract
Remote Backups
Tl FAXONDIN 2 » ¢ s ¢ s e ies s 5 6.5 ¢ 8 @ WG WEE 5 § § ¢ e amaras &
1.2 Thegis Otithing . i sommwmns s 85 ¢ 8 s @@ as 53 ¢ swemmms 3o
Framework and Problems
2.1 Our Generalized Model & w56 5 5 5 69 vwmm s 3 5§ 3 Fmmmang s s
22 1Hafe Processing . . .o n o nmi s 8 ¢ s s G @ @ns 8§ AN ATEHAS ¥
2.3 Difficulties with Multiple Logs
2.4 Correctness Criteria o i i it e
25 DesignBoaly « . « comwmmwms a5 % s s smmmmn » ¥ 5 ¢ sowwmEmmn 1 x
The Dependency Reconstruction Algorithm
31l Tieketss s « o 5 o s sommmams 5 5§ 8 v 5 cowmw wa 6 4 & 6 wowmwwoma s n
3.2 Dependencies at the Backup
3.3 Installing Actions at the Backup
3.4 Initialization of the Backup Database
3.4.1 Scanning the Primary,
3.4.2 Backup Processing
3.4.3 Correctness v v v it e e e e e e e e e e e e e
30 DISCUSSION: = 5 ¢ o ¢ s mmmmm s % 5 5 & oMY b ¥ 5 0 B e 3 s
The Epoch Algorithm
4.1 Overview of the Epoch Algorithm
4.2 The Single-Merk Algorifhan . =5 o ¢ c s vonmwmws s v o+ cmmwmms »
4.3 Why the Epoch Algorithm Works
4,4 The Double-Mark Epoch Algorithm
4D DISCUSEION. + « » » o s mmmmm s 5 & 5 8 8 S8 8 Bad 55388 s SRBHEL & b
4.6 Another Application: Distributed Group Commit
Evaluation of the Algorithms
5.1 The Testbed o e
5.2 Experimental Results.
521 TfOUIzation « v wsss 2 5 s ¢ v smmmunn o 4 6 s smwmmas v
5,22 CPU UINZAGION v wmvin 5 5 3 ¢ § e @ws o 8 8 8 8% S mmes 5 b
5:2.3 Network Utilization « 5 : 5 5 s s ¢ ewsmmg s s 8 8 e mmmm s s 4
524 NetworkDelayso s ¢+ s sap@oissis iv@m@ss s
5.2.5 Dependency Reconstruction
5.2.6 Single vs. Multiple Log Streams
5.2.7 Epoch Length Selection

iii

6 Partial Failures

6.1 Roll Forward . : . ¢ cw cmmuma n s v ¢ ¢ sommmas & % 8 o oo mmwars s
6:2 Roll Back : o o v ¢ o wmmwan 5 & 5 ¢ & smom s & & & & & oie e wms 5 o
6:3 Transaction Durability « c o s 95 5 s s c s swwwwn s 3 ¢ 5 o wwwwa s
7 Processing Read-Only Queries

Tl Motiveting Examiple - cvwwps 3 s 4 s e@mame s s s s pummaws g s
7.2 Algorithms for Processing Read-Only Queries
7.3 Performance Evaluation

7.3.1 Analysis of Map Method Lo

7.3.2 Analysis of Pointer Method
T4 Group Size e e e e e e e e e e e e
Tahi ISCUSSION : & « o v smw e mminin 4 5 % & & nuow ame o o 2 & & ww e R e b s

8 Conclusions and Future Work

Bibliography

iv

72
73
74
7

79
80
83
86
88
90
94
94

96

100

List of Figures

Log:concenfTation . .wwaiaia s o o 5 o wwmm smin o 5 5 v mommiwma s a 7
Multiple logistreams « o wwss o 5 5 5 & s wioms o 8 6 6 v s 7
Databagercopiesiv « swmwmw s 3 5 5 5 § 4R WHEE 5 F 8 ke m e S 6 10
Pseudo-code for backup transaction processing 27
Pseudo-code for the scan process L. 31
Matkersini thElogs : wmmmwma 5 5 3 ¥ ¢ e W B OB 5 3 8 s sWEMB M 6 & 39
Structure of the testbed L oo 53
Primary CPT utilization . « vs s s « « ¢ vowmm mais o 6 6 o oo iwmms o 60
CPU-bound performance: throughput (left) and I/O utilization (right) . . 60
Backup CPU utilization relative to primary for epoch (left) and 2-safe (rlght) 61
CPU overhead of 2-safe vs. epoch at backup 62
Messages generated by epoch (left) and 2-safe (right) 63
Backup message ratio (2-safefepoch) L oL 64
Throughput ratio with contention (epoch/2-safe) 66
CPU atilization at thebacknp: : : s s s csmvwms v 5 s s smwmmn v » » 67
Message ratio (backup/primary) forepoch 70
Gain of separation vs. division technique 82
Separating updates from queries . . . : s cw s s 0 v e a5 84
CPU-bound queries . « www s w5 5 v 5 2 s wwmmes 6 5 & & 6o wmmwa o ¥ 88
Saturation of CPY (left) and IfO (right) : + w s v w5 ¢ v 5 s svwwana s 89
Relative throughput gain (map vs. separation) 90
BEeKlGE . . - 5 » » v o p o 55 8 B FAAREEG 5 EEE AR BEYE § ¥ 91
Gain in the pointer method foru=0.7,p=3 93

Chapter 1

Remote Backups

As computing becomes more crucial to the operation of many enterprises, service disruptions
become less tolerable. To achieve truly continuous operation, critical database applications
often maintain an up-to-date backup copy at a geographically remote site, so that the remote
site can take over transaction processing if the primary site fails. Such a remote backup
database (or hot standby or hot spare) should be able to take over processing immediately.
When the primary site recovers, the backup should provide it with a valid version of the
database that reflects the changes made by transactions processed while the primary was
down, which enables the primary to resume processing. During normal operation, the
overhead at the primary for maintaining the backup should be kept low.

Local replication techniques (e.g., dual processors, mirrored disks) can mask many hard-
ware failures. However, such techniques are inadequate for extensive failures (disasters) such
as environmental hazards (e.g., fire, flood, earthquake), power outage, malicious acts, etc.
Remote backups protect against these types of failures because their geographic separation
reduces the likelihood that a disaster will affect both copies.

A remote backup may provide better protection against failures that can be masked by
local fault-tolerance techniques because failures tend to propagate. To illustrate, consider
mirrored disks, a common form of local replication. A repairman fixing one of a pair of
mirrored disks accidentally damages the good disk, which is physically located next to
its faulty mirror image [21]. The remote backup copy technique decouples the systems
physically, so that failures are isolated and the overall system is more reliable.

Physical isolation can also contain some failures caused by operator and software er-
rors. For example, an operator could destroy the database by reformatting its disks or by

eliminating a critical file. Such incidents have been reported [21]; as hardware components

become more reliable, human errors emerge as a major source of failures. It is much harder
for one operator to destroy a remote database under the control of another operator. Simi-
larly, software errors triggered by particular timing events at the primary will probably not
occur at the backup. The backup will have errors of its own, but these are likely to occur
at different times. Thus, remote backup copies provide a relatively high degree of failure
isolation and data availability, and they are used in practice [22].

Disaster recovery systems have received significant attention recently. Jim Gray and

Andreas Reuter [24] state:

“As you can sense, we are very enthusiastic about disaster recovery systems.
They offer a fertile ground for new algorithms, and also offer the promise of
much higher availability ... It is fair to say that this is the most active area of

transaction processing research.”

Apart from taking over transaction processing in case of disaster, the backup may find use
during planned downtime of the primary. For example, hardware upgrades, maintenance,
database schema or software updates can be performed without interrupting transaction
processing by using the backup while the maintenance, etc. is being performed at the
primary and then reversing the roles to update the backup. If it has spare capacity, the
backup can be used to perform useful processing during normal operation. For example, it

can process read-only transactions.

1.1 Taxonomy

Recovery mechanisms produce either a consistent or an inconsistent backup copy. Con-
sistency is highly desirable in most cases, since applications assume that they operate on
correct data, and error handling in these programs is rarely comprehensive. In case of disas-
ter, the backup takes over transaction processing and the applications would have to use an
inconsistent copy if the backup does not preserve consistency. The inconsistency may lead
to delays in transaction processing or even to crashes. Thus, compromising the consistency

of the database may endanger its continuous operation.

Order-preserving backups preserve the logical order in which transactions committed at
the primary. Non-order-preserving backups may commit transactions in a different order
than the commit order at the primary. Non-order-preserving backups are usually easier to
maintain, but they may lead to inconsistencies between the two copies, so they are rarely
used [10]. In this thesis, we consider only consistent, order-preserving backups.

Backup systems can run I-safe or 2-safe transactions [23, 30]. In 2-safe algorithms, the
primary and the backup copy are kept in lockstep; all updates to the data are applied to
both copies in synchrony, typically by employing some variance of the two-phase commit
protocol [4, 20, 32, 41]. In 1-safe systems, transactions commit first at the primary site and
are then propagated to the backup.

Two-safe is the way in which replicated data is traditionally handled in distributed
systems [1, 4] and it offers two main advantages: conceptual simplicity (since applications
are presented with a single logical view of the data) and guaranteed survival of all committed
transactions in case of disaster (since changes are applied simultaneously to the two copies).
However, 2-safe systems also have disadvantages. The agreement protocol must be executed
once for every transaction and increases transaction response time by at least one primary-
backup round trip delay plus some processing time at the backup. These delays may exceed
one second [30] and force transactions to hold resources (e.g., locks, workspace, etc.) longer,
thus increasing contention and decreasing throughput.

There are systems that can tolerate the delays mentioned above and run 2-safe transac-
tions. Systems that cannot use 1-safe transactions. A disaster can cause some committed
transactions to be lost. Consider, for example, a transaction T’ that executed and committed
at the primary. If a disaster occurs at the primary before the backup receives the informa-
tion that enables it to install T (typically the log entries written by T'), transaction 7" will
not survive the disaster. These losses occur only when disaster hits and are “economically
acceptable” in applications with “very high volumes of transactions with stringent response
time requirements. Typical applications include ATM networks and airline reservations

systems [30].”

Apart from reducing contention for resources, 1-safe transactions have some other advan-
tages as well. Suppose we have a system with some response time requirement. Typically,
this may be something like “90% of the transactions must have response time below ¢,.” Say
that when using 2-safety, the system can achieve a maximum throughput w. If we switch
from 2-safety to 1-safety, the response time will drop for all transactions. Consequently, we
can increase the load of the system beyond w and still meet the response time requirement.
Thus, we can trade the gain in response time for an increase in throughput.

A third advantage of 1-safety is the simplification of processing when the backup becomes
unreachable. With 2-safety, the primary site must either suspend processing or change the
way it processes transactions to skip the agreement phase. When the backup becomes
reachable again, it must catch up with the primary in a special processing mode. Then
the two sites must synchronize, revert to the 2-safe mode, and resume normal processing.
With 1-safety things are easier: if the backup becomes unreachable, the messages are simply
accumulated at the primary and are sent to the backup later. No deviation from normal
processing occurs. This behavior is especially convenient for short periods of disrupted
communication; longer failures of communication links may require re-initialization of the
backup anyway, since the backlog of messages may have grown too big.

It is easier to support multiple backups of the same database with 1-safety than it is with
2-safety. When 2-safety is used, the coordinator of a transaction must wait for messages to
be received from all of the participants. Thus, the latest response sets the pace. The more
sites there are, the more likely it becomes that one of them will introduce some delay and
cause the other sites to wait. Furthermore, when the configuration changes (sites leave or
join the set of active sites), all sites have to be notified. The problems mentioned above do
not occur under 1-safety: each site operates at its own pace and independently.

Finally, 1-safe mechanisms can be combined with 2-safe mechanisms to yield hybrid
schemes that run some transactions as 1-safe and some as 2-safe. For example, in a banking
application, transactions involving large amounts of money could run as 2-safe (to ensure

that they will not be lost in case of disaster), whereas the bulk of the transactions, involving

small amounts, can run as 1-safe.

1.2 Thesis Outline

Unfortunately, very little has been published in the area of remote backup systems. Most
publications come from industrial environments and describe particular products, focusing
on their functionality and specifications rather than on the underlying principles. There are
few performance evaluation studies and their scope is always limited to a particular system.
We attempt a more systematic study of remote backups. In Chapter 2, we present existing
systems and identify their shortcomings and limitations, which leads to the definition of our
more general system model [15]. We highlight the difficulties that this model introduces,
give formal definitions for the correctness of 1-safe backup algorithms, and state the design
goals for such algorithms [14]. Chapters 3 and 4 present the dependency reconstruction
algorithm [12, 13] and the epoch algorithm [11], respectively, which are two of our 1-safe
algorithms. Chapter 5 describes our transaction processing testbed and our experimental
results on the relative performance of various 1-safe and 2-safe schemes [17]. In Chapter 6,
we discuss how a remote backup can assist in case of partial failures at the primary [15],

and we present techniques for processing read-only queries at the backup [16] in Chapter 7.

Chapter 2

Framework and Problems

Commercial products that provide backup services are available. Tandem provides a remote
duplicate database facility (RDF) [31, 44] and is currently developing RDF-2, the second
generation. IBM markets an extended recovery facility (XRF) [25], which is primarily for
local backups. There is also an ongoing project at IBM [5, 34] to support remote backups
for IMS databases. These packages provide utilities for dumping databases, monitoring
them, and propagating modifications to a backup database.

The RDF and the IBM project are similar in their approach. It is not our intention to
describe the full packages; we are interested in only the algorithms used for maintaining
and initializing the backup database. We give an overview of their main features in order
to characterize current technology and establish the basis for a comparison with our work.
These systems can run either as 1-safe or as 2-safe. Like all existing backup products, they
are log-based: a log of the transaction processing activity at the primary is sent to the
backup so that it can install the same changes that were installed at the primary. This log
is maintained at the primary for local recovery purposes, so it is not an additional overhead.

The log entries written at the primary are sent to the backup where they are received
by a control process in the same order in which they were sent. The updates are actually
installed by a number of writing processes that operate in parallel and are assigned tasks
by the control process. Care is taken to preserve the relative order of modifications to the
same data item. For example, modifications to a certain data item are always assigned to
the same writing process.

Current 1-safe systems assume a two-site model: there is a primary site and a backup
site. This configuration is shown in Figure 2.1. Multiple processors are allowed within each

site. However, the logs of all primary processors are merged into a single master log stream

Ny Ko
©-

00~

OH] QB

(-
Y

LOG

=

MASTER

LOG

C%’D/

0 OH

(il)—_ﬁ
9_%

Figure 2.1: Log concentration

05 =

Ko~

Q0O

(13-

00

ﬁ\m
oL

Q06

@}\“
5
Q.-

Figure 2.2: Multiple log streams

by a concentrator (denoted by C in Figure 2.1). The stream is sent to the backup and
distributed among the backup processors by a distributor (denoted by D).

A preferable arrangement is to have multiple log streams between the primary and the
backup computers. For example, there may be a stream between each pair of primary and
backup peer processors, as shown in Figure 2.2. A single master log stream does not let a
system scale upwards, since all information sent to the backup must go through the same
concentrating processor that is connected to the communication line. The bandwidth of the
single line to the backup is not usually a problem: very high-bandwidth lines are available.
The bottleneck is usually the processing load at the concentrating computer. Suppose that
this computer has a capacity of P instructions/sec and that processing a message containing
log or control information requires z instructions. These instructions are necessary to run
the communication protocols with primary computers, to merge the messages into the
stream and to repackage them for retransmission. If a transaction generates m messages
on the average and there are N processors running transactions, the throughput of each
processor is limited to P/(z xmx N) transactions per second, independent of the bandwidth
of the communication link. A similar argument applies to the distributor at the backup.

Multiple log streams can also exploit multiple communication links. Furthermore, if
the primary (or the backup) computers are geographically distributed, each interaction of a
primary (backup) computer with the concentrator (distributor) involves a remote operation.
Thus, merging and distributing the logs incurs unnecessary inter-site network traffic, so that
it may actually be cheaper to send the log messages to the backup directly. The concentrator
may also cause additional delays, since transactions must wait for an acknowledgement that

their log writes have completed before they commit at the primary.

2.1 Our Generalized Model

Our model drops the two-site restriction. We assume that there is a single system, dis-
tributed across a collection of geographically separate sites Sy, ..., S,. We place no restric-

tion on what a site can be: it can range from a single processor to a number of computer

installations covering an entire geographical region (e.g., computers on the east coast may
be viewed collectively as a site). However, we expect that in many practical configurations
the computers constituting a site will be in physical proximity and will be connected with
communication links significantly faster and cheaper than the links between computers at
different sites.

The database is logically partitioned into a number of fragments F1, ..., Fr. A partition
usually reflects the logical organization of the data, e.g., a relation or part of a relation. We
assume that there is a single logical partition of the database for both the primary and the
backup copy (or copies). The physical partition may vary, e.g., depending on the hardware
used to store each copy. It may sometimes be useful to allow different logical partitions of
the data at different copies, so our model covers this case as well.

Suppose we have two partitions, P, = {F,,,..., Fy,} and Py = {F},,..., F} }. Partition
Py is a refinement of P, if every fragment Fj, of P, is a subset of some fragment F,; of F,.
Given a partition P,, we can use its refinement P, equivalently, if whenever a fragment of
P, is stored at a site, all other fragments of P, that are subsets of the same fragment of P,
are also stored at the same site.

If we have a number of partitions F,, P,..., F,, we can always find a partition P,
that is a refinement of all of the given partitions. Partition P, is a common refinement
of Py, Py,..., P;. Thus, we can always assume (without loss of generality) that there is a
single partition of the database. If there is not, we can use a common refinement to replace
all other partitions in the way indicated above.

The fragment is the smallest unit of data that can be allocated to a site. Fragments
are assumed to be non-overlapping and they should cover the entire original database, i.e.,
each data item is in exactly one fragment. Fragments may be replicated at various sites.
A fragment may also be replicated within a site, e.g., in mirrored disks, to increase its
reliability. We assume that such redundancy is hidden by a lower level of abstraction that
presents a virtual fragment, which fails only when local replication cannot mask the failure.

Local replication can be taken into account in our model by adjusting the failure rates of

10

S S S S,

..........

Figure 2.3: Database copies

such virtual fragments.

In 1-safe backups, there may be multiple logical versions of the database. For instance,
one version may reflect a set T' of transactions, another version may reflect a subset of
T. Thus, different copies of the same fragment may be associated with different logical
versions of the database. Unlike 2-safe copies, it is necessary to specify the association
between fragment copies and database versions explicitly, as the example in Figure 2.3
illustrates. There are four sites, S;, Sy, S¢, Sq, and fragments Fy, Fy. The copy of F; stored
at S, can be taken together (and kept consistent) with the copy of F, stored at 5, to form
the primary copy of the database. A backup database copy can be formed by taking the
copy of Fy at Sy and the copy of Fy at 5y and keeping them consistent. Finally, a partial
copy of the database can be obtained by taking the remaining copy of F; at S..

It is not necessary for the primary copy to reside at a single site. For example, copy 2
could be the primary. In some cases, it may be more efficient for the primary copy to be
at a single site, e.g., when many transactions access both fragments. However, in other
cases, a multi-site primary may be desirable. For instance, the two fragments may be
mostly accessed by disjoint, geographically separate sets of users running few distributed
transactions, so it is best to place each fragment where it is most frequently accessed.

A database copy is a mapping of fragments to sites. We represent such a mapping with

11

a set of ordered pairs of the form (fragment, site). For example, C; = {(F1, S;,), (F2,54,),
(F3,8:4), .., (Fg,S;,)} implies that copy C; has its Fy fragment at site 5;,, its F5 fragment
at site 5j,, etc. A complete copy must specify a site for every fragment. The mapping must
be total; partial mappings lead to incomplete copies, which are sometimes useful but are
not considered here. However, the mapping does not have to be ontfo sites, since a copy may
have no data stored at a particular site. Furthermore, the mapping can be many-to-one,
since one site may hold many fragments. Mappings need not be static; failures may force a
copy to map a fragment to a different site.

The rest of our discussion is in terms of database copies. A transaction is distributed if
it accesses data in more than one fragment of a copy.

Different database copies correspond to different mappings. Two mappings C; and Ci
are different if they differ in at least one component. Since we are interested in disaster
recovery, we would like our copies to be disjoint: to differ in all components, i.e., for copies
Jyk V4,85 # Sk;. Disjoint copies can tolerate the failure of any site, since each fragment
is always stored in two sites. In general, if one has m copies any two of which are disjoint,
one can tolerate the loss of any m — 1 sites. Depending on the particular backup scheme
employed, the copies that remain operational may not be up-to-date or even consistent.

The model can encompass many practical configurations, e.g., a two-site model is a
special case where there are two copies each mapped entirely to one site. Another interesting
configuration is that of cross-backups, where a site acts as the primary for one part of the
database and as the backup for another part. For example, if the database is distributed
between Los Angeles and New York, the primary copy is C, = {(FLa, LA),(Fny,NY)}
and the backups for each site are specified by C, = {(F14,NY),(Fny,LA)}.

2.2 1-Safe Processing

A single database copy (as defined in the previous section) is designated as primary and
one or more other copies are designated as backup. If there are multiple backup copies,

they track the primary copy directly and independently of each other; each backup copy is

12

running a different instance of the backup algorithm. It is also possible to have second-level
backup copies tracking a first-level backup, but doing so is analogous to a first-level backup
tracking a primary, so we do not discuss this approach.

The computers that hold the fragments of each copy can communicate with each other
over a wide-area network, a local-area network or bus, or even through shared memory.
Thus, our techniques apply to shared-memory architectures as well as loosely coupled sys-
tems.

We assume that the primary copy is running a relational database management system.
The database contains a set of tables, and each table contains a set of records. The tables
have unique names and the records have unique record ids. Requests can be made to
create or delete tables and to insert, select, update or delete records. Each of these requests
provides the appropriate parameters. For example, updating a record requires the id of that
record and its new version. The system will create and maintain indices on tables, with any
subset of the fields forming the key. Basic transaction processing functions, such as locking,
abort and commit operations, are also supported. Such requests are always associated with
a transaction identifier, which is established with a begin_transaction request during the
initialization phase of a transaction. We assume that strict two-phase locking is used for
concurrency control.

Walking through the execution path of a transaction at both the primary and the
backup establishes a reference point for subsequent chapters. A transaction may access
data at one or more primary fragments. Each fragment maintains its own independent log,
where it records the update activity by transactions to its data. Contrast our model with
other models for parallel logs, e.g., Reference [2], where multiple logs are allowed, but all
transactions have to go through a central processor referred to as the back-end controller.

The log contains only redo information or a combination of undo/redo information,
and it can also be used for local recovery. The information may be at the logical level
(action description) or the physical level (bytes changed within a page). For concreteness

we assume a redo-only, logical log, but our discussion is applicable to any other kind. Thus,

13

field meaning

tid transaction identifier

act action descriptor (e.g., update)
tbl mname of table involved

key record identifier of record modified
val after image of record modified

Table 2.1: Structure of log records

log entries have the fields shown in Table 2.1. Not all log entries contain all of these fields.
For example, the log entry for a delete does not contain an after image.

When a transaction T completes its requests at all primary fragments, one of the {rag-
ments acts as the coordinator for the transaction and initiates a two-phase commit protocol
to ensure atomicity. The coordinator notifies the participant fragments that the end of
the transaction has been reached. Those participants that have executed their part of 7
successfully make a prepare entry in their logs, denoted by P(T), and send a positive ac-
knowledgement (a participant-ready message) to the coordinator. We assume that the P(T)
entry includes the identity of the coordinator.

Participants that were not able to complete their part of T successfully write an abort
entry in their logs and send a negative acknowledgement to the coordinator. If a pos-
itive acknowledgement is received from all participants, the coordinator makes a com-
mit-coordinator entry in its log, denoted by CC(T), and sends a commit message to all
participants. The participants place a commit_participant entry in their logs (CP(T)) and
send an acknowledgement to the coordinator. C(T) denotes either CP(T) or CC(T).

Running between the primary and backup fragments are several communication lines,
which let primary fragments send their logs to the backup fragments. Control messages are
also exchanged over these lines. The connections between primary and backup fragments
are assumed to be virtual circuits [45], so that the order of messages is preserved. The
existence of enough bandwidth to propagate the changes is assumed; however, for 1-safe

transactions, communication delay is not critical. Note that redo-only logs reduce the

14

amount of information that must be propagated to the backup.

The backup fragments receive the log entries from their primary peers on the communi-
cation lines in parallel and independently of each other. Their task is to install the updates
of committed transactions atomically and in the same relative order as the primary (when
the order matters). As we show in the next section, this task is difficult when there are
multiple, independent log streams. After the logs are safe at a backup fragment (they have
been installed or they have been written on non-volatile storage), the backup fragment
sends an acknowledgement to its primary peer. The primary can then erase its logs, since
the backup will not need them again.

An interesting issue in 1-safe backups is when the user submitting a transaction gets a
response. If the response is sent after the transaction has committed at the primary site,
then, in a disaster, the transaction may be lost if it does not commit at the backup. If the
response appears after the transaction has committed at the backup, it is guaranteed that
the effects of the transaction will not be lost. The transaction is 1-safe in both cases; only
the user’s information about the fate of the transaction is different.

As failures occur at the primary, the system tries to recover. We assume the fail-stop
model for processors [39]. Multiple failures may slow down the primary or even stop it. At
this point, a primary disaster is declared and the backup attempts to take over transaction
processing. The declaration of a disaster will probably be done by a human because the
backup cannot distinguish between a catastrophic failure at the primary and a break in the
communication lines. User terminals are usually connected to both the primary and the
backup. The backup connection is normally on standby and is used in case of disaster to
route input transactions. For simplicity, we assume that when a primary disaster occurs,
the hardware at the backup is fully operational. A backup disaster is similarly declared
when failures impair the backup, and we assume that the primary is operational during a
backup disaster.

A copy is a primary, a backup, or is recovering. At most one of the copies can be a

primary at any time. Under normal operation, processing of the transactions takes place at

15

the primary copy and sufficient information is sent to the backup copy to allow it to install
the changes made at the primary. When a primary disaster is declared, the copy previously
operating as backup starts operating as primary and all of the transactions are directed to
it. When the failed copy comes up, it enters a recovering mode, which allows it to get a
consistent, up-to-date copy of the database and (perhaps later) resume normal processing.

The recovering mode is also used for creating the backup copy at system initialization.

2.3 Difficulties with Multiple Logs

Let T, and T}, be two transactions such that T, commits before T},. A dependency T, — T},
exists between transactions T, and T}, if both transactions access a common data item and
at least one of them writes it [4, 28]. Dependencies can be classified as write-write (W-W),
write-read (W-R), or read-write (R-W) depending on the actions that generate them.

When a single log stream is used, two important properties are guaranteed.

o When the commit log message for a transaction is received at the backup, all of the

transaction’s actions have been received at the backup.

e When a transaction T is received at the backup, all of the transactions on which T

depends have also been received at the backup.

These properties enable the backup to install the updates it receives on the log stream
without further checking. It is tempting to generalize this approach to many log streams.
However, in the case of multiple logs, the two properties mentioned above do not hold, and
the consistency of the database may be violated. We illustrate with two examples.

Consider a distributed transaction T that accessed data at primary fragments P, and P;.
The transaction wrote log entries at both fragments and committed at both fragments. The
log entries written at each fragment may follow different paths to the backup fragments. If
a disaster occurs, it is possible that backup fragment By (peer of P;) receives the log entries
of T while fragment By does not. If By installs the changes of T, transaction atomicity is

violated. For example, suppose T is a funds transfer, crediting Account; at fragment Py

16

and debiting Account; at fragment P,. We do not want to execute only the credit at the
backup.

It seems that an agreement protocol among backup computers might solve these prob-
lems, but it does not. Assume that there was a transaction 7" such that T — T at P;.
Since transaction 7’ depends on T' and T cannot commit, By should not commit 7. Doing
otherwise may violate the consistency of the database. For example, suppose that 7" is a
withdrawal for which availability of funds depends on successful completion of the funds
transfer by 7. Thus, although 7" may have been fully received at the backup, it is not
allowed to commit, which may in turn prevent other transactions that depend on 7”7 from
committing, so that we have a cascading aborts effect. Some of these transactions may be
distributed, so the effect may ripple across several backup fragments.

As these examples illustrate, in the presence of multiple logs, indiscriminate installation
of updates is not possible. The backup must ensure atomicity of transactions and keep track
of their dependencies, which explains why most systems do not use multiple log streams.
For example, RDF permits multiple log streams between primaries and backups only if each
log stream corresponds to an independent database, i.e., only if there are no distributed
transactions that access data at computers with separate logs. 2-safe processing is imposed
for transactions that access data at computers that do not share a log.

The algorithms presented in Chapters 3 and 4 can handle distributed transactions in
the presence of multiple logs. Before presenting them, we give formal definitions of the

correctness of 1-safe backup algorithms.

2.4 Correctness Criteria

Commercial systems are imprecise about what it means to “lose a few transactions.” For
instance, it is important to specify that if a transaction is lost, any transactions that depend
on it cannot be processed at the backup.

The transaction processing mechanism at the primary ensures that the execution sched-

ule PS5 of a set of transactions T is equivalent to some serial schedule. Schedule P.S induces

17

a set of dependencies on the transactions in 7. The backup will execute a subset of the
actions in PS5, denoted BS. Read actions are not performed at the backup since they do
not alter the database. The write actions that are executed simply install the value that
their counterpart installed at the primary. Because of failures, not all write actions of P.S

appear in BS.

Requirement 2.1 (Atomicity) If one action of a transaction T, appears in BS, then all
write actions of T, appearing in PS must appear in BS. This requirement disallows partial

propagation of a transaction.

R is the set of transactions whose writes are in BS, RC T.

Requirement 2.2 (Mutual Consistency) Assume T, and T, are in R. If dependency
T, — T, holds in BS, dependency T, — T, must hold in PS. This requirement guaraniees
that the backup schedule is equivalent to the primary, at least as far as the propagated write
actions are involved. Since no read actions take place at the backup, this requirement does

not apply to R-W or W-R dependencies.

Let M be the set of transactions that were not fully propagated to the backup before a
failure and hence were not installed. In addition to these transactions, there may be other
transactions that must not be installed at the backup. For example, suppose that T, and
T, execute at the primary and 7, writes a value read by T,. If T, is not received at the
backup (i.e., T, € M), we do not want to install Tj,.

To illustrate this situation, say that T, is the transaction that sells an airline ticket.
It inserts a record giving the customer’s name, date, flight involved, payment information,
and so on. Transaction T}, issues a seat assignment. The updates produced by T, cannot be
installed at the backup without those of T: there would be no passenger record to update.

Thus, we have the following requirement.

Requirement 2.3 (Local Consistency) No transaction in R can depend on a transac-

tion in M. That is, suppose there is a transaction T, € M and there is a sequence of W-W

18

and W-R dependencies (not R-W) in PS: T, - Ty — T, — --- — T,. Then none of
Ty, Ty, ..., T, is allowed to be in R. If C is the set of transactions that depend in this way

on M transactions, then RN (M U C) must be empty.

R-W dependencies do not cause violations of the local consistency constraint. If T, — T
and the only dependencies between these two transactions are R-W, then the values installed
by T, cannot possibly affect the values installed by Tj. Thus, the backup can install the
updates made by T}, and have a consistent database, even if T, does not reach the backup.

Local consistency is similar to recoverability as defined in Reference [4]. Since we are
also allowing W-W dependencies (not just W-R) in the dependency path of the definition
above, local consistency comes closer to the concept of strict executions [4]. The motivation,
however, is different in the two cases. In Reference [4], strict executions are introduced to
avoid problems associated with uncommitted data being read or overwritten by another
transaction and are intended to achieve correctness of a schedule within a single copy. In
our case, local consistency is required to ensure the equivalence of two schedules. It only
happens that both problems are dealt with in the same way: the actions of some transactions
are delayed until some other transactions have committed. Since the two notions are quite

different in context, we use a distinct name for our requirement.

Requirement 2.4 (Minimum Divergence) The backup must be as close to the primary
as possible, i.e., the backup must commit as many as possible of the transactions it is given.
In other words, if a received transaction does not depend on any transaction in M (i.e.,

does not belong to C), then it has to belong to R, i.e., T = RUM UC.

We have implicitly assumed that the primary and backup schedules P.S and BS run on
the same initial database state. In Chapter 3, we present a procedure for initializing the
backup database so that this property holds.

Most replicated data mechanisms described in the literature (e.g., References [1] and
[4]) would not allow what we call missing transactions. That is, they have M = () (2-safe

transactions). As discussed in Chapter 1, they use a two-phase commit protocol to achieve

19

this property. The weaker constraints we have defined in this section admit more efficient
algorithms. In essence, transactions commit at the primary (using a local two-phase commit
that involves primary fragments), release their locks, and only then are propagated to the
remote backup.

A remaining issue is the semantics of missing transactions. In particular, is it valid to
lose transactions that have committed at the primary? Is it reasonable to discard trans-
actions that were propagated, but violate the local consistency requirement? As discussed
in Chapter 1, real applications do allow missing transactions and can cope with the conse-
quences.

The example of Section 2.3 illustrates the consequences. Consider a banking applica-
tion where a transaction T, transfers $1,000 into an empty account, and a transaction T,
withdraws $400 from the same account. Both of these transactions run at the primary just
before a disaster. Transaction T is lost, but T, arrives at the backup. To satisfy the local
consistency constraint, Ty is not installed at the backup. The backup is consistent, but not
consistent with the real world. The inconsistencies with the real world can be detected and
corrected manually. For instance, when the customer checks the balance of the account
(at the backup) and sees zero instead of $600, the customer can present the bank with
the transfer receipt and ask for a correction. The bank, knowing that a disaster occurred,
will be willing to make amends for missing transactions. The bank might lose some money
(especially if withdrawal transactions are lost), but this cost might be much less than the
cost of providing 2-safe transactions. Furthermore, not all transactions have to be 1-safe;
transactions that involve large sums of money can be performed with 2-safe protocols.

Finally, there is the issue of whether T, should be discarded even if it arrived at the
backup. Installing 7}, makes the backup inconsistent (e.g., there are not enough funds
in the account to cover this withdrawal). On the other hand, discarding 7, creates an
inconsistency with the real world, and it is more important to maintain database consistency.
As discussed in Chapter 1, without consistency, it is very hard to continue processing

transactions. Furthermore, T}, can be saved for special manual processing. A bank employee

20

can look at the T, record and decide on the best compensating transaction to run. Since
disasters are rare, the price to pay for this special processing of the relatively few transactions

that are discarded is probably acceptable.

2.5 Design Goals

Subsequent chapters present 1-safe algorithms for maintaining remote backup copies. The

algorithms were designed with the following goals.

Database Consistency As mentioned in Chapter 1, the consistency of the backup is
important to ensure continuous transaction processing. The consistency criteria were

defined in the previous section.

Scalability Existing algorithms often have a component that must process all transactions
in some way, e.g., a master log. As systems scale upwards and use multiple computers
for transaction processing, the performance of this component eventually forms a bot-
tleneck, even if the amount of processing per transaction is small. We want algorithms

that avoid such bottlenecks, so that they apply to very large systems.

Parallelism at the Backup Although it is rather difficult to give a measure for paral-
lelism, a disaster recovery scheme should exploit the parallelism at the backup. For
example, suppose that transactions are processed sequentially at the backup. If the
primary uses multiprocessing to allow parallel execution of transactions, the backup
will be unable to keep pace with the primary’s higher throughput, and the backup

copy will become out-of-date.

Primary Overhead Minimization We try to minimize the overhead induced by the
backup algorithm at the primary. During normal processing, the backup is simply
installing updates, as opposed to the primary, which is actually running the transac-
tions. Yet, the backup should be capable of processing transactions after a disaster,
so it will have spare capacity during normal processing. Thus, if we have an option of

performing some task either at the primary or at the backup, we do it at the backup.

21

These goals are desirable in many applications, but they do not hold in every case. For
example, the backup may not have spare capacity during normal processing (e.g., if it is
being used for some other, non-critical processing), or database consistency may not be

significant.

Chapter 3

The Dependency Reconstruction Algorithm

This chapter presents the dependency reconstruction algorithm. Commit-order timestamps
(tickets) are assigned to transactions by the primary fragments. At the backup, two-phase
commit ensures atomicity, while the timestamps are combined with two-phase locking to

reconstruct and resolve data dependencies and to achieve consistency (mutual and local).

3.1 Tickets

As mentioned in Chapter 2, the primary fragments track their actions on behalf of a trans-
action in a redo log. As explained below, the dependency reconstruction algorithm requires
that read sets of read-write transactions must also be recorded. The structure of redo log
entries is described in Section 2.2.

When a transaction completes at the primary, one of the primary fragments initiates a
local two-phase commit protocol. If the transaction has accessed data at the coordinating
fragment, the coordinator is also a participant. Upon receipt of a commit message from the
coordinator, a participant produces a local ticket number by atomically incrementing and
fetching a counter. Intuitively, if a transaction gets a ticket ¢ at fragment F;, the transaction
observed state { — 1 of the fragment. If the transaction only read data at that fragment, the
ticket of the transaction becomes the value of the counter plus one, but the counter is not
incremented (since the state of the fragment did not change). For example, if the counter
has the value 25, the committing transaction gets ticket 26. If the transaction wrote this
fragment, the counter becomes 26; otherwise, it stays at 25.

Fach fragment creates a commit entry in its redo log, with the following data:

field meaning
tid transaction identifier
act action descriptor, in this case commit

ticket local ticket number

22

23

After writing the commit entry in their logs, the participant fragments send an acknowl-
edgement to the coordinating fragment and release the locks they held on behalf of the
transaction.

From the viewpoint of the primary, transaction processing is similar to what it would be
without a backup. Ticket generation is the only difference. Tickets are generated locally at
each fragment and independently of any other fragment. There is no global ticket generation
process, which avoids global bottlenecks. Fach transaction identifier may be associated
with several ticket numbers, one for each fragment at which actions of the transaction were
executed.

Ticket generation is not an additional overhead. Most systems generate a monotonically
increasing sequence of numbers — log sequence numbers (LSNs) — whenever they write
something in the log. These numbers may be used by various components of the system.
For example, the buffer manager may use them to ensure that a modified page gets written
to disk only after the log entry for the last modification on the page has been written. Thus,
there are already critical regions in the execution path of transactions, so adding an atomic

increment of a counter is insignificant.

3.2 Dependencies at the Backup

The logs of primary fragments are propagated in parallel to their backup peers, and installing
updates indiscriminately may violate transaction atomicity. Thus, before the updates of a
transaction can be installed at a backup fragment, a local two-phase commit protocol is run
among the backup fragments at which the transaction accesses data in order to ensure that
all parts of the transaction have been received.

The two-phase commit protocol allows each fragment to proceed with the installation
of a subset of the transactions it has received. If the updates of this subset of transactions
are installed in strict ticket order, mutual consistency (Requirement 2.2) is guaranteed.
Suppose we have two transactions T, and T, such that T, — T} at the backup copy. Let 2z

be a data item that caused this dependency. If actions are installed at the backup in local

24

ticket order, the ticket number of T, is smaller than that of T, at the particular fragment,
which implies that at the primary T, got its ticket before T;,. When T, got its ticket, it
held a lock on z, which was not released until 7, committed. The lock was incompatible
with the lock on z requested by T,. Thus, T, — T, at the primary.

However, installing updates in ticket order does not guarantee local consistency, since
dependencies on missing transactions cannot be detected. For example, suppose a trans-
action with local ticket 23 cannot be installed at backup fragment By because two-phase
commit detected that another part of it was not received at fragment B,. Installing trans-
actions with tickets higher than 23 at B; may violate the consistency of the database even
if the installation is done in ticket order; some of these transactions may depend on the
transaction with ticket 23 and should not commit before that transaction.

Furthermore, installing updates in ticket order may be inefficient. Suppose that 77 and
T, access disjoint data sets at some primary fragment and ticket(Ty) = ticket(T5) — 1. At
the backup, the writes for T3 cannot be installed until those for T are installed (as dictated
by strict ticket order). Thus, 75 must wait until 77 commits, which may involve waiting
for other fragments to agree, and then wait until the writes of T} are actually executed.
This process is inefficient, especially if the fragments have a capacity for executing writes
in parallel, e.g., have multiple disks. Even with one disk, efficient disk scheduling of the
writes of T} and T3 is not possible.

In order to preserve the consistency of the backup and to achieve parallelism, it is
essential that backup fragments detect dependencies between transactions. If Ty and T
write a common item, T must wait for T; to commit and write. However, even if T}
and T, write disjoint sets, there may still be a dependency. These dependencies can be
detected only if read sets of transactions are also propagated to the backup. To illustrate,
suppose that at some primary fragment transaction 77 wrote item y and that T read y
and wrote z. There is a dependency T; — T3, so Ty cannot commit at the backup unless
Ty does (local consistency, Requirement 2.3). The corresponding backup fragment cannot

detect the dependency from the write sets ({y} and {z}). If the read sets are sent, the

25

dependency can be detected, and T3 can be delayed until 7 finishes.

Sending undo/redo logs (as opposed to redo logs) does not eliminate these problems. If
undo logs are included, it is possible for backup fragments to install updates in local ticket
order disregarding the state of other fragments. If it later turns out that some transaction
does not commit, its updates can be undone. It might appear that it is possible to avoid
these problems (especially cascading aborts) and their processing overhead by deferring
commit decisions until disaster time and doing some extra processing then to abort those
transactions that cannot commit. However, the commit decisions must still be made at
some point and involve dependency detection. It is a poor idea to delay all commits until

a disaster hits, mainly for two reasons.

e The undo logs for all transactions must be kept until the commit decision is reached,
since potentially any transaction can be affected by a cascading abort. Determining
that a transaction can no longer be affected by a cascading abort is equivalent to
making a commit decision. The logs grow with time, and it may be impossible to

keep them because of space limitations.

o Processing of new transactions at the backup after a disaster would be delayed until the
commits complete, which may take a long time, since the cascading aborts mentioned

above can lead to extensive searching and analysis of the logs.

Thus, undo logs still require that a commit protocol run as transactions are received, and

it would be similar to the one we describe above for redo logging only.

3.3 Installing Actions at the Backup

Transactions should not wait for transactions they do not depend on, which happens if
actions are done in strict ticket order. This section describes a mechanism that achieves
these goals and proves its correctness. In what follows, the notations 7, and T'(s;) are
equivalent and both denote the transaction with ticket number s,. The fragment is usually

implied by the context.

26

The intuition behind our solution is to detect exactly those cases where waiting is
necessary and to let all other cases take advantage of parallelism. This detection is achieved
through locks on the data items accessed by the transactions, which are granted to the
transactions in ticket number order. Write (exclusive) locks are requested for items that are
to be updated, read (shared) locks are requested for other items in the read set. Additionally,
a read lock on every table name accessed is requested so that the table is not deleted while
accessing one of its records; if the table is created or destroyed, this lock must be exclusive.

As a concrete example, suppose that T, has a smaller ticket number than 7, at one of
the fragments. If they access a data item in conflicting modes, our mechanism ensures that
the lock is granted to T, the transaction with the smaller ticket number. Transaction T}
cannot get the lock until T, releases it, i.e., until 7,, commits. If, on the other hand, there
is no dependency between the two transactions, they do not ask for conflicting locks and
can proceed in parallel.

When the redo logs for transaction T, with ticket number s, arrive at backup fragment

B;, transaction T}, goes through the following states.

LOCKING The transaction arrives and requests locks for all of the records and tables it
accesses. It waits until all transactions with smaller ticket numbers have entered (or
gone past) the SUBSCRIBED state (so that conflicts can be detected), and only then

enters the SUBSCRIBED state.

SUBSCRIBED The transaction is waiting until it is granted the locks it requested. When

these are granted, the transaction proceeds to the PREPARED state.

PREPARED An acknowledgement for the first phase of the two-phase commit protocol has

been sent to the backup coordinating fragment.
COMMITTED The message for the second phase has been received for this transaction. All
updates have been made public and all locks have been released.

When T, arrives, B; sets the state of T, to LOCKING and starts requesting the locks

required. Transaction 7T, asks for a lock on data item z by inserting itself in a list of

27

state(T) — LOCKING
t « ticket(T) at this fragment
for every object z accessed by T

add lock request with ¢ to list for z
wait until counter >t — 1
if T writes at this fragment then

counter «— counter + 1
state(T) «— SUBSCRIBED
for every object z accessed by T

wait until request by 7" is at head of list for z
send acknowledgement to coordinating fragment
state(T) — PREPARED
wait until commit message for T is received
for every object z accessed by T

if T wrote z then

install new value for z

remove lock request of T' from list for 2

State(T) < COMMITTED

Figure 3.1: Pseudo-code for backup transaction processing

transactions asking for a lock on z; the list is sorted by ticket number. Each fragment
has a counter that keeps track of the local ticket sequence, showing the ticket of the last
transaction that became SUBSCRIBED at this fragment.

The locking procedure is summarized in Figure 3.1. After all of the locks for T, have
been requested, T, waits for the counter to reach s, — 1, which implies that 7, waits for
all transactions with smaller ticket numbers to become SUBSCRIBED. Some or all of these
transactions may be further ahead, e.g., PREPARED or COMMITTED. The important point is
that they must have become at least SUBSCRIBED before T, can do so. When this happens,
T, becomes SUBSCRIBED. If T, writes data at this fragment, it increments the counter,
which may trigger T'(s; + 1) to become SUBSCRIBED, and so on. For example, if the current
value of the counter is 25, then if transaction T, with ticket 26 is LOCKING, it becomes
SUBSCRIBED and increments the counter to 26, which may cause the transaction with ticket
27 to become SUBSCRIBED and so on. If T, were read-only for this fragment, it would

become SUBSCRIBED without incrementing the counter.

28

A transaction only waits for parts of other transactions that executed at the same
fragment to become SUBSCRIBED. The parts of a transaction at different fragments proceed
independently of each other, which also avoids deadlocks. The coordinating fragment ensures
transaction atomicity by waiting for all parts of the transaction to become PREPARED before
issuing a commit message and allowing any part to become COMMITTED. If one part is
delayed in becoming PREPARED, the other parts must wait. In case of disaster, one or more
parts may never become PREPARED. In this case, the transaction cannot commit, and the
parts that did become PREPARED must be rolled back.

Waiting for transactions with smaller ticket numbers to become SUBSCRIBED is necessary
if multiprocessing or multiprogramming is used at the backup. For example, two transac-
tions may try to become SUBSCRIBED out of ticket order because of delays introduced by
scheduling or because one of them had to ask for more locks than the other.

When SUBSCRIBED, T, waits until all of its lock requests reach the head of their corre-
sponding lists. A read request is also considered at the head of a list if all requests with
smaller ticket numbers are for read locks. When this condition is met, T}, becomes PREPARED
and informs the coordinating fragment. After commit, all of the requests of 7, are removed
from the corresponding lists.

When a failure occurs at the primary, the backup is informed it will take over primary
processing. The backup tries to commit all of the transactions that can commit and aborts
the ones that cannot. It then becomes the primary.

Atomicity (Requirement 2.1) is enforced by the local two-phase commit protocol that is
executed by the backup fragments.

Since locks are granted in ticket order at the fragments, updates inducing dependencies
are installed in ticket order. As discussed at the beginning of Section 3.2, mutual consistency
(Requirement 2.2) holds.

Local consistency (Requirement 2.3) also holds. Suppose T, = T = T, — -+ = T,
and T, cannot commit at the backup (recall that the dependencies are non R-W). Further,

assume that T, — T} occurs at fragment By, Ty — T, at By, and so on (these fragments

29

are not necessarily different). Since the dependency is non R-W, the ticket number of T}
is higher than that of T,. If the part of T}, at By (which causes the dependency 7, — T3)
is missing, the ticket counter at By, will not be incremented by T, and no transaction with
higher ticket will be able to become SUBSCRIBED at that fragment, let alone COMMITTED.
If the part of T, at By is received but 7, cannot commit (e.g., another part of it may be
missing), transaction 7, holds a write lock on the data item that causes the dependency
with Tj. Thus, T} cannot obtain that lock and will not commit. At fragment By, transaction
Ty, will in turn hold a write lock on the data item that caused the dependency T, — T,
which prevents T, from committing, and so on for all transactions on the dependency path.
Thus, local consistency holds.

Minimum divergence (Requirement 2.4) also holds. We have assumed that the order of
messages between primary and backup is preserved. Consider a transaction T, whose parts
have been properly received at the backup fragments and that does not depend on any
transactions that cannot commit at the backup. Since the order of messages is preserved,
all transactions with smaller ticket numbers at those fragments have arrived, so that all
transactions with smaller tickets can request their locks. Since there is no gap in the
ticket sequence, all of these transactions eventually become SUBSCRIBED at these fragments.
Some of these transactions may (in case of disaster) never become COMMITTED or go beyond
SUBSCRIBED perhaps because they would violate atomicity or because of the cascading
aborts effect, if they depend on other transactions that cannot commit. The important
point is that these transactions can become SUBSCRIBED, which allows 7, to do so also.
Transactions on which T, depends commit and release their locks eventually, so T, will be

able to obtain all of its locks, install its changes, and commit.

3.4 Initialization of the Backup Database

We must now consider the system with one copy in the primary mode and one in the re-
covering mode, which is the case at system initialization and when a previously failed copy

recovers. The mechanism we use is similar to a fuzzy dump [38], which commercial systems

30

use for media recovery (e.g., Reference [8]). However, there are some differences. A conven-
tional fuzzy dump gives a dump of the database and a log of the actions performed while the
dump was in progress. In order to restore the database, the dump is installed and the log
is replayed. No transaction processing takes place during restoration. The correctness cri-
terion for the restoration is defined clearly: the database must be brought to the consistent
state existing at the time of the last committed transaction in the log. In our application,
there are multiple logs and transaction processing cannot be suspended during recovery:
dump generation, dump installation and log playback must all occur simultaneously, which
complicates both the implementation and the correctness proof.

The basic idea is for the primary to scan the entire database and transmit it to the
recovering copy along with the changes that occur while this scan is taking place and may
therefore not be reflected in the scan. These changes are essentially a redo log and are
transmitted over the communication lines used for normal operation. If the scan data is
too big to be transmitted over the same communication lines, it can be written on tape at
the primary and carried to the backup. The order in which scan messages are received at
the recovering copy is irrelevant for our method, so that some scan messages may be sent
over the communication lines while others are written on tape. Our scheme allows the use

of multiple tapes to expedite the process.
3.4.1 Scanning the Primary

Each primary fragment P; sends its data fo its backup peer B;. When copying starts, F;
records the current ticket number s; and sends it to B;. B; sets its ticket number to s,,
creates a legal but empty database and starts accepting redo logs with ticket numbers higher
than s;; redo logs with lower ticket numbers are simply ignored because their effects will be
reflected in the scan copy. B; remains in the recovery mode until initialization completes.
If the primary fails while the backup is in recovery mode, nothing can be done: the backup
is useless.

Fragment P; starts scanning its portion of the database. At the same time, normal

31

for every table

get a table read lock

send a scan message for table creation

for every record
get a read lock on the record
send a scan message with the image of the record
release the lock held on the record

release the lock held on the table

Figure 3.2: Pseudo-code for the scan process

processing continues and redo logs are sent to B;. The scanning of the database is like a
long-lived transaction that reads the entire database. For each object scanned (table or
record), a scan message is sent to B; with enough information for it to create the object.
The scan process is described in Figure 3.2.

Locks are held only while an object is scanned. Records are locked one at a time;
groups of records do not have to be locked together. When the scan process tries to lock an
object that is already exclusively locked by a transaction, the scan process does not block:
it reads the before image of the record. Tables or records created by transactions with
ticket numbers greater than s, do not have to be scanned, since they will be transmitted
in the redo log of the transaction that created them. However, it is harmless if they are
transmitted by the scan process too. The same holds for objects that have been updated
after time s,; it does not matter whether we send the object value that existed at time s,

or at some later time.
3.4.2 Backup Processing

The backup fragment receives two types of data: messages from the scan process and normal
redo logs from transactions. The backup fragment processes both types of messages, using
the simple rule of always trying to keep the most recent copy for every object. In particular,
when a redo log arrives (with ticket number greater than s;), it is processed as usual, except

for the following steps.

32

o If a record update action is to be performed, but the record does not exist yet, the
update is treated as an insert. (This action assumes that the update log entries contain

the full after image of the modified record.)

o If a record (or table) insert arrives, but the record (or table) already exists, the values
in the insert replace the existing ones. That is, the end result should be as if the

record (or table) did not exist and the insert were normally executed.

e Deletes do not actually delete the record (or table). They simply mark it as deleted,
but it is still reachable through the primary key index. If a delete arrives and the
object does not exist, a dummy record is inserted with the record key and a flag

indicating it is deleted.

When scan messages arrive at B;, they are treated as insertions of the record or table.
However, if the object already exists (even in deleted form), the scan message is ignored
because the scan message may contain obsolete data (i.e., data that have been superseded
by a later version). Even if the scan message contains a later version than the one already
existing, no problem arises because the later version will be installed when the redo log for
the corresponding transaction arrives.

The motivation for the above rules is that during the initialization phase, there will be
two types of objects, those accessed by transactions and those not accessed at all. If the
object is not accessed, we want the scan to give us the image of this object as it exists in
the primary fragment. However, if the object is modified by a transaction, we really do not
need the scan for the object since the normal processing will deliver the new image. Our
rules ensure that a useless scan is harmless. For example, consider a record z that exists
at time s, in P;. The scan starts and sends the image of z. Some time later a transaction
deletes z. If the delete arrives at B; before the scan, we could end up with a copy of z
that should not exist. But since the delete creates a dummy record, the scan message will
find it, and the scan copy will be discarded. After initialization, the deleted objects can be

removed,

33

3.4.3 Correctness

There is a subtle point regarding the time at which we may resume normal processing at
the backup, i.e., finish the recovery mode. It is not sufficient to wait until the scan process
finishes, say at time s,. Suppose that 7; writes data items a and b, which satisfy some
consistency constraint (e.g., @ + b = const). First, the scan process holds a read lock on
a and transmits its before image (with respect to T;). Then T; gets write locks on both a
and b, updates them, commits and releases the locks. The scanner gets a read lock on b,
transmits its after image, and finishes (say b was the last unscanned object). Suppose that
the scan messages for @ and b arrive at the backup ahead of the redo log message for T}, and
that the T; message never makes it because of a failure. If we let the backup copy resume
normal processing at this point, we end up with an inconsistent copy — we are left with
the before image for a and the after image for b.

The following rule avoids this type of problem. Suppose that the scan process finishes
at the primary fragment P; when the ticket number is s,. It is safe to resume normal
processing at B; after all transactions through T(s,) have committed at B;, and all of
the scan messages sent by P; have been processed at B;. The backup can resume normal
processing once all of its fragments are ready for normal processing.

The above two conditions are sufficient for correctness. Suppose the scan starts at
primary fragment P; at time s, (i.e., after transaction T'(s;) ran), and ends at time s,. Let
7o be the state of P; at time s, and let T'segn be the set of transactions that committed at
the primary during the scan.

At B;, we start with an empty database and install a set of transactions T}, that
includes all transactions in Tseqgn. The resulting schedule is SCHback' Concurrently, we
process all scan messages and arrive at a database state Z,. Ty, may contain more
transactions than those in Ts¢qn, since transactions that committed after time s, at P; can
arrive before the last scan message.

We can show that Z, is identical to Zg, the state resulting from running SCHp, .. on

Zy, by considering each object z in the database.

34

Case 1 Object z was not modified by any transaction in Ty, .t Since Tscan C Tpyep #
was not modified by any transaction at the primary during the scan. Hence, the scan
message for z contains the value of z in Zg, i.e., Zg(z). This value will be installed,

80 Za(z) = Zo(z). This value is the value of Zg(z).

Case 2 Object z was modified by some transaction in T, ;. Let T} be the last transaction
in SCHy, .1 to have modified z, writing value z;. That is, Zp(2) = 2;. Next, consider
when z; is installed by T; at B;. If the scan message for 2 arrives after this time, it
is ignored. If it arrives before this time, T; overwrites z. In either case, Z,(z) = z;.

Thus, Z.(z)=Zj(z).

We have shown that after SCHyp,, ., is Tun, the state of B is as if we had started with the
initial state Zy. Given the correctness of normal processing, the subsequent states of B; will
also have this property. So after the two conditions are satisfied, our implicit assumption

that the initial states of the primary and the backup are identical holds (see Section 2.4).

3.5 Discussion

Our algorithm for maintaining and initializing a remote backup of a database is relatively
straightforward and can be implemented using well known concepts and techniques, such
as locking and logging. Chapter 5 examines its performance and compares it with other
backup schemes.

Database consistency is preserved as shown in Section 3.3. The overhead at the primary
is minimal: logs are usually maintained for other purposes, so the only extra processing is
incrementing the ticket counter. The mechanism also scales: there is no component that
must process all transactions in some way.

There is little we can prove regarding parallelism, but the proposed mechanism is not
a processing bottleneck at the backup. Transactions are received by the backup fragments
in parallel. At each fragment, locks are requested concurrently by multiple transactions. If
the transactions with consecutive ticket numbers at one fragment access disjoint data sets,

they can acquire their locks at that fragment in parallel. The only part that is executed

35

serially is incrementing the counter, which is relatively fast and it is not a global bottleneck,
since the increment at one fragment is independent of the increment at another fragment
even for the same transaction. On the other hand, if the transactions access common data
items at a fragment, a certain amount of parallelism is lost, because they will acquire their
locks sequentially. However, at the primary, these conflicting transactions also executed
sequentially, so the backup introduces no new delays.

In the remote event that the counter increment turns out to be a bottleneck, there
is a workaround. Omne can divide the data residing in a fragment into chunks and apply
our proposed solution generating ticket numbers per chunk instead of per fragment. This
workaround gains parallelism by reducing the critical sections: there is less contention for
getting the ticket numbers at the primary chunks, less contention for changing state (from
LOCKING to SUBSCRIBED) at the backup chunks, etc.

We assume that two-phase locking is used for concurrency control at the primary. Two-
phase locking is conceptually simple and has been studied extensively, so adopting it simpli-
fies the presentation and helps concentrate on the novel issues. However, two-phase locking
may not be the method of choice for some systems [35].

The dependency reconstruction algorithm can also be applied to systems using other
concurrency control mechanisms. The only requirement is that the concurrency control
algorithm assign tickets to transactions at each fragment so that they have the following
property: if at the primary two logical actions A; and As, executed by transactions T, and
T, respectively, induce a dependency T, — T, then ticket(1,) < ticket(T,). Our proofs are
independent of the details of the particular concurrency control algorithm.

The above requirement implies that the schedule of logical actions must be serializable.
For every concurrency control method that generates serializable schedules there is a way
to determine a serial order because, for example, serializable schedules can be topologically
sorted [4]. In two-phase locking, a serial order can be obtained easily by incrementing a
counter before releasing locks at commit time. In timestamp ordering, the timestamps

themselves can be used as tickets,

36

In other concurrency control methods it may be more difficult to determine (on-line)
an equivalent serial order for transactions and use that order as ticket. In such cases, one
can use multiple tickets for a transaction (each for a set of data accessed by a transaction).
These tickets have a limited scope, i.e., they are used only at the backup to determine the
order of conflicting accesses to the set of data items for which the ticket was issued at the
primary. The particular way to assign such tickets depends on the details of the concurrency
control method.

An optimization can be made in the scanning process. Some of the messages sent by the
scanning process are ignored at the backup. We can decrease the number of such messages
if we track what has been scanned at P;. For simplicity, assume that each record has a scan
bit that indicates if it has been scanned. (This bit might actually be implemented with a
cursor showing how far the scan process has progressed.) As each record is scanned, its bit
is set. If a transaction modifies a record that has not been scanned, the after image for
that record need not be sent since the scan process will send the after image of the record.
However, the redo log entry containing the ticket must be sent, so that the ticket sequence
will not be broken.

The recovery method suggested in Section 3.4 assumes that the primary database is lost
during a disaster. If this is not the case, it may be possible to bring the failed primary
up-to-date by sending it the redo logs for the transactions it missed instead of a copy of the
entire database. The recovering primary also has to undo transactions that did not commit
at the backup before redoing the missed transactions.

The use of redo logs for recovery may or may not be feasible, depending on the time it
takes for the failed copy to be repaired. If this time is long, the logs will grow too big. The
relative performance of the two methods also depends on the size of the logs. Our method
is general and works when the primary loses its copy entirely without excluding the use of
the other method. For example, one could combine the two strategies as follows: when a
failure of the primary is detected, the backup takes over transaction processing and tries

to keep the logs for as long as it can in case the primary recovers and still has its copy.

37

When its capacity overflows, it starts discarding the logs; when the failed copy recovers, the
method proposed in Section 3.4 is used.

Finally, the proofs presented in the previous sections except for the minimum divergence
proof can be shown to hold even if log messages are received at the backup out of order.
Thus, our methods apply for connections between primary and backup that are not virtual

circuits (e.g., datagrams).

Chapter 4

The Epoch Algorithm

The epoch algorithm takes a different approach than the dependency reconstruction algo-
rithm. It installs transactions in batches at the backup rather than individually, which
is more efficient. Read sets are not propagated to the backup, which leads to a simpler
consistency criterion that is slightly stronger than the one mentioned in Chapter 2. Only
the weaker criterion is actually necessary, but the epoch algorithm guarantees the stronger
one. In what follows, W (7T, d) denotes the write at the backup of data item d by transaction

T. The atomicity requirement is the same as in Chapter 2.

Requirement 4.1 (Atomicity) If W(T,,d) appears in the backup schedule, then all of

the write actions of T, must appear in the backup schedule.

Requirement 4.2 (Consistency) Consider two transactions T; and T; such that T; — T;
at the primary. Transaction T; may be installed at the backup only if T; is also installed
(local consistency: dependencies are preserved). Furthermore, if they both write data item
d, W(T;,d) must occur before W(T;,d) at the backup (mutual consistency: the direction of

dependencies is preserved).

4.1 Overview of the Epoch Algorithm

The general idea is that, periodically, special markers are written in the logs by the primary
fragments. These markers delimit groups of transactions (“epochs”) that can be committed
safely by the backup. The primary fragments must write these markers in their logs in some
synchronized way. Each backup fragment waits until all backup fragments have received the
corresponding portion of the transaction group, i.e., all backup fragments have seen the next
delimiter. Then, each fragment starts installing from its log the changes for the transaction

group. This installation phase is performed almost independently of other fragments.

38

39

B; B
On write(Ty)
write(Th) P(Ty)
P(Ty) CC(Th)
CP(Ty) Ol

Figure 4.1: Markers in the logs

In the log, each delimiter includes an integer that identifies the preceding epoch. We
represent the delimiter as a small circle with the epoch number as a subscript, e.g., O, is
the delimiter at the end of epoch n. At the primary, each fragment 7 keeps track of the
current epoch number in alocal counter E(7). One fragment is designated as the master and
periodically makes a (), entry in its log where n is the current epoch number, increments
its epoch counter, and broadcasts an end_epoch(n) message to all fragments at the primary.
All recipients make a (O, entry in their logs, increment their epoch counters, and send
an acknowledgement to the master. The master receives acknowledgements from all other
fragments before it repeats the above process.

As we have described it, transactions can straddle the end_epoch markers, as shown in
the logs of Figure 4.1 (the last record received at the backup is at the bottom). If epoch n is
committed at the backup, the updates of T} at B; are installed. However, the updates of T}
at B; appear after the end_epoch marker and will not be installed, which violates atomicity.

There are two ways to avoid this situation. The first way is to let transaction processing
proceed normally and place the delimiters more carefully with respect to the log entries
for actions of transactions. The second way is to write the delimiters asynchronously, but
to delay some actions of some transactions so that the log entries for these actions will be
placed more carefully with respect to the delimiters. These two approaches give rise to two
versions of the epoch algorithm, which are described in Sections 4.2 and 4.4, respectively.

In what follows, we specify the fragment where an action took place and a log entry was
written by adding an extra argument to the log entry. For example, the notation O, (F;)

denotes the event when P; writes a (), entry in its log. Similarly, C(T, P;) denotes the

40

event when fragment P; writes a commit entry for transaction T in its log.

The symbol “=” denotes “occurs before,” i.e., A = B means that event A occurred
before B, in the sense used in Reference [29]. When using a relation A = B, we do not
distinguish whether A and B are the actual events or the corresponding entries in the
log; we assume the log preserves the relative order of events within the same fragment.
Do not confuse the “=” symbol with the symbol “—” used for transaction dependencies.
Suppose a dependency T, — T, exists at fragment P; between two transactions T, and T,.
Transactions T, and T}, were coordinated by fragments P, and P,. The following property

relates “=" and “—7".

Property 4.1 IfT, — T, at Py, then
CC(Ts Pr) = CP(Ti Bi) =5 PUTy Py) 2G0Ty Fy)-

Proof: We prove the property in the case when strict two-phase locking is used for concur-
rency control. Transaction 7, does not release its locks until it commits, and transaction
T, cannot commit before T, releases its locks, because the two transactions access some
common data. Thus, P, writes the commit message for T, in its log, then P, (if different
from P,) writes the commit message for T}, the locks are released, T, runs to completion,
P, writes the prepare entry for T}, and finally P, writes the commit message for T),. Thus,
the property holds for strict two-phase locking. Other concurrency control mechanisms also

satisfy this property, but we will not discuss them. O

4.2 The Single-Mark Algorithm

The first version of the epoch algorithm places circles in the log more carefully. Circles
are generated as described in the previous section, but some additional processing rules
are followed. When a participant fragment ¢ writes a prepare entry in its log and sends
a participant_ready message to the coordinator, the local epoch number E(¢) is included
in the message. Similarly, the epoch number is included in the commit message sent by

the coordinator to the participants of a transaction. When a message containing an epoch

41

number n arrives at its destination j, it is checked against the local epoch counter. If
E(j) < n, it is inferred that the master has broadcast an end_epoch(n — 1) message that
has not yet arrived. Thus, the fragment acts as if it had received the end_epoch(n — 1)
message and makes a (0,_1 entry in its log, sets E(7) to n, sends an acknowledgement to
the master, and then processes the incoming message. If the end_epoch(n — 1) message is
received later from the master (when E(j) > n— 1), it is ignored. The idea of incrementing
an epoch when a message with a larger epoch number is received is similar in principle to
incrementing logical clocks [29].

The logs (including the circle entries) are propagated to the backup. As the logs arrive at
a backup fragment, they are saved on stable storage. The backup fragment does not process
them immediately. Instead, it waits until a O),, mark has been seen by all backup fragments
in their logs, which can be achieved in various ways. For example, when a fragment receives
a (O, mark, it broadcasts this fact to other fragments and waits until it receives similar
messages from all other backup fragments. Alternatively, when a fragment sees a Oy, in its
log, it notifies a master at the backup. The local master collects such notifications from all
fragments and then lets all backup fragments know that they can proceed with installing
the logs for epoch n.

To install the transactions in epoch n, B; examines the newly arrived log entries from
On-1 to On. However, there can also be entries pending from previous epochs that need
to be examined. These entries correspond to transactions that did not commit in previous
epochs. Thus, at the end of epoch n, B; examines all of the log records appearing before
O corresponding to transactions that have not been installed at B;. The following rules

are used to decide which new transactions will commit as part of epoch n.
e For a transaction 7', if C(T) = Oy, in the log, T is committed.

e If a transaction 7' does not fall in the above category, but P(T') = (O, in the log
of B; (P(T') could possibly be in some previous epoch), deciding whether to commit

T depends on whether P; was the coordinator for 7' at the primary. (Recall from

42

Chapter 2 that the coordinator is included with every P(T’) log entry.) If P; was
the coordinator, T' does not commit at the backup during this epoch. If some other
fragment P; was the coordinator at the primary, a message is sent to B; requesting
its decision regarding T". (B; will reach a decision using these rules, i.e., if B; finds
CC(T) = On, it commits T'.) If B; says T committed, B; also commits 7’; otherwise

T is left pending.

e Transactions for which none of the above rules applies do not commit during this

epoch.

After having made the commit decisions, B; reexamines its log. Again, it starts with
the oldest pending entry (which may occur before (),,_1) and checks the entries in the order
in which they appear in the log. If an entry belongs to a transaction for which a commit
decision has been reached, the corresponding change is installed in the database and the
log entry is discarded. If no commit decision has been made for this transaction, the entry
is skipped and will be examined again during the next epoch.

During the first scan of the log the only information from previous epochs that is actually
necessary is for which transactions a P(T") entry without a matching C(T) entry has been
seen. If this information is maintained across epochs and updated accordingly as commit
and prepare messages are encountered in the log, the first scan can ignore pending entries
from previous epochs and start from (O, _1. It is still necessary for the second scan (installing

the updates) to examine all pending entries.

4.3 Why the Epoch Algorithm Works

The following lemmas help prove that the epoch algorithm satisfies the correctness require-

ments stated in the beginning of the chapter.

Lemma 4.3.1 If C(T) = QO is in the log of a fragment P;, then CC(T) = Oy is in the

log of the coordinator P, of T.

43

Proof: If P; = P., the lemma is trivially satisfied. Suppose that P; # P., that CP(T) =
On is in the log of P;, and that O, == CC(T) is in the log of P.. The commit message
from P. to P; includes the current coordinator epoch n 4+ 1. Upon receipt of this message,

P; writes)y, if it has not already done so. Thus, O, = CP(T), which is a contradiction.

O

Lemma 4.3.2 If CC(T) = Oy is in the log of the coordinator for T, then P(T) = O, is

in the logs of the participants.

Proof: Suppose (O, = P(T) at some participant. When the coordinator received the
acknowledgement (along with the epoch) from that participant, it bumped its epoch (if
necessary) and then wrote the CC(T) entry. In either case, O, = CC(T), which is a

contradiction. O
Property 4.2 The single-mark epoch algorithm satisfies the atomicily requirement.

Proof: Suppose the changes of a transaction are installed by a backup fragment B; after
the logs for epoch n are received. If C(T') = (O, is in the log of B; and the transaction
was coordinated by P, at the primary, by Lemma 4.3.1 CC(T') = (O, is in the log of B..
If B; does not encounter a C(T') entry before (O, it must have committed because the
coordinator told it to do so, which implies that in the log of the coordinator CC(T) = On.
Thus, in any case, CC(T) = (), is in the coordinator’s log. According to Lemma 4.3.2,
P(T) = Oy is in the logs of all participants. The participants for which C'P(T) = Ox
will commit T anyway. The rest of the participants will ask B, and will be informed that
T can commit. Thus, if the changes of T' are installed by one fragment, they are installed

by all participating fragments. O
Property 4.3 The single-mark epoch algorithm satisfies the consistency requirement.

Proof: We prove the first part of the consistency requirement by showing that if T, — T
at the primary and 7, is installed at the backup during epoch n, T is also installed during

the same epoch or an earlier one. Suppose the dependency T, — T, is induced by conflicting

44

accesses to a data item d at a fragment P;. By Property 4.1, C(T%, P;) = P(Ty, P;). Since
T, committed at the backup during epoch n, P(Ty, P;) = (On(Fs), which implies that
C(Tyy Py) = On(Py). Thus, T, must commit during epoch n or earlier (see Lemmas 4.3.1
and 4.3.2). For the second part of consistency: suppose T, — T, and they both write data
item d. As we have shown in the first part, if T, — T}, at the primary, T; commits at
the same epoch as T, or at an earlier one. If T, is installed in an earlier epoch, it writes
d before T, does, i.e., W(T;,d) = W(T,,d). If they are both installed during the same
epoch, the writes are executed in the order in which they appear in the log, which is the
order in which they were executed at the primary. Since T, — T, at the primary, the order

must be W(Ty,d) = W(Ty,d). O

4.4 The Double-Mark Epoch Algorithm

In the single-mark algorithm, participant_ready and commit messages must include the
current epoch number. The overhead, in terms of extra bits transmitted, is minimal, but
the commit protocol does have to be modified to incorporate these, which might be a
problem in adding the epoch algorithm to an existing system. The double-mark algorithm
does not require any such modifications to the primary system; it positions transactions
more carefully in the log with respect to delimiters.

At the primary, a master periodically writes a (), entry in its log (E(master) = n), sets
E(master) to n+1, and sends an end-epoch(n) message to all fragments. Recipients make a
(On entry in their logs, stop committing new transactions, and send an acknowledgement to
the master. Commit processing does not cease entirely. Transactions can still be processed;
only new commit decisions by coordinators cannot be made, i.e., after writing the O,
entry in its log, a fragment cannot write a CC(T") entry for a transaction T' for which it is
the coordinator. It can continue to receive and process prepare and commil messages for
transactions for which it is not the coordinator. Except for the master, fragments do not
need to remember the current epoch in the double-mark version.

When the master collects all acknowledgements, it starts a similar second round: it

45

writes a O, entry in its log (the counter is not incremented in this round) and sends a
close_epoch(n) message to all fragments. The recipients make a <,, entry in their logs, send
another acknowledgement to the master, and resume normal processing, i.e., new commit
decisions can now be made. The master cannot initiate a new epoch termination phase
(i.e., write a new (Qn41 entry in its log) until all second-round acknowledgements have been
received.

The logs (including O and < entries) are propagated to the backup and stored on stable
storage. A backup fragment does not process the log entries of epoch n until all backup
fragments have seen <, in the logs they receive. Then each fragment B; examines all of
the log entries before ¢, including entries pending from previous epochs,! to decide which

transactions can commit after this epoch according to the following rules.
o If C(T) = Qn is in the log, a decision to commit T is made.

e If a transaction T’ does not fall in the above category, but P(T") = <y, is in the log of
B; (P(T) could possibly be in some previous epoch), the decision whether to commit
T depends on whether P; was the coordinator for T at the primary. (Recall from
Chapter 2 that the coordinator is included with every P(T) log entry.) If P; was
the coordinator, T does not commit at the backup during this epoch. If some other
fragment P; was the coordinator at the primary, a message is sent to B; requesting
its decision regarding 7. (B; will reach a decision using these rules, i.e., if B; finds
CC(T) = On, it commits T'.) If B; says T committed, B; also commits 7'; otherwise

T is left pending.

e If none of the above rules applies to a transaction T', the transaction does not commit

during this epoch.

After the commit decisions have been made, the log entries up to ¢, are examined and the

actions of the committed transactions are installed as in the single-mark algorithm.

The comment made in the single-mark algorithm about avoiding examination of entries from previous
epochs when making commit decisions applies to the double-mark version as well.

46

In the correctness proofs of the double-mark version, we use the following property,
which is a consequence of the master receiving all acknowledgements for end_epoch(n) before

sending close_epoch(n) messages.
Property 4.4 Vi,j,n: On(F;) = On(P)).

Lemma 4.4.1 If C(T) = Qu is in the log of a fragment P;, then CC(T) = Oy, is in the
log of the coordinator P, of T'.

Proof: If P; = P., the lemma is trivially satisfied. Now suppose that P; # P.. Then,

CC(T,P.)= CP(T,F;) (by two-phase commit)
CP(T, B} &) 5) (by hypothesis)
it Bl = Onl P (by Property 4.4)

By transitivity, CC(T, P.) = <n(P.), and since no commit decisions are allowed for coor-

dinators between the () and < entries, CC(T, P.) = Q.(F.). O

Lemma 4.4.2 IfCC(T) = Oy is in the log of the coordinator for T, then P(T) = <, is

in the logs of the participants.

Proof: Consider a participant fragment F;. Then,

P(T,P;)= CC(T,P.) (by two-phase commit)
CC(T,F.) = On(P:) (by hypothesis)
Ol B = ©ulB)) (by Property 4.4)

By transitivity, P(T, P;) = On(F;). O
Property 4.5 The double-mark epoch algorithm satisfies the atomicity requirement.

Proof: Suppose the changes of a transaction are installed by a backup fragment B; after
the logs for epoch n are received. If C(T') = (O, is in the log of B; and the transaction
was coordinated by P, at the primary, by Lemma 4.4.1, CC(T) = (), is in the log of
fragment B.. If B; does not encounter a C(7T’) entry before (), it must have committed
because the coordinator told it to do so, which implies that CC(T) = Oy, is in the log of
the coordinator. Thus, in any case, in the coordinator’s log holds CC(T') = (On. According

to Lemma 4.4.2, P(T) = <, is in the logs of all participants. The participants for which

47

CP(T) = On will commit 7' anyway. The rest of the participants will ask B, and will be
informed that T can commit. Thus, if the changes of T' are installed by one fragment, they

are installed by all participating fragments. O
Property 4.6 The double-mark epoch algorithm satisfies the consistency requirement.

Proof: We prove the first part of the consistency requirement by showing that if T; — T},
at the primary and T, is installed at the backup during epoch n, T is also installed during
the same epoch or an earlier one. Suppose that at the primary the coordinators for T, and
T, are P, and P, respectively. Since T, — Ty, by Property 4.1 CC(Ty, Pr) = CC(Ty, P,).

Since T}, committed at the backup, we infer from our processing rules that

CC(Ty, Py) = On(Fy)
On(Py) = On(Pz) (by Property 4.4)

By transitivity, CC(Ty, Pr) = On(P:), and since no commit decisions are made by coor-
dinators between () and < entries, CC(Ty, P;) = On(Pz), which implies that transaction
T, must commit during epoch n or earlier. The proof for the second part of consistency is

identical to the proof for the single-mark version. O

4.5 Discussion

The epoch algorithms are scalable: no component processes all transactions. Each fragment
processes only those transactions that access the data it holds.

The size of the epoch counters could be a problem; how big should they be? If only one
epoch can be pending at any time, a fragment only needs to distinguish between its epoch
and the epoch of a fragment that is possibly one epoch ahead or behind. Thus, a counter
with 3 values is sufficient. In general, if the epochs of two fragments can differ by at most
k, the epoch counter must accommodate 2k + 1 values.

We assumed that the backup fragments start the first scan of the logs after they have
received the marker for the next epoch. However, the first scan can occur while the logs are

being received. Thus, the local commit decisions will be available when the next delimiter

48

is seen and installation can begin immediately. Commit decisions that require interaction
with another fragment must still be deferred until the epoch has been received.

The protocols have a low overhead and their cost is amortized over an entire epoch.
There are three factors that contribute to the overhead: terminating an epoch at the pri-
mary, ensuring reception of an epoch at all backup fragments, and resolving the fate of
transactions for which a P(T) entry without a matching C(7) has been seen. For the
first two factors, the number of messages is proportional to the number of fragments at
each copy. For the third factor, the average number of transactions for which a fragment
cannot make a decision by itself can be estimated as follows for the single-mark version.
The transactions for which a P(T') was written before), and a CP(T) after (), are those
transactions whose P(T') entry falls within a time window ¢, before the O, mark, where . is
the average delay necessary for a participant_ready message to reach the coordinator and the
commit answer to return. Thus, the expected number of transactions for which information
must be obtained from another fragment is wqt., where wy is the rate at which a fragment
processes distributed transactions for which it is not the coordinator. If the global system
processes distributed transactions at a rate wg,, there are n fragments at each copy and a
global transaction accesses data at m fragments on the average, then wyg = wy(m — 1)/n.
The number of messages that must be sent could be less than the number of transactions
in doubt, since requests to the same fragment can be batched. Finally, these overheads are
paid once per epoch. If an epoch contains a large number of transactions, the overhead per
transaction is small.

The single-mark algorithm requires one less round of messages for writing delimiters at
the primary at the end of each epoch. Also, the single-mark algorithm does not suspend
commits. However, the transaction processing mechanism has to be modified to include the
local epoch number in certain messages and to update the epoch accordingly when such
messages are received. On the other hand, the double-mark algorithm may require fewer
modifications to an existing system. The double-mark epoch termination protocol can be

viewed as the commit phase of a special transaction with a null body. The end_epoch(n)

49

messages correspond to prepare messages and the close_epoch(n) messages correspond to
commit messages. The only system interaction in the double-mark protocol is in suspending
coordinator commits, which may be easy to achieve by simply holding the semaphore.
Depending on the system, holding a commit semaphore may disable all commits, not just
coordinator commits, which may be acceptable if the time between the (),, and the <, is
short. If this delay is unacceptable, a new semaphore can be added.

The algorithms satisfy atomicity and consistency. However, they do not achieve min-
imum divergence. If a disaster occurs, the last epoch may not have been fully received
by the backup fragments. The epoch algorithms will not install any of the transactions in
the incomplete epochs, even though some of them could be installed. This problem can
be addressed by running epochs more frequently (to limit the number of transactions per
epoch) or by having another mechanism for dealing with incomplete epochs, e.g., individual
transaction commit or a mechanism like the dependency reconstruction algorithm.

It is interesting to compare the epoch and the dependency reconstruction algorithms.
The epoch algorithm has less overhead, but it does not achieve minimum divergence. The
dependency reconstruction algorithm achieves minimum divergence, which implies that the
takeover time — the time between the point when a disaster occurs at the primary and the
point when the backup starts processing new transactions — is shorter. Our experience
in implementing both algorithms suggests that the dependency reconstruction algorithm
makes it easier to run the same software at both the primary and the backup. Running the
same software on both reduces maintenance and takeover times.

Algorithms similar to the epoch algorithm have been used for obtaining snapshots [7]
and checkpointing databases [42], but there are differences between those approaches and
the epoch algorithm. The epoch algorithm is log based. Minimal modifications to an
existing system are necessary and minimal overhead is imposed at the primary. The epoch
snapshot is not consistent. Enough information is included to allow a consistent snapshot
to be extracted from the propagated logs, but some work is still necessary at the backup to

clean up P(T') entries with no matching C(T).

50

4.6 Another Application: Distributed Group Commit

Group commit (for a single fragment) [9, 19] is a technique that can be used to achieve
efficient commit processing of transactions in computer systems with a large main memory,
which can hold the entire database (or a significant fraction of it). When the end of a
transaction is reached, its log entries are written into a log buffer that holds the tail of
the master log. The locks held by the transaction are released, but the log buffer is not
flushed immediately to disk (to avoid synchronous I/0). When the log buffer becomes full,
it is flushed and the transactions it holds commit as a group. The updates made by these
transactions are installed in the database after the group commit. Care must be taken to
preserve the dependencies of transactions that are members of the same group and have
made conflicting accesses.

Under the above scheme, transactions are permitted to read uncommitted data. This is
not a problem, since a transaction T can only depend on transactions in the same group or
previous groups, which are installed before or when T is.

It would be desirable to apply the same technique to distributed systems. However,
in a multicomputer environment it is not possible for each individual fragment to flush its
own log independently of other fragments, since that could violate transaction atomicity.
A simple example illustrates: suppose transaction 7' completes at fragments P; and Ps,
fragment Py flushes its log (and commits 7" in the database) while P, does not. If a failure
occurs and the contents of P,’s log buffer (in volatile memory) are lost, transaction atomicity
is violated.

The epoch algorithm can be used to achieve distributed group commit. One can think
of the main memory as being the primary and of the disks as the backups. Transactions run
in a main memory database and their logs are written into log buffers, but their changes
are not propagated to the disk. Distributed transactions still use a two-phase commit
protocol to achieve atomicity. P(T) and C(T') entries are made for all transactions that

finish processing successfully and their locks are released, but the logs are not flushed.

51

Periodically, delimiters (e.g., circles) are written by all fragments in their logs. When
the delimiter is written, the log buffer is written on disk, but the group commit does not
take place until it is confirmed that all fragments have saved their log buffers. Then, each
fragment starts to install the changes of the transactions in the disk copy of the database,
in the same way the backup fragments did in Section 4.2.

There are several advantages of group commit. Local transactions that execute only at
one fragment avoid synchronous I/O and release their resources as soon as they complete.
Holding resources for a shorter time decreases contention and increases throughput. Fur-
thermore, the cost of log I/0 is amortized over many transactions. Distributed transactions
must still pay for the agreement protocol to ensure atomicity, but this cost may actually be
a little smaller, since the individual prepare and commit decisions do not need to be written
to disk, and thus their responses can be sent immediately. Distributed transactions also

benefit from amortizing the cost of log I/O over several transactions.

Chapter 5

Evaluation of the Algorithms

This chapter evaluates the performance of the epoch algorithm, the dependency recon-
struction algorithm, and the 2-safe mechanism. We cannot say definitively which backup
technique is best because the answer depends on the configuration, the workload, and the
performance requirements of a particular system. We can, however, understand the basic

tradeoffs between the algorithms.

5.1 The Testbed

Our experimental transaction processing system uses eight IBM RT-PC 6150 computers
running Unix 4.3BSD. Four computers are the primary set and four are the backup. Each
machine holds part of the corresponding database copy (primary or backup) on its local
disk and communicates with the machines that hold the rest of the copy as well as with its
remote peer over a 10Mb/sec Ethernet. The primary computers receive their workload from
a DECstation 5000/125 over the network. Many of the design decisions presented below
have been dictated by this environment.

We built a real system instead of a simulator for several reasons. First, a real system is
a proof of concept for our algorithms. The confidence in the correctness of the algorithms
is higher when the state of the primary and the backup databases can be compared and
checked for consistency. Tricky details of the protocols are easy to miss with a simulator.
Finally, we made fewer assumptions about the system parameters, since some of them were
fixed by our environment.

Real transaction processing environments have more powerful processors and larger and
faster I/O systems. Our system is a scaled-down version. The network delays from primary
to backup computers may be unrealistically short, since the machines are attached to the

same Ethernet. Real systems have longer delays, which we can simulate by introducing a

52

53

Lock
manager

Transaction
manager

Communications|

Figure 5.1: Structure of the testbed

range of artificial delays.

Certain high-level database functions, such as query processing and optimization, were
not implemented in our system, since they were not relevant to our study. All access requests
have the form read/update/insert/delete record-id and assume that other mechanisms have
converted higher-level requests into this form. On the other hand, all-low level DBMS
modules are fully implemented, including logging, locking, record and buffer management,
etc., since these modules play an important role in backup algorithms.

Figure 5.1 shows a block diagram of the main parts of the testbed. The lack of shared
memory and threads in 4.3BSD forced us to build a monolithic process that implements the
transaction logic and does its own internal context switch when a transaction gets suspended
on an I/0O request. The lock manager, the log manager, and the buffer manager are also
parts of this process. If these modules ran in separate address spaces, accesses to shared

data (e.g., a lock request) would incur the cost of interprocess communication. Finally,

54

the process handles the network communications with other local computers and with the
remote peer.

Our recovery mechanisms need to determine if modified data is in volatile storage or
it has been written to disk. Consequently, we use “raw” Unix I/O device to control the
location of the data and do our own disk management. The problem with this approach
is that 1/O system calls block and all processing freezes for the duration of the call, so we
could not overlap I/O with other processing.

To avoid this problem, we use slave I/O processes.l When the central process issues an
I/0 request, it selects one of the slaves and passes the request (along with the data, if the
request is a write) to that slave. The slave performs the actual blocking I/O operation and
notifies the central process, passing back the page, if the request- was a read. While the
slave is blocked on the I/O system call, the central process can continue processing. Using
slaves incurs the overhead of the interprocess communication, but this cost is taken into
account when reporting CPU loads.

Records are always accessed through a record identifier unique within a table. Hashing
maps records to pages and locates them on disk. The operations that can be performed
on records are insert, delete, update and read. Insert and update requests also include the
image of the record. Since we use small records (30 bytes), updates include the new image
for the entire record. In a real system, records may be larger and updates would include
only the modified fields. All record accesses are preceded by a request for the appropriate
lock (shared or exclusive). Our lock manager also performs lock upgrades. Deadlocks are
broken with timeouts. Finally, the system can create tables; these requests are executed
serially.

The log manager uses a slave process to perform raw disk I/O without blocking the
central process, which is analogous to the scheme used for accessing the database. Since the
log is written to a raw device, it is flushed at page boundaries. If a certain interval elapses
without enough logging activity to fill the tail page of the log, it is padded to the next page

boundary and flushed. Later, when additional log data is appended and the tail page fills,

55

it is rewritten.

We tested the system by writing the log to disk and verifying it. Real systems typically
have a separate log disk because the log is written sequentially and sequential disk access
is an order of magnitude faster than random access. Our RT’s only have one disk, which
makes log I/O compete with database I/O. In our experiments, we changed the log device
to a dummy device (/dev/null). All of the processing associated with the log (system calls,
etc.) is performed as if the data were written to a separate disk.

The buffer manager implements a simple LRU page replacement policy. There may be
a limited number of active transactions at any time, and this number is a system parame-
ter. We found that ten transaction slots provide enough multiprogramming to exploit the
capacity of our machines fully.

We give a brief description of transaction processing for the 1-safe mechanism at the
primary. A transaction is read from the load-generating machine over the network and it is
assigned a slot. It performs its actions (setting the appropriate locks), but its changes are
made to private copies of the data. When the transaction reaches the end of its execution,
it writes log entries for its modifications, a commit entry (if the transaction is local) in the
log, and waits until that portion of the log has been flushed. Then it writes its changes
to the pages in the shared buffer pool, so that they can be seen by other transactions,
and releases its locks. The changes may actually be written to disk later when the buffer
manager flushes a page.

We use a chain model for distributed transactions. Assume that a distributed transaction
T is executing at node A. When T completes its processing at A, it writes a prepare rather
than a commit message in the local log, it holds onto its resources (locks, transaction slot,
etc.) and sends a message to the next node, say B, to start processing on behalf of T
When T finishes at B, it moves to the next node and so on, until it reaches the last.
The last node on the chain also acts as the coordinator. The commit/abort outcome of
the transaction is propagated to the participants on the reverse path. The messages that

trigger the execution of a distributed transaction at the next node also serve as messages

56

for the agreement protocol: when a message is sent from A to B telling B to start executing
T, the message is implicitly conveying information that all nodes in which 7" has executed
so far are prepared to commit 7. This information enables the last node on the chain to
commit.

In the 2-safe mechanism, all updates of a transaction must be applied synchronously
to both the primary and the backup. Thus, an agreement protocol is required; we use
two-phase commit. Consider a transaction 7" that executes at only one primary F;. When
P; finishes executing 7', it writes a prepare message in its log but does not release any of
the resources held by 7T'. The logs are propagated to B;, the backup peer of P;. When the
backup receives the logs, it extracts 7"’s actions. The prepare entry in the log serves as both
a delimiter for the actions of T and an indicator that the primary is prepared to commit 7T'.

Transaction T has already run at the primary, so the backup performs only the writeback
phase to externalize the modifications of 7. The backup must also ensure that changes to
the same data item by different transactions are applied locally in the same order as at the
primary. To do so, the backup sets locks on the data items to be modified by T'. The locks
that have been obtained by the primary site would suffice to ensure the same sequencing at
both sites, provided that these locks would not be released until after both the primary and
the backup had installed the changes. This scheme would require additional synchronization
between the primary and the backup and would cause the primary to hold locks longer.

After the locks are obtained, the backup writes log entries for the actions of 7" and a
commit message in a local log. The backup then acts as the coordinator for T' between
P; and itself. The backup waits until the log is flushed to disk and then sends a commit
message about T’s fate to the primary. Upon receipt of the commil message, the primary
commits T', externalizes its changes, and releases its locks. The backup independently does
likewise.

In the case of a 2-safe transaction that must access data at more than one primary site,
the transaction finishes processing at one site and moves on to the next. As the backups

receive the logs of their primary peers, they mirror their peer’s processing. If a transaction

a7

T moved from primary P; to P;, when backup B; receives the logs for 7', it writes a prepare
message in its log and notifies B;, which implies that all backups on the execution chain of
T up to and including B; are prepared. Assume that after P; transaction T accesses data
at P, and that P, is the last computer on the execution chain of T" at the primary. When
By, receives the logs from Py, all primaries are prepared. When it receives the message from
Bj;, all backups are also prepared. Thus, all participants are prepared to commit T, so By
can act as the global coordinator for T'. In general, the backup peer of the transaction’s
last hop acts as the coordinator for all primaries and all backups.

We verified the correctness of the system by comparing the logs produced against the
input transactions. We ran various workloads and verified that the primary and the backup
databases were identical; we used workloads that created deadlocks and verified that the
deadlocks were broken properly; we verified that the system acts correctly when transactions
are aborted. Finally, we simulated disasters by killing the processes running at the primary
and verified that the backup reached a consistent state and performed the takeover properly.

During the performance evaluation experiments, the primaries process all of their input
and terminate, after ensuring that they have sent all of their log entries to the backup. The
backups treat the termination of the primaries as a disaster and reach a consistent state,
which is the same as the final state of the primaries, since all of the log entries have been
received. At this point, the backups would start processing incoming transactions, but for

the performance experiments they simply halt.

5.2 Experimental Results

One of the goals of our experiments was to compare the primary load against the backup
load, in order to estimate the overhead of maintaining a remote backup. A second goal was
to compare the behavior of 1-safe and 2-safe backup techniques under various conditions in
order to determine the performance cost of 2-safe processing. One expects 2-safe processing
to be more expensive, since it provides a higher level of reliability, but how much more

expensive? Is the performance improvement with 1-safe large enough to merit the potential

98

loss of a few transactions? A third goal was to study the performance impact of the epoch
length on the epoch algorithm. We also compare the epoch and dependency reconstruction
algorithms, and experiment with single versus multiple log streams.

FEach computer in the base configuration of our system holds a 40 Mbyte database; 35
Mbytes hold data and 5 Mbytes are empty and provide overflow pages. The 1-Kbyte pages
are half-full with 30-byte records; all records belong to the same table. The buffer cache
is 4 Mbytes. Log entries are 16 bytes; inserts and updates are followed by the full image
of the record. These base settings are varied in the experiments presented in subsequent
sections.

Each primary processes 15,000 transactions. Runs typically take 20-25 minutes. Epoch
lengths are 15 seconds. Each transaction accesses exactly 4 records, and the access pattern
is uniform. The fraction of read-write transactions is 30%, 70% are read-only. Read-write
transactions do at least one write action and the rest of their accesses are half reads and half
writes. Write actions can be inserts, deletes, or updates with equal probability. Distributed
transactions are a series of local transactions at more than one primary. Distributed trans-
actions access data at a number of computers that is uniformly distributed between 2 and
4, the maximum number of primaries. In the base case, 28% of the transactions executed
at each computer were distributed.! For this workload and running the epoch algorithm,
the I/O and CPU utilization were 98% and 50%, respectively. Average response time for
local read-write transactions was 700 msec and the throughput of each primary computer
was 10.6 transactions per second. There are 4 primaries, so the total throughput is 43

transactions per second.
5.2.1 1I/0 Utilization

A backup performs only the fraction of the primary I/O that corresponds to writes. For

the base settings, the I/O utilization at the backup is 29%. However, there is an important

!This fraction cannot be set directly: a computer can adjust only the number of distributed transactions
it generates; however, it must also execute distributed transactions that have originated elsewhere. Thus,
we count the number of distributed transactions during execution and determine their fraction at the end
of a run.

59

difference in I/0 load between the 2-safe and the epoch algorithm. Assuming input trans-
actions are processed at the primary at a uniform rate, the I/0O load at the backup is also
uniform for the 2-safe case, e.g., 29%. In contrast, in the epoch algorithm the load comes
in bursts: when an epoch is fully received at the backup, the I/O subsystem sees a large
volume of I/0O, which keeps the I/O subsystem at 100% utilization for 29% of the duration
of an epoch. For the rest of the epoch, the I/O subsystem is idle.

The periodic nature of I/O in the epoch algorithm may have positive performance
implications for systems with more sophisticated I/O subsystems. Long I/O queues can
lead to better disk scheduling and increased 1/0O throughput [40, 43]. In both the 2-safe and
the epoch algorithm, the spare I/O capacity at the backup can be used for useful processing
(e.g., to answer read-only queries). However, the idle periods in the epoch algorithm obviate
the need for synchronization between updates and reads, so that the read-only queries can

run without locking between epochs when the database is consistent.
5.2.2 CPU Utilization

Figure 5.2 shows the CPU utilization? at the primary for the epoch algorithm (circles)
and the 2-safe algorithm (squares) as a function of the ratio of read-only and read-write
transactions. When there are few read-write transactions (10%), the CPU requirements are
almost the same for both algorithms. As the fraction of read-write transactions increases,
the CPU requirements increase faster for the 2-safe than for the epoch.

Both algorithms must do more logging and initiate more I/O for more write actions,
which explains the trend shown in Figure 5.2. The 2-safe algorithm must also pay for the
agreement protocol with the backup, which accounts for its faster increase in CPU demand.

In our system, transactions pay a relatively high CPU overhead when initiating I/0
(see Section 5.1). Nonetheless, our base case may underestimate the CPU requirements
of a real system’s primary. Real systems perform tasks such as terminal handling, input

validation, query processing, actual computation within queries, etc. To cover these costs,

%In our system, the central process polls the slave I/O and log processes even during idle periods. CPU
utilization is the actual utilization minus the time spent polling.

Throughput (transactions/sec)

60
* Epoch

B gy "o . £
- 1 = =
] 4 =
Es04 ="
= I
R
o
R 45

40- ¥ U i 1 =) T ? 1

0 20 40 60 80 100

% R-W transactions

Figure 5.2: Primary CPU utilization

60

100_ W g * o ¢ o ”
]0—' oA e e e . .
i g 807 g .
[] L] oE
. S 601 :
51 . © 404 §
*Epoch " . ® « Epoch N
o 201 =2-safe
04+ | L R T 0 L 0 TR A N 1
0 5 10 15 20 25 5 10 15 20 25

CPU msecs per record access

CPU msecs per record access

Figure 5.3: CPU-bound performance: throughput (left) and I/O utilization (right)

we added some CPU processing to each action executed by each transaction and observed

the behavior of the system under each algorithm.

The left graph in Figure 5.3 shows the throughput of the epoch and the 2-safe algorithm

as the CPU processing per action increases. The horizontal axis is the CPU processing

added for each access to a record in milliseconds. Both algorithms suffer as the CPU load

increases because the CPU becomes saturated, but the epoch algorithm sustains higher

CPU loads before its performance drops. The graph on the right shows the corresponding

61

604 .« °

204 -

O M T M T T T M T N 1 0 M T T T M T N T N 1
0 20 40 60 80 100 0 20 40 60 80 100

% R-W transactions % R-W transactions

% CPU-backup / CPU-primary (epoch)
% CPU-backup / CPU-primary (2-safe)

Figure 5.4: Backup CPU utilization relative to primary for epoch (left) and 2-safe (right)

[/O utilization in the two algorithms as the CPU load increases. As expected, throughput
and I/O are similar, because unsaturated 1/0 is proportional to throughput.

Consider the backup’s CPU requirements in the I/O-bound case. The backup only
executes the write actions of read-write transactions in both algorithms, thus its CPU
requirements are lower than those at the primary, as shown in Figure 5.4, which plots the
fraction of the CPU cycles at the primary that is required at the backup for the epoch
algorithm (left) and the 2-safe algorithm (right) against the read-write transaction ratio.
These curves are not comparable since they depict fractions of different quantities, but both
fractions rise with the fraction of read-write transactions since the backup has to replicate
a rising fraction of the primary’s work.

While our base case may underestimate the primary’s CPU requirements, it does not
underestimate the backup’s CPU requirements because a real backup system would not
perform any more tasks than our system. Thus, Figure 5.4 may overestimate the ratio.

Finally, Figure 5.5 shows that the CPU requirements of the epoch algorithm at the

backup are always less than those of the 2-safe algorithm. Figure 5.5 plots the overhead

CPU. -CPU, ¥ P 7 :
Z’CE‘FU = epoch w100 versus the read-write transaction ratio, where CPU, is the CPU
epoc

usage of algorithm z at the backup.

62

< 60
=]
=3
7]
E
R 40+
= °
8 o
£ .
gzg- e e
&
Z
3
O T M 1 N 1 N I i 1
0 20 40 60 80 100

% R-W transactions

Figure 5.5: CPU overhead of 2-safe vs. epoch at backup

5.2.83 Network Utilization

We separate network traffic into two classes: one for messages that propagate the log
information to the backup and one for messages for the agreement protocols and other forms
of synchronization (e.g., the epoch termination messages). Only the number of messages in
the second class varies with the algorithm, so we restrict our attention to those messages.
For a read-write transaction ratio of 30%, we varied the percentage of distributed trans-
actions and observed the number of messages generated by primaries and backups. In this
experiment, distributed transactions accessed data at two primaries. Figure 5.6 shows the
average number of messages generated by a computer per 10 transactions at the primary
and the backup for the epoch algorithm (left) and the 2-safe algorithm (right). As the
percentage of distributed transactions increases, so do the messages generated by the pri-
maries in both algorithms due to the agreement protocol. The epoch algorithm pays for
N — 1 messages per epoch, where N is the number of primary computers (4). In these
experiments the epoch duration was 15 seconds, so there were 3 messages every 15 seconds
at the primary. This overhead is small to negligible; Section 5.2.7 discusses other aspects

of epoch length selection.

104 . 104 .
w L - ¢ Primary A
£ 87 «Primary ; £ 81 «Backup o
S = Backup . 3] .,
g] i .
[—] 6 - E 6 .
], — . R
& 41 . gj 49 " .
! 2 " S 24 .
0 =.' .I.'. T .' .l .'.1. .r 1 0 - — T T L | T 1
0 20 40 60 80 100 0 20 40 60 80 100
% Distributed transactions % Distributed transactions

Figure 5.6: Messages generated by epoch (left) and 2-safe (right)

At the backup, the two algorithms exhibit different behavior. The 2-safe algorithm
requires the same number of messages at the backup as at the primary to run the agreement
protocol between backups, plus messages for agreement between primaries and backups
(when a backup, acting as coordinator, sends a commit message to its primary peer). The
latter messages are necessary even for read-write transactions that access data at only one
primary. In contrast, in the epoch algorithm, the backups exchange a fixed number of
messages to ensure that an epoch has been received by all, and this number is independent
of the fraction of distributed transactions. There is also a small number of messages to
negotiate the fate of transactions whose prepare and commit messages straddle the epoch
marker. The number of these messages increases slowly with the fraction of distributed
transactions since the probability of such straddling increases.

Figure 5.7 illustrates the savings in the number of messages achieved by the epoch
algorithm over the 2-safe algorithm; it displays the ratio of the number of messages generated
at the backup by the 2-safe over the