ANALYSIS OF HEAPSORT

Russel Warren Schaffer

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF

COMPUTER SCIENCE

June 1992

T

32101 02173056

Acknowledgments

Professor Robert Sedgewick has been everything I could have hoped for in an advisor.
He not only suggested Heapsort as a problem to study, he also supplied a point from
which to begin work. His encouragement and advice have been very important to the

development of this thesis; it is hard to thank him enough.

I must also thank Professor lan Munro for taking an early interest in this work,
making suggestions that led to strengthened results, and finally for reading the finished

product. His presence at Princeton this year has been most fortunate.
For reading the thesis I also thank Professor Robert Tarjan.

The secretaries in the Department have been amazingly helpful during my few years
here. In particular, I thank Sharon Rodgers, as well as Melissa Lawson and Ginny

Hogan.

My thanks also go to my officemates Ayellet Tal, Liang-Fang Chao, and Michael
Golan, and to virtual officemate Shlomo Gortler, and to other students, professors, and
members of the Department who have helped to make my past four years memorable

and productive.

Finally, I thank my parents who have been supportive since long before I came to

Princeton.

This material is based upon work supported under a National Science Foundation

Graduate Fellowship.

iii

ANALYSIS OF HEAPSORT
Abstract
Author: Russel Warren Schaffer

Advisor: Professor Robert Sedgewick

Heapsort is a classical sorting algorithm due to Williams. Given an array to sort,
Heapsort first transforms the keys of the array into a heap. The heap is then sorted by
repeatedly swapping the root of the heap with the last key in the bottom row, and then

sifting this new root down to an appropriate position to restore heap order.

In Williams’s original Heapsort, the new root is sifted down by repeatedly comparing
its two children, and swapping it with its larger child if a comparison shows the child to
be larger than the key being sifted. Floyd proposed an important variant of Williams’s

Heapsort which unconditionally performs the swap with the larger child.

This thesis analyzes the asymptotic number of executions of each instruction for

both versions of Heapsort in the average, best, and worst cases.

In the average case, when sorting a uniformly generated random heap on N distinct
keys, Williams’s Heapsort performs ~ 2N lg N key comparisons while Floyd’s variant
performs ~ Nlg N key comparisons (lg is the logarithm base two). Another quantity
of interest is the number of times keys are swapped with their right children. Both

Williams’s and Floyd’s versions of Heapsort expect to perform ~ -%N Ig N such swaps.

Sedgewick, and independently Fleischer and Wegener, have presented arguments to
demonstrate that the number of key comparisons required by Williams’s Heapsoft in the
best case and Floyd’s Heapsort in the worst case are ~ Nlg N and ~ %N lg N respec-
tively. These arguments are extended and applied in a different form to demonstrate
that in the worst case, Williams’s and Floyd’s Heapsorts perform ~ %ngN swaps of
keys with their right children, while in the best case at most ~ %N lg N such swaps are
performed. For both versions of Heapsort, it is shown that these best and worst case
numbers can be found in heaps that also require the best and worst case numbers of

kev comparisons.

iv

Contents

Acknowledgments

Abstract

Contents

Introduction

Preliminaries

Average Case

Extreme Cases

4.1 Upperand LowerBounds s 5 ¢« « s swwae s 5+ ¢ 5 6 8 swwmmwms o v

4.2 The Best Case of Williams’s Heapsort
4,2.1 Details of the Construction
4.2.2 Correctness of the Construction
42.3 Costgof the ConstTuclIon « v s 5 « 5 5 ¥ & # ¥ v &% s & 5 &

4.3 The Worst Case of Williams’s Heapsort

4.3.1 Correctness of the Construction . « . + « . ¢ s o L« s %% « 5 5 &

iii

iv

18

28

4.3.2 Costs of the Construction

4.4 The Best Case of Floyd’s Heapsort

4.4.1 Correctness of the Construction
4.4.2 Costs of the Construction
4.5 The Worst Case of Floyd’s Heapsort

4.6 Conclusions and Comments

5 Conclusions and Related Work

5.1 Summary and Applications

5.2 Other work on Heapsort

5.3 Work on Heap Building

5.3.1 Floyd’s Heap Building Algorithm

....................

5.3.2 Williams’s Heap Building Algorithm

533 Bounds . .. fww o d i s f oM@ i ma s 5 8 s ¥ doe wim sy 8 s

A Proof of Lemma 3.2

vi

58

59

62

68

71

71

76

76

78

80

82

Chapter 1

Introduction

Sorting is one of the basic problems of Computer Science, and Williams’s Heapsort [28]
is one of the basic sorting algorithms. It is thus surprising that the analysis of Heap-
sort has long remained incomplete. This thesis determines, in the best, worst, and
average cases, the asymptotic number of executions of Heapsort’s most frequently ex-
ecuted instructions. These results are combined to permit calculation of the constant
factors multiplying the leading terms in the total running times of Heapsort in the best,
worst, and average cases. Similar bounds are also developed for an important variant

of Heapsort due to Floyd ([18] Ex. 5.2.3.18).

Heapsort sorts an array A[1...N] of N keys by selecting the largest key in A and ex-
changing it with the last key in A. The second largest key is then extracted from among
the remaining keys and swapped with the key in the penultimate position of A. Con-
tinuing in this manner, it is clear that eventually the array A will contain, in ascending

order, the keys it contained originally.

The algorithm just described can be implemented naively, extracting each maximum
key by examining all unsorted keys. However, the running time of the resulting Selection
Sort is Q(N?). Heapsort achieves a guaranteed running time of O(Nlog V) by storing
the unsorted keys in a heap; that is in a tree in which every node contains a key which

is at least as large as the keys in its children. In the particular versions of Heapsort to

Figure 1.1: A partially Heapsorted array.

be considered here, the heap is a complete binary tree stored in implicit level order in
the first positions of A. This means that a key in position ¢ of A has as its parent the
key in position |i/2]. Heap order is maintained by requiring that A[[¢/2|1=A[:] for all

positions z > 1 containing unsorted keys.

Figure 1.1 shows a partially sorted array A containing 15 keys. The ten smallest keys
are stored as a heap in the first ten positions of the array while the shaded five positions
at the end of the array contain keys that have already been sorted into place. Below
the array is an explicit diagram of the heap structure that is implicit in the unsorted

portion of the array.

The O(Nlog N) bound on the running time of Heapsort is obtained by noting that
the largest unsorted key is always at the root of the heap, and thus is extracted in
constant time from A[1]. This largest unsorted key is moved to the position it should
occupy in the sorted list by exchanging it with the last key from the bottom of the
heap. Unfortunately, this key from the bottom of the heap is probably too small to
belong at the top of the heap, so it violates the heap ordering on the unsorted keys.
Fortunately, the heap can be restored by moving the misplaced key, call it a, from A (1]

to an appropriate position in the heap. This position is found by repeatedly swapping a

1. void Williams() {

2. long i, k;

3. key a, t;

4 makeheap () ; O(N)

5. for (i = N; i > 1; i--) { O(N)

6. v = A[1]; O(N)

7 a = A[i]; O(N)

8 k= 2; O(N)

g. while (k < i) { Bw(H)+ O(N)
10. if (Alx] < Alk + 11) Bw(H)+ O(N)
1L k++; Cw(H)

12. i (a >= A[K]) break; Bw(H) + O(N)
13. Alk /7 2] = Al¥]; Bw(H)
14. k *= 2; Bw(H)

15. }

16. k /= 2; O(N)

3 Alk] = a; O(N)

18. L] =t O(N)

19. ¥

20. }

Figure 1.2: Williams’s Heapsort implemented in C.

with its larger child until a either reaches the bottom of the heap or is at least as large
as both of its children. This process restores heap order on the unsorted keys since it
makes a at least as large as its children (if any), while leaving all keys above a larger than
their children as well. Since the heap is a complete binary tree, a travels at most lg N
levels before it stops, where lg is the base two logarithm. This gives the claimed bound

on the running time of the algorithm.

Figure 1.2 gives C code to implement ;che algorithm that has just been described.
Each iteration of the outer loop selects the largest unsorted key t and places it in its final
position after fixing up the heap. Note the call tomakeheap at the beginning of the code.
Since the keys are initially all unsorted, they must first be rearranged to form a heap.
The code for makeheap will be given later. The implementation of Heapsort given in
Figure 1.2 is the original version of Heapsort, first proposed by Williams in 1964 [28]; it

will thus be referred to as Williams’s Heapsort. This implementation follows Williams’s

original presentation in using the key in A[i] as a sentinel in the event that line 10 is

executed withk = 1 — 1.

Along with the code for Williams’s Heapsort, Figure 1.2 also gives the cost of each
line. Given a permutation on N keys in the array A[1...N], let H be the heap
into which the permutation is transformed by makeheap. It will be proved later that
makeheap can take at most O(N) time, which is noted in the figure. Similar cost esti-
mates are provided for the other lines of the algorithm. Specifically, the figure at the
right of a line of code shows, to within a O(N) additive error, the number of times
that the line is executed when sorting the heap H. Note that this defines the quantities
Bw(H) and Cw(H) to be the number of times lines 13 and 11 are executed when sort-
ing H. (This notation was chosen for compatibility with Knuth [18] who uses B and C
for By(H) and Cyw(H) respectively. Actually, Knuth’s quantities also include some of
the work performed to build the heap, but since the heap is built in linear time, this
difference will be ignored.) If this code were compiled to produce an assembly language
implementation, many lines would be implemented by more than one instruction, and
in some cases, not all of these instructions would be executed the same number of times.
However, in reasonable compilations the expressions given are valid for all instructions

associated with a given line.

Williams’s Heapsort operates in O(N log N) time in the worst case, is relatively
simple to code, and requires no extra storage beyond a constant number of variables.
This is enough to make Williams’s Heapsort a basic, well known sorting algorithm
[1, 6, 15, 18, 25]. Indeed, these properties are sufficient for Numerical Recipes [22]
to prefer Williams’s Heapsort to Quicksort. Floyd ([18], Ex. 5.2.3.18) proposed a
modification to Williams’s Heapsort that results in an algorithm that is even better,
both practically and theoretically. In particular, note that as key a is moved down the
heap, Williams’s Heapsort makes two key comparisons every time a moves down a level;
first the children of a are compared, and then the larger child is compared with a. Floyd
suggested making only the comparison between the children of a, then comparing the

children of the larger child, and continuing until a path has been found to the bottom of

1. void Floyd() {

. long i, k;

34 key a, t;

4. makeheap() ; O(N)

5 for (i = N; i>1; i--) { O(N)

6 t = A[1]; O(N)

7 a = A[i]; O(N)

8. k= 2; O(N)

9. while (k < i) { NigN + O(N)
10. it (Alk] < Alk + 1]) NigN + O(N)
11. k++; Cr(H)

12: Alk / 2] = Alx]; NlgN +O(N)
13. k *= 2; NligN + O(N)
14. }

15. k /= 2; O(N)

16. while (a > A[k]) { Br(H)+ O(N)
17. k /= 2; Br(H)

18. Alk] = Alk / 2]; Br(H)

19. }

20. Alk] = a; O(N)

21. Ali] = t; O(N)

29, }

3. }

Figure 1.3: Floyd’s Heapsort implemented in C.

the heap along which every key is the larger of its parent’s two children. In Williams’s
Heapsort, this is precisely the path that is followed by a as it is moved down the heap,
except that a need not go all the way to the bottom. Once this path has been found,
it remains only to find the correct position for a along the path by searching up from
the bottom of the heap. It will be proved later that the average key a ends up near the
bottom of the heap, so Floyd’s variant benefits by performing half as many comparisons
on the way down the heap at the expense of a little bit of extra work to move a back up
into position. Indeed, the typical key a moves so far down the heap that this variant is
asymptotically optimal in the average case with respect to the number of comparisons
performed. For this reason this basic variant is the subject of most articles on Heapsort

in the literature today [3, 4, 11, 12, 26, 27).

1 void makeheap() {

2. long i, k;

3 key a;

4, for (i =N / 2; > 0; i-~)
B a = A[i];

6. k=2 % ij;

s while (k < N) {

8. if (A[R] < Alk + 1]) k++;
9. Alk / 2] = AlK];

10. k x= 2;

11. ¥

12. if (k == N) Alk / 2] = A[k];
13 else k /= 2;

14, while ((a > Alk]) && (k > 1)) {
15. k J=2;

16. Alk]l = Alk / 2];

17. }

18. Alk] = a;

19. }

20. ¥

Figure 1.4: makeheap () implemented in C.

It was noted previously that the running time of Williams’s Heapsort is O(Nlog NV).
The same bound obtains for Floyd’s variant of Heapsort since the amount of work
required to move a key a into position is again bounded by a multiple of the height of

the heap, which is bounded by lg N.

Figure 1.3 gives C code for this variant of Heapsort, which will be referred to as
Floyd's Heapsort. The only differences between the code given here and the code given
previously are the elimination of line 12 of Figure 1.2, which compared a to keys along
the path down the heap, and the addition of lines 16-19 of Figure 1.3, by which a is
moved into position once the path to the bottom has been found. As with the code for
Williams’s Heapsort, each line is labeled with the number of times it is executed when
sorting the heap H produced by makeheap; as before Br(H) and Cx(H) are defined by

the number of executions of lines 17 and 11 respectively.

Note that the key a stops at the same position in the heap whether it is being

moved down by Williams’s Heapsort or Floyd’s Heapsort. This means that both versions
generate the same sequence of progressively smaller intermediate heaps when sorting a
list. This causes certain properties of Heapsort to be the same for both versions. In

such cases, the term Heapsort will be used to refer to both versions at once.

Heapsort requires that the input array A be arranged in the form of a heap before it
can begin sorting. Williams’s original presentation [28] built this heap by regarding the
first key as a heap of size one and augmenting it by repeated insertion of the remaining
keys. Williams’s heap building method will be further examined in Chapter 5. The
results of the next three chapters, however, will assume use of the well known bottom-
up heap building method proposed by Floyd [13]. Heapsort sorts by repeatedly swapping
the largest key in the heap A[1] with the last key in the heap a = A[i], and then fixing
the heap by moving a down to an appropriate position. Floyd observed that the code
for fixing a heap can be generalized and used to build a heap. Whenever the subtrees
rooted at A[2 * i] and A[2 * i + 1] satisfy heap order, Heapsort’s method of fixing
a heap can be applied to the key a = A[i], moving a down the heap, with the result
that the subtree rooted at A[i] will also satisfy heap order. Now the subtrees rooted at
A[i] for i > [N/2] automatically satisfy heap order since they each consist of a single
node. A heap on all N keys czin thus be built by successively fixing the heaps rooted
at A[i] as i is decreased from |N/2| to 1. Figure 1.4 gives C code for bottom-up heap
building; as i ranges from N / 2 down to 1, it fixes the heap rooted at a = A[i] by
moving the key a down the heap. Note that this code finds the position for a in the
manner of Floyd’s Heapsort, so lines 5-18 are analogous to lines 7-20 of Figure 1.3;
the only major additions are line 12 which handles the case that N is even, and lines 6

and 14 which have been modified to restrict a’s travels to the subheap rooted at A[i].

The bottom-up method of heap building is well known because of its linear running
time. The sum of the heights of the nodes in a complete binary tree on N keys is
N minus the sum of the bits in the binary representation of N; from this it follows
that Floyd’s heap building routine preforms @(N) work overall, and fewer than 2N

key comparisons, when constructing a heap on N keys. Another nice property of the

bottom-up heap building method is that it preserves randomness. If a permutation is
chosen with uniform probability from the space of all permutations on N keys, the result
of building a heap out of the elements of the permutation, using the bottom-up method,
is a random heap structure, uniformly distributed over the space of all heap structures
on N keys. See [18] for a proof of this fact. Because of these properties, all heaps will
henceforth be assumed to have been constructed using this bottom-up method. Other

heap building methods will be discussed only in Chapter 5.

It is the purpose of this work to give the asymptotic number of executions of each
instruction in reasonable implementations of the two versions of Heapsort in the best,
worst, and average cases. The next chapter re-examines both versions of Heapsort and
gives definitions and preliminary results that are needed to support later constructions.
Chapter 3 contains the main result of the thesis; assuming that the input to Heapsort is
a randomly permuted list of distinct keys, the average key a is moved asymptotically all
way to the bottom of the heap, and the instruction “k++,” on line 11 of both versions of
Heapsort, is executed asymptotically half of the time. Best and worst case asymptotics
are given for both versions of Heapsort in Chapter 4. It is shown for both versions of
Heapsort that the instruction “k++” on line 11 is executed at least %N lg N times and
at most %ngN times; this result is developed in the context of a comstruction due to
Sedgewick [23, 24] which maximizes the number of comparisons performed by Floyd’s

Heapsort. Chapter 5 presents conclusions, open problems, and related areas of research.

To the best of the author’s knowledge, all results in this thesis are new except as
explicitly noted to the contrary. The presentation of these results found in [23] has been

submitted for possible publication in Journal of Algorithms.

Chapter 2

Preliminaries

The last chapter introduced Heapsort. This chapter makes a few more introductions
that are needed to support a detailed analysis. In particular, this chapter will explain
how to construct heaps by viewing the sorting process in reverse. To avoid confusion, it
should be noted at the outset that in this chapter heap construction will mean starting
with a heap on a single key and adding progressively larger keys until a heap on N keys
is reached. This is not the same as the problem of building a heap from a permutation
that was discussed briefly in the previous chapter. This chapter will conclude by defining

heap construction costs that correspond closely with the cost of sorting a heap.

One concept is central to the average, best, and worst case bounds of the next
three chapters — the constructions required for these bounds are based on a technique
developed by Sedgewick [23, 24] which views the Heapsort process in reverse. This
technique requires the assumption, here and in all further chapters, that the input
to Heapsort is a permutation on the integers in [1...N]. It is possible to make this
assumption without loss of generality since it will be assumed everywhere that all input

keys are distinct.

Let Hy be the set of all heaps on the distinct integers in [1, N]. Then given a
heap A[1... NJ] & Hp, one iteration of the main loop of Heapsort removes the root

of the heap and replaces it with the key from A[N], it then moves that key down to

i void pulldown{long k) {
2. A[N] = A[k];

3 while (k > 1) {

4. Alk] = Alk / 2],
5. k /= 2;

6. X

7. Al1] = N;

8.

&

Figure 2.1: pulldown implemented in C.

some position A[k], leaving a heap on N — 1 keys. Following Doberkat [7, .9}, this
establishes a mapping & : Hy — Hp_1. The reverse process would have to take
the key from some position A[k] and place it in position A[N] at the bottom, fill the
resulting vacancy at A[k] by shifting down all keys above it in the heap (leaving a
vacancy at the root), and assign N to the root position A[1]. Figure 2.1 gives C code

for the procedure pulldown that makes this process explicit.

Figure 2.2 shows the result of calling pulldown(11) to expand a heap from 12 keys
to 13 keys. This is followed by an iteration of the main loop of either version of Heapsort,
with i = 13, which returns the original heap on 12 keys. In this respect, pulldown and
the main loop of Heapsort are inverses of each other. It will sometimes be useful to refer
to the pulldown process less formally than as a call to pulldown with a given position
as its argument. In particular, it is often convenient to refer to “pulling down” a given
key by its value. Figure 2.2 thus shows the result of pulling down 2. This usage is not

ambiguous since it is assumed that all keys are distinct.

The pulldown procedure reverses a step of the Heapsort process by transforming a
heap on N — 1 keys to a heap on N keys. Let P(Hp) be the power set of Hy. Also,
let @~ : Hy_; — P(Hy) be the inverse of @, assigning to each heap on N — 1 keys the
set of heaps on N keys that are mapped to it by ®. Then given a heap H € Hy_1, every
element of ®~1(H) can be generated from H by calling pulldown on an appropriate value
of k < N —1. Note, however, that not all values of £ < N — 1 result in legitimate heaps.

After calling pulldown it must be the case that ALN] < A[|N/2|]. Thisissoif and only

10

Figure 2.2: pulldown(11) followed by an iteration of Heapsort with i = 13.

Ll

if A[k] < A[|N/2]] prior to calling pulldown (k). From this it follows that there are
exactly A[|N/2|] elements in the image under -1 of any heap A[1...N -1]€ Hy_3.
To expand the 12 key heap of Figure 2.2, for example, any of 5, 6, id, 11, or 12 would
be acceptable arguments to pulldown since these positions contain keys that are less

than or equal to 5 = A[|N/2]].

Pulldowns are interesting because every heap can be associated with a unique se-
quence of pulldowns. Running Heapsort results in a sequence of progressively smaller
heaps. The reverse of such a progression corresponds to a unique sequence of calls to
pulldown. Sedgewick [23, 24] has used this fact to explicitly construct heaps w-f.th cer-
tain properties and to enumerate conveniently all possible heaps on a given number of
keys. Sequences of pulldowns will also be crucial to the analysis of the average case of

Heapsort. This motivates the following definition:

DEFINITION: A pulldown sequence P = {p;}}L, and the heap H(P) that it constructs

in A[1...N] are defined inductively as follows:

e For N = 1, the empty sequence {p;}}—, is a pulldown sequence and the heap it

constructs, H({pi}1_,), is the heap containing the single key “1”.

e For N > 1, a sequence {p;}, is a pulldown sequence if {pi f_’_.gl is a pulldown
sequence, and if a valid heap H({pi}lL,) is constructed when pulldown(p,) is
called given H({p:}X3")

The use of pulldown to construct a heap is demonstrated by Figure 2.3, which shows

the heap built by the pulldown sequence:

-3
a0
He]
—
[l
—
=

Heap Size: 1 2 3 4 5 6
Pulldown Sequence: 1- 2 2 23 2 4 3 @9 7

Pulldown sequences will prove useful because the cost of sorting a heap is closely
related to the cost of constructing the heap by repeated pulldowns. In order to take

advantage of this correspondence, it is necessary 1o measure the cost of each pulldown

12

Figure 2.3: A heap constructed by a pulldown sequence.

13

[e R AT,

in a pulldown sequence in a way that is directly related to the cost that will be incurred

by Heapsort when reversing that pulldown. This motivates the following definitions:

DEFINITION: Given a pulldown sequence, P = {p;}}L,, define Bw(p;), the Bw cost of
pulldown pi, to be the level containing the position p;, where the root is considered to
be level 1. That is, Bw(pi) = [lg(pi + 1)]. The Bw cost sequence associated with P is
defined to be By (P) = {Bw(p:)}¥,, and the By cost of the heap H(P) is defined to
be Bw(H(P)) = I, Bw (p:).

Note that when the main loop of Williams’s Heapsort reverses pulldown p;, the key a
will be moved from the root at the first level down to the level of position p;. In the
process, line 13 is executed a total of By (p;)— 1 times. It follows that for any pulldown
sequence P = {p;}/L,, the By cost of heap H(P) is equal to By(H(P))+ N — 1.
DEFINITION: Given a pulldown sequence, P = {p;}Y,, define Cw(p;), the Cy cost
of pulldown p;, to be the number of times the right child is selected along the path
from the root to position p;. That is, ¢; = bit(p;) — 1 where bit(z) is the number
of 1’s in the binary representation of z. Define the Cw cost sequence associated

with P to be Cw(P) = {Cw(p:)}Y,, and define the Cy cost of the heap H(P) to |
be Cw(H(P)) = TN, Cw(p).

i=2

When pulldown p; is reversed by the main loop of Williams’s Heapsort, a path has
to be found from the root to position p;. This makes a right turn, and thus executes
line 11, every time a 1 is encountered in the binary representation of p; (excluding the
leading 1, of course). Sometimes line 11 is executed once more; in particular, when
position p; has two children, that is when 2p; < ¢, and when the right child has a larger
key than the left child, line 11 is executed an additional time before executing the break
statement on line 12. Because this adds at most one execution of line 11 per iteration
of the main loop, it follows for any pulldown sequence P = {p; f\iz that the Cy cost of

heap H(P) equals Cw(H(P))+ O(N).

Some similar definitions will now be given for Floyd’s Heapsort.

14

DEFINITION: Given a pulldown sequence, P = {p:}lL,, define Br(p;), the Br cost of
pulldown p;, to be a bound on the height of position p;, namely Br(p:) = [lg(i+1)] -
[lg(p;i+1)]. Asbefore, the Bp cost sequence associated with P is Br(P) = {Br(p:)}L,,
and the Br cost of the heap H(P)is Bp(H(P)) = "X, Br(p).

Floyd’s Heapsort reverses pulldown p; by tracing a path to the bottom of the heap
and then moving the key a up the path into position. The number of times line 17 is
executed to move a up. is the difference between the number of the level where the path
hit the bottom and the level of position p;. Since there are usually two “bottom” levels to
the heap, this difference can be either [lg(i+1)]—[lg(p;+1)] or Ng(i+1)]-g(p:+1)]-1.
This implies that for any pulldown sequence P = {p:}¥,, the Br cost of H(P) is
Br + O(N).

DEFINITION: Given a pulldown sequence, P = {p; N,, define Cp(p;), the Cr cost
of pulldown p;, to be the number of times line 11 is executed when an iteration of
Floyd’s Heapsort is performed to undo the effects of pulldown(p;). Again, the C'r cost
sequence associated with P is Cr(P) = {Cr(p:)},, and the Cr cost of heap H(P)is
Cr(H(P)) = TiL; Cr(p)-

This definition is very nice in the sense that it results in exact equality between
the Cr cost of H(P) and the value of Cx(H(P)). It is somewhat less nice in that
unlike the previous definitions, the Cr cost of a pulldown p; is not a strict function
of the position p;, but depends upon the context of p;...p;_;. Unfortunately, this
is unavoidable; once Floyd’s Heapsort has moved a below position p;, its behavior is
dependent not upon p;, but upon the structure of the heap created by the first i — 1

pulldowns.

Note that cost sequences are defined within the context of pulldown sequences. A
cost sequence (' is thus always assumed to be associated with at least one pulldown
sequence P. To illustrate these definitions, the table on the next page gives the cost

sequences associated with the pulldown sequence that constructs the heap in Figure 2.3.

15

Heap Size: 1 2 3 4 5 B 7T 8 9 10 11
Pulldown Sequence:
Bw Cost Sequence:
Cw Cost Sequence:
Bp Cost Sequence:
Cr Cost Sequence:

-1

[R == I e)
o O O R R
O = O D
e O R R
— = e R G
— = O) D
O = O W
[ST S B S B IV
[S S O S S N,
[N N)

The following lemma summarizes for future reference the relations that hold on the

heap costs that have just been defined.

LEMMA 2.1: Given any pulldown sequence P = {p;},, the following hold:

1. Bw(H(P)) = Bw(H(P))- N + 1.
2. Cw(H(P)) = Cw(H(P))+ O(N).
3. B(H(P)) = Bp(H(P))+ O(N).
4. Cx(H(P)) = Cp(H(P)).

5. Bw(H(P))+ Br(H(P)) < NlgN.

6. Cw(H(P)) < Cr(H(P)).

-1

. Bw(H(P))< N1gN.

Proof: The correctness of the first four parts of the lemma has already been demon-

strated. Part 5 follows from:

N N
> (Bw(p:)+ Br(p:)) = > _(Mg(p; + 1)] + Ng(i + 1)] - Nlg(p: + 1)]) < NlgN.
=2 1=2

The sixth part of the lemma is a consequence of the fact that Floyd’s Heapsort finds a
path all the way to the bottom of the heap, while Williams’s Heapsort sometimes stops
short of the bottom. Part 7 follows from part 5 and the fact that Bp(H(P)) is always

a non-negative quantity. O

16

%ﬁ"","-m‘_'\"‘ﬂ'r.'.‘“‘1. ey

The foundations needed for the main results of the next two chapters have now been
laid. The next chapter will prove average case bounds for Heapsort by showing that all
but an exponentially decreasing fraction of pulldown sequences build heaps whose costs
are close to the expected value. The best and worst case bounds will be proved in the

following chapter by specifying pulldown sequences that build heaps with low and high

costs.

17

Chapter 3

Average Case

This chapter contains the main result of this thesis; it analyzes the asymptotic behavior
of Williams’s Heapsort and Floyd’s Heapsort in the average case. In particular, it will be
shown that given a uniformly generated -random permutation on N keys in A[1...N],
if H is the heap that is built from that permutation by makeheap, then it is expected
that By (H)~ NlgN,Cw(H)~ iNIgN, Br(H)= O(N), and Cr(H) ~ iNIlgN.

These results will be obtained in a somewhat roundabout way. In particular, recall
that if Hy is the set of all heaps on the integers in [1...N], then makeheap maps the
same number of size N permutations to each heap in Hy. From this it follows that the
average cost of sorting a uniformly generated random permutation is expected to be thé
same as the expected cost of makeheap plus the cost of sorting a uniformly generated
random heap from Hy. The first four parts of Lemma 2.1 state that to determine the
asymptotic complexity of sorting a random heap structure, it is sufficient to determine
the expected Bw, Cw, Br, and Cr costs of the heap constructed by a random pulldown

sequence. It is these values that will be established in this chapter.

The average Bw cost of a random heap structure is determined by showing that only
an exponentially decreasing fraction of all pulldown sequences construct heaps with costs
significantly different from the claimed average cases. The value for the Bp cost of the

average heap will follow immediately. The expected Cyw and Cr costs of a random heap

18

will be established by similar methods.

In the remainder of the chapter, any pulldown sequence whose length is not explicitly
mentioned will be assumed to construct a heap of size N; likewise,"any cost sequence
whose length is not mentioned will be assumed to be associated with a pulldown sequence
that constructs a heap of size N. Since frequent reference will be made to uniformly
generated random heaps, let Ry be a random variable that is generated with uniform
probability from Hy, and let Py be a uniform random variable over the space of all
permutations on the integersin [1...N]. Munro [20] suggested the proof of the following

lemma, which will be useful throughout the chapter:
LEMMA 3.1: For any N, the number of heaps |Hy| is |Hy| > N1/4V.

Proof: There are N! permutations on the N integers in [1...N]. It was noted in the
first chapter, when makeheap was introduced, that makeheap requires fewer than 2N
key comparisons to build a heap on N keys. Since makeheap maps the same number of

> N1/22N o

permutations to each heap, it follows that |Hn

Lemma 3.1 has two main virtues. It is easily seen to be correct for arbitrary N,
and it is sufficiently strong for the results of the remainder of the chapter. It is not
tight, however. Gonnet and Munro [16] show that |Hy| = N!/21:3644--N+O(eg N} The
usefulness of Lemma 3.1 derives from the way that Theorem 3.1 and Lemmas 3.4and 3.5
will be proved. The proofs of these statements will need an estimate of | H /| in order to
show that only an exponentially small fraction of the heaps in Hx have abnormal costs.
Before proceeding to the proof of Theorem 3.1, however, the following two lemmas need

to be presented.

LEMMA 3.2: Let aj, a3, and a3 be real variables and let p, ¢, and r be positive real

constants. Suppose that the constraints:
a;+ay+a3=7p (r—1ay1 + (rlaz+(r+1)az =g a; > 0,(t=1,2,3)

are satisfied by some assignment to the a; where at least two a; are positive. Then

aj'a3?ad® is minimized subject to these constraints by exactly one assignment to the q;

19

%W"‘]':‘W*nz N TN 1 Lo I A

for which all the a; are positive; this assignment satisfies the relation a;/as = a3/as.

(af" is assumed to equal 1 when a; = 0.)

Proof: This lemma is needed omly in the proof of Lemma 3.3. Its proof does not

explicitly involve Heapsort, so it is relegated to the appendix. O

LEMMA 3.3: Given positive integers N and T, let n = [lg(N +1)] and ¢t = n — T/N.
Then for N sufficiently large, the number of By cost sequences C having cost equal
to T is bounded by:

{nN, ifT < N(n-2lgn);

N
{C={a}l;:Y =T} < .
’ 2> | N3N+ 1)V, if N(n—-2lgn) <T < N(n- 10).

=2

Proof: The first half of the bound is trivial; for any By cost sequence C, there are at
most n choices for each ¢;, which implies |[{C : =N, ¢; = T}| < nV. The proof of the
second half of the bound is considerably more difficult. Note that the second half of the

bound assumes 10 < t < 21gn.

Consider a By cost sequence C; let Na; be the number of ¢; in C for which ¢; = n—1,
where ¢ ranges from 0 to n — 1. Note that Na; > 0 for i > 1 since the smallest key
always resides at the bottom of the heap and thus must be pulled down at least once
every time a complete row is added to the heap. There are fewer than N™ ways to
choose the Na;, so an upper bound on [{C : X, ¢; = T}| is given by N™ multiplied by
the maximum number of By cost sequences C that can correspond to any fixed choice

of the Na; for which 105 iNa; = T. It follows that [{C : TN, ¢; = T}| is bounded

t=2

from above by the maximum value of:

N
N ,
(Na,g,Na,l,...,Nan_l))

subject to a; > 0 for ¢ > 1 and:

N-1 N-1
> Na;=N (3.2) and > iNa; =tN. (3.3)
=0 1=0

Applying Stirling’s Formula to (3.1), the proof of the lemma will be complete once

it has been shown for N sufficiently large, that all choices of the a; subject to (3.2)

20

and (3.3) satisfy:
(ﬂ)N (E)N

— - J — = <3N+ (3.4)
(_@_&)Nao.{m—:L)Nm '--.'LM)‘NG" (%)N< ?’_:Oa,‘-a.')N '

-4 e

where a; > 0 for ¢ > 1, and (a;/e)V% is taken to equal 1 when a; = 0. The remainder
of this proof is thus devoted to minimizing:
L N
(TT a™) (3.5)
1=0
subject to (3.2) and (3.3), where a; > 0 for ¢ > 1, and a;* is taken to equal 1 when

a; = 0.

Expression (3.5) does not require that all of the a; be positive. By Lemma 3.2,
however, the fact that a; and a3 are positive implies that there exists a minimum
for (3.5) where a; and aq are positive as well. Furthermore, Lemma 3.2 implies that
this minimum is attained when the a; form an exponential sequence a; = ca’ for some
positive, real ¢ and ¢ which are dependent upon N and T'. The exact values of a and ¢

are determined by (3.2) and (3.3); these constraints can be restated in terms of @ and ¢

as Tollows:
n—1) n=—1)

eNY a'=N (3.6) and cN > ia*=tN. (3.7)
1=0 1=0

Note that these equations, together with the fact that ¢ < n/2, imply @ < 1. The

expression (3.5) can also be bounded in terms of a and c:
n N m ‘ NN S ; ; w g
(H aﬂ z (H (ca’)™) = (N E Lo e)g(eN Tioia’) = NV, (3.8)
1=0 1=0

Inequality (3.8) should be enough to finish proof of the lemma if it is coupled with
good lower bounds on a and ¢. Such bounds are provided by (3.9) and (3.10) which will
be proved later:

t—1
a> — (3.9) and

: (3.10)

r
Inequalities (3.9) and (3.10) can be plugged into (3.8) to produce:
n N N tN t N N

. ; - 1 1

il t+1 t t+1 t t+1°3

21

Since this establishes (3.4), the proof of the lemma would be complete, except that it

now remains to show that (3.9) and (3.10) hold for sufficiently large V.

Dividing (3.6) and (3.7) by N and obtaining closed forms for their sums, gives the

following two equations:

1= g™ — Da™*t! = ng
(1__‘2_&.—,1 (311) and O)‘El_a)zm -t (312

Solving (3.11) for ¢ in terms of a, and substituting the result for ¢ in (3.12) yields:

a(l —a™)+n(a—1)a™ a a”
= = . 3.13
1-a)(l-a") 1—¢ "_o (3.13)
Equation (3.13) implies that ¢t > a/(1 — a), from which it follows that
= (3.14)
a< —. .
b1
The fact that ¢ < 21gn together with (3.14) yields:
2lgn
T —— 3.15
e 2lgn+1 ()
Combining (3.13) and (3.15) gives:
a (232g1n11 3
t < n A
1 =@ 1— (2lgn
2lgn+1
But since n(%ﬁ%f)” approaches zero as n gets large, this implies
t +1
< l—-a

for sufficiently large n. Inequality (3.9) follows by simple algebra. Now note that (3.11)
implies ¢ > 1 — a; together with (3.14) this proves (3.10). This concludes the proof of

the lemma. O
It is time now to begin proving the main results of this chapter.
THEOREM 3.1: The expected value of By (Rn)is Nlg N + O(N).

Proof: By the discussion in the introduction, it is sufficient to show that the average

over all pulldown sequences P of By (H(P))is NlgN+O(N). By part 7 of Lemma 2.1,

22

bk
O

no pulldown sequence P can have By cost more than Nlg N so the remainder of the
proof is devoted to proving that the average pulldown sequence has Bw cost at least
NlgN + O(N).

Given a By cost sequence C = {¢;}!¥,, consider the pulldown sequences P = {p; i
for which Bw(P) = C. Note in particular that for any i there are at most 2%~ possible

choices for position p;. This means that:

N
I{P: Bw(P) = C}I < HQC-' = 22:’:.2 i — 9Bw(H(P)) (3.16)
t=2

What is desired at this point is a bound on |{P : Bw(H(P)) < T}| that is expo-
nentially smaller than |Hy| for some reasonably large value of T'. Let 7 = [lg(N + 1)].
Then such a bound is easily obtained for T = NlgN — Nlgn — 4; the total number
of cost sequences was bounded in the proof of Lemma 3.3 at [{C = Tkl }| < =¥,
which with (3.16) implies |[{P : Bw(H(P)) < T}| < nV2T = (N/16)". This argument
is sufficient to show that the By cost of Ry is expected to be ~ %N Ig N, but does not
yield the bound given in the theorem statement. Munro [20] suggested that a better
bound could follow from a more careful estimate of [{C = {c;}¥, : TN, ¢; < T}. The

result is Lemma 3.3 and its application with (3.16) to prove the following:

|{P : Bw(H(P)) < N(n— 10)}1

[N(n—21gn)] i N(n-10) " 2 N
< 1 7 — 1
< X A2+ J\3<n N+1)2
i=0 [N(n—2lgn)]+1
IN N (n=10) i
< (—) +N"3Y 3 N(n—i+1)NoNEH)
s [n—2lgn]
2N N (n—10) 192 n—10—i\ ¥)
(") }_n-—gl:gnj () 1

= NHIgN(11)NeN (=91 4 O((3/4)V))

o((&)')

The remainder of the proof is straightforward. The average of By (H (P)) over all

Il

23

pulldown sequences P = {p;}!, is greater than:

([Hn| = O((N/15)M))N (n — 10) + O((N/15)M)0
|Hn|

O((N/15)N}>

|HN|

O((N/15}N))
N1jaN

> N(n-10)(1+ O((4¢/15)™))

e N[n—l())(l'—

> N(n—l{))(l—

This completes proof of the theorem. D

COROLLARY: The expected value of Bp(Ry)is O(N).

Proof: This follows immediately from Theorem 3.1 and part 5 of Lemma 2.1. O
LEMMA 3.4: Cw(Rp) is expected to be greater than N 1g N + O(N+/Tog N loglog NV).

‘Proof: The proof begins by bounding the number of pulldown sequences that can be
associated with a given C cost sequence. Let n = [lg(V + 1)] be the number of levels
in a heap on N keys. Then given k, there are at most 3, _,, (;) = (4,) positions in
a heap on N keys with Cy cost equal to k. This gives an immediate upper bound on
the number of pulldown sequences P with which a given Cy cost sequence C = {¢; o

may be associated:

‘{P:CW{P)=C}J = (czil) ' (mil) (CNT:- 1)'

A pulldown sequence P constructs a heap with low Cyy cost if Cw (H(P)) < (N-1)T

for some cutoff value T < n/2 — 1. It can be shown by an inductive argument that

N-1 :
(T:_]) > (Cz’_‘;_]) . (0311) | N”H) whenever 3 :(¢; + 1) < (N — 1)(T + 1). This
means that not very many pulldown sequences P can correspond to a single low cost
Cw cost sequence C = {¢;}¥,:

n

N=1 N
T 1) whenever fz_;ci < (N =-1T.

i{P O ([P = C}"S (

A bound on the number of low cost Cy cost sequences is easily obtained by bounding

the total number of cost sequences. Given Cw cost sequence C = {c:}IL,, there are

24

fewer than n choices for each ¢;, from which it follows that there are fewer than n/V-!
choices for C. Since there aren’t many cost sequences, not many pulldown sequences P

can construct low cost heaps:

N=1
{P: Cw(H(P)) < (N - 1)T}| < oV (TL) . (3.17)

This bound now needs to be evaluated at an appropriate value of T. So assign

T = [n/2-+/nlgn] — 1. Then by Stirling’s Formula,

| n 2 ! Inn
n T4 < nnn—n-}-T

&

—(%— nlgn+ %) ln(g- - \/nlgn) +

—(2-{— vnlgn + %) 111(%-&- \/nlgn> +

= nlnn+m—(n+1)lng

—Vnlgn
+ v/nlgn + O(1)

o3 o3

2
-—(g —/nlgn + %) 111(1 - 2_’%1_5“7}_)
2/nlg
-(g ++vnlgn+ -,1;) 111(1 + %) + 0(1)
= _1—1123 +(n+1)In2

n 1 2v/nlgn 2nlgn <10g3/2n)
(2\/711gn+2>(— - - + 0 372
n I\ {2y/nlgn 2nlgn 10g3/2n
_(—2—+\/nlgn+§>(- - '1"0(32
Inn

= h—2~+(n+l)ln2—21nn+0(1).

It follows that for NV sufficiently large, (;7,) < N/n?3%. By (3.17), when N is sufficiently

large, there are fewer than

i N-1 P

g Noif T y N_l(N)1‘ t (N)N
; n n By =55

' T+1 —_ n2.‘.5 12

pulldown sequences P for which Cw(H(P)) < (N —1)T.

i 25

?;;-qeg-.m: e iy

This means that the average of Cy (H(P)) over all pulldown sequences P = {p; ¥

for N sufficiently large, is greater than:

(|Hn| = (N/12)NYN - 1T + (N/12)N0o NN(N-DT
|Hy| =W =T - W

By Lemma 3.1, |[Hy| > N!/4V > (N/4e)N. This means that as N becomes large, the
average of Cyw (H (P)) over all pulldown sequences P = {p;}}\, is greater than:

N
(N = 1)T - (f—;) (N-1)T = %1”- + O(N/log Noglog ¥).0

LEMMA 3.5: Cr(Ry) is expected to be less than 1N 1g N + O(N+/log Nloglog N).

Proof: The proof of this lemma is similar to the proof of Lemma 3.4, though there are
some differences. The proof again begins by proving an upper bound on the number of
pulldown sequences P that can correspond to a given Br cost sequence. Let [lg(N+1)]
be the number of levels in a heap on N keys. Given k < =, the number of paths to
the bottom of the heap that select exactly k right children is bounded above by (”;])
For each such path, there are at most n keys along the path, any of which could be
pulled down at a Cg cost of k. This yields the following upper bound on the number

of pulldown sequences P having corresponding Cr cost sequence C = {¢; it

'{P:CF(P):C}I < (n_l)n- (n_l)n-...-(n_l)n
ca cs cN

A high cost heap H is one for which Cp(H) > (N — 1)T where T > n/2+ 1is a
cutoff value. It can be proved inductively that (,}‘.)N_l 3 (2w 2) e o (:;r) whenever
;¢ 2 (N=1)T. In particular, if T = (n/?-l—\/'nlg n], this means that for any Cr cost
sequence C = {¢;}1,:

N1 N
'{P 1 Ol P = C}‘ 5 ([11/2 +7\1/1Tg1ra-t) n" whenever Zci > (N -1T.

=2

26

N-1

Now it was shown during the proof of Lemma 3.4 that there are at most n cost

sequences C = {¢;}YY, and that for sufficiently large N:

_ n < N/nz.zs_

({nmfmﬁ]) (Lnﬂ-mg—nJ)

For sufficiently large N, this implies the following bound on the number of pulldown

sequences that correspond to high cost Cr cost sequences:

(P Cw(B(P) > (V=)T}| < - (nfﬂNnN . (f_?)”

This means that for NV sufficiently large, the Cr cost of the heap constructed by the

average pulldown sequence P = {p;}¥, is bounded above by:

Hy| - (N/12YVY(N - F(N/12Y¥N1g N NNNigN
(5| = (V2N - DT+ (NADNIEN -y, KNG
|HN| 12N|Hy|
deN\V
T "l N
< (M 1)T+<12N> Nigh
= %+O(N\/iogNloglogN).

This completes proof of the lemma. O

These two lemmas have done all of the dirty work required to determine the asymp-

totic values of Cw(Ry) and Cr(Ry). The following theorem ties up loose ends:
THEOREM 3.2: The expected values of Cyw(Rn) and Cp(Ry) are both ~ INIg N.

Proof: This theorem follows immediately from Lemmas 3.4 and 3.5 and part 6 of

Lemma 2.1. O

This chapter has determined the expected values of Bw(Ry), Cw(RnN), Be(Rn),
and Cr(Rn) by showing that all but an asymptotically negligible number of pulldown
sequences will build heaps that have costs near the average. The next chapter will show

how a pulldown sequence can construct some of the rare heaps with exceptional costs.

27

Chapter 4

Extreme Cases

This chapter gives tight bounds on the highest and lowest values taken on by Byw(H),
Cw(H),Br(H),and Cx(H) for any heap H; as in the previous chapter, these bounds are
an immediate consequence of bounds that will be proved on Bw(H), Cw(H), Bp(H),
and Cr(H). The first section gives upper bounds on the worst cases and lower bounds
on the best cases for both versions of Heapsort. The following four sections present
three similar constructions that show that the bounds of Section 4.1 are tight. The final
section summarizes the chapter’s results. Because the constructions of Sections 4.2-4.5
are similar, their presentations can seem repetitive. In the interests of readability, as
many redundant details as possible have been eliminated. This means, however, that

the constructions should be read in the order in which they are presented.

4.1 Upper and Lower Bounds

Given a pulldown sequence, one can imagine splitting it in the middle. The first part
of the sequence constructs a heap that has about half as many keys as the finished
heap. Performing the pulldowns specified by the second part of the sequence adds one
more row to the heap created by the first part. The results of this section are based

on the observation that the keys in the half-sized heap are small and thus belong near

28

M o

i
{
{

the bottom of the finished heap. This means that a substantial fraction of the keys in
the half-sized heap must be pulled down in the second half of the pulldown sequence.
From this it follows that the second part of the pulldown sequence must pull down many
keys from near the bottom of the heap, and many keys with large numbers of 1's in
their binary representations. This leads to tight lower bounds. This idea was developed
independently by Sedgewick [23, 24] and Wegener [26], who both used it to prove the

following theorem:
THEOREM 4.1: For any heap H, Bw(H) is at least N 1g N + O(N).

Proof: Starting with a heap on one key, any heap on N keys can be obtained by
successively doubling the size of the heap, inserting single pulldowns between doubling
operations when appropriate. The lemma that follows gives a lower bound on the cost
of doubling a heap’s size. The theorem results from summing this bound as the heap

size 1s successively doubled. O

LEMMA 4.1: Given a heap on N keys, any pulldown sequence expanding the heap to 2N

keys must increase the By cost of the heap by at least 32-N lg N —2N.

Proof: It will be useful to partition the keys of the expanded heap into two classes: the
keys with values from 1 to N will be called the old keys while keys with values from N +1
to 2N will be called the new keys. Likewise, positions 1 to N of the expanded heap will
be referred to as the old positions, while positions beyond N will be referred to as the
new positions. Each of the N pulldowns required to augment the heap can be classified

according to whether it pulls down a new key or an old key.

The new keys in the heap form a subtree of the heap at every stage of the pulldown
process. Each pulldown adds a leaf to this subtree, increasing its size by one. Any leaf
added in an old position must be the result of pulling down an old key. The By cost of
pulling down an old key is bounded below by the level of the leaf created since the leaf
is along the path from the key being pulled down to the root of the heap. This implies
that the Bw cost of all pulldowns of old keys is bounded below by the internal path

length of the subtree formed by new keys in old positions.

29

Now the subtree formed by the new keys has all its internal nodes in old positions,
so in the expanded heap there are at least | N/2] new keys in old positions. The internal
path length of any binary tree on | N/2] nodes is at least 3N 1g N —2N. This completes

proof of the lemma. O
COROLLARY: For any heap H, Bp(H) is at most %ngN +O(N).
Proof: This follows immediately from Theorem 4.1 and part 5 of Lemma 2.1. O

The argument used to prove the previous theorem applies in a slightly more compli-
cated form to the worst and best case behavior of Cy and Cr. The following theorem
gives a lower bound on the value of Cy that will be shown to be tight later in this

cha]')ter.
THEOREM 4.2: For any heap H, Cw(H) is at least %N]ogN + O(N+/log N).

Proof: As in the proof of the previous theorem, this theorem follows from summing

the lower bound given by the following lemma as the heap size is repeatedly doubled. O

LEMMA 4.2: Given a heap on N keys, any pulldown sequence expanding the heap to 2N
keys must augment the Cy cost of the heap by at least TN 1gN + O(N+/Iog V).

Proof: As in the proof of Lemma 4.1, the keys in [1, N] will be called the old keys
while the keys in [V 4+ 1,2N] will be called the new keys. Also, positions 1 to N of the
heap will be referred to as the old positions while positions numbered above N will be

referred to as the new positions.

At all stages of the pulldown process, the new keys of the heap form a subtree whose
root is the root of the heap. Each pulldown adds a leaf to this subtree. As was the case
in the proof of Lemma 4.1, the cost of the N pulldowns is bounded below by the internal
path length of the part of this subtree that occupies old positions. It was demonstrated
in the proof of Lemma 4.1 that there must be at least | N/2] new keys in old positions.
A lower bound on the Cw costs of the N pulldowns can thus be obtained by summing
the Cw costs of the | N/2| lowest cost positions in the top [lg(N + 1)] levels of the

heap.

30

PR s e

Now the number of positions in the top [1g(V +1)] levels having Cw cost equal to s

> G—z)z(ﬂaN+UU_
e+ \ ik
Let k be the largest integer such that |N/2| bounds the number of positions in the

is at most:

top [lg(N + 1)] levels with Cw cost at most k. That is:
g(N+1 N N +1
z:(op 1ﬂ)5[§¢< ZZ(Dg-t)D
sk I F<k+1 7+
Then a lower bound on the Cy cost of the N pulldowns is given by-

A Neg(N +1)]
EZJ(i+l)

Jsk

_ . Mg(N +1)] [lg(N + 1)]
= Z{JTU(i+)-—Z(i1)

i<k i<k
_ 0 lg(N +1)] -1} _ [g(N + 1)
= {lg(f‘f-l)?g(i) J,Szk(j+1)
gm+nwz(mm+m)_0mw+m~qy_ Umw+m>
3 |\ i+l E+1)] T g\ a4
[lg(N + 1) lg(N + 1)1\ _ Ng(N +1)]
2 jg;ﬂ(J+1) g(j+1)
_ Ng(+ D] [(ﬂg(N+ 1)1) 2 (ﬂg(N-l- it - 1”
2 k+2 k+1
Hg&g;—lﬂ{%J +O(N)+ O(N+log N).

This completes proof of the lemma. O

COROLLARY: For any heap H, Cr(H) is at least N log N + O(N+/log N).

Proof: This follows immediately from Theorem 4.2 and part 6 of Lemma 2.1. O
THEOREM 4.3: Given a heap H, Bw(H)—Cw(H) is at least N log N + O(N+/log N).

Proof: This theorem is proved by the same reasoning that was used to prove Theo-

rem 4.2 since the two theorems are essentially the same. Given a pulldown sequence

31

P = {p}¥,, Lemma 4.2 gives a lower bound on the number of 1 bits in the binary
representations of the p;. Since Bw(H(P))— Cw(H(P)) is within O(N) of the total -
number of 0 bits in the binary representations of the Pi, this theorem is just a symmetric

version of Theorem 4.2. O

CoRroLLARY: For any heap H, Cy/(H) is at most 2NlogN + O(N+/Tog).
Proof: This follows immediately from Theorem 4.3 and part 7 of Lemma 2.1. O
CoRroLLARY: For any heap H, Cr(H) is at most E—NlogN + O(N+/log V).

Proof: When sorting any given heap, line 11 of Williams’s Heapsort performs d subset
of the comparisons performed by line 11 of Floyd’s Heapsort. Floyd’s Heapsort must
thus find A[k] > A[k + 1] atleast as many times as the l—N log N+0O(N+/Tog V) times
mandated for Williams’s Heapsort by Theorem 4.3. Since Floyd’s Heapsort executes

line 11 Nlg N + O(N) times, the corollary holds. O

The following table summarizes for easy reference the bounds presented in this

section and in Lemma 2.1. The remainder of the chapter shows that, asymptotically,

these bounds are tight.

Lower Bound Upper Bound
Bw(H) TNIgN + O(N) NlgN
Cw(H) iNlgN + O(Nog V) iNlgN + O(NIog V)
Br(H) 0 iN1gN +O(N)
Cr(H) INlgN + O(NTogN) SNlgN + O(N+/IogN)

4.2 The Best Case of Williams’s Heapsort

Among the bounds presented in the last section were bounds on the best cases of Bw(H)
and Cw(H). These bounds showed that every time a heap’s size is doubled by pull-
downs, a minimum of about ‘half of the small keys must be pulled down. While the large
keys were assumed to be pulled down for free, restrictions on how many small keys could

be pulled down from low cost positions forced some small keys to be pulled from high

32

PNt e oy e

B

cost positions. These high cost pulldowns of small keys were the sole contributors to the
best case cost of Williams’s Heapsort. Sedgewick [23, 24] proposed a pulldown sequence
that alternates pulldowns of sets of small keys from the bottom of the heap with sets
of large keys from the top of the heap. This constructs a heap on VN = 2% — 1 keys
that has asymptotically the best possible Bw cost, and the worst possible Br cost.
Fleischer et al have independently developed similar results (11, 12]. It turns out that
Sedgewick’s construction also illustrates asymptotically the best possible Cw cost, and
the worst possible Cr cost. This section presents Sedgewici(’s construction as a best
case input for Williams’s Heapsort. The following two sections present two variations
on this construction that exhibit respectively the worst possible asymptotic behavior for
Williams’s Heapsort and the best possible asymptotic behavior for Floyd’s Heapsort.
The section following these re-examines Sedgewick’s construction as a worst case input

for Floyd’s Heapsort.

4.2.1 Details of the Construction

For Williams’s Heapsort, all pulldowns from near the top of the heap contribute little to
the cost of sorting the heap; a pulldown from the top is reversed by moving a key down
only a few levels, and thus has low Bw and Cw costs. Pulldowns from near the top
of the heap are clearly beneficial to the best case of Williams’s Heapsort. In practice,
however, one would expect the keys at the top of the heap to be among the largest in
the heap since they are required to be larger than all keys beneath them. To pull down
such large keys, it is clear that a best case construction will have to provide even larger
keys at the bottom of the heap to serve as parents in the pulldown process. The best
case construction to be considered here provides these keys by pulling down a pocket
of small keys at the bottom of the heap. As the small keys are pulled down, large keys
take their places. Once a pocket of large keys has been created, it can provide parents

to keys pulled from the top of the heap.

Figure 4.1 shows schematically how this process is made to work. The figure shows

a lieap on 2¢ = 1 keys for some ¢ which will be more completely specified later. Since

33

R e

2k + 20+ 1

n-k+2c

Figure 4.1: Schematic of the Williams’s Heapsort best case construction.

the bottom row of the heap is full, pulldowns will add new key positions starting at
the bottom left of the heap. The keys of a fixed level near the bottom of the heap are
chosen as roots of small subheaps, labeled alternately A4; and B;. The keys of each A;
are initially larger than the keys of the corresponding B;. Given a heap of this form,
the keys in B; can be pulled down to add a new level to A;. These pulldowns cause
a stream of new keys to flow from the root into B;. Almost all keys entering By are
new to the heap since the start of this sequence of pulldowns; the only exceptions are
those keys that were originally on the path from B; up to the root. The keys of B; are
now large enough to pull down the largest keys in subheap C, where C is composed of
enough levels below the right child of the root to supply a new level to B;. A new level
can be added to the left half of the heap by iterating this process of pulling down the
keys of B; to add a level to A; and then pulling down the keys of C' to add a new level
to B;. The same process adds a level to the right half of the heap when C is replaced
by D.

A numerical example of this process will illustrate how it works, as well as some of
the difficulties that must be faced when it is presented in detail. Figure 4.2 shows the
heap that is constructed by the pulldown sequence {1,2,3,2,3,5,4,3,7,6,6,8,7,12}.

34

SR 554 :

Figure 4.2: A heap like that of the schematic.

This heap illustrates the major features of the schematic Figure 4.1. Subheaps A,
and B; are rooted at A{4] and A[5] respectively, and the keys of A; are all larger than
any key in B;. C is rooted at A[3]. Space limitations have forced the bottom level
of C to overlap what should be the roots of A; and By; in the construction that will
be described below, the heap must be large enough that C and D never overlap the A;
and B;.

Figure 4.3 extends the heap of Figure 4.2 by performing pulldowns from positions
{9,11,11,10,11,3,6,7}. This illustrates the process of constructing a low cost heap
starting from a heap like that of Figure 4.1. The first pulldown is of a key in A;. Such a
pulldown is necessary since there are not enough keys in B; to add a complete bottom
row to A;. The construction to be detailed below will perform such initial pulldowns
from the A4;. The following three pulldowns empty By of the keys that it contained
in Figure 4.2. After these pulldowns have been performed, 15 is the only key in B;
that was in the heap in Figure 4.2. Next, the smallest key of By is pulled down. This
pulldown is needed not only because there are not enough keys in C to add a new row
to By, but because it is necessary to pull down all keys that were along the path from B,
to the root of the heap in Figure 4.2 — in this illustration there is only one such key

and it is larger than the keys in C, but it is easy to see that in a heap with more levels,

35

Figure 4.3: Constructing a low cost heap.

36

g
i
§
I
'3

there could be many such keys and they could be smaller than the keys in C. After
pulling down the key from Bj, none of the keys above the new bottom level of By were
in the heap in Figure 4.2. This means that all keys in the top levels of By are larger
than any key of C, so the last three pulldowns can empty C of the keys it contained in

Figure 4.2.

The process that has been described, of pulling down the keys in B; to add a level
to A; and then pulling down keys near the top to add a level to B; depends upon the
initial condition that the keys in A; are larger than those in B;, and adds just one level
to the heap. Unfortunately, this condition does not continue to hold after the new level
has been added. If, however, the keys of C were initially larger than those of A3, the
addition of the new level causes a complementary condition to hold, where the keys
of B; are larger than those of A;4;. Ignoring, for a moment, what happens to A; and
the last B;, this complementary condition allows the addition of another level to the
heap in a manner analogous to the above process, and at the same time restores the
original relations on the A; and B;. The construction as a whole is thus a two part
process. First, a “seed heap” is created satisfying the condition that the keys in each A;
are larger than the keys in the corresponding B;. Second, the seed heap is expanded to

the final size by adding levels in pairs.

Figure 4.3 illustrated the basic idea of alternating pulldowns from low positions with
pulldowns from high positions; it also showed why a few additional pulldowns will be
required when the construction is presented in detail. These additional pulldowns must
be handled with care; they must not contribute to the asymptotic cost of constructing
the low cost heap. Prior to pulling the keys of B; into A;, it is expected that i(Ig N)
keys will have to be pulled down from A;. In order for the cost of these pulldowns to
be negligible with respect to the cost of pulling the keys of B; into A;, the sizes of the
A; and B; will be taken to be Q(log?> N). The costs of initial pulldowns from B; prior
to pulling the keys of C into B; are also absorbed with this choice of size for the A;
and B;.

The size of the seed heap must be chosen with similar care. The seed heap must

37

contain few enough keys that its construction cost is negligible, and yet enough keys
that the A; and B; can each start with (log® N) keys. The seed heap will thus be
taken to contain ©(N/log N) keys.

The sizes of the seed heap and of the A; and B; are correctly determined by the
following choice of parameters: Set k = 2[152ﬁ] Start with a seed heap on 2"—% — 1
keys, and fix the roots of the A; and B; to be the keys of level n — 8k + 1 where the root
of the heap is level 1. Formally, this means that the root of 4; is A[2p + 2i — 2] and
the root of B; is A[2p+ 21 — 1], where p = 2"=3%~1 {5 the number of A; (and thus also
of B;). The seed heap is then expanded to the full heap by k/2 passes, each of which
adds two levels to the heap in two phases, named Phase AB and Phase BA. Let a be
a variable that records the current pass of the construction, and initialize it to zero.
Then " and D can be defined to be the 2(k 4+ @) + 1 level subtrees rooted at A[3] and
A[2] respectively; it is necessary that C' and D each have 2(k+ a) + 1 levels since they
must contain enough keys to add new levels to the A; in Phase BA. Note that the the
roots of all subtrees remain fixed so that the subtrees grow as o grows. Note also that
n > 6k is a necessary and sufficient condition for ¢ and D not to overlap the roots
of the A; and B;. For an illustration of these quantities and how they determine the

strucure of the heap, refer back to Figure 4.1.

Let t = 2na 4 1. This quantitiy describes the number of keys that must be pulled
down from A; before pulling the keys of B; into A; (or the number of keys that must be
pulled down within B; before pulling keys from the top into B;). These keys represent
a certain amount of slop that does not satisfy requirements like the condition that the
keys of A; be larger than the keys of B;. Since this slop accumulates, it is necessary
for ¢ to be proportional to . Finally,let L(H,z) be the largest z keys of the subtree H
and 5(H,z) be the smallest z keys of the subtree H;let L(H,z) > S(H,z) imply that
the largest z keys of H are all larger than any of the smallest z keys of H. For example,

L(B1,6) > S(A;,7) holds for the final heap of Figure 4.3.

These definitions permit Figures 4.4 and 4.5 to describe in detail the construction

of a low cost heap. The instruction “Pull down S(H,z)” means to pull down all keys

38

I. Build a seed heap on 2"~* — 1 keys that satisfies the following inequalities:

1. L(A;,2%% — 1) > S(B;, 2% — 1) for all i.

2. L(C,2% — n — 1) > §(Aq,22% — 1).

II. Complete the heap by executing:

For a = 0 to k/2 — 1 execute the code in Figure 4.5.

Figure 4.4: Construction for Williams’s Heapsort best case.

Action
Performed

Phase AB:
(¢) For i =1 top/2 do:
a) Pull down §(A4,,1)
b) Pull down S(B;, 2242 _ ¢)
c) Pull down §(B;,t+ n)
d) Pull down L(C,2%+2¢ _t _)
(i) For t = p/2+1 to p do:
a-d) As above, replacing C by D
Phase BA:
(7) Pull down S(Aq,1), 22k+20+1 times
(#2) Fori=1 to p/2 — 1 do:
a) Pull down S(B;,t+ n)
b) Pull down. S{Aj s, PPFEEeH _ ¥ g
c¢) Pull down §(A4;41.t+ 2n)
d) Pull down L(C,22k+2a+1 _ ¢ _ 2p)
(i7) For ¢ = p/2 to p~ 1 do:
a-d) As above, replacing C by D
(iv)
a) Pull down S(B,,t+ n)
b) Pull down S(Ay,2%+2a+1 _ ¢ _p)

Bw Upper
Bound

Cw Upper
Bound

bit(i — 1) + 3k

bit(i — 1) + 3k

bit(i — 1) + 3k
3k

3k

bit(i — 1) + 3k
bit(i) + 3k
bit(i) + 3k
3k

bit(p — 1) + 3k
3k

Figure 4.5: The Williams’s Heapsort best case main loop, with cost bounds.

39

e

that were in S(H,z) at the beginning of the instruction. It will be assumed that these
pulldowns are performed on the keys in increasing order, so that keys of the A; and B;
are pulled down from one of the bottom two levels of the heap. “Pull down L(H,z)" is
defined similarly. The costs given with each step of the construction are upper bounds

on the average amount of work performed by the individual pulldowns of that step.

THEOREM 4.4: Figures 4.4 and 4.5 specify a pulldown sequence P with Bw(H(P)) =
FNlgN + O(Nloglog N) and Cw (H(P)) = iNIgN + O(Nloglog N).

Proof: The next subsection will prove that the pulldown sequence described in Figures
4.4 and 4.5 is actually legitimate in the sense that no key is pulled down to be a child
of a key smaller than itself. The following subsection will show that the claimed cost

bounds hold. O

4.2.2 Correctness of the Construction

This section presents an inductive argument that shows that Figures 4.4 and 4.5 specify
a legitimate pulldown sequence. As a base case, it is shown that it is possible to create a
seed heap of the type required by Figure 4.4. The conditions satisfied by the seed heap
are then generalized, and it is shown that these generalized conditions both permit and
are preserved by one execution of the code of Figure 45 From this it follows that it is
possible to execute multiple iterations of Figure 4.5 as is required to construct the final

heap from the seed heap.

It is very easy to see that a seed heap on 2"~* — 1 keys can be constructed to satisfy
the conditions of Figure 4.4. Simply divide the keys to be contained by the heap into
three intervals: [1,p(22F - 1)}, [p(22¥ - 1) +1,2p(2% — 1)], and [2p(22% - 1)+ 1,27—F - 1].
The integers in [1,p(2%* — 1)] can be assigned to fill the B; and arranged in heap order
within each B;. Likewise, the keys in [p(22% — 1) +1,2p(2% — 1)] can be placed in the 4;
in heap order. The remaining 2"~3% —1 keys in [2p(2% —1)41,2"—* —1] can be arranged

in heap order in the positions above the A; and B;. Observe:
e The roots of the A; and B; are from the first two intervals and are thus smaller

40

than their parents, which come from the last interval. Since keys within a given
subtree are arranged in heap order, it follows that the whole arrangement obeys

heap order as well.

e Since the keys in A; are drawn from the second interval while those in B; are

drawn from the first, it follows that L(4;,2%% — 1) > §(B;,2%¥ — 1) for all 1.

e Likewise, L(C,2%* — n — 1) > 5(Ajy,2% — 1) because the keys in Ay are drawn

from the second interval while those in C come from the last interval.

These three observations demonstrate that this arrangement of integers in [1,27~% — 1]
is a heap of the form required by Figure 4.4. The time required to sort any heap on
2n—k _1 keys is O(N), so no attention need be paid to the cost of the pulldown sequence

that constructs this heap.

The conditions that Figure 4.4 requires of the seed heap are just the special case

@ = 0 of the following conditions, which will henceforth be referred to as the pass

mvariants:
o L(A;,2Uka) _ 1) > §(B;,22(k+) _¢) for .all 4. (4.1)
s L(C 0208l o s LA, 20(kba) _qY, (4.2)

In the remainder of this section, it will be proved that if a heap satisfies the pass
invariants, then it is possible to execute one pass of the code in Figure 4.5; the resulting
heap also satisfies the pass invariants upon incrementing «. This proof will examine
each step of the code in turn, establishing the conditions that permit the step to be

executed and stating the results of its execution.

The code in Figure 4.5 begins with Phase AB which adds a level to the heap by
pulling the keys of each B; into A; and then pulling the keys of C or D into B;. Phase AB
begins with step AB(7) which has two purposes: it adds a new level to the left hglf of the
heap, and for 7 < p/2, it causes most of the keys in B; to be larger than most of the keys

in A;y;. This latter purpose is accomplished in part by guaranteeing at the beginning of

41

the 4th iteration of step AB(3; a), that the largest keys in C (which will end up in B;) are
larger than the keys in A;41; put formally, L(C, 22(4®) —¢ —n) > L(A;4q,220+2) — 1),
This condition holds prior to the first iteration by (4.2) of the pass invariants and
is reestablished at the end of each iteration by step AB(Z; d). The following is an

enumeration of the effects of each of the steps that make up an iteration of step AB(1):

e At the end of step AB(i; a), all keys at or above level 2(k + «) of A; are larger
than any key of S(B;,2%*+%) _¢). This follows from three observations. First,
at the beginning of this step, (4.1) of the pass invariants implies that there are
at most ¢t — 1 keys in A; that can be smaller than any key in S(B;, . i t).
Second, this step pulls all of these ¢t — 1 keys down to the new bottom level
of A;. Third, those keys entering A; in this step are larger than any key that
was in L(A;,22(+%%) _ 1) to begin with. Since the keys being pulled down remain

within A;, it is clear that the specified pulldowns can be performed.

e Step AB(i; b) completes the new bottom level of A;. It also makes sure that fewer
than ¢ + n keys in B; can be smaller than any key of C — formally this means
that L{B;, 2%+ — § ~m) > L{C,22+0) _ 4 — n). At the end of this step, the
only keys in B; that could fail to be larger than those in C are the £ — 1 keys that
were in B; at the beginning of the step and which were not pulled down, and the
n— 3k keys that were along the path from the root of B; to the root of the heap at
the beginning of the step; the reinaining 92(k+a) _ ¢ _ n 4 3k keys in B; at the end
of this step are new to the heap since the beginning of the step and the inequality
follows. The results of the last step ensure that the pulldowns required by this

step can be performed.

e By the end of step AB(i; ¢), every key of B; at or above level 2(k + a) is larger
than any key of L(C, galktal 4 n). This step does for B; what the analogous
step AB(¢; a) does for A;. The reasons for its correctness are also the same as

those for AB(¢; a).

e Step AB(i; d) completes the new bottom level of B;. This step also establishes

42

e, e (e e g — .. e .

. e e ——

e e S

L(C,22k+0) _ t — 1) > L(Ajpg,22(k+a) _ 1), This inequality follows from the
observation that this step removes the largest 22(kte) _ ¢ _ 5 keys from C, and
that the keys that take their places are new to the heap since the beginning of
step AB(4; ¢). The results of the previous step guarantee that the pulldowns in

this step can be performed.

Step AB(¢) begins a new level of the heap, and step AB(:i) finishes it. Steps AB(i)
and AB(ii) operate in essentially the same way, except that AB(4i) uses D as the source
of keys to pull from the top of the heap; C is uﬁsuita.ble for this purpose since it will be
disturbed by pulldowns of keys from the A; and B; below it. It should be noted that
in step AB(7), the pulldowns from the 4; and B; purge D of the keys it contained at
the beginning of that step. Since D thus contains keys that are newer than any key
in Apa42, it follows that L(D,22k+e) _¢_7) > L(Ap/242, 222 _ 1) at the beginning
of step AB(i); L(D,220+a) ¢t _ n) > L(Ajq,22(k+0) _ 1) will always hold prior to

iteration 7 of step AB(ii; a).

It has been shown that Phase AB of the construction is capable of adding one leve]
to a heap satisfying the pass invariants. It is now necessary to examine the structure of
the heap following the execution of Phase AB. In particular, the following complements

to the pass invariants must be shown to hold:

o L(B;, 22(+eltl _ ¢ _n) > §(Ay, 22+l _ ¢ _) for g < p. (4.3)
o L(By, 224+l _ ¢ _n) > §(Ay, 22(k+e)+1 _ 3 _ py, ; (4.4)
o L(C,22kFe)+l _ ¢ _ 9n) > (B, 220k+a)+1 _ 1), (4.5)

These conditions permit Phase BA to add another level to the heap and to restore the

pass invariants with a incremented.

To prove (4.3), it is necessary to consider the origins of the keys in B; and Ay,
Fix 4 < p/2. Of the keys in B; at the end of Phase AB, 22(**®) 4 3k entered the heap

during the ith iteration of steps AB(i; b, ¢). Another 22(k+2) _ ¢ _ 5 keys came to B;

43

from C' during the ith iteration of step AB(; d). These keys from C were smaller than
any of the 22(k+2) L 3L new keys in B; at the beginning of step AB(4; d), but they
were larger than all 22*®) — 1 keys in A;;; by the inequality L(C,22(k+e) _ ¢ _ n) >
L(Aiy1,22(+e) 1) that held at the beginning of the ith iteration of step AB(4; a).
Finally, in the ¢4 1st iteration of step AB(i; b), A;41 acquired 22(k+a) _y¢ keys from B,
that were smaller than most of the keys that had been in A4y prior tor Phase AB. Thus
at the end of Phase AB, B; contains 22(F+@)+1 _ ¢ _ n 4 3k keys that are either new
or from C, and all of these keys are larger than at least 22(k+e)+1 _ ¢ _ 1 keys of Aig
that were in A;4; and B;;; at the beginning of Phase AB. Inequality (4.3) follows
immediately for i < p/2. As 7 makes the transition from the left side of the heap to the
right side of the heap, (4.3) continues to hold by analogous reasoning as step AB(4)

replaces step AB(7) and D replaces C.

Inequality (4.4) holds by the same reasoning used to prove (4.3). Of the keys in By,
at least 220k+)+1 _ 4 _ 5 4 3k are either new to the heap in steps AB(ii; b, ¢) or from D
(also new to the heap since the beginning of Phase AB), while at least 22(k+a)+1 _¢ _ 1

keys of A; were already in the heap at the beginning of Phase AB.

Inequality (4.5) holds because step AB(ii) leaves B, untouched, while the many

pulldowns from the A4; and B;, i > p/2, refill C' with new keys.

Inequalities (4.3), (4.4), and (4.5) permit Phase BA to add another level to the heap
and to restore the pass invariants (4.1) and (4.2). Step BA(4) begins that process by
adding the first row to 4;. Normally, Phase BA attempts to pull keys of A; into B,_;.
In this particular case of i = 1 the appropriate By does not exist, so the job is done
by pulling down the smallest key of A;, 22(+2)+1 times. These pulldowns are possible
since the smallest key in A4, is- always smaller than any possible parent in 4;. Phase BA
but By. In a manner analogous to step AB(7), the inequalities L(C, 22(F+)+1__9p) >
L(Biy1,2%k+a)+1 _ 1) and L(D,22(k+°?)+1 —t=2n) > L(Biu,220-+)+1 _ 1) always
hold prior to the ith iterations of steps BA(ii; a) and BA(74; a) respectively. The

incremental proof of correctness for steps BA(4, iii) is the same as the the one given

44

PR it s i ot

for step AB(7) and is not repeated here.

To finish adding its level to the heap, Phase BA must add a new level to B,. It
does so in step BA(4v) by pulling into B, those keys of A; that would have been pulled
into By if such a subheap existed. This has the nice side effect of eliminating the small

keys from A; while adding very few large keys to B,.

or above B;’s level 2(k + a) + 1 is larger than any key of S(A;,22(+a)+1 _ ¢ _p),
This holds for reasons seen previously: this step pulls the smallest t+n keys of B,
to the new bottom level. By (4.4) above, the remaining 22(k+o}+1 _ ¢ —n — 1 keys
originally in B, are all larger than any key in §(A;,22(k+2)+1 ¢ _ p), while the
keys that enter B, in this step are even larger than the other keys in B,. (Note

that step BA(i) did not change the composition of S(A;, 22Ftel+1 ¢ — n).)

o Step BA(iv; b) completes the new level of B, and ensures that at the end of
Phase BA, the keys in L(Aq,22(k+a)+2 _ ¢ _ 2n) are new to the heap since the
beginning of Phase BA. The only keys of A; that did not enter the heap in
Phase BA are the n — 3k keys that were along the path from the root of A,
to the root of the heap at the beginning of the phase, and the n + ¢ — 1 keys that

were in A; at the beginning of the phase but do not get pulled down in this step.

It now remains to show that Phase BA restores the pass invariants. Part (4.1)
of the pass invariants holds for ¢ > 1 by the same arguments used to prove inequal-
ity (4.3). Most keys in A; come from two sources, they are either new to the heap in
these keys in A; are larger than those in B;, most of which were in B; and A;; (mod p)
at the beginning of Phase BA. For 7 = 1, (4.1) of the pass invariants holds by the results
of step BA(iv); at the end of Phase BA, the keys in L(A;,22(k+2)+2 _¢_97) are all new
to the heap since the beginning of the phase, while the keys in S(By, 22(F+e)+2 _ ¢ _ 2p)

were in By and A; at the beginning of the phase.

Part (4.2) of the pass invariants holds by the same reasoning that has been used

before. Steps BA(i, iv) leave Ay untouched while filling C with new, large keys.

This concludes the proof that a single execution of the code in Figure 4.5 takes a
heap on 2"~*+22 _ 1 keys that satisfies the pass invariants, and transforms it into a heap
on 2m=k+2(e+1) _ 1 keys that also satisfies the pass invariants once a is incremented.
This in turn completes the inductive proof that a heap on 2™ — 1 keys can be built from

a seed heap on 2"~% — 1 keys by the code in Figure 4.5.

4.2.3 Costs of the Construction

So far, it has been shown that it is possible to execute the code given in Figures 4.4
and 4.5 to produce a valid pulldown sequence. Of course, the purpose of this code is to
demonstrate a heap that causes Williams’s Heapsort to exhibit its optimal asymptotic
behavior. In order to achieve this purpose, it is necessary to bound the costs of the
heap produced by the construction. This section provides such bounds by justifying
and summing the cost bounds given with the code in Figure 4.5. This results in upper
bounds of 2NV lg N + O(N loglog N) and INlgN + O(Nloglog N) on the By and Cw

costs, respectively, of the construction.

The bounds given with each step of Figure 4.5 are upper bounds on the average cost
per pulldown of one execution of that step. So, for example, the upper bound n given for
the By cost of step AB(i; a) implies that the average cost of a pulldown from S(A4;,1)
is at most n. It is easy to see that the bounds on the By cost are correct for all steps.
The final size of the heap is N = 2™ — 1 nodes, so no key can ever be pulled down from
a level numbered greater than n. This explains the By cost bounds on pulldowns in
all steps except for steps AB(4, it; d) and BA(4i, iii; d). In the case of these exceptions,
all pulldowns are from C or D. Since a never exceeds k/2 — 1, and since the heights of
C and D never exceed 2(k+ a)+ 1, it follows that no key of C or D is ever pulled from

a level numbered greater than 3k. This explains the remaining bounds on By cost.

The bounds on the Cy cost are not much harder to prove. Fix ¢ and let = be any

46

position in A; or B;. Then the binary representation of z begins with a “1” followed by
the n—3k —1 bit binary representation of i—1 since A [p+i—1] is the parent of the roots
of A; and B; and thus an ancestor of z. Beyond this, the binary representation of z
contains at most 3k bits since z < 2. This gives an upper bound of bit(i—1)+3k on the
Cw cost of pulling down the key in position z. This implies the correctness of all bounds
given in Figure 4.5 except for the bounds on steps AB(4, #; d) and BA(11, 4i3; d). All
pulldowns in these steps are from C or D, which contain no positions numbered greater

than 23% — 1: it follows that no pulldown in these steps has Cy cost greater than 3k.

Having justified the bounds given in Figure 4.5, it remains to sum these bounds over
all executions of each step. The total By cost of steps AB(4, 4; a, b), BA(4, i1i; q, b),
and BA(iv; a, b) is bounded above by:

kj2—1r p p—1
2 [2@+ (@ = t))n + (4 n) + (226420 _ ¢ _p))n
a=0 Li=1 1=1
+ ((t 4 n) + (2¥+2e+1 ¢ _ n)}w}
kf2—-1
= np Z (22k+2a iR 2.‘2k+2o{+1)
a=0
k=1 _
- n2'n—3k——1 Z 22k+]
J=0

1
= NIgN +O(N).

The total By cost of steps AB(:, i; c) and BA(ii, #i; c) is bounded above by:

kj2—1r p p—1 k/2-1
Z Z(t +n)n + Z(t + Qn)n} < np Z ((2na+n)+ (2na + 2n))
a=0 Li=1 =1 a=0

k=1
= pon—3k-1 Z(] + 1)n
7=0

0 (Niog2 logN)
log N '

47

kf2-11 p p—1
Yo D2 — 3k + (222 g 2n)3k
a=0 Li=1 i=1
k/2-1
< 3kp Z (22k+2a+22k+20+1)
a=0
k-1
— 3k2'n—3k—l Z 22k+j
1=0
= O(NloglogN).

The total By cost of step BA(i) is bounded above by:

kf2-1 Qk _1
Z n22k+2c¥+1 — n22k+1 = - O(log4 N)

a=0
Summing all of these upper bounds shows that the total By cost of the construction is

at most IN1gN + O(Nloglog N).

and BA(4v; b) is bounded above by:

k/2-1T p
> [E((f) + (22K _))(bit(i — 1) + 3k)
-I-pi(t +n)(bit(i — 1) + 3k) + pi(zz:wzaﬂ ¢ — n)(bit(3) + 38)

1=1 1=1

+(t + n)(bit(p = 1) + 3k) + (2%+2e+ _ ¢ _ n)(3k)}

k/2-11 p P
= X [Z PHbat(i - 1) + 3k) + 3 2 (bit(i — 1) + Sk)]

a=0 Li=1 =1
4 k/2-1
= Z(bit(i- 1) + 3k) E (aBkt2a 4 gRktlertyy

i=1 a=0

Bl
_ (n - 32k -1 4 3k> gn—-3k-1 Z o2k+j

=0

= ing N + O(Nloglog V).

48

The total Cw cost of steps AB(4, #; c) and BA(ii, #i; c) is bounded above by the
Byw cost of these steps, which is O(N log?log N/log N). Likewise, the total Cw cost of
step BA(¢) is bounded above by the By cost of this step, which is O(log* N). The total
Cw cost of steps AB(4, #; d) and BA(4, i; d) is identical with that given for By on
these steps, namely O(N loglog N). Summing all of these bounds gives an upper bound

of IN1g N + O(Nloglog N) on the Cyy cost of the construction.

It has been shown that Figures 4.4 and 4.5 of this section construct a pulldown
sequence that results in a heap whose By and Cw costs are bounded above by %N lg N+
O(Nloglog N) and N 1g N +0O(Nloglog N). This completes the proof of Theorem 4.4.
By the results of the previous section, it is impossible for any heap to have asymptotically
lower costs than these. It follows that the construction given in this section is indeed a

best case for Williams’s Heapsort.

4.3 The Worst Case of Williams’s Heapsort

In the previous section, a pulldown sequence was constructed that demonstrated the
asymptotic behavior of Williams’s Heapsort in the best case. The low cost of this
pulldown sequence is a result of its alternation between pulldowns of large keys from the
top of the heap and small keys from the bottom of the heap. It is known, [18] exercise
(5.2.3.23), that a heap can be created with the lzirgest possible By cost by pulling
down the smallest key N — 1 times. To obtain the worst possible By and Cy costs
simultaneously, it is natural to consider pulling all keys from the bottom of the hedp,
and to pull as many as possible from the bottom right side of the heap. This suggests
proceeding as in the last section, except that C' should now be taken to be what had
been the rightmost pair of A; and B;, and D need not exist. This approach does indeed
vield a construction for the worst case of Williams’s Heapsort, and is presented in detail

in this section.

Figure 4.6 illustrates schematically the construction of a worst case input sequence

to Williams’s Heapsort. The basic idea is the same here as in the previous section. The
D P

49

IZJH— 20

Figure 4.6: Schematic of the Williams’s Heapsort worst case construction.

keys in heap B; are pulled down to add a level to A;, leaving B; full of large keys. Keys
from C are then pulled down to add a new level to B;. As before, it is necessary to
add levels to the heap in pairs, first pulling keys from the B; into the A;, and then
from the A;y; into the B;. As in the previous section, it is assumed that the size of the
final heap is desired to be N = 2™ — 1; the construction starts with a seed heap of size
gk .} syliege k= 2[1521], and is expanded to a heap on N keys by k/2 passes, each
of which adds a pair of levels to the heap. Again set p = 2"~3%~1 50 that the A; are
numbered from 1 to p—1 and have roots at A[2p + 27 — 2] while the roots of the B; are
A[2p + 2i — 1]. Define C to be the subheap (all levels) rooted at A[2p — 1]. As before,

set t = 2na + 1 where « is the current pass of the construction, and let L(H,z) and

S(H,z) be the z largest and smallest keys of H.

THEOREM 4.5: Figures 4.7 and 4.8 specify a pulldown sequence P with By (H(P)) =
NlgN + O(N) and Cw(H(P)) = 2NigN + O(Nloglog N). The costs given for each

step bound the average cost of the pulldowns in that step.

Proof: The next subsection. will prove that Figures 4.7 and 4.8 describe a legiti-
mate pulldown sequence. The following subsection justifies and sums the claimed cost

bounds. O

50

L. Build a seed heap on 27—% _ keys that satisfies the following inequalities:
1. L(A4;,2% - 1) > §(B;, 2 "wl)fora.ﬂz.
2. LI, 2% _ o 1) S(dy;2%% .. 1),
; de BEC e g 1) 8(ds,2% 1),

II. Complete the heap by executing:
For e =0 to /2 - 1 execute the code in Figure 4.8.

Figure 4.7: Construction for Williams’s Heapsort worst case.

Action By Lower Cw Lower
Performed Bound Bound
Phase AB:
(i) Fori=1to p—1 do:
a) Pull down 5(4;,1) n—k+ 2« bit(z— 1)
b) Pull down §(B;, 22k+2a _ 1) n—k+2a bit(i — 1)
¢) Pull down S(Bi,t+n) n—k+2a 0
)PuﬂdownL{'szk““—-t—nJ n—k+2a—3 n—3k—1
(¢) Pull down S(C, 1), 22k+2a+1 i 0 0
Phase BA:
(7) Pull down S5(A1,1), 22642041 41 0c 0 0
(#) For i = 1 top~2do
a) Pull down S(Bf,tu-n} n—k+2a+1 bit(i— 1)
) Pull down S(Aiyy, 22k+2041 _ ¢ _ n) n—k+2a+1 bit(7)
c) Pull down S(4 M,r—uzn) n—-k+2a+1 0
d) Pull down L(C,2%k+2e+1 _ 4 _ 2n) n—k+20-2 n—3k—1
(i)
)PulldownS(B —1,t+n) n—k+2a+1 0
b) Pull down S(A;,22%k+2a+1 _4 _ n) n—k+2a+1 0
(2v) Pull down 5(C, 1), 22k+2a42 imag 0 0

Figure 4.8: The Williams’s Heapsort worst case main loop, with cost bounds.

4.3.1 Correctness of the Construction

The general outline of the proof of correctness for this construction is the same as for
the proof given of the best case construction for Williams’s Heapsort in the previous
section. The argument is essentially inductive, showing first that a seed heap satisfying
the inequalities of Figure 4.7 can be created on 2"—* — 1 keys; it is then shown that this
seed heap can be extended to a heap on N keys by k/2 passes of Figure 4.8 where each

pass preserves a set of invariants.

Inequalities (4.6), (4.7), and (4.8) are the pass invariants for the construction given
in Figures 4.7 and 4.8. These are basically the same inequalities as the pass invariants
for the construction of the previous section, the only differences being that the keys of C
must be larger than the keys of both Az and Az, and that the range of the variable i is

smaller by one.

o L(A;, 22042 _ 1) 5 §(B;,22(k+a) _) for all 1. (4.6)
o L(C,225Fe) —t —p) > [(A,,220k+0) _ 1), (4.7)
o L(C,220%2) — ¢ n) > L(4g,220k+2) _ 1), (4.8)

It will first be shown that a seed heap can be created to satisfy these invariants with a
set to equal zero. It will then be shown that it is possible for an execution of the code
given in Figure 4.8 to add two levels to a heap that satisfies these invariants, and that

the resulting heap satisfies the pass invariants as well.

One way to create the necessary seed heap on 2"% — 1 keys is to divide these
keys into four intervals: [1,(p— 1)(2% — D] [(p—1)(2%% - 1) +1,2(p - 1)(2% — 1)],
[2(p - 1)(2% - 1) + 1,2p(2%% — 1) + 1], and [2p(2%F — 1) + 2,27=% _ 1]. The integers in
the first interval should be placed in the B;,1<i<p-1,and arranged in heap order
within each B;. The (p — 1)(22F - 1) keys in the second interval should be placed in
the A; and again arranged in heap order. The 22k+1 _ | keys in the third interval should

be placed in C in heap order. Finally, the 2p — 2 keys in the last interval should be

52

';.;‘_._,,w.._____ﬁ_._n._. A

arranged in heap order in the the open positions of the top n — 3k levels of the heap
(note that one position from these levels, namely the root of ' has already been filled).
The resulting configuration of keys can be seen to satisfy the pass invariant (4.6) be-
cause the keys in the 4; come from the second interval and are thus larger than the
keys in t_he B; which come from the first interval. Likewise, the pass invariants (4.7)
and (4.8) can be seen to hold since the keys in C come from the third interval and are
thus greater than any key in the A; or B;. Finally, it is clear that this arrangement of
keys is a heap, since the keys within each interval are arranged in heap order, and the

roots of the A;, B;, and C have as their parents keys from the fourth interval.

It remains to show that a heap satisfying the pass invariants permits the execution
of the code given in Figure 4.8, which adds two new levels to the heap and restores the
pass invariants. Since a similar argument was given in detail in the previous section, the
following discussion gives details only where they differ from those that have already

been presented.

The execution of Phase AB is basically the same as Phase AB of the construction
from the previous séction. Step AB(7) adds a level to all of the A; and B;: Iteration i of
step AB(4; a) startslevel 2k+2a+1 of A; and guarantees that all keys of A;’slevel 2k+2a
are greater than any key of §(B;, 22(k+a) _ t). This permits step AB(i; b) to finish the
new level of 4;. Likewise, step AB(4; ¢) guarantees that all keys on level 2k + 2a of B;
are greater than any key of L(C,22(k+a) _ ¢ _ n) permitting step AB(;; d) to complete
the new level of B;. Once step AB(i) has added a new level to all but C, step AB(4)

finishes the new level by pulling down the smallest key in C, 22(k+2)+1 {imeg,

At the end of Phase AB, the foHowj'ng inequalities hold:

o L(B;,22(k+a)+l _t _) 5 §(A, 22(k+a)+1 _ gy _ n) for i < p—2. (4.9)

o L(Bp_y,2204e41 ¢ _)5 §(Ay, 220k+a)+1 _y _ n). (4.10)

o L(C,220+e+1 _y _9n) 5 L(B,, 22k+a)+1 _ 1). (4.11)

o L(C, 220+l _ ¢ _9p) > [(By, 23k+e)t1 _ 1), (4.12)
53

Inequality (4.9) follows from the origins of the keys in A; and B;. Fixi < p—2. Then at
the end of Phase AB, B; contains at least 22(k+a) keys that entered the heap in the i’th
iteration of steps AB(3; b,). These keys are larger than the 22(k+a) _ ¢ _ p keys that
were pulled into B; from C in step AB(4; d). The keys from C are in turn larger than
any of the keys that were originally in A4;4; — for ¢ = 1,2 this follows from inequalities
(4.7) and (4.8) of the pass invariant; for iarger 1, it follows from the observation that
after the 2nd iteration of step AB(4; d), all keys in L(C,22(k+e)+1 _ 4 _ n) are new to
the heap since the beginning of Phase AB. Finally, A;4; contains all of its keys from
the beginning of Phase AB as well as 22(k+a) _ ¢ keys from B;,; that are smaller than

many of the keys that were already in A;;;. Inequality (4.9) follows immediately.

Inequality (4.10) follows the same logic; the keys in L(B,_;, 22k +e)+1 _ 4 _ n) have
all entered the heap since the beginning of Phase AB, while every one of the keys in

§(A1,22(+)0+ _ ¢ _ 1) was in either Ay or By at the beginning of Phase AB.

Inequalities (4.11) and (4.12) follow directly from the observation that in step AB(11),

C picks up at least 22(F+@)+1 _ p new keys that are larger than any key in any 4; or B;.

These four inequalities permit Phase BA to add an additional level to the heap.
Phase BA begins with step BA(¢) adding a level to A;. Step BA(i7) adds the new level
to the remaining A; and B; with the exception of B,_;. The operation of step BA(i7)
is the same as that of step AB({), with corresponding substeps affecting the subheaps
on which they operate in corresponding ways. Step BA(44i) adds the new level to g
BA(4ii; a) first guarantees that every key of level 2k + 2a + 1 in B; is greater than any
key of §(A;,220k+a)+1 _ 4 _ n); BA(4ii; b) then uses this fact to pull down the keys
of S(A;,2%k+a)+l _ 4 _ n) to complete the new level of By_1. Finally, step BA(iv)

completes the new level of the heap by extending it across C.

At the end of Phase BA, the pass invariants are restored once a is incremented. Pass
invariant (4.6) follows for 7 > 1 by the same reasoning as was used to establish the first
inequality above. To see that (4.6) holds for i = 1, note that L(Ay, 22+ 41)) g 95

contains keys that are new to the heap since the beginning of Phase BA, which it

54

acquired during steps BA(7) and BA(iis; b), while S(B;,22(k+(a+1)) _ 4 _ 2n) contains

keys that were already in the heap, in B; and Az, at the beginning of Phase BA.

Pass invariants (4.7) and (4.8) follow from the fact that in step BA(iv), C acquires

at least 22k H(et1)) _) oo keys that are larger than any key in any A; or B;.

It has been shown that it is possible to carry out the construction detajled in Fig-
ure 4.7 to create 3 heap on & keys: a seed heap on 27-% _ 1 keys can be created that
satisfies the pass invariants for o = 0; this seed heap can then be expanded to a heap
on 2" — 1 keys by k/2 passes of Figure 4.8. It remains only to verify and sum the cost

bounds given for the steps of the constructjon.

4.3.2 Costs of the Construction

The construction given in Figures 4.7 and 4.8 is intended to demonstrate the worst
tase asymptotic behavior of Williams’s Heapsort. This permits a slight simplification

of the analysis of the costs of the construction. In particular, the only steps of the

the cost columns of Figure 4.8 in positions where somewhat tighter bounds would have
been possible. In the remainder of this section, the non-zero bounds are justified and

totaled.

Consider first the By costs of steps AB(:; @) and BA (i1 d). Both of these steps pull
down almost half of the keys of C. Since the keys pulled down are the large keys of (.
they form a subtree within C at the beginning of the step. Because each key is pulled
down from a position at most as high as the one jt occupied at the beginning of the step,
the average By cost of a pulldown in these Steps is at least the level of the root of C
plus the average internal path length of the subtree of keys being pulled down. This
yields the claimed bounds. The Bw costs of the other steps are more easily bounded.
In all other steps, the keys pulled down are the smallest keys in their subheaps. Since

these keys are pulled dowq in increasing order, each key is at the old bottom level of the

a5

heap when it is pulled down; this is leve] n—k+2a in Phase AB and level n—k<4+2a+1

in Phase BA.

The claimed bounds on Cw cost follow from logic similar to that used to bound
the Cw costs of the previous construction. Given any position z in A; or B;, the most
significant bits of the binary representation of z are a “1” followed by the n — 3k — 1 bit
‘g binary representation of 7 — 1. This proves the bounds on the costs of steps AB(4; q, b)
and BA(1i; q, b), Similarly, the binary representation of a position z in C begins with
the binary representation of 97—3k _ 1= 2p—1 since A[2p — 1] is the root of C. This

Justifies the remaining non-zero bounds.

The total By cost for steps AB(4; a, b), BA(ii; q, b), and BA(i; q, b) is bounded

from below by:

k/.?—] p—1
> [E(m + (2% _ 1)) (n - k + 20)
a=0 Ll:=1

p—2
+ Z((t +m) (2¥H3etl _ 4 n))(n—-k+2a+ 1)

s=]
+((t+n)+ (22k+2“+1 —t—=n))(n-k+2a+ I)J

k/2-1
= {p—1) 3 (@% P g 20) + 2% ¥ty pL9n o 1))

a=0

k-1 k—1
= (gn-3k=1_ 1)2%[2 2754 Z 2 (n — JCJJ
=0

i=0

= (2" %1 _1)2%[k_2)ok Lo 4 (n—k)(2F = 1)]

= (Qn—Sk—I _ 1)(n2k _ zk-ﬁ-l e k + 2)22]:

Il

1 T | T
5;’\" Ig A“ -+ O(J‘,\)

The total By cost for steps AB(¢; ¢, d) and BA(ii; ¢, d) is bounded below by:

k/2=11p=1
Z Z({f+n)(n—k+2a)+(22k+2“—t—n)(n—k+2cr—3))
a=0 L:=1

p=2
+ 2 ((t+2n)(n— k4 20 + 1) + (224241 _ 4 _ 2n)(n — k + 20 - 2))
i=1
kj2-1
> (p=2) 3 (2 (n— k4 20) + 0%+ _ 1o 1))
a=0
kf2—1
s 3(}9-— 1) Z (22k+2a + 22k+2a+1)
a=0

= INIgN +O(N).

The last step in this derivation can be seen to follow from the previous derivation.

Combining these two bounds yields a lower bound of N lg N+O(N) on the total By cost

of this construction.

The total Cyw cost of steps AB(i; a, b), BA(ii; a), and BA(ii; b) is bounded below

by:
k/2—1rp—1 l p=2
> [Z((t} + (2242 _ 1))bis(i — 1) + > (t+ n)bit(i — 1)
a=0 Li=1 t=1

=
+ pZ(QZ"“"“ = n)bz‘t(i)}

=1

k/2—1 p—2 p=2
>) [Z 2V 2= 1) 4 Z22k+2ﬂ+1bit(z‘_1)J

a=0 Li=1 =1
p—2 kf2-1
e Z bﬂ(?. _ 1) Z (22k+2c{ il 22k+2cx+1)
1=1 a=0
k=1
= (El?f——izﬂ-%—l — 2n+ 6k + 3) S g2k+i
=0

= 41N lg N + O(Nloglog N).

The total Cw cost of steps AB(¢ d) and BA(ii; d) is bounded below by:

kf2-1Tp—1 p—2 'l
3 3 g i =Bk T P ¢ L R T I)J
a=0 L:i=1 t=1

=-J

(@)}

kf2=11p-2 p=2
> D |22 —t—n)(n - 6k) + 3 (2252 ¢ _ 9n)(n — 6k)
a=1 Li=1 i=1
kf2-1
= (n—6k)(p—2) > ((2%%2% _ 2na — n) + (2242241 _ 9pq — 2n))
a=1
k=1 _
= (n—8k)(2"%*1 = 2) Y (2% _ (5 +1)n)
=2

il
= ang-N + O(Nloglog V).

These bounds combine to give a lower bound of %}—N]g N +O(Nlglg N) on the Cy cost

of this construction.

This section has shown that Figures 4.7 and 4.8 specify a pulldown sequence that
constructs a heap with By cost Nlg N +O(N) and Cw cost %ngN—{-O(N]ogiog N);
this completes proof of Theorem 4.5. The results of the first section of this chapter state

that asymptotically it is impossible for any heap to have higher costs than these.

4.4 The Best Case of Floyd’s Heapsort

Pulldowns from the bottom of the heap are expensive for Williams’s Heapsort to reverse
since they require that a key be moved all the way to the bottom of the heap with two
key comparisons at each step. For Floyd’s Heapsort, however, such pulldowns are the
least costly to reverse since a path must be traced to the bottom of the heap every
time a key is moved into place; only when a key must be moved back up that path is
additional expense incurred. It is known that the best case of Floyd’s Heapsort requires
only NlgN + O(N) comparisons, [18] exercise (5.2.3.23) notes that such a heap results
from pulling down the smallest key N — 1 times. A heap that simultaneously exhibits
optimal Br and Cr costs can consxtructed in a manner similar to that of the previous
section, by a pulldown sequence whose structure is the mirror image of the worst case

for Williams’s Heapsort, as is shown in Figure 4.9.

58

The details of this construction are very similar to those of the preceeding one. Ag

before, the heap is built from a seed heap on 2n—F _ | keys where k = 2[152—'1'[., to a heap
o JV ey keys by k/2 Pbasses, each of which adds two levels to the heap. As before.
if p = 27~3k=1 {hen there are p — 1 subheaps A4; and B; whose Toots are at positions
Al2p + 277 and Al2p+ 27+ 1] respectively. C is defined to be the subheap rooted at
Alpl. If t = 2na + 1. and L(H,z) and S(H,z) are defined to be as before, then the

following Theorem holds:

THEOREM 4.6: Figures 4.10 and 4.11 specify a pulldown sequence P with Br(H(P)) =
O(N) and Cr(H(P)) = iNIghN + O(Nloglog N). The costs given with each step are

upper bounds on the average cost of the pulldowns in that step.

Proof: The next subsection proves that Figures 4.10 and 4.11 describe a legitimate pull-

down sequence. The following subsection Justifies and sums the claimed cost bounds. O

4.4.1 Correctness of the Construction

The arguments needed to prove this construction correct are Very similar to those pre-
sented with the previous construction, so most of thejr details will be omitted here.

The proof is again inductive; the code ig Figure 4.10 can be executed if it is possible to

a9

I. Build a seed heap on 27=*% _] keys that satisfies the inequality:
L(Ai,2% - 1) > 5(B;, 2% 1) for all .

II. Complete the heap by executing:
For @ =0 to k/2 — 1 execute the code in Figure 4.11.

Figure 4.10: Construction for Floyd’s Heapsort best case.

Action Br Upper Cr Upper
Performed Bound Bound
Phase AB:
1) Pull down od)s 2 > times 1 3k
) Pull 4 S(C, 1), 22k+20+1 k

(#i) For i=1to p—1 do:

a) Pull down S(A;,t) 1 bit(i) + 3k
b) Pull down §(B;,22k+2a _ t) 1 bit(i) + 3k
¢) Pull down §(B;, ¢+ n) 1 bit(i) + 3k
d) Pull down L(C,2%k+2a _ ¢ _ n) 4 ok
Phase BA:

(7) Pull down §(C, 1), 22k+22+2 tjpmec 1 3k

(1) Pull down §(4,, 1), 22k+2a+1 timeq 1 3k+1

(#i) Fori=1to p— 2 do:
a) Pull down §(B;,t + n) 1 bit(i) + 3k
b) Pull down §(A;,,,22%k+2e+1 _ 4 _ n) 1 bit(i + 1)+ 3k
¢) Pull down §(A;1q,t+ 2n) 1 bit(1+ 1) + 3k
d) Pull down L(C,22k+2e+1 _ 4 _ 2n) 4 3k

(iv) .
a) Pull down S(B,_;,t+ n) 1 bit(p— 1)+ 3k
b) Pull down S(A,22k+20+1 _ 4 _ n) 1 3k+1

Figure 4.11: The Floyd’s Heapsort best case main loop, with cost bounds.

60

create the required seed heap and if the pass invariant given below both permits and is

restored by an execution of the code given in Figure 4.11.

There is only one pass invariant for this construction, namely:
o L(A;220+0) _ 4y 5 g(B;, 22(k+a) _ t) for all 5. (4.13)

A seed heap satisfying the pass invariant for & = @ can be created in exactly the
Same manmner as in the previous section; the 2" _ 1 keys are divided into the same
intervals, which are assigned to the B;, A;, C, and top levels, as before. The only
difference from the previous section is that this time C' is on the left side of the heap. It

remains to show that the pass invariant permits and is restored by a pass of Figure 4.11.

Assume that the pass invariant holds as Phase AB of Figure 4.11 begins. Then
Phase AB operates in the same manner as Phase AB of the construction from the
Previous section, except that the new level is added to C' before it is added to the A4;
and B;. Note that this implies that by the end of step AB(7), and for the remainder of
Phase AB, all keys in L(C,2%k+e) _ 4 _ n) are new to the heap since the beginning of
Phase AB. At the end of Phase AB, the following inequalities hold:

¢ L(Bi, 22400+ ¢ _) 5 §(Ayyy, 220ka)t1 _ n) for i < p-2. (4.14)

o L(Bp_1, 220+41 _ ¢t _)5 G4y, 220k+e)+1 _ 4 _ n). (4.15)

As before, these inequalities are proved by examining the sources of the keys in the A4,
and B;. Fix i. At least 22(k+o) keys of B; are new to the heap in steps AB(ii; b, ¢), and -
another 22(k+e) _ ¢ _ p keys of B; came from C in step AB(4#i; d) and thus are also new
to the heap since the beginning of Phase AB, as noted previously. This means that all
keys in L(B;,22(k+a)+1 _; _ n) are new to the heap since the beginning of Phase AB.
Aj, on the other hand, contajns al] 22(k+a) — 1 keys that it contained at the beginning of
Phase AB, plus 22(k+a) _ ¢ keys pulled down from B; in step AB(4i; b). It follows that
all keys in §(A;, 22(k+a)+1 _ 4 _ n) were in the heap prior to the beginning of Phase AB.

Since i was arbitrary, Inequalities (4.14) and (4.15) follow immediately.

61

These inequalities allow Phase BA to add another level to the heap. The same

reasoning used to establish the inequalities at the end of Phase AB shows that at the
end of Phase BA, the keys in L(A;, 23k+(at+1) _ 4 _ 2n) are all new to the heap since
the beginning of Phase BA, while those in S(B;,22(+@+1) _ ¢ _ 99) were already in
the heap at the beginning of Phase BA. This implies that when « is incremented. the

pass invariant (4.13) is restored.

Because it is possible to create the seed heap required by Figure 4.10, and because
the pass invariant holds for the seed heap and after every iteration of the code in
Figure 4.11, it follows that it is possible to create the heap specified by Figure 4.10. It

remains to justify and total the specified bounds on the cost of each step.

4.4.2 Costs of the Construction

The best case construction for Floyd’s Heapsort differs little from the worst case con-
struction for Williams’s Heapsort, so one would expect that the cost bounds for the two
heaps would be similar in flavor. This would be the case, except that the measures of
cost for Floyd’s Heapsort are different from those for Williams’s Heapsort. For example,
the Br cost of a pulldown from a position z is the distance from the bottommost level
of the heap to the level of position z. Because keys are pulled down in increasing or-
der within a given group of pulldowns, all keys pulled down in steps AB(iZ; a, b, ¢) are
pulled from level n—k+2a while the bottommost leve] of the heap is n—k+2a+1; these
pulldowns thus have unit Br costs. The same reasoning applies to steps BA(7i; @, b,)
and BA(iv; g,). Similar logic shows that in steps AB(7) and BA(4, i), the first pull-
down has a Bp cost of 1 with subsequent pulldowns being free. The claimed bound
on the Br cost of step AB(i; d) follows from the reasoning of the previous section by
which the keys being pulled down initially form a subtree of C, so the average key is
pulled down from 2 level numbered at least n — k + 2a — 3 while the bottommost level

Isn—k+2a+ 1. BA(éi; d) is bounded similarly.

The Cr cost of a pulldown from a position z in A; or B; equals the number of times

62

= B I T I - SN

o He= s i s N o N, i

the right child is selected along the path that goes from the root of the heap, through
position z, and down to some key at the bottom of the heap. Observe that such a
path must go through the parent of the roots of Ai and By, and from there it visits
at most 3k additional positions before hitting the bottom of the heap. Observe also
that the right child is selected exactly bit(7) times along the path from the root of the
heap to the parent of the roots of A; and B;. These two observations imply the claimed
CF cost bounds for pulldowns from the A; and B;. The cost of pulling down keys in ¢
is similarly bounded since a path from the root of the heap to a position in C will pass

from each node to its left child unti] it is below the root of (.

The bounds given in Figure 4.11 must be totaled now that they have been justified.
Steps AB(i3; a, b), BA(4ii; a, b), BA(4v; q, b), AB(i; c, d), and BA(4ii; ¢, d) have a
total Br cost that is bounded above by:

kf2=1rp
Z Z(22.‘&—}-0& _ f))
a=0 Li=]1
+ Z((t)+ (2 o)) (24 n) 4 (2204 g py)
=1
-1 p=2
+ Z n)+ 4(2%F 2 _ ¢ _p)) 4 D O((t+2n) + 4(2%F2+1 _y Qn))J
=1 =1
k/2-1
< 5(10— 1) Z (22k+20+22k+2a+1)
a=0
- 5 f)n—Sk 1 Z22k+”
=0
= O(N).

The total B cost of steps AB(7), BA(7), and BA(45) is bounded above by:

k/2—1 k/2—1
Z (22k+20:+1 Y 22k+2cr+2 & 22k+2a+1) - Z 22k+20+3 — O(]Oga .N)
a=0 a=0

Together, these expressions show that the Br cost of the construction given in Fig-

ure 4.10 is O(N).

63

The total Cr cost of steps AB(ii; o, b), BA(4#; a), BA(iii; b), BA(iv; a), and
BA(4v; b) is bounded above by:

kf2—1rp-1
> [Z(m + (252 _) bit(s) + 38)
a=0 Li=1
p—z p—2
+ 2 (2 m)(bit(s) + 3k) + (2242 _ ¢ _n)(bin(i 4 1) + 3K)
i=1 1=1

+(t+ n)(bit(p— 1) + 3k) + (22221 _ ¢ _)3k + 1)}

kf2-1 P P
< > [Z QMR Bty — 1)+ B + 3 otktlet gt 154 3k)}

a=0 Li=1 1=1

1
= EngN + O(Nloglog V).

The last step of this derivation has already been worked out in the analysis of the best
case for Cy of Williams’s Heapsort. The total Cr cost of steps AB(44; ¢) and BA(4ii; ¢)
is O(Nlog®log N/log N) since it is bounded above by the Cy cost of steps AB(4, #; c)
and BA(4i, ui; c) of the best case construction for Williams’s Heapsort. Likewise, the
bounds on steps AB(ii; d) and BA(43i; d) are almost identical with those given for steps
AB(4, i; d) and BA(ii, #i; d) of the best case of Cyy for Williams’s Heapsort; the only
difference being that the latter bounds run over a larger set of pulldowns. It follows
that the work performed in these steps is O(Nloglog N). The total Cr cost of steps
AB(7), BA(¢), and BA(if) is bounded above by:

k/2-1
Z (3k22k+20+1 + 3&22k+2a+2 + (31&'-{- 1)22k+2a+1) . O(]Dgle(Jg]Og]\?)

a=0

Combining these expressions gives INIgN + O(Nloglog N) as an upper bound on

the Cr cost the heap constructed by the pulldown sequence specified by Figures 4.10

and 4.11. This completes proof of Theorem 4.6,

64

& e

4.5 The Worst Case of Floyd’s Heapsort

When the construction for the best case of Williams’s Heapsort was presented, it was
mentioned that it could also be taken as an Input on which Floyd’s Heapsort exhibjts
its worst case asymptotic behavior. Figures 4.12 and 4.13 thus give exactly the same

construction as Figures 4.4 and 4.5, but with different cost bounds for each step.

THEOREM 4.7: Figures 4.12 and 4.13 specify a pulldown sequence P with Bp(H(P)) =
INIgN + O(N loglog N') and Cr(H(P)) = INIgN + O(Nloglog N). The costs given
with each step are upper bounds on the average cost of the individual pulldowns in that

step.

Proof: Sinceit has already been verified that these figures specify a legitimate pulldown
Sequence, it remains only to Justify and total the new set of cost bounds. Bounds on the
Br costs of the various steps aren’t really necessary to prove that this pulldown sequence
constructs a heap with Br cost equal to INIgN + O(N loglog N). This follows directly

from Theorem 4.4 and part 5 of Lemma 2.1.

Bounds on the Cr costs of steps AB(4, ii; a, b) and BA(i, 1 a, b) are also quite
straightforward. These are derived by the techniques that have been used previously;
any path from the root of the heap to a position z in A; or B; must pass through the
parent of the roots of A; and B; and thus selects at least bit(i—1) right children between

the root of the heap and z.

In steps AB(3, 4; d) and BA (4, 4ii; d), the cost of a pulldown is not a strict function
of the position of the key being pulled down, but depends on the history of previous
pulldowns. Assume that 2 key is pulled from a position z that is high in the heap. When
Floyd’s Heapsort reverses this pulldown, it will trace a path from the root of the heap,
through z, to the bottom of the heap. Since z was pulled from high in the heap, most

of the nodes along this path lie below z. If any bound is to be obtained on the number

of right children selected by this path, it must not be based the binary representation

of position z. Rather, some information must be gained about how often a right child

contains a larger key than its Jeft sibling.

1. Build a seed heap on 27—% _ 1 keys that satisfies the follow

1. L(A;2%% — 1) > §(B;,2% — 1) for all s.
2. L(C, 2% —n — 1) > §(4,,2% - 1),

II. Complete the heap by executing:

ing inequalities:

For @ = 0 to k/2 — 1 execute the code in Figure 4.13.

Figure 4.12: Construction for Floyd’s Heapsort worst case.

Action
Performed

Phase AB:
(7) For i =1 to p/2 do:
a) Pull down S(4;,1)
b) Pull down S5(B;, 2%k+2« _ 1)
c) Pull down §(B;,t+ n)
d) Pull down L(C,2%+2« _ ¢ _ p)
(i) For i = p/2 + 1 to p do:

. a-d) As above, replacing C by D
Phase BA:
() Pull down §(A;,1), 22k+22+1 {imeg

(1) Fori=1to p/2 — 1 do:
a) Pull down S(B;,t+ n)
b) Pull down S(A;pq,22k+2e+1 _y _ n)
¢) Pull down S(A;41,t+ 2n)
d) Pull down L(C,22k+2041 _ ¢ _ 9p)
(#17) For i = p/2 to p — 1 do:
a-d) As above, replacing C by D
(iv)
a) Pull down S(B,,t+ n)
b) Pull down S(A;,2%+20+1 _ ¢ _ p)

* This bound holds only for o > 0.

Br Lower
Bound

oo oo

oo oo

Cr Lower
Bound

bit(i — 1)
bit(i— 1)
0

n — 6k*

bit(i — 1)
bit(7)

n — 6k

Figure 4.13: The Floyd’s Heapsort worst case main loop, with cost bounds.

66

Consider any pulldown performed in one of steps AB(ii; d) or BA(4ii; d). When

Floyd’s Heapsort reverses this pulldown, the path it traces to the bottom of the heap will
never select a left child between levels 3k and n—3k—1. To see why, Let z be any position
in the left half of the heap on a level numbered between 3k and n — 3k — 1 inclusive; for -
convenience, let £, = g(z +1)] be the level of z. Now the last key to have been pulled
down from a position below z was pulled down from the rightmost B; below z during
the execution of step AB(3; c) or BA(ii; ¢). That is, if r = (2 + 1)2(n=3k=1)=tz _ 1 thep
the most recent pulldown of any key in a position below z was a pulldown from B,
performed during iteration r of step AB(4; ¢) or BA(4i; ¢). Since thelast key to be pulled
down from a position below z was thus pulled down from below the right child of z. it
follows that A[2z4+1] > A[22]. Since z was an arbitrary position, 3k < €, < n—3k-— i
in the left half of the heap, it follows that at least n — 6k right children must be selected
along any path traced by Floyd’s Heapsort from a position in D to the bottom of the
heap. This explains the bounds on the cost of steps AB(#; d) and BA(#; d). The same
reasoning justifies the cost bounds on steps AB(i; d) and BA(ii; d) following at least

one execution of Phase BA of Figure 4.13.
The Cr cost of steps AB(3, ii; a, b), BA(4i, iii; a), and BA(zi, 4ii; b) is bounded

below by:

kj2—11 p ' p—1
[Z((z) + (2% _))bit(i— 1) + >t + n)bit(i — 1)

a=0 Li=1 1=1
p=—=1
+ 2(22}:4—2&-‘:-1 i o ﬂ)bzf(ﬁ)}
=1
kf2—1[p=2 p=2
> Z l:z 22k+2abit(i _ 1) - Z 22k+2a+lb’ii(i _ 1)}
a=0 Li=l t=1

1 "
= :I_JV lg N+ O(‘N loglog N)

The last step in this derivation follows from the bound proved on Cw in the worst

case construction for Williams’s Heapsort. The total Cr cost of steps AB(7, 4i; d) and

BA(4i, 4ii; d) is bounded below by:

kf2-1r p 7 p—1
> [}:(QZ*W ~ton)(n - 6k) 4 3 (22kt2at1 _y 2n)(n - 6!:)]

a=] L[ij=] t=]
kf2—1rp—2 p=2
>), [2(22“20 —i-n)(n—6k)+)y (2%H2at1 _ 2n)(n — Gk)]
a=1 Li=] 1=1

= %ng N + O(Nloglog N).

The last step of this manipulation follows from the equations worked out in the worst
case of Cw for Williams’s Heapsort. Adding these two bounds gives an asymptotic

CF cost of SNigh + O(Nloglog N) for the construction. This concludes proof of
Theorem 4.7. O

4.6 Conclusions and Comments

There are still a few unexamined issues that must be addressed before this chapter has
achieved its purpose. First, there is the question of the sizes of the heaps constructed by
the previous four sections. Figures 4.3 and 4.9 depicted a heap in which the subheap
would have overlapped the roots of the subheaps 4, and B; had these been included
in the illustration. It was then noted that in the actual constructions. the heaps in
question should be large enough that such overlap never occurs. In all constructions,
the variable k was defined to equal 2['1-%17, where the number of keys was N = 2n _ 1
In the construction that demonstrated the best and worst behaviors of Williams'’s and
Floyd’s Heapsorts respectively, the top 3k levels had to be reserved for C and D while
the bottom 3% levels had to be reserved for the 4; and B;. Since these subheaps thus
take up 6k levels, overlap can be avoided only if 6k > n where n js the height of the
heap. This Inequality and the e‘qua,tion that defines k imply that, for this construction,
7 must be at least 36. The two constructions that demonstrate the worst and best

behavior of Williams’s and Floyd’s Heapsorts respectively can be much smaller. They

68

The other issue that must be addressed also deals with the size of the heaps being

constructed. In particular, all three constructions assumed that the number of keys N
in the final heap was of the form 27 _ 1. It is easy to see that the constructions are
also valid for general N. The following discussion will Justify this assertion for the

construction given in Figures 4.4 and 4.5; the others follow similar lines.

Given N, let n = lg(N + 1)]. Assuming n > 36, Figures 4.4 and 4.5 specify the
construction of a heap on 27 — 1 keys. Let P be the prefix of this pulldown sequence that
constructs a hezip on N keys. It is the case that Bw(P) = %N lg N + O(N log log N)
and Cy (P) = INIgN + O(Nloglog N). This follows from two facts. First, the injtja]
2"=1_9 pulldowns of P have respective Bw and Cw costs of %2“‘1n+0(_2”‘1 logn) and
2on-Ty 4 O(2"11ogn). Second, the last & — 9n-1 + 1 pulldowns of P (that create the
truncated bottom row) have By, and Cw cost equal to LN - 2=Dn+ O(N loglog V)
and L(N — 2"~V + O(Nloglog N) respectively. This second claim results from the

following four observations about the last N — 9n-1 + 1 pulldowns in P:

e The number of keys pulled down from the A; and B; is %{N - 214 1) 4
O(max(n3, (N - 27-1 4 1)(logn/n?))); their total Bw cost is 2(N — 2»Un +

O(N loglog N) as desired.

e Although these pulldowns are from the side of the heap with low Cw cost, they
still have Cy cost at least 1—(]\" - 271 1)Ig(N — on-1 + 1)+ O(N]oglog N)
which equals 1(V - 2n=Uyp 4 O(Nloglog V).

* When a heap is constructed on 2" —1 keys, the tota] Bw cost of pulldowns from C
and D is O(2"log n)=0(N loglog NV). It follows that when creating the truncated

bottom row of H(P), the By cost of pulldowns from ¢ and D is O(N loglog N).

* Likewise, the Cy cost of pulldowns from C and D is O(N loglog NV).

69

In conclusion, for arbitrary N sufficiently large, the previous four sections have

shown how to construct heaps H with the following costs:

Bw(H)=1iNlgN + O(N loglog V)
Bw(H)= NlgN + O(N)

Br(H)

Brp(H) = O(N)
iNlg N + O(Nloglog V)

C'W(H) =
Cw(H)=
Cr(H) =
Cr(H)=

IN1gN + O(Nloglog N)
2N1gN + O(Nloglog N)
N1g N + O(Nloglog N)
$NIgN + O(Nloglog V)

Chapter 5

Conclusions and Related Work

The previous four chapters presented technical results that count instruction executions
by Williams’s and Floyd’s versions of Heapsort. This chapter concludes the thesis by

applying these results and establishing the research context into which they fall.

5.1 Summary and Applications

Since this chapter puts the results of the previous chapters into perspective, the best
place to begin is with a concise summary of those results. The following table summa-

rizes the bounds that have been proved on the cost of heaps relative to Williams’s and

Floyd’s Heapsorts:

By Cost Cw Cost Br cost Cr cost
Best Case: ~INlgN ~ INlgN O(N) ~iNIgN
Average Case: ~NlgN ~ %N lg N O(N) ~ %ng N
Worst Case: ~ NlgN ~ %NIg N~ %N IgN ~ g-ng N

By the first four parts of Lemma 2.1, the values specified for Bw, Cw, Br, and Cr

describe equally well the values of Bw, Cw, Br, and Cr respectively,

Now that these parameters are known, it is possible to perform a detailed analysis

of Heapsort in the manner of Knuth. Fix an assembly level implementation of either

il

version of Heapsort. For any given instruction in thijs implementation, it is possible
to determine how many times the instruction is executed. Assuming a simple machine
where each instruction takes a fixed amount of time to execute, it is easy to figure
the asymptotic running time of the implementation; all one has to do is multiply the
execution time of an instruction by the number of times it is executed, and sum over

all instructions in the implementation.

Real computers complicate this model somewhat. Code is typically written in a
high level language; compilers can map each line of code to several instructions, not
all of which may be executed the same number of times. Interrupts cause additional
overhead to be associated with code execution. Even in the absence of interrupts,
pipelining invalidates the assumption that total execution time is a linear combination
of individual instruction execution times. Also, caching and virtual memory introduce

variable memory access times.

Even in the face of these complications, however, the detailed analysis conducted
by this thesis is a valuable predictor of an algorithm’s performance. The techniques
of analysis outlined above are as applicable to assembly code generated by a compiler
as to assembly code generated by hand. Some of the behavior caused by pipelining
can also be predicted by the results of this thesis. For example, a pipelined processor
may predict that branch instructions are taken, and begin executing instructions at
the target of a branch before the branch condition has been evaluated. In this case, it
takes less time to execute a branch instruction when the branch is taken than when the
branch is not taken; restarting the pipeline contributes pipeline latency to the execution
time of an untaken branch, The results of this thesis can deal with such complications
since they predict the frequency with which each branch is taken. The problems raised
by interrupts and variable Inemory access times are more properly classified as systems

questions than as questions in the analysis of algorithms.

The values determined in the preceding two chapters will now be applied to a specific
implementation of Heapsort. In particular, By and Cyy are essentially the same as the

quantities that Knuth [18] calls B and C respectively, so they can be applied to Knuth'’s

72

MIX implementation of Williams’s Heapsort. Knuth gives the following formula for the

running time in MIX units of hig implementation of Heapsort:
TA+14B +4C + 20N — 2D + 15| NV/2| — 28

where 4 and D are always O(N). Plugging in Cw for C and Bw for B, yields the

following asymptotic running times for Knuth’s MIX implementation:

® ~8NlgN units in the best case.
* ~16Nlg N units in the average case.

* ~17Nlg N units in the worst case.

On the one hand, there is nothing shocking about these results. Knuth found empirically
that the average case of his implementation required 16 Nlg N + 0.2N units, and noted
that “Heapsort has the Interesting property that its worst case jsn’t much worse than
the average.” The results above certainly reflect these observations. On the other hand,
this presentation is the first rigorous statement of these facts. It is also possible now to
answer Knuth’s exercise (5.2.3.30) which asks whether C (= Cy) differs from its average
case, and if so, by how much. In the absence of the bounds above, Knuth had to give
a conservative bound of 18V UgNJ + 38N units on the maximum running time of hig

implementation.

5.2 Other work on Heapsort

It was mentioned earlier that the bounds that are presented here are the first bounds of
their kind to be accompanied by proof. This does not imply that no research has been
done on Heapsort. Papers have been published approaching Heapsort from several an-

gles, ranging from rigorous bounds on small parts of the Heapsort process to analyizing

Recall from Chapter 2 that & : Hy — Hy_, is the map cofresponding to the effects
of one iteration of the main loop of Heapsort. Recall also that any heap in Hy_; can be
transformed by ! into exactly AC|N/2]] distinct heaps in Hy. This means that P
does not map Ry to Ry_1; ®(Rn) takes on the value of each element F € Hpn_; with
probability proportional to the value of A[[N/2]1in H. Put simply, Heapsort does not
preserve uniformity. Doberkat [9] acknowledges this fact and then proceeds to analyze
the expected number of comparisons and data movements required when Williams's
Heapsort performs the first iteration of its main loop. The primary results of [9] are
that given Ry, where N = 27 it is expected that the first iteration of the main loop
of Williams’s Heapsort will perform n — 1+ o(1) data movements and 2n — 1 + o(1)
comparisons when moving a into place. Doberkat’s methods assume that the main loop
of Heapsort operates on a uniformly generated heap, so they don’t work past the first

iteration.

Doberkat’s result falls short of a complete analysis of Heapsort. Carlsson [3] took a
similar approach and got a bit further. Carlsson first obtained bounds on the expected
number of comparisons that are performed during a single iteration of the main loop of
Floyd’s Heapsort, operating on Ry for any size N. Carlsson then made the assumption,
based on empirical evidence and plausibility arguments, that a single iteration of the
main loop of Heapsort makes at least as many comparisons when applied to Ry as it
does when applied to the heap ®M-N(R;/) for M > N. Once this assumption is made,
the average case analysis of Heapsort becomes much simpler. Carlsson could prove that
the expected number of comparisons required by Floyd’s Heapsort to sort Ry is at most
NlgN — 98N + O(log N). Wegener [26] makes more assumptions and comes up with
a bound of NlgN — 1.26 N + O(log N, which supports both his empirical results and
those of [3].

The authors of the papers discussed in the previous paragraph claim that these
results demonstrate that Floyd’s Heapsort is faster than Quicksort [26], or even the “the
fastest in-place sorting algorithm. [3]” These claims may seem a bit dubious since they

rest upon unproved assumptions and judge the efficiency of an algorithm on the basis of

74

comparisons alone. Nonetheless, they point out one of the few Temaining open questions

concerning Heapsort. Theorem 3.1 proved that on the average, Floyd’s Heapsort does
indeed require NlgN + O(N) comparisons when sorting Ry, but the constant under
the Big Oh is rather large (essentially 9). Munro [20] has shown how to simplify the
argument of Theorem 3.1 while reducing the constant under the Big Ok to at most
about 5. It would be nice to see Tigorous arguments that further reduce this constant

to the range of the results in the previous paragraph.

Most results on Heapsort beyond those that have been discussed so far can be
described as new variants of the algorithm. For example, Carlsson [4] developed a
variant on Floyd’s Heapsort that finds a path to the bottom of the heap, as before, and
then does a binary search on the path to find the correct position for a. This guarantees
& worst case of Nlg N + Nlglg N + O(N) comparisons. On a similar note, Xunrang
and Yuzhang [29] have modified Floyd’s Heapsort to find a path 2/3 of the way down
the heap; at this point a either needs to go farther down or back up. If a must go
farther down, the path is continued in the manner of Williams’s Heapsort with two
comparisons per level; if it must 0 up, it is inserted by linear insertion into the path
segment that has already been found. This guarantees at most (4/3)NVlg N comparisons
in the worst case. An earlier paper by Gonnet and Munro [16] supersedes both of these
results by modifying Floyd’s Heapsort as follows. A path is found to within Iglg N of
the bottom of the heap. If a needs to g0 back up, binary insertion can find its place
in this path in lglg N comparisons. If a must farther down the heap, this procedure is
repeated recursively. This procedure sorts a list using at most N lg N+ N log*N+0O(N)
comparisons in the worst case., Also presented in [16] is a related adversary argument
that demonstrates that in the worst case, at least Ig N + log *IV + O(1) comparisons

must be performed when fixing a heap after deletion of its root.

Other variants on Heapsort have been proposed. For example, Knuth [18], exercise
(5.2.3.28), suggests that sorting with ternary heaps could yield increased efficiency.
Carlsson proposed “scattering the leaves” of a heap; that is, the children of node i

become 7 + ¢ and t + 2a where ¢ = olled) | This distributes the bottom level of a

-1
o

[——

complete tree to ensure that as few nodes as possible have siblings. The result is to

eliminate a few key comparisons that occur at the bottom of the heap thereby reducing
the number of comparisons performed by a small linear quantity. McDiarmid and
Reed [19] have modified Floyd’s Heapsort to keep track of comparisons performed when

finding the path of largest children to the bottom of the heap. Sometimes the key a

the disadvantage of requiring additional storage, Wegener [27] has shown by amortized

analysis that it never performs more than N IgN +1.1N comparisons.

5.3 Work on Heap Building

In the previous section. the last paper to be discussed [19] was actually a paper on

heap building, not properly on Heapsort. In fact, research on heap building has been
concerning heap building, including the analysis of makeheap from Chapter 1.

5.3.1 Floyd’s Heap Building Algorithm

The best known heap building algorithm is the one that was proposed by Floyd [13]
and which forms the basis for makeheap in Chapter 1. As was described earlier, this
method takes two heap-ordered subtrees with a common parent a and merges them
to form a single heap-ordered tree by moving a down the heap in the manner of the
main loop of Heapsort. AIthoﬁgh makeheap in Chapter 1 uses the main loop of Floyd’s
Heapsort to move a into position, Floyd’s original presentation was based on the majn
loop of Williams’s Heapsort. Unless otherwise noted, all further references to Floyd’s

heap building algorithm will assume the use of the main loop of Williams’s Heapsort.

76

Knuth (18] performed first analysis of Floyd’s heap building algorithm. Knuth ysed

basic combinatorial arguments to determine that 0.7440N — L3InN closely approxi-
mates the average number of data movements performed when building a heap from Py
where N = 2" _ 1, Knuth also gave values from which the expected number of compar-
isons can be determined to be about 1.8814N - 2.61n &V, Doberkat [7] used a continuous
model to duplicate Knuth’s figure for the number of data movements, but erred when
estimating the expected number of comparisons. Later, Doberkat [10] used generating
functions to obtain bounds that are more accurate and precise. Doberkat computed the

expectation and variance of the number of comparisons and interchanges when building

a heap on NV = 9n _ 1 keys. These results are summarized below:

Expected Data Movements:

. n n
(al-’rag-—.?)i\f-—n+a1+a2—ﬁ+o<ﬁ)

Data Movement Variance:
i n?
(2-)N - a4 + IV +F O(Q—n)
Expected Comparisons:
2 n
(a1 + 2a, -2_)N-2n+a; +2a;+ 1~ 3_%+O(K‘:)
4 P4 |
Comparison Variance:

e 9 « 7 n? n?y\
(4&3-40&1—a2~—§-+;)N+4a3~4Q1—ag-——zi-{-‘zl—-rn-{-ﬁ—j—\;—f—o(é;)
where
00 1 oo 1
a12221“1:16066901 Q2:Zm:1_13‘338{_”
=1 =1 \
= iQi'H _ o ?:2:'+1(2i+1 +1 ai
QB:’;_—_-——(2i+]—1)2 "—'1.308543[... Q42;W:1,;38;828'“

Doberkat also proved that for any N, Floyd’s heap building algorithm expects to perform
(@1 +a; —2)N + O(log N') comparisons and (@1 + 2a; - 2)N + O(log V) exchanges to

build a heap from Py

The version of Floyd’s heap building algorithm that was presented as makeheap
in Chapter 1 has also beeg analyzed. McDiarmid and Reed [19], Carlsson [3], and

Wegener [26] have al] determined that 1.65N comparisons are expected to be performed

7T

when Floyd’s heap building algorithm uses the main loop of Floyd’s Heapsort to build

a heap from Py.

5.3.2 Williams’s Heap Building Algorithm

Another well known heap building algorithm is the one that was proposed by Williams
in the paper in which Heapsort was first presented [28]. Williams’s method works by
repeatedly inserting new keys into a heap. Given a heap on N — 1 keys in the first
N — 1 positions of A[1. ..N1, a new key can be added as follows. First place the new
key in position ALN]. Then repeatedly swap the new key with its parent until it either
becomes smaller than its parent or reaches the root. The result is a heap on N keys, It
1s clear that, given N keys in A[1.. -1, a heap can be built from them by considering

A[1] to be a heap on 1 key and repeatedly inserting the remaining keys.

Williams’s heap building algorithm has two problems. The first is that it runs ip
~ Nlg N time in the worst case, If, for example, the keys are presented to the algorithm
In increasing order, each key in succession will have to travel to the root of the heap.
The second problem is that it does not map Py to Rpy. This greatly complicates the

analysis of this algorithm. Nomnetheless, it has been fairly thoroughly analyzed.

The first step toward the analysis of Williams’s heap building algorithm was to
show the effect of inserting a random key into a random heap. Porter and Simon [21]
showed that given Py where N = 2" — 1, if a heap is built from the first ¥ — 1
keys by Floyd’s heap building algorithm, then inserting the N’th key in the manner of
Williams’s algorithm is expected to require 1 —n/N data movements. They also showed
for N = 2™ that the expected number of data movements approaches &y when the N’th
key is inserted in this manner, where a; is the constant used by Knuth and Doberkat
in their analyses of Floyd’s heap building algorithm. Porter and Simon also showed
that the insertion of a random key into a random heap in this manner is never expected
to take more than a; data movements for any heap size. Doberkat [8] extends these

results, presenting in closed form both the expectation and variance of the number

78

S e e

of comparisons required to insert the N’th key when N = 9n _ 1; tight asymptotic
eXpressions are also given to bound the expectation and variance of the number of

comparisons when N = 927,

The work discussed in the previous paragraph has a major drawback. Because .
Williams’s heap building algorithm does not map Py to Ry, insertion into a random
heap doesn’t really say much about Williams’s heap building algorithm. Porter and
Simon and Doberkat recognized this problem but were unable to overcome it. Bollobas
and Simon [2] presented the first arguments that truly bound the performance of heap
building by repeated insertion. They concentrated on heaps with sizes 2 — 1 and
examined the effect on the average key value in any given level of the heap each time a
new level is added to the heap. From bounds on the expected size of keys in each level
they determined how high each key is expected to rise as a new level is added to the
heap. This yields a bound of ¢N + o[), % = T2, /s 1), on the number of data
movements required when a heap on N = 27 _] keys is constructed by Williams’s heap

building algorithm.

Frieze [14] went somewhat further than Bollobas and Simon, giving a simpler proof
of the results in (2], sketching how these results can be applied to d-ary heaps, and giving
a non-trivial bound on the probability that a random permutation causes Williams’s
heap building algorithm to make substantially more than the expected number of data
movements. Frieze also proved a weak but non-trivial lower bound of (3/4)N + o(N)

on the expected number of data movements.

Hayward and McDiarmid [17] have improved upon all of these results. Their main
theorem states that there exists a comstant w, 1.2778 < w < 1.2995 such that when
Williams’s heap building algorithm is applied to Py, the expected number of data
movements performed approaches Nw as N becomes large. This is not only a substaﬂti al
improvement of both the upper and lower bounds proved by (2] and [14], this bound
also applies to general N and not just to NV of the form 2/ — 1. The proof given for these
bounds entailed two parts. First, it was shown that when a key is inserted, the number

of data movements required is expected to increase with the number of levels in the heap,

79

eventually approaching a constant w. Second, an algorithm was developed to compute
the expected number of data movements when the sth key is inserted; the output of this
algorithm for large heaps was then used to compute bounds on w. Also proved ip [17] is
that given € > 0, the probability that Williams’s heap building algorithm performs more
than N(w + ¢) data movements to build a heap from Py is o(e“‘N/l"g*N). Together,

these results form a relatively complete analysis of Williams's heap building routine,

5.3.3 Bounds

So far, this section has concentrated on the analysis of the two classical heap building
algorithms. The two algorithms that have been discussed are both practical and efficient
ways to build a heap from a random list. Oné might still ask, however, how much one
can improve upon the number of comparisons performed by these algorithms in the

average and worst cases.

The heap building algorithm with the best known worst case performance is due
to Gonnet and Munro [16]. Given a list of keys, this algorithm first constructs heap
ordered binomial trees which are then “converted” to ordinary heaps. The algorithm
can build a heap on N keys for arbitrary N in at most 1.625N + O(log*N1g N) com-
parisons. Both [16] and [5] conjecture that this algorithm is optimal in the worst case.
According to [16] and a correction in [19], this algorithm can be modified to require
(177/112)N + o(N) comparisons in the average case. McDiarmid and Reed [19] have
presented a heap building algorithm that achieves a better average case comparison
count of about 1.521288N. Recall from the end of Section 5.2 that the main loop of
Floyd’s Heapsort can be modified to keep track of extra comparisons at the bottom
of the heap. McDiarmid and Reed’s heap building algorithm is what results when
Floyd’s heap building algorithm employs this modified main loop of Heapsort — essen-
tially makeheap with a memory. McDiarmid and Reed have con Jectured that this heap

building algorithm is asymptotically optimal in the average case.

On the lower bound side, Gonnet and Munro [16] used straightforward informa.

80

e

tion theoretic arguments to show that, in both the average and worst cases, at least

(1.3644...)N + O(N') comparisons are required to build a heap. This resylt has recently
been improved upon by Carlsson and Chen (5], who presented aq adversary argument
to prove that, in the worst case, at least (1.5)2" —pn— 9 comparisons must be performed

to build a heap on 27 — | keys.

This leaves a gap between the best known algorithms for building heaps and lower
bounds on the number of comparisons required in both the worst and average cases. To

conclude, then, this leaves three basic open problems concerning Heapsort;:

1. Tighten the error estimates for Floyd’s and Williams’s Heapsorts. The leading
terms of the important quantities are known, but empirical evidence suggests that

the error bounds are still somewhat loose.

2. Determine the number of comparisons required, asymptotically, to construct a

heap in the worst and average cases.

3. Further refine the, already rather tight, bounds on the expected performance of

Williams’s heap building algorithm.

81

Appendix A

LEMMA 3.2: Let ay, as, and a3 be real variables and let P, g, and r be positive real

constants. Suppose that the constraints:
ay+ay+az=p (r=1)a;+ (r)az+ (r+1az = ¢ a;>.0,(i=1,2,3)

are satisfied by some assignment to the a; where at least two a; are positive. Then
ay'aj?a$® is minimized subject to these constraints by exactly one assignment to the a;
for which all the a; are positive; this assignment satisfies the relation ai/ay = ay/as.

(af* is assumed to equal 1 when a; = 0.)

Proof: Let (z1,z2,23) be an assignment to the a; that satisfies the constraints with
a; > 0 for at least two ¢. Then all assignments to the a; that satisfy the constraints lie
along the line (21 4+ b, 25 — 2b, 23 + b). The goal is thus to describe the minimum of the
function f(b) = (z1 +b)=1%0) (2, — 26)(22=28) (7, 4 b)(2+8) where b ranges in the interval
[max{—z1, —z3},22/2]. This minimum may occur either at one of the endpoints (where
0° is taken to equal 1), or in the open interval inbetween. The minimum of f in the

open interval is found by minimizing the logarithm of f, namely:
9(b) = (21 + b)In(z1 + b) + (22 — 2b) In(z3 — 2b) + (23 + b)In(zs + b).
The first derivative of g is:

g’(b) =] +1D(21 + b) -2- 2111(.’232 - 26) + 1+ 111(3?3 + b)

82

Setting ¢/(b) = 0 and exXponentiating the result gives:

b 29— 2b
b i) (A.1)
To — 2b T3+ b
Expression (A.1) establishes the desired relation a1/a; = as/az at minimality, assuming
that (A.1) is satisfied for some b in the appropriate interval, and that it indeed Tepresents

a minimum.

Clearly, there is a b in (max{—z1, —z;}, Z3/2) that satisfies (A.1) since (z; +0)(z3+6)
is zero at the left endpoint and positive at the right, while (z, — 2b)? is positive at the
left endpoint and zero at the right. This further implies that (A.1) is satisfied by a

unique b in this interval since (A.1) is a quadratic.

Next it must be shown that 9(b) is minimized when b satisfies (A.1). The second

derivative of g is:
1 4 1

$1+6+I2—2b+$3+b>

g"(b) = 0.

Since f is continuous and approaches limiting values at its endpoints, it follows that
the value of b in (max{—zl,—a:S},z:g/Q) that minimizes f is a minimum for f in the

closed interval as well. O

83

U et SR

Bibliography

(1] Afred V. Aho, John E. Hoperoft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, MA, 1974,

[2] Béla Bollob4s and Istvan Simon. Repeated random insertion into a priority queue.
Journal of Algorithms, 6:466-477, 1985,

[3] Svante Carlsson. Average-case results on Heapsort. BIT, 27:2-17, 1987.

[4] Svante Carlsson. A variant of Heapsort with almost optimal number of comparisons.
Information Procesing Letters, 24:247-250, 1987,

[5] Svante Carlsson and Jingsen Chen. The complexity of heaps. In Third Annual
ACM-SIAM Symposium on Discrete Algorithms, Pages 393-402, 1992,

[6] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Press, Cambridge, MA, 1990.

[7] Ernst-Erich Doberkat. Some observations on the average behavior of Heapsort (pre-
liminary report). In 21st Annual Symposium on Foudations of Computer Science,
pages 229-237. 1980.

[8] Ernst-Erich Doberkat. Inserting a new element into 2 heap. BIT, 21:255-269, 1981.

[9] Ernst-Erich Doberkat, Deleting the root of a heap. Acta Informatica, 17:245-265,
1982.

(10] Ernst-Erich Doberkat. An average case analysis of Floyd’s algorithm to construct
heaps. Injormation and Control, 61:114-131, 1984.

[11] R. Fleischer. A tight lower bound for the worst case of Bottom-Up-Heapsort.
Technical Report MPI-I-91-104, Max-Planck-Institut fiir Informatik, 1991.

[12] R. Fleischer, B. Sinha, and C. Uhrig. A lower bound for the worst case of Bottom-
Up-Heapsort. Technical Report A23/90, University of Saarbriicken, 1990.

[13] Robert W. Floyd. Algorithm 245, Treesort3. Communications of the ACM, 7:701,
1964.

84

[14] Alan M. Frieze. On the random construction of heaps. Information Processing
Letters, 27:103-109, 1988.

[15] G. H. Gonnet and R. A. Baeza-Yates. Handbook of Algorithms and Data Structures.
Addison-Wesley, Reading, MA, second edition, 1991.

[16] Gaston H. Gonnet and J. Ian Munro. Heaps on heaps. SIAM Journal on Comput-
ing, 15:964-971, 1986.

[17] R. Hayward and C. J. H. McDiarmid. Average case analysis of heap building by
repeated insertion. Journal of Algorithms, 12:126-153, 1991.

[18] Donald E. Knuth. The Art of Computer Programming, Vol. 3, Sorting and Search-
ing. Addison-Wesley, Reading, MA, 1973.

{19] C. J. H. McDiarmid and B. A. Reed. Building heaps fast. Journal of Algorithms,
10:352-365, 1989.

[20] J. Ian Munro. Private Communication.

[21] Thomas Porter and Istvan Simon. Random insertion into a priority queue structure.
IEEE Transactions on Software Engineering, SE-1:292-298, 1975.

[22] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipies, The Art of Scientific Computing. Cambridge University Press,
Cambridge, 1986. '

[23] Russel Schaffer and Robert Sedgewick. The analysis of Heapsort. Technical Report
CS-TR-330-91, Princeton University, Department of Computer Science, 1991.

[24] Robert Sedgewick. Private Communication.

[25] Robert Sedgewick. Algorithms, Second Edition. Addison-Wesley, Reading, MA,
1988.

[26] Ingo Wegener. Bottom-Up-Heap Sort, a new variant of heap sort beating on average
Quick Sort (if n is not very small). In MFCS 1990, Lecture Notes in Computer
Science 452, pages 516-522, 1990.

[27] Ingo Wegener. The worst case cromplexity of McDiarmid and Reed’s variant of
Bottom-Up-Heap Sort is less than nlogn + 1.1.n. In STACS 1991, Lecture Notes
in Computer Science /80, pages 137-147, 1991.

[28] J. W. J. Williams. Algorithm 232, Heapsort. Communications of the ACM, 7:347-
348, 1964.

[29] G. Xunrang and Z. Yuzhang. A new HEAPSORT algorithm and the analysis of its
complexity. The Computer Journal, 33:281-282, 1990.

85

