LAYOUT OF ROOTED TREES

János Pach
Jenő Törőcsik

CS-TR-369-92
February 1992
Layout of rooted trees

János Pach*
Hungarian Academy of Sciences and
Courant Institute, New York University

Jenő Törőcsik
Eötvös University, Budapest and
Department of Computer Science, Princeton University

Abstract. Let S be a set of n points in the plane in general position. The depth of a point $p \in S$ is the minimum number of elements of S in a closed halfplane containing p. We prove that, if p is not the deepest point of S or the depth of p is at most $\frac{n}{3} + 1$, then any tree with n vertices and with root r can be straight-line embedded on S so that r is mapped onto p. This gives a partial answer to a problem raised by Micha Perles.

* Research supported by Hungarian National Foundation for Scientific Research Grant OTKA-1412 and NSF Grant CCR-89-01484
Let \(S \) be a set of \(n \) points in the plane in general position, i.e., no 3 of them are on the same line. We say that a graph \(G = (V, E) \) with \(n \) vertices can be laid down (or can be straight-line embedded) onto \(S \), if there exists a one-to-one mapping \(\phi : V \to S \) that takes the edges of \(G \) into non-crossing straight-line segments, i.e.,

\[
(\phi(u_1), \phi(v_1)) \cap (\phi(u_2), \phi(v_2)) = \emptyset \quad \text{for any } u_1v_1 \neq u_2v_2 \in E.
\]

It is easy to see that any tree \(T \) (and, in fact, any outerplanar graph) can be laid down onto any set \(S \) with the same number of points (cf. [FPP], [GMPP]). Micha Perles [P] raised the question whether one can arbitrarily specify the image of the root under such an embedding. The aim of this note is to give a partial answer to this question.

The depth of an element \(p \in S \) is defined as the minimum number of elements of \(S \) in a closed halfplane containing \(p \). A point \(p \in S \) is a vertex of the convex hull if and only if its depth \(d(p) = 1 \).

Theorem. Let \(T \) be a tree with \(n \) vertices and with root \(r \), and let \(S \) be a set with \(n \) points in the plane in general position. Suppose that some point \(p \in S \) satisfies at least one of the following conditions:

(i) \(p \) is not the unique deepest point of \(S \), or
(ii) the depth of \(p \), \(d(p) \leq \frac{n}{3} + 1 \).

Then there is a straight-line embedding \(\phi \) of \(T \) onto \(S \) such that \(\phi(r) = p \).

For any point \(x \) of \(T \), let \(v^0(x) = x, v^1(x), ..., v^k(x) = r \) denote the vertices of the path connecting \(x \) to \(r \) in \(T \). \(v^1(x) \) is called the father of \(x \), and \(x \) is the son of \(v^1(x) \). The set of all vertices \(x \) for which the path connecting \(x \) to \(r \) passes through \(y \) induces a subtree \(T(y) \subseteq T \). The vertex \(y \) is called the root of \(T(y) \).

Algorithm 1. The following trivial algorithm finds a straight-line embedding \(\phi \) of \(T \) onto \(S \) with \(\phi(r) = p \) in the special case when \(p \) is a vertex of the convex hull of \(S \).

Enumerate the points of \(S \setminus \{p\} \) by \(p_1, p_2, ..., p_{n-1} \) in clockwise order around \(p \). Let \(r_1, r_2, .. \) denote the sons of \(r \) in \(T \), and let \(|T(r_j)| \) be the number of vertices of the subtree \(T(r_j) \). (See fig. 1.)

Let \(S_i = \{p_k \mid \Sigma_{j<i}|T(r_j)| < k \leq \Sigma_{j\leq i}|T(r_j)|\} \), and find a point \(p_{ki} \in S_i \) nearest to \(p \) (i=1,2,...).

Construct recursively a straight-line embedding \(\phi \) of the subtree \(T(r_i) \) onto \(S_i \) with \(\phi(r_i) = p_{ki} \) (i = 1, 2, ...) and set \(\phi(r) = p \).
Algorithm 2. Let p and q be two consecutive vertices of the convex hull of S, and let x be any vertex of T different from the root r. The following slightly modified version of Algorithm 1 enables us to construct a straight-line embedding ϕ of T onto S with $\phi(r) = p$ and $\phi(x) = q$.

Step 0. Let $p_1, p_2, ..., p_{n-1}$ denote the elements of $S - \{q\}$ listed (say) in clockwise order around q, and assume by symmetry that $p_{n-1} = p$.
Use Algorithm 1 to find a straight-line embedding ϕ of $T(x)$ onto the point set \{p_1, p_2, ..., $p_{|T(x)|-1}, q\}$, such that $\phi(x) = q$. (See fig. 2.)
Let $v_0^i(x) = x, v_1^i(x), ..., v_k^i(x) = r$ denote the vertices of the path connecting x to r in T.

Step i. (1 $\leq i < k$) Let $S_i = S - \phi(T(v_{i-1}^i(x)))$, and let q_i be the next vertex of the convex hull of S_i that comes after p in the clockwise order. Renumber the points of $S_i - \{q_i\}$ by $p_1, p_2, ..., p_{|S_i| - 1} = p$ in clockwise order around q_i.
Use Algorithm 1 to find a straight-line embedding ϕ of $T_i = T(v_i^i(x)) - T(v_{i-1}^i(x))$ onto the point set \{p_1, p_2, ..., $p_{|T_i| - 1}, q_i\}$ such that $\phi(v_i^i(x)) = q_i$.

Step k. Use Algorithm 1 to find a straight-line embedding ϕ of $T_k = T - T(v_{k-1}^k(x))$ onto S_k with $\phi(r) = p$.

Figure 1.

\[\text{Figure 2.}\]
Now we are in the position to prove our main result.

Proof of Theorem. Let us build the subtree $T' \subseteq T$ from $T' = r$ by repeating the following step as long as possible.

If $T - T'$ consists of at least two trees, then let T_{min} denote one of them having the smallest number of vertices, and

if $|T'| + |T_{min}| \leq d(p)$, then set $T' = T' + T_{min}$
else stop.

If $T - T'$ consists of one tree, then let x denote its root, and

if $|T'| + 1 \leq d(p)$, then set $T' = T' + x$
else stop.

After the above process has come to an end,

if $T - T'$ consists of at least two trees, then set $T'' = T_{min}$
if $T - T'$ consists of one tree, then set $T'' = \emptyset$.

Furthermore, let F denote the forest $T - |T'| - |T''|$. (See fig. 3.)

![Figure 3.](image)

Note that the decomposition $T = T' \cup T'' \cup F$ is usually not uniquely determined, but it can be fixed arbitrarily in the rest of the argument. It follows from the above construction that $|T'| \leq d(p)$, $|T'| + |T''| \geq d(p)$, $|T''| \leq |F|$, thus $|F| = |T| - (|T'| + |T''|) \leq n - d(p)$. Observe that T'' and each component of F are connected to the same vertex c of T', which is called the center of T.

Case 1. $|F| \geq d(p) - 1.$
Then $d(p) \leq |T'| + |T''| \leq n - d(p) + 1$.

By the definition of $d(p)$, there exists a closed halfplane H containing p on its boundary such that $|H \cap S| = d(p)$. Letting \overline{H} denote the closure of the complement of H, we have $|\overline{H} \cap S| = n - d(p) + 1$.
Suppose first that \(d(p) < |T'| + |T''| \). Then by a suitable rotation of \(H \), we obtain a closed halfplane \(H_{pq} \) with boundary line \(pq \) such that \(q \in S \) and \(|H_{pq} \cap S| = |T'| + |T''| \). Cut \(H_{pq} \) into two convex cones \(C', C'' \) whose apices are at \(q \) so that they have no interior points in common, \(C' \cup C'' = H_{pq}, |C' \cap S| = |T'| \) and \(|C'' \cap S| = |T''| + 1 \). By Algorithm 2, we can find a straight-line embedding \(\phi \) of \(T' \) onto \(C' \cap S \) with \(\phi(r) = p \) and \(\phi(c) = q \). Using Algorithm 1, \(T'' \cup c \) and \(F \cup c \) can be laid down onto \(C'' \cap S \) and \((H_{pq} \cap S) - \{p\} \), respectively, so that \(c \) is mapped onto \(q \). (Fig. 4.)

Suppose next, that \(d(p) = |T'| + |T''| \). Then \(T'' = \emptyset \), and \(F \) consists of a single tree whose root is denoted by \(c' \). Rotating \(H \) around \(p \), now we obtain a closed halfplane \(H_{pq} \) such that \(q \in S \) and \(|H_{pq} \cap S| = d(p) + 1 = |T'| + 1 \). Using Algorithm 2, we can find a straight-line embedding \(\phi \) of \(T' \cup c' \) onto \(H_{pq} \cap S \) with \(\phi(r) = p \) and \(\phi(c') = q \). This can be extended to a straight-line embedding of \(T \) by laying down \(F \) onto \((H_{pq} \cap S) - \{p\} \).

\[\overline{H_{pq}} \]
\[H_{pq} \]
\[q \]
\[p \]
\[C' \]
\[C'' \]

Figure 4.

Case 2. \(|F| < d(p) - 1 \).

Assume first that condition (ii) of the theorem holds, i.e., \(d(p) \leq \frac{n}{3} + 1 \). Then \(|T''| \leq |F| \leq d(p) - 2 \) and \(|T'| \leq d(p) \), therefore \(|T'| + |T''| + |F| \leq 3d(p) - 4 < n \), which is a contradiction.

So we can suppose that (i) is true, i.e., there exists a point \(q \neq p \) in \(S \) with \(d(q) \geq d(p) \). Let \(H_{pq} \) and \(\overline{H_{pq}} \) denote the two closed halfplanes bounded by the line \(pq \). Obviously, \(|H_{pq} \cap S|, |\overline{H_{pq}} \cap S| \geq d(q) \). In view of the fact that \(|T'| \leq d(p) \leq d(q) \) and \(|T''| \leq |F| \leq d(p) - 2 \leq d(q) - 2 \), we can find two convex cones \(C' \subseteq H_{pq}, C'' \subseteq \overline{H_{pq}} \) whose intersection is the ray \(qP \) so that \(|C' \cap S| = |T'| \) and \(|C'' \cap S| = |T''| + 2 \). (See Fig. 5.) Hence, by Algorithms 2 and 1, we can get a straight-line embedding \(\phi \) of \(T' \) and \(T'' \) onto \(C' \cap S \) and \(C'' \cap S \), respectively, with \(\phi(r) = p \) and \(\phi(c) = q \).

On the other hand, \(|(\mathbb{R}^2 - (C \cup C'')) \cap S| = |F| \leq d(p) - 2 \leq d(q) - 2 \), hence \((\mathbb{R}^2 - (C' \cup C'')) \) is either convex or it contains an open convex cone covering all points of \((\mathbb{R}^2 - (C' \cup C'')) \cap S \). That is, \(\phi \) can be extended to a straight-line embedding of \(T \) by laying down \(F \) onto \((\mathbb{R}^2 - (C' \cup C'')) \cap S \). This completes the proof. \(\square \)
An immediate consequence of our theorem is the following.

Corollary. Let T be a tree of n vertices with root r, let S be a set of n points in the plane in general position, $p_1, p_2 \in S$. Then T can be laid down onto S so that the image of r is either p_1 or p_2.

□

Remarks.

1. In fact, the above proof shows that the Theorem remains true if we replace (i) by the somewhat weaker condition that there exists $q \in S$ with $d(q) \geq d(p) - 1$.

2. Algorithm 2 can be generalized to establish the following statement.

Proposition. Let T be a tree on n vertices, and let $v_1, v_2, ..., v_k$ be a simple path in T. Let S be a set of n points in the plane in general position, and let $p_1, p_2, ..., p_j$ ($j \leq k$) be consecutive vertices of the convex hull of S. Then for any $1 = i_1 < i_2 < ... < i_j = k$, there is a straight-line embedding ϕ of T onto S such that $\phi(v_{i_1}) = p_1, ..., \phi(v_{i_j}) = p_j$.

Time Complexity.

Algorithm 1 requires $O(n^2)$ time, since for each node r we have to solve a selection problem among the points corresponding to the subtree rooted at the father of r.

Algorithm 2 requires $O(n^2)$ time. Observe that in Step i we need to find only q_i, \{p_1, p_2, ..., p_{|T_i|-1}\} and a mapping of T_i onto them. So we have to solve a selection problem and we can do the mapping in $O(|T_i|^2)$ time using Algorithm 1.

To decide if condition (ii) of the Theorem holds and if it doesn’t then to find a point q with $d(q) \geq d(p) - 1$ takes $O\left(\frac{n^{3/2}\log^3 n}{\log^* n}\right)$ time, where $\log^* n$ denotes the iterated logarithm function. This follows from the fact that for fixed k the number of k-sets in S is $O\left(\frac{n^{3/2}}{\log^* n}\right)$ (see [PSSz], and [E] for terminology), and we can find all of them spending $O(\log^2 n)$ time on each [OL].

To decompose our tree T into $T' \cup T'' \cup F$ takes only linear time, and the suitable rotations can be done in time $O(n \log n)$.

Therefore the overall running time is $O(n^2)$. To improve the running time we should only improve Algorithm 1.
References

[P] M. Perles, Open problem proposed at the DIMACS Workshop on Arrangements, Rutgers University, 1990.