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Abstract. Let S be a set of n points in the plane in general position. The depth of a
point p € S is the minimum number of elements of S in a closed halfplane containing p.
We prove that, if p is not the deepest point of S or the depth of p is at most § + 1, then
any tree with n vertices and with root r can be straight-line embedded on S so that r is
mapped onto p. This gives a partial answer to a problem raised by Micha Perles.
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Let S be a set of n points in the plane in general position, i.e., no 3 of them are on the
same line. We say that a graph G = (V, E) with n vertices can be laid down (or can be
straight-line embedded) onto S, if there exists a one-to-one mapping ¢ : V — S that takes
the edges of G into non-crossing straight-line segments, i.e.,

((’ﬁ(ul)?q’)(vl)) n (¢(u2)=¢(v2)) =0 for any ujiv # ugvg € F.

It is easy to see that any tree T' (and, in fact, any outerplanar graph) can be laid down
onto any set S with the same number of points (cf. [FPP], [GMPP]). Micha Perles [P]
raised the question whether one can arbitrarily specify the image of the root under such
an embedding. The aim of this note is to give a partial answer to this question.

The depth of an element p € S is defined as the minimum number of elements of S in
a closed halfplane containing p. A point p € S is a vertex of the convex hull if and only if
its depth d(p) = 1.

Theorem. Let T be a tree with n vertices and with root r, and let S be a set with n points
in the plane in general position. Suppose that some point p € S satisfies at least one of the
following conditions:

(i) p is not the unique deepest point of S, or
(1i) the depth of p, d(p) < § + 1.

Then there is a straight-line embedding ¢ of T onto S such that ¢(r) = p.

For any point z of T, let v°(z) = z,v!(z),...,v*(z) = r denote the vertices of the path
connecting z to r in T. v'(z) is called the father of z, and = is the son of v!(z). The set
of all vertices z for which the path connecting x to r passes through y induces a subtree

T(y) € T. The vertex y is called the root of T'(y).

Algorithm 1. The following trivial algorithm finds a straight-line embedding ¢ of T onto
S with ¢(r) = p in the special case when p is a vertez of the convex hull of S.

Enumerate the points of S — {p} by p1,p2,...,pn—1 in clockwise order around p. Let
T1,T2,... denote the sons of r in T', and let |T'(r;)| be the number of vertices of the subtree
T(rj). (See fig. 1.)

Let S; = {px | Zj<i|T(rj)| < k < E;<i|T(r;)|}, and find a point pi; € S; nearest to p
(i=1,2,...).

Construct recursively a straight-line embedding ¢ of the subtree T(r;) onto S; with
¢(ri) = pr; (¢ =1,2,...) and set ¢(r) = p.

[m}



T(n) T(x)
Figure 1.

Algorithm 2. Let p and g be two consecutive vertices of the convez hull of S, and let
r be any vertez of T different from the root r. The following slightly modified version of
Algorithm 1 enables us to construct a straight-line embedding ¢ of T onto S with ¢(r) =p

and ¢(z) = q.

Step 0. Let p1,pa,...,pn—1 denote the elements of S — {¢q} listed (say) in clockwise
order around ¢, and assume by symmetry that p,_; = p.
Use Algorithm 1 to find a straight-line embedding ¢ of T(z) onto the point set {py, ps, ...,
P|T(z)|-1,4}, such that ¢(z) = ¢. (See fig. 2.)
Let v%(z) = z,v'(z),...,v*(z) = r denote the vertices of the path connecting = to r in 7.

Step 1. (1 <1 < k) Let S; = S — ¢(T(v'"(z))), and let ¢; be the next vertex of
the convex hull of S; that comes after p in the clockwise order. Renumber the points of
Si — {4} by p1,p2, ..., p|s;|-1 = p in clockwise order around g;.
Use Algorithm 1 to find a straight-line embedding ¢ of T; = T(v'(z)) — T(v'~!(z)) onto
the point set {p1,ps, ..., p|1;|—1, ¢i} such that ¢(vi(z)) = g;.

Step k. Use Algorithm 1 to find a straight-line embedding ¢ of T, = T — T(v¥~(z))
onto Sy with ¢(r) = p.

Figure 2.
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Now we are in the position to prove our main result.

Proof of Theorem. Let us build the subtree 7' C T from T' = r by repeating the
following step as long as possible.
If T —T' consists of at least two trees, then let T),;, denote one of them having the
smallest number of vertices, and
if  |T'| 4+ |Thmin| < d(p), then set T = T' + Tiin
else stop.
If T — T consists of one tree, then let z denote its root, and
if |T'|4+1<d(p), thenset T' =T"+=z
else stop.

After the above process has come to an end,
if T — T' consists of at least two trees, then set 7" = T,in
if T — T’ consists of one tree, then set 7" = .

Furthermore, let F' denote the forest T' — |T"| — |T"|. (See fig. 3.)

I T1< d(p)
IT1+l7"l = d(p)
| I<I| F |

Figure 3.

Note that the decomposition T' = T UT" U F is usually not uniquely determined, but it
can be fixed arbitrarily in the rest of the argument. It follows from the above construction
that [T'] < d(p), T'| + 7| > d(p), |T"| < |Fl, thus |F| = |T| — (IT'| + [T"]) < n — d(p)
Observe that T" and each component of F' are connected to the same vertex ¢ of 7", which
is called the center of T

Case 1. |F| > d(p) — 1.
Then d(p) < |T'| +|T"| < n —d(p) + 1.

By the definition of d(p), there exists a closed halfplane H containing p on its boundary
such that |[H N S| = d(p). Letting H denote the closure of the complement of H, we have
[HN S| =n—d(p)+1.



Suppose first that d(p) < |T'| 4+ |T"|. Then by a suitable rotation of H, we obtain a
closed halfplane H,, with boundary line pq such that ¢ € S and |H,, N S| = |T'| + |T"|.
Cut H,, into two convex cones C’, C" whose apices are at ¢ so that they have no interior
points in common, C'UC" = H,,, |C'NS| = |T'| and [C" N S| = |T"| + 1. By Algorithm
2, we can find a straight-line embedding ¢ of 7' onto C' N S with ¢(r) = p and ¢(c) = gq.
Using Algorithm 1, 7" U ¢ and F U ¢ can be laid down onto C" N S and (H,, N S) — {p},
respectively, so that ¢ is mapped onto ¢. (Fig. 4.)

Suppose next, that d(p) = |T'| + |T"|. Then T" = 0, and F consists of a single tree
whose root is denoted by ¢'. Rotating H around p, now we obtain a closed halfplane Hp,
such that ¢ € S and |H,, N S| = d(p) + 1 = |T’| + 1. Using Algorithm 2, we can find a
straight-line embedding ¢ of T' U ¢’ onto H,q NS with ¢(r) = p and ¢(c') = ¢q. This can
be extended to a straight-line embedding of T' by laying down F onto (H,, N S) — {p}.

Hpq

Case2. |F| < d(p) — 1.

Assume first that condition (ii) of the theorem holds, i.e., d(p) < § + 1. Then |T"| <
|F| < d(p) — 2 and |T'| < d(p), therefore |T'| + |T"| + |F| < 3d(p) — 4 < n, which is a
contradiction.

So we can suppose that (i) is true, i.e., there exists a point ¢ # p in S with d(¢) > d(p).
Let H,, and H,, denote the two closed halfplanes bounded by the line pg. Obviously,
|Hpg NS|, |Hpg N S| > d(q). In view of the fact that |T'| < d(p) < d(g) and |T"| < |F| <
d(p) — 2 < d(g) — 2, we can find two convex cones C' C H,,, C" C H,, whose intersection
is the ray gp so that |C'N S| = |T'| and |[C" N S| = |T"| + 2. (See Fig. 5.). Hence, by
Algorithms 2 and 1, we can get a straight-line embedding ¢ of 7' and 7" onto C'N S and
C" N S, respectively, with ¢(r) = p and ¢(c) = q.

On the other hand, |[(R*? — (CUC"))N S| = |F| < d(p) — 2 < d(q) — 2, hence
(R? — (C'"U C")) is either convex or it contains an open convex cone covering all points
of (RZ—(C'UC"))N S. That is, ¢ can be extended to a straight-line embedding of T by
laying down F onto (R? — (C'UC"))N S. This completes the proof.
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Figure 5.

An immediate consequence of our theorem is the following.

Corollary. Let T be a tree of n vertices with root r, let S be a set of n points in the plane
in general position, p;, p2 € S. Then T can be laid down onto S so that the image of r is
either p; or p;.

Remarks.

1. In fact, the above proof shows that the Theorem remains true if we replace (i) by the
somewhat weaker condition that there exists ¢ € § with d(q) > d(p) — 1.

2. Algorithm 2 can be generalized to establish the following statement.

Proposition. Let T be a tree on n vertices, and let vy, vq,...,vx be a simple path in T.
Let S be a set of n points in the plane in general position, and let py,pa,....,p; (J < k) be
consecutive vertices of the convex hull of S. Then for any 1 =121 <13 < ... <1; =k, there
18 a straight-line embedding ¢ of T onto S such that ¢(vi, ) = p1,..., d(vy; ) = pj.

Time Complexity.

Algorithm 1 requires O(n?) time, since for each node r we have to solve a selection
problem among the points corresponding to the subtree rooted at the father of r.

Algorithm 2 requires O(n?) time. Observe that in Step 7 we need to find only g¢;,
{p1,p2, ..., P|1;|-1} and a mapping of T; onto them. So we have to solve a selection problem
and we can do the mapping in O(|T;|?) time using Algorithm 1.

To decide if condition (ii) of the Theorem holds and if it doesn’t then to find a point ¢
with d(¢) > d(p) — 1 takes O(%ﬁ:—") time, where log™ n denotes the iterated logarithm

function. This follows from the fact that for fized k the number of k-sets in S is O(ii—ii@)
(see [PSSz], and [E] for terminology), and we can find all of them spending O(log” n) time
on each [OL].

To decompose our tree T into T' U T" U F takes only linear time, and the suitable
rotations can be done in time O(nlogn).

Therefore the overall running time is O(n?). To improve the running time we should

only improve Algorithm 1.
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