MECHANISM SIMULATION WITH CONFIGURATION
SPACES AND SIMPLE DYNAMICS

Elisha Sacks

CS-TR-367-92

March 1992

Mechanism Simulation with Configuration Spaces
and Simple Dynamics

Elisha Sacks* Leo Joskowicz
Computer Science Department IBM T.J. Watson Research Center
Princeton University P.O. Box 704
Princeton, NJ 08544 Yorktown Heights, NY 10598

March 9, 1992

Abstract

We present a practical simulation program for rigid part mechanisms, such as feed-
ers, locks, and brakes. The program performs a kinematic simulation of the behavior
produced by part contacts and input motions along with a dynamical simulation of
the behavior produced by gravity, springs, and friction. It describes the behavior in a
compact, symbolic format and with a realistic, three-dimensional animation. The pro-
gram is much more efficient than traditional simulation. It examines roughly 1/6 as
many degrees of freedom because the kinematics module eliminates the blocked ones.
It spends little time on collision detection because the kinematics module precom-
putes the configurations where parts collide. It uses a simple model of dynamics that
captures the steady-state effect of forces without the conceptual and computational
cost of dynamical simulation. We demonstrate that our simulation algorithm captures
the workings of most mechanisms by surveying 2500 mechanisms from an engineering
encyclopedia.

*This research is supported by the National Science Foundation under grant No. IRI-9008527 and by an
IBM grant.

Contents

1

Introduction
1.1 Kinematic simulationof afeeder.

Kinematic simulation

2] BEinomalion =5 s 3 w55 5 6 5 @ 9w 5 5 Mom ¢ 5 8 M A 2 2 KW Bk X B W
22 BIulabion « o & « s vv 5 5 8 5 S 5 8 wwE & x B w0 F koA EE w5 3w w o
Dynamics
3] Simpledynamics s« v ow s s s 5w 5 55 p@w s 68 vwm e 8w awmm s € x e W
32 Coverane ; o s 5 5 s 5 § 5 @4 % 3 5 MmE 4 5 % @G @ > wm K ¥ X6
Implementation
4.1 Modeling and subassembly analysis
4.2 Kinematic simulation with simple dynamics
4.2.1 Region diagram construetion . . s v v v 5 « v wm o o s wwm o o v 0w
4.3 Arimalion . o 2 5 s 5505 2 5 puw E 55 PEw £ 7 s www w5 mmw w ¥ v A W
4.4 The feederrevisited
45 Program extensions « o ¢ s s s o m v 53 wmw v v 2 n @ « 5w Bmw vy o
Examples

Beyond simple dynamics
Related work

Conclusions

13
14
14

16
17
17
20
22
22
24

24

26

29

31

1 Introduction

This paper presents research in automating the analysis of rigid part mechanisms, such as
feeders, locks, and brakes. Mechanism analysis derives the kinematics and the dynamics of a
mechanism. The kinematics specify the behaviors that are consistent with the shapes of the
parts, the contacts among parts, and the possible input motions. The dynamics specify the
behaviors that are consistent with the forces acting on the parts, such as gravity, springs,
and friction. Together, they determine the exact behavior for each input motion and initial
configuration of the parts. In previous work, we developed a kinematic analysis program
that takes a geometric description of the parts of a mechanism and generates a symbolic
description of the space of possible behaviors. We now describe a program that simulates the
actual behavior of a mechanism for a given input motion. The program simulates the effects
of part contacts, input motions, and forces. It produces a compact, symbolic behavioral
description and realistic, three-dimensional animation.

Our research advances the state of the art in mechanism analysis. The simulation algo-
rithm covers most mechanisms in an engineering encyclopedia, including ones with complex
part shapes, varying part contacts, and multiple input motions. The dynamical analysis
yields a fuller description of the workings of mechanisms than does purely kinematic analy-
sis. The simulation describes the behavior for specific input motions, thus complementing a
description of the space of possible behaviors. The output combines the vividness of graphics
with the precision of symbolic data.

The program is much more efficient than traditional simulation programs. It exam-
ines roughly 1/6 as many degrees of freedom because the kinematics module eliminates the
blocked ones. It spends little time on collision detection because the kinematics module
precomputes the configurations where parts collide. It uses a simple model of dynamics that
captures the steady-state effect of forces without the conceptual and computational cost
of dynamical simulation. It analyzes in minutes mechanisms that take hours with general
purpose dynamical simulators.

This research serves the larger goal of automating many aspects of mechanical engineer-
ing, including design, validation, and cataloging. Engineers work with concise descriptions
of mechanisms that specify only the information relevant to the intended behavior. A typical
description consists of a blueprint of the mechanism geometry and of an English explana-
tion of the relevant dynamics. Engineering programs should generate and understand these
descriptions in order to communicate with users and with engineering databases. We demon-
strate that the symbolic output of our program matches these descriptions for a large class
of mechanisms. We hypothesize that the descriptions set the stage for more detailed analysis
and provide a computational basis for other engineering tasks, such as designing mechanisms
that achieve specified functions.

We derive the behavior of a mechanism by kinematic simulation with simple dynamics.
Kinematic simulation infers the effect of input motions on the parts of the mechanism, using

the physical principle that two rigid objects cannot be in the same place at the same time.
If an input motion pushes part A against part B, part B will move rather than overlap part
A. At each instant, the configuration (position and orientation) of part A and the shape of
the contact surface determine the configuration of part B. By the same principle, part B
can move other parts that it touches. The overall behavior of the mechanism depends on all
the contacts among its parts.

We formalize this reasoning within the configuration space representation of mechani-
cal engineering. Intuitively, the configuration space of a mechanism is the space of non-
overlapping configurations of its parts. It partitions into regions of uniform part contacts
separated by boundaries where part contacts change, called a region diagram. Each region is
specified by equality and inequality constraints that express part contacts. The regions de-
fine the operating modes of the mechanism. Mode transitions occur when the configuration
shifts between adjacent regions. Each path through configuration space defines a possible
behavior of the mechanism. The regions that the path goes through provide a symbolic
description of the behavior.

The kinematic simulation program traces the path that the mechanism traverses under
a given input motion. It starts from the region that contains the initial mechanism config-
uration, constructs the segment of the path lying in that region, finds the next region that
the path enters, and repeats the process. It constructs the segments by propagating the
input motion through the constraints imposed by the part contacts within the regions. The
simulation ends when the mechanism blocks or after a user-specified time allotment.

Kinematic simulation captures the effect of input motions and part contacts on the be-
havior of mechanisms, but misses the effect of forces. Simple dynamics captures most of
these effects without the overhead of full dynamical simulation. It assumes that forces im-
part fixed motions to parts, which act infinitely faster than input motions. Simple dynamics
is a qualitative theory of steady-state motion that abstracts away transient acceleration.
Applying a constant force to the center of mass of an object actually accelerates it to a
terminal velocity at which friction balances that force, but simple dynamics assumes that it
reaches terminal velocity instantaneously. We implement simple dynamics as motions that
take precedence over input motions.

Figure 1 shows the relationship between the kinematic simulation program and our pre-
vious kinematic analysis program. The inputs to both programs include the structure and
initial configuration of a mechanism. The programs share a modeling module, which decom-
poses the mechanism into subassemblies and finds their degrees of freedom, and a subassem-
bly analysis module, which constructs the subassembly region diagrams. The kinematic
analysis program constructs the mechanism region diagram from the subassembly diagrams
and the initial configuration. The kinematic simulation program takes an input motion,
internal forces, and time allotment as additional inputs and generates a symbolic description
and an animation of the ensuing behavior. _

The rest of the paper is organized as follows. We conclude this section with an informal

mechanism structure
initial configuration

R g i SR o iy input motions
1 = i o .

i analysis . simulation —— forces
L____I__"J L""'[""""" time allotment
region diagram 3D animation

symbolic description
Figure 1: Mechanism analysis flowchart.

illustration of the kinematic simulation program. In Section 2, we review the configuration
space formalization of kinematics, identify a class of mechanisms for which kinematic analysis
is feasible, show that the feasible class covers most mechanisms, and describe the kinematic
simulation algorithm. In Section 3, we define simple dynamics and show that it captures
the dynamical behavior of about 80% of mechanisms from an engineering encyclopedia. In
Section 4, we describe an efficient program that performs kinematic simulation of feasible
mechanisms with simple dynamics. In Section 5, we demonstrate the program on additional
examples. We conclude with a review of related work and a discussion of future work.

1.1 Kinematic simulation of a feeder

We illustrate the kinematic simulation program on a mechanism that feeds blocks from a
stack onto a processing table (Figure 2). The input motion rotates the driver shaft, which
moves the link, which slides the piston left and right. Each time the piston slides left, one
block drops onto the table due to gravity. Each time it slides right, it pushes the bottom
block onto the table.

The program inputs are the part specifications and initial configurations, the gravitational
forces on the blocks, and the motion “driver rotates counterclockwise.” Each part is specified
by its shape and motion type: fixed, fixed-axes, or linkage. Fixed-axes parts move along fixed

Figure 2: The feeder mechanism.

spatial axes, whereas linkage parts need not. The fixed parts form the frame, the fixed-axes
parts form fixed-axes subassemblies, and the linkage parts along with the connected fixed-
axes parts form linkages. In the feeder, the driver mounting, magazine, and processing table
form the frame, the driver, link, pins, and piston form a linkage, and the frame, driver,
piston, and blocks form a fixed-axes subassembly.

The modeling module finds the axes of motion of the fixed-axes parts, decomposes the
fixed-axes subassemblies into pairs of interacting parts, and finds their degrees of freedom.
For example, it finds that the magazine allows the blocks to move up and down, but pre-
vents them from moving left and right or from rotating. The subassembly analysis module
constructs the region diagrams of the linkages and the interacting pairs. For example, it de-
termines that rotating the driver slides the piston left and right, and that the piston supports
the bottom block in the initial configuration.

The simulator derives the configuration space path that the mechanism traverses. Fig-
ure 3 shows one configuration from each of the first six segments in the path, which represent
the first cycle of the feeder, and Segment 1 lies in the initial region. The contact between
the piston and the bottom of block 1 prevents the blocks from dropping. The program
constructs a path segment in which the driver rotates, the link moves, the piston retracts,
and the other parts do not move. The segment ends when the piston moves out from under
block 1, causing a contact change. In segment 2, gravity causes the blocks to drop onto the
table. In segment 3, the driver moves the piston left. In segment 4, the driver moves the
piston right until it touches block 1. In segment 5, the contact between the piston and the
side of block 1 enables the piston to push the block to the right. In segment 6, block 1 breaks
contact with block 2 and continues right. The cycle repeats until the magazine empties.

Figure 4 shows the symbolic descriptions of the six segments of the path. Each description
specifies the driving motion, how the driving motion propagates, and how the parts move.
In segment 1, the ¢; coordinate of the driver drives the z, coordinate of the piston. The
driver rotates from ¢; = 0 to ¢; = 2.1268, the piston translates from , = 10 to z, = 5, and
SO on.

2 Kinematic simulation

Kinematics studies the ways in which assemblies of rigid parts move in space. An isolated
part can be in any configuration and is free to translate and rotate in any direction. But a
part in an assembly can only occupy configurations that do not overlap other parts and can
only move along or away from other parts. Parts moving together must satisfy the constraints
imposed by their touching vertices, edges, and faces. In this section, we summarize the main
concepts of kinematics and define kinematic simulation. Qur previous paper [10] contains a
detailed discussion of kinematics and its role in mechanism analysis.

3

Figure 3: Configurations from a simulation of the feeder mechanism.

segment 1:

(driving-motion (driver cd))

(drives (driver cd) ((piston xp)))
(driver rotates (cd 0 2.1268))
(piston translates (xp 10 5))

(blockl stationary (xbl 12) (ybl 1))
(block2 stationary (xb2 12) (yb2 3))
(block3 stationary (xb3 12) (yb3 5))

segment 2:
(driving-motion (block3 yb3))
(drives (block3 yb3)

((blockl ybl) (block2 yb2)))
(driver stationary (cd 2.1268))
(piston stationary (xp 5))
(blockl translates (ybl 1 -1) (xbl 12))
(block2 translates (yb2 3 1) (xb2 12))
(block3 translates (yb3 5 3) (xb3 12))

segment 3:

(driving-motion (driver cd))

(drives (driver cd) ((piston xp)))
(driver rotates (cd 2.1268 3.1416))
(piston translates (xp 5 4))

(block1 stationary (xbl 12) (ybl -1))
(block2 stationary (xb2 12) (yb2 1))
(block3 stationary (xb3 12) (yb3 3))

segment 4:

(driving-motion (driver cd))

(drives (driver cd) ((piston xp)))
(driver rotates (cd -3.1416 -2.1268))
(piston translates (xp 4 5))

(blockl stationary (xbl 12) (ybl -1))
(block2 stationary (xb2 12) (yb2 1))
(block3 stationary (xb3 12) (yb3 3))

segment 5:

(driving-motion (driver cd))

(drives (driver cd) ((piston xp)))
(drives (piston xp) ((blockl xbl)))
(driver rotates (cd -2.1268 -0.7227))
(piston translates (xp 5 9))

(blockl translates (xbl 12 16) (ybl -1))
(block2 stationary (xb2 12) (yb2 1))
(block3 stationary (xb3 12) (yb3 3))

—_—

— —

segment 6:

(driving-motion (driver cd))

(drives (driver cd) ((piston xp)))
(drives (piston xp) ((blockl xb1)))
(driver rotates (cd -0.7227 0))

(piston translates (xp 9 10))

(blockl translates (xbl 16 17) (ybl -1))
(block2 stationary (xb2 12) (yb2 1))
(block3 stationary (xb3 12) (yb3 3))

Figure 4: Symbolic description of the feeder simulation.

block

*p
"{1 - C >0l

Xp piston

Figure 5: The piston/block pair and its region diagram. Shading indicates blocked space.
Dashed lines indicate region boundaries.

2.1 Kinematics

We study the kinematics of mechanisms within the standard configuration space (CS) rep-
resentation of mechanical engineering. The configuration of each part is specified as a six
element vector, for example by the position and Euler angles of a local coordinate frame
with respect to a global coordinate frame. The Cartesian product of the vectors forms the
mechanism configuration space. The mechanism CS decomposes into blocked space where
parts overlap and free space where no parts overlap. Only configurations in free space are
physically realizable. The boundary of free space consists of the configurations where parts
touch. All physically realizable motion of the parts take place in free space. A motion de-
fines a continuous curve in free space consisting of the succession of configurations that the
mechanism traverses.

We describe the kinematics of a mechanism with a partition of its free space into motion
regions, called a region diagram. The region diagram is a complete and concise description
of the space of possible behaviors. The regions define the operating modes of the mechanism.
A realizable motion of the mechanism translates into a path in the region diagram. The path
decomposes into a sequence of segments, each of which lies entirely in one region. The seg-
ments represent the uniform portions of the motion, whereas their boundary configurations
represent shifts in operating mode.

We illustrate these concepts for the piston and a block from the feeder (Figure 5). The
piston translates horizontally along axis ol with coordinate z,. The block can either trans-
late horizontally along axis ol with coordinate z; or translate vertically along axis 02 with
coordinate y,. Figure 5 shows a region diagram for the pair. The diagram projects the
3D CS into the (z, — x,ys) space for simplicity. Free space regions r; and rs are labeled
by typical configurations. The upper horizontal CS boundary consists of the configurations
where the block rests on the piston and the left hand vertical boundary consists of the con-

10

figurations where the piston touches the block on the left. The piston/block configuration
moves from rj across the vertical boundary and into r, when the piston moves left from its
initial configuration. It moves from ry across the horizontal boundary and into r; when the
blocks drop.

We obtain the region diagram of a mechanism by composing the contact constraints
of its parts. The condition that a pair of parts does not overlap translates into algebraic
equations in their coordinates. We can formulate the equations for the interacting pairs in the
mechanism, construct pairwise region diagrams, and compose them into a mechanism region
diagram. This process is inherently intractable for general mechanisms. We obtain a practical
algorithm by restricting the shapes, motions, and interactions of parts. The resulting class
of feasible mechanisms covers most mechanisms, yet supports efficient kinematic analysis.

The first type of feasible mechanism is the standard linkage of mechanical engineering.
A linkage consists of parts permanently attached to each other by joints. The parts only
interact via the joints. There are six types of joints, each of which constrains the attached
parts to move in a simple manner. Linkages are modeled by one-dimensional rods whose
coordinates are coupled by joint equations.

The second type of feasible mechanism is a fized-azes mechanism whose parts move
along fixed spatial axes. Parts are 2.5D, meaning that each part consists of a finite number
of slices over a reference plane. A slice is the Cartesian product of an interval orthogonal to
the reference plane and one or more closed curves in the reference plane. The closed curves
consist of line segments and circular arcs. Each part can translate along axes parallel or
orthogonal to the reference plane and can rotate around an axis orthogonal to it. We require
that the kinematic pairs in fixed-axes mechanisms have CSs of dimension two or lower.

The third type of feasible mechanism is a collection of fixed-axes mechanisms connected
by linkages. The linkages interact with the fixed-axes mechanisms via permanent connections
to fixed-axes parts. The feeder is an example of such mechanism. The fixed-axes subassembly
consists of the frame, driver, piston, and blocks, while the linkage consists of the driver, link,
pins, and piston. The subassemblies interact via the driver and the piston.

Most real-world mechanisms are feasible. In a survey of 1912 mechanisms from a me-
chanical engineering encyclopedia [1], we found that 58% of mechanisms are feasible: about
30% are linkages, 22% are fixed axes, and 6% are fixed-axes connected by linkages.

2.2 Simulation

Although region diagrams fully specify the kinematics of mechanisms, they encode the in-
formation symbolically as complex, multivariate, algebraic equations. Inferring the behavior
of a mechanism from this symbolic format takes some work for trained engineers and is
daunting for novices. The region diagram often contains more information than users need:
it encodes the entire mechanism CS, which represents the behaviors for all input motions,
whereas users generally care about only one or two input motions. For example, the region

11

diagram of the feeder encodes a complex 4D subspace of a 12D space. The four degrees of
freedom describe the motions of the feeder assembly and the three blocks under four inde-
pendent input motions. We care only about the 1D subset of the region diagram in which
the sole input is rotation of the driver.

Kinematic simulation derives the behavior of a mechanism under a specific input motion,
rather than the space of possible behaviors. The input motion causes the mechanism to trace
a path through its CS. Kinematic simulation generates that path and describes it symbolically
and with a three-dimensional animation of the corresponding behavior. It generates only
the regions that the mechanism traverses, which comprise a small portion of the full region
diagram.

We could perform kinematic simulation by constructing the entire mechanism region
diagram then tracing the path generated by the input motions. This approach is conceptually
simple, but computationally impractical for complicated mechanisms. Instead, we produce
the region diagram and the simulation simultaneously. We start by constructing the region
containing the initial configuration. We trace the path generated by the first input motion
from the initial configuration to the region boundary. We then construct the next region
that the path enters and repeat the process. If the mechanism cannot move, we apply the
next input motion or stop if none remains.

We specify a motion as a coordinate, a velocity, and a sampling rate. In the feeder
example, the input motion is (c4,1,1/4), meaning that the driver rotates one radian per
second and is sampled once every quarter second during animation. The path generated
by a motion (z,v,s) within a region is constrained by the part contacts within the region,
which are represented as equalities and inequalities among the part coordinates. The motion
explicitly specifies as a linear function of time z(t) = zo + vt. If the contact constraints
determine a coordinate y as a function of z, y = f(z), then the motion implicitly specifies y
as a function of time y = f(z¢ 4 vt). The motion leaves the other coordinates constant. It
ends at the maximum ¢ that satisfies the constraints, at which time some parameter crosses
the region boundary. After calculating the contact constraints and the exit time, we can
trace the path without collision detection or other expensive computations.

For example in segment 4 of the feeder animation (Figures 3 and 4), the motion (¢g4,1,1/4)
rotates the driver, moves the link, and slides the piston to the right because the coordinates
of these parts are determined by ¢4, but leaves the blocks in place because their coordinates
are independent of ¢q. The path leaves this region when the piston touches block 1. In
segment 5, the same motion pushes block 1 to the right because the contact between the
piston and block 1 determines z;; as a function of ¢;. The path leaves this region when the
piston begins to slide left, breaking contact with block 1.

12

3 Dynamics

Kinematic simulation captures the effect of input motions and part contacts on the behavior
of mechanisms, but misses the effect of forces, such as gravity, springs, and friction. Forces
play an important role in the workings of many mechanisms. In the feeder, the blocks drop
onto the table because of gravity as soon as the piston retracts, whereas kinematic simulation
mistakenly shows the blocks suspended in the air. We must augment kinematic simulation
with force analysis to obtain the correct behavior.

The standard tools for force analysis are classical mechanics and numerical analysis.
If we model the parts of a mechanism as rigid objects, we can simulate its dynamics by
formulating its laws of motion as mixed algebraic and ordinary differential equations and
numerically integrating them starting from its initial configuration. Setting up the simulation
is complicated and running it can take hours of computer time for realistic mechanisms. The
simulation runs slowly because the mixed equations are stiff and because at each time step
it must test whether any contact change has occurred since the previous time step, and
if so reformulate the equations of motion. In the feeder, the equations change when the
piston breaks contact with the bottom block, when the blocks hit the floor, and when the
piston resumes contact with the bottom block. We discuss some of the extensive research
on dynamical simulation in the review of literature.

We have developed a simple dynamics for mechanisms that captures the effect of forces
without the conceptual and computational cost of dynamical simulation. Simple dynamics
formalizes forces as motions akin to input motions. In the feeder, gravity imparts a negative
velocity to yp; (¢ = 1,2,3), which drops the blocks onto the table. Simple dynamics is a qual-
itative theory of steady-state motion that abstracts away transient acceleration. Applying a
constant force to the center of mass of an object actually accelerates it to a terminal velocity
at which friction balances that force, but simple dynamics assumes that it reaches terminal
velocity instantaneously. Applying a constant torque around an axis of rotation of an object
actually accelerates it to a terminal angular velocity, but simple dynamics assumes that it
reaches terminal velocity instantaneously.

Simple dynamics achieves its simplicity and efficiency by sacrificing the predictive power
of Newtonian mechanics. It predicts the directions that parts move, but not their exact
motion paths. The tradeoff is worthwhile for mechanism analysis because simple dynamics
adequately describes the workings of most mechanisms. Simple dynamics suffices for mecha-
nisms that rely on forces to push parts in certain directions. It cannot handle mechanisms in
which delicate balances of forces, transient behavior, or time varying forces play a major role.
In the next section, we describe simple dynamics in detail and show how to integrate it with
kinematic simulation. In the following section, we justify simple dynamics empirically by
demonstrating that it reproduces most behavioral descriptions in a mechanical engineering
encyclopedia. '

13

3.1 Simple dynamics

Simple dynamics models forces and friction. A force acts on a part along a translational axis
or around a rotational axis, imparting a constant linear or angular velocity. The velocity
drops to zero when the force stops acting; there is no inertia. Collisions among parts are
inelastic. We model gravity as a simple dynamics force, which implies that falling objects
reach terminal velocity instantaneously. We model a spring as a simple dynamics force. We
require that one end be fixed and that the other end never oscillate.

Friction constrains the relative motion of touching parts. Every surface has a coeflicient
of friction of 0 or 1, called smooth and sticky. Friction acts solely between touching pairs of
sticky faces. If two parts touch along sticky faces, they move in tandem along axes parallel
to those faces. We represent the coupling with a constraint on the coordinates, u and v, of
the parts along these axes. If both parts translate along parallel axes or rotate around the
same axis, the constraint is u — v = constant. Otherwise, the constraints are v = constant
and v = constant. In the feeder, if the table and the piston were sticky, their coordinates
would satisfy the constraint z, — z; = constant, but their y and z coordinates would not be
constrained.

We implement simple dynamics forces as external motions akin to input motions, but
acting infinitely faster. The difference in time scale captures the role of forces in most
mechanisms. Gravity quickly drops unsupported objects onto the objects below. A spring
quickly pushes a mobile object against a fixed object then maintains the contact. We assume
that at most one external motion acts on a part at any time. If an input motion and an
external motion both act on a part, the input motion occurs. We implement frictions as
constraints akin to kinematic constraints.

We extend the kinematic simulation algorithm to apply all external motions before ap-
plying each input motion. An external motion does nothing if a constraint blocks it or an
input motion opposes it. Otherwise, it moves the mechanism just like an input motion.
In the feeder animation, gravity causes no motion initially because the piston supports the
blocks. The input motion moves the piston left until it clears block 1 and a region transition
occurs. Gravity then makes the blocks drop onto the table. This motion creates a region
transition, after which the driver continues moving the piston left.

3.2 Coverage

We surveyed an encyclopedia of mechanisms to determine the percentage of practical mech-
anisms covered by kinematic simulation with simple dynamics and to identify significant
exceptions. As in our previous paper [10], we chose Artobolevsky’s four-volume Mechanisms
in Modern Engineering Design [1] because of its scope, uniform format, and comprehen-
siveness. In the previous paper, we found that 59% of the mechanisms are feasible, hence
amenable to kinematic simulation. Our current survey shows that 79% of the mechanisms are

14

Coverage

Volume total | dynamics | kinematics | both
Lever mechanisms 1 | 685 544 443 368
Lever mechanisms 2 | 732 603 486 414
Gear mechanisms 399 324 168 135
Cam mechanisms 283 159 98 61

Pairs (all volumes) | 549 466 358 296
Total 2648 2096 1553 1274
Percentage — 79% 59% 48%

Table 1: Survey of mechanisms.

covered by simple dynamics and that 48% are both feasible and covered by simple dynamics.
Hence, kinematic simulation with simple dynamics covers roughly half of all mechanisms.

The survey focuses on the motions of the parts under the specified input motions and
forces. We use the mechanism descriptions accompanying each figure as the guideline to de-
termine if simple dynamics captures the workings of the mechanism. The description focuses
on the aspects of the mechanism relevant to its function and abstracts away other aspects.
We deem that simple dynamics covers the mechanism if it matches the text description of
the forces and frictions. For example, the text describes the workings of the feeder as follows.
(We have changed the part names to ours for clarity.)

Workpieces drop from the magazine onto the processing table. A mechanism
which is not shown periodically rotates the driver through one complete revolu-
tion, beginning from its extreme left-hand position. Rotating about a fixed axis,
the driver, by means of the connecting link, reciprocates the piston which ejects
the bottom workpiece into a chute not shown. When the driver returns to its
extreme left-hand position, the next workpiece drops onto the processing table
(Vol 2. p. 592).

This description captures the function of the feeder without specifying the rate at which the
blocks drop, the effects of friction, or the transient accelerations. It shows that the simulation
in Figure 3 captures the workings of the feeder.

The assessment that simple dynamics covers a mechanism is subjective, since it relies on
our interpretation of Artobolevsky’s text, whereas the kinematic classification of mechanisms
is objective, since it relies solely on precise mathematical definitions. Thus, the results of
the dynamics survey are weaker than those of the kinematics survey. We compensate for
this weakness by only classifying a mechanism as covered if we are certain that it is.

We surveyed 2648 mechanisms. With the exception of one-dimensional springs, we ex-
cluded mechanisms with flexible parts, such as belts and chains, because our dynamical
model assumes rigid parts. We also excluded mechanisms for which kinematic simulation is

15

Input: mechanism structure, initial configuration, input motions, and time allotment
1. modeling
2. subassembly analysis
3. kinematic simulation with simple dynamics

a) find current region

(a)
(b)
)
)

traverse path segment in current region

(c

(d) if time and input motions remain, go to step (a)

if blocked, switch to next input motion

4. animation
Output: CS path, animation, and region diagram

Figure 6: Kinematic simulation with simple dynamics.

meaningless, such as curve generators and analog computers. Our model of dynamics does
not account for vibrations, deformations, lubrication, wear and tear, stress, or tolerancing.
Table 1 summarizes the results.

4 Implementation

We have defined kinematic simulation with simple dynamics and demonstrated that it cap-
tures the behavior of most mechanisms. We now present an efficient implementation for
feasible mechanisms. The program covers about half of all mechanisms both dynamically
and kinematically. Figure 6 shows the program organization. The inputs are a mechanism,
an initial configuration, a sequence of input motions, and a time allotment. The mechanism
is specified by its frame parts, fixed-axes parts, linkages, external motions, and sticky sur-
faces. The outputs are a symbolic description of the CS path that the mechanism traverses,
an animation, and a region diagram of the regions that the path goes through.

The modeling module identifies the axes of motion, motion parameters, and possible part
interactions. The subassembly analysis module constructs the subassembly region diagrams.
The kinematic simulation module generates the CS path that the mechanism traverses under
the input motions during the allotted time, along with a region diagram of the regions
that the path goes through. The animation module transforms the CS path into a three-
dimensional animation and displays it on a graphics workstation.

16

4.1 Modeling and subassembly analysis

The modeling and subassembly analysis modules extend our previous implementation from
fixed-axes mechanisms to general feasible mechanisms consisting of fixed-axes subassemblies
connected by linkages. The modeling module decomposes the fixed-axes subassemblies into
interacting kinematic pairs, identifies their axes of motion, and constructs their region di-
agrams, as explained in our previous paper [10]. Each region diagram consists of convex
regions whose boundaries are accurate linearizations of the true contact curves.

The program handles linkages with one degree of freedom, one input coordinate, and one
output coordinate. Such a linkage satisfies n equalities in its n+ 1 mobile coordinates, which
jointly define its configuration as a function of its input. Its region diagram contains a single
region, which is the graph of the configuration function.

The program derives the equations of the linkage by the standard Cartesian coordinates
method [13]. It eliminates the coordinates that are linear functions of other coordinates, such
as the pin coordinates. It calculates the configuration at evenly spaced points throughout the
input range, using the AUTO continuation package [4] on the remaining equations, and stores
the results in a table. The continuation takes seconds. The elimination step is worthwhile
because AUTO’s running time grows cubically in its input size. The program calculates the
configuration at intermediate points by table lookup followed by linear interpolation. A
lookup takes logarithmic time in the length of the table, which amounts to milliseconds.
The table and the lookup algorithm jointly define the region diagram of the linkage.

The feeder linkage consists of the driver, link, pins, and piston. The input is the rotation
of the driver, ¢, the output is the translation of the piston, z,, and the reduced Cartesian
equations are

Ty = 3coscy
¥y = 3Jsingyg
z, = w—1+8cosq

0 = yl+85incl.

where z;, y; and ¢; are the motion parameters of the link. A configuration table with 301
entries covers the input range of (—m,) with accuracy exceeding 107°. Figure 7 shows the
input /output function obtained from the table by linear interpolation. For a full rotation of
the driver, the piston travels 6 units, from 4 to 10.

4.2 Kinematic simulation with simple dynamics

The kinematic simulation module traces the CS path that the mechanism traverses under
the input motions during the allotted time. Figure 8 shows the algorithm. The program
generates the path by repeatedly constructing the region containing the current configura-
tion, applying the external motions, and applying the current input motion. The resulting

17

10

cd

-7 n

Figure 7: The feeder linkage and its input/output function.

path segment consists of a sequence of configurations and of a symbolic description of the
motion within the region. The program shifts to the next input motion when the current
one yields no motion. It stops when the time allotment is exhausted or no input motions
remain.

Boundary configurations complicate the basic algorithm. The program must consider the
possibility that the configuration ¢ will instantaneously leave the containing region and enter
an adjacent region whose closure contains c. For example, consider a 1D CS with regions
z < 0 and z > 0. The configuration 0 lies in z > 0, but the motion (z,—1,1) moves it into
z < 0. In the feeder, the configuration where the piston breaks contact with the bottom
block lies in the initial region, but the input motion moves it into the next region where the
blocks fall. The program handles boundary configurations by retrieving (in steps 3 and 4)
every region whose closure contains ¢ then selecting a region in which motion occurs.

The basic algorithm handles mechanisms that receive one input motion at a time. The
program also handles mechanisms with simultaneous input motions, such as a transmission
with a gear shift, a clutch, and a drive shaft. It reduces simultaneous motions to one motion
by introducing by parameterizing them with respect to a new parameter. For example, it
converts the motions (z,1,1) and (y,2,1) to the motion (¢,1,1) with the parameterization
z =t and y = 2t. Section 5 contains an example of simultaneous input motions. The rest
of the paper ignores them for simplicity.

The path segment generated by a motion (z,v,s) within a region depends on the region
constraints and on the linkages, which jointly determine a subset of the mobile coordinates
as functions of z. The constraints determine certain coordinates as functions of z. If these
coordinates include the input of a linkage, then the linkage determines its other coordinates
as a function of z. The constraints may then determine additional coordinates as functions
of the linkage output, hence as functions of z, and so on. The program finds the dependent

18

1. Initialize ¢ to the initial configuration, p to an empty path, and d to an empty region
diagram.

2. If the alloted time is exhausted or no input motions remain, return p.

3. Retrieve from d the region r containing ¢, constructing it if necessary. Apply all
external motions to ¢ in r. Update p with the resulting path segment and set c to its
last configuration.

4. Retrieve from d the region r containing ¢, constructing it if necessary. Apply the next
input motion to ¢ in r. If no motion occurs, discard the first input motion. Otherwise,
update p with the resulting path segment and set ¢ to its last configuration.

5. Go to step 2.

Figure 8: Algorithm for kinematic simulation with simple dynamics.

coordinates by repeatedly testing the constraints for dependent parameters then propagating
the results through the linkages. It sets the other coordinates to their initial values, since
the motion leaves them constant.

In segment 1 of the feeder animation (Figures 3 and 4), the input motion (cq4,1,1/4)
drives the mechanism. The linkage determines the linkage coordinates, including the output
,, as functions of ¢;. The constraints determine no further coordinates as functions of z,, so
the search for dependent coordinates ends. The program sets xp; and yi; (2 = 1,2,3) to their
initial values, indicating that the piston does not move the blocks. In segment 5, the region
constraints determine zp; as a function of z,, hence of ¢4, because of the contact constraint
between block 1 and the piston.

After determining the dependent coordinates and fixing the other coordinates, the pro-
gram finds the endpoint of the motion within the region by augmenting the region constraints
with the constraint z = x¢ + vt and calculating the maximum of . It traces the CS path
by solving the constraints for the coordinates as functions of ¢ then substituting the values
0,5,2s,...,tmaes for t. The motion in segment 1 of the feeder animation ends after 2.1268
seconds when the piston breaks contact with block 1. The values of ¢; and z, along the path
segment are

ca|0 025 05 075 1 125 15 175 2 2.1268
z, |10 9.8722 9.5023 8.9292 82121 7.4223 6.6315 5.9008 5.2721 5

and the other fixed-axes coordinates are constant.
The program derives the symbolic description of the path segment from the input motion
and the coordinate dependencies. The description specifies the driving motion, which parts

19

move because of contacts, and the motion types of the parts. The description of a part
specifies it name, its motion type, and the initial and final values of its mobile coordinates.
The mobile coordinates of a part determine its motion type: stationary if it does not move,
translates if it translates, rotates if it rotates, helical if it translates and rotates in a coupled
manner, and rotates-and-translates if it translates and rotates independently. Segment 1
in Figure 4 shows the description of the first motion segment of the feeder. The first line
describes the input motion of the driver, the second line describes how the driver moves the
piston, and the following lines describe the motions of the fixed-axes parts.

4.2.1 Region diagram construction

The kinematic simulation module incrementally generates the region diagram of the mech-
anism based on requests for the regions that contain certain configurations. It starts with
an empty region diagram. Given a request, it retrieves the regions in the current diagram
and returns those that contain (actually, whose closures contain) the input configuration. A
configuration lies in a region if it satisfies the constraints that define the region. If no current
region contains the input configuration, the program constructs the containing regions, adds
them to the region diagram, and returns them. It maintains the regions in a hash table for
essentially linear time access.

Given an input configuration outside the current region diagram, the program constructs
the containing regions by composing the constraints imposed by the fixed-axes subassembly
and by the linkages. It retrieves the containing regions in the region diagram of each pair of
fixed-axes parts. This process normally yields one region per diagram, but yields two regions
in diagrams where the configuration lies on a region boundary. Each choice of one contain-
ing region per pairwise diagram defines a potential region in the fixed-axes subassembly
diagram. Intersecting the components of a potential region yields the collective kinematic
constraints imposed by the fixed-axes parts. The potential region defines an actual region if
the intersection is nonempty.

In the feeder, the fixed-axes parts are the frame, driver, piston, and blocks with mobile
coordinates ¢4, p, Ty, and yp; (1 = 1,2,3). Figure 5 shows the piston/block region diagram.
The block/block diagram has the same structure, but with different size regions. Each
block/frame diagram consists of two regions: a region y5; = —1 where block lies on the table
and a region y;; > —1 where block ¢ is above the table. The piston/frame and driver/frame
diagrams each consists of a single region that encompasses the entire CS, hence imposes no
constraints. The other pairs impose no constraints because they do not interact. The initial
configuration is ¢ = 0, z, = 10, 2y = 12, yp =1, Tp2 = 12, Y42 = 3, 233 = 12, and yp3 = 5.

20

This configuration yields one containing region per pairwise diagram:

pair region | constraints
frame/block 1 i |z =125 yp > —1
frame/block 2 1 | T =125 Y > -1
frame/block 3 1 | T3 =125 yes > —1

piston/block 1 r3 |—T7T<z,—zn<4 yn=1
piston/block 2 | r3 |[—-T<zp—zp<4; ya>1
piston/block 3 r3 | —T<w,—T3<4; y3>1

block 1/block 2 | 13 |—4 <zp — 251 <45 Yoo — Yo1 > 2
block 1/block 3| r3 |—4 < —Tn <4 Y3 — Y = 2
block 2/block 3| r3 | -4 <3 — T2 <4 Yz — Yp2 = 2.

Intersecting these regions yields the fixed-axes subassembly region defined by the constraints:

g =1% 2y =12 Pp=12
=1 Yo 2 Y+ 25 w3 =2+ 2 (1)
5 <z, <16.

The first three constraints show that the magazine prevents the blocks from moving left
or right, the next three constraints show that the piston supports block 1 which supports
block 2 which supports block 3, and the final constraint shows the range over which the
piston supports block 1.

After finding or constructing the fixed-axes region for a configuration, the program com-
poses it with the linkage region diagrams. Each linkage propagates constraints between its in-
put and output coordinates. Suppose that a linkage has input z, output y, and input/output
function y = f(z) and that the fixed-axes constraints restrict and y to intervals [z, z,]
and [y, y.). The linkage further restricts y to the set f([z;,2.]) and = to the set f~'([y1, yu]).
The program calculates the linkage constraints on y by scanning the table that encodes the
region diagram and recording the minimum and maximum of y for z between z; and z,. It
calculates the z constraints by scanning the table for the widest interval that encloses the
initial value of and for which f(z) lies between y; and y,. Both calculations requires linear
time in the length of the table.

The feeder has a single linkage with input ¢4, output z,, and input/output function shown
in Figure 7. The fixed-axes constraints of the initial region (Eq. (1)) restrict ¢s to [—o0, o0]
and , to [5,16]. The linkage restricts z, to f([5,16]) = [4,10] and ¢z to f~'([5,10]) =
[0,2.1268]. The program composes these constraints with the fixed-axes constraints, yielding
5 <z, <10 and 0 < ¢g < 2.1268. It constructs the initial region of the mechanism by
augmenting the fixed-axes constraints with these constraints.

As the final step in region construction, the program asserts the frictional constraints for
the touching pairs of sticky surfaces. It determines which surfaces touch from the pairwise

21

region diagrams, obtains their axes of motion from the region, and adds the appropriate
constraint to the region constraints. We illustrate friction in Section 5.

The program uses a subset of the BOUNDER inequality prover [14] to reason about the
linear inequality constraints that define the contact regions of the fixed-axes subassembly.
It uses the constraint manager for three tasks: (1) to test if a potential region defines an
actual region, that is if the constraints in the potential region have a solution; (2) to derive
the bounds on a variable implied by a constraint set; and (3) to test if the contacts within
a region determine a coordinate y as a function of z, that is if the upper and lower bounds
of y in terms of z coincide.

4.3 Animation

The animation module animates CS paths by converting them into the format that a standard
graphics package displays. It makes minimal assumptions about the underlying graphics
package, just that it can display triangles and quadrangles in three dimensions and that it can
position objects with transformation matrices. We chose the MINNEVIEW graphics package
from the University of Minnesota Geometry Center, which runs on the IRIS workstation.
We could adapt the program to another graphics package by changing the format of the part
descriptions and transformation matrices.

The program first approximates the part shapes with quadrangles. It does this once per
mechanism, not once per animation, so the running time is insignificant (seconds to minutes).
It converts a part slice by slice. Figure 9 illustrates the process. The program piecewise
linearizes the arc segments in the slice boundary, since few graphics packages handle arcs.
It quadrangulates the area enclosed in the piecewise linear boundary, using a vertical line
sweep algorithm. It represents the top and bottom of the slice by embedding the quadrangles
in the corresponding planes. It represents the sides of the slice by forming quadrangles from
corresponding pairs of top and bottom boundary segments. The part description consists of
a list of triangles and quadrangles along with optional color and lighting information.

Given a quadrangulated mechanisms and a CS path, the program animates the mech-
anism by generating snapshots of the configurations in the CS path then displaying them
consecutively with the MINNEVIEW program. The snapshots encode the configurations of
the parts of the mechanism as homogeneous transformation matrices. MINNEVIEW takes
the part descriptions and the snapshots as inputs and generates the animation. Typical
animations contain about 100 snapshots and run in real time.

4.4 The feeder revisited

The feeder example shows that kinematic simulation with simple dynamics vividly and ef-
ficiently captures the workings of a realistic mechanism. The program generates a CS path

22

top

O side
front
Sy

() (b) (©)

Figure 9: Slicing the driver into quadrangles.

containing 90 configurations and a region diagram containing 16 regions. It runs in 10 min-
utes on a DEC workstation, while MINNEVIEW animates the resulting 90 snapshots in real
time on an IRIS workstation. The program constructs 9 region diagrams for pairs of fixed-
axes parts: 3 block/block diagrams with 6 regions apiece, 3 piston/block diagrams with 6
regions apiece, and 3 block/frame diagrams with 2 regions apiece. It constructs a single
linkage region diagram containing 301 configurations. These pairwise regions yield 373,248
potential regions for the overall mechanism. The program examines 48 of these potential
regions (0.01%) in tracing the CS path, whereas our previous program [10] examines 2115
potential regions (0.5%) in constructing the full 217 region diagram. Thus, simulating the
feeder is 50 times less work than constructing its full region diagram.

Figure 10 shows the sequence of regions that the feeder traverses. The regions are specified
by their components in the pairwise region diagrams. The driver rotates counterclockwise
at one radian per second, which makes the linkage slide the piston left and right. Each time
the piston slides out from under the bottom block, a region transition occurs. Gravity drops
the stacked blocks onto the table, producing another region transition. The piston slides
left then right, producing a region transition when it touches the bottom block. It continues
right, pushing the bottom block and supporting the rest of the stack. Region transitions
occur when the bottom block moves out from under the stack, when it hits the left side
of the block that dropped on the previous cycle, and when the piston starts moving left to
begin the next cycle. The piston pushes the three blocks in the stack onto the table during
its first three cycles. A higher stack would take more cycles and generate more regions, but
would not affect the simulation significantly.

23

motion f/br flbs f/bs p/by p/by p/bs bi/bs bi/bs by/bs
p slides left r ™1 ry T3 rs T3 r3 T3 s
blocks drop r ™ r T 9 T r3 T3 T3
p slides left r9) r ™ 9 T2 r3 T3 T3
p slides right | 7 1 r 1 ro T r3 3 T3
p pushes by r9 1 r T r3 T3 r3 T3 T3
by clears b, rq o) 1 r1 r3 T3 Ty Ty T3

Figure 10: The regions that the feeder traverses during the first cycle of the driver. The
labels b;, p, and f stand for block i, the piston, and the frame.

4.5 Program extensions

The current program covers roughly half of all mechanisms and analyzes a mechanism in min-
utes. A few straightforward extensions would significantly extend the coverage and reduce
the running time.

The program handles nondegenerate linkages in which the linkage equations are nonsin-
gular. This excludes mechanisms with redundant linkages or with degenerate linkages. The
program can handle mechanisms with redundant linkages if the user identifies and omits
them. Degenerate linkages pose a harder problem because the continuation algorithm can-
not handle them. We are testing a simplicial algorithm, which handles degeneracy, but have
yet to integrate it into the program.

We can speed up the program by changing the implementation language and by improving
the algorithms. Simply switching from LISP to C would reduce the running time by a
factor of 1000, based on empirical measurements. Given the work involved, it seems more
practical to rewrite only the most costly modules. The prime candidate is the constraint
manager, which performs roughly 90% of the computation. We plan to replace the BOUNDER
implementation with a special-purpose linear constraint reasoner [8] that runs in milliseconds.
The change will speed up the entire program by a factor of ten. The special-purpose program
eliminates redundant constraints from constraint sets, whereas BOUNDER does not. For
example, BOUNDER specifies the initial region of the feeder with 20 constraints even though 8
suffice. Part approximation is also worth speeding up, since it takes the bulk of the remaining
run time. A better algorithm written in C will reduce it from minutes to milliseconds.

5 Examples

We have tested our program on a dozen examples, including the feeder, a transmission
[10], a rim lock, and a shoe brake. Each example illustrates different aspects of kinematic
simulation with simple dynamics. The feeder has many moving parts, contains a linkage,
and uses gravity. The transmission has complex part shapes and interactions. The rim lock

24

has many regions in it region diagram and contains a spring that opposes the input motion.
The shoe brake has simultaneous input motions, springs, and friction.

Table 2 summarizes the analyses of the four mechanisms. The first four rows characterize
the structure of each mechanism: the number of moving parts; the number of part faces,
which measures geometric complexity; the number of linkages; and the CS dimension, which
equals the number of potential degrees of freedom. The next two rows describe the forces
and the input motions. The next five rows describe the region diagram of the mechanism:
the maximal region dimension, which equals the actual degrees of freedom; the number of
potential regions, which equals the product of the number of reachable regions in the pairwise
region diagrams; the number of regions explored; the number of nonempty regions, which
represent realizable configurations; and the number of regions traversed during kinematic
simulation. The last three rows are the number of quadrangles in the linearization, which
measures graphical complexity; the number of snapshots in the animation; and the time
required to produce the kinematic simulation and the animation. We now discuss the rim
lock and the shoe brake.

" feeder | transmission | rim lock | shoe brake

moving parts 8 8 3 4
part faces 77 446 80 60
linkages 1 0 0 0

CS dimension 17 9 1 4
dynamics gravity none spring | friction; springs
input motions 1 1 1 2
mechanism DOF 4 2 4 2
potential regions | 373,248 | 31,360,000 2352 64
explored regions 2115 49 337 16
nonempty regions 217 13 79 16
traversed regions 48 2 22 1
quadrangles 1168 3626 217 4585
snapshots 38 32 87 6
runtime (min.) 10 0.3 2 0.2

Table 2: Summary of the analyses of four mechanisms.

Figure 11 shows the unlocking sequence of a rim lock for a door. The lock consists of
a frame, a key, a rim, a latch, and a spring (not shown) that pushes the latch agains the
rim. In the initial, locked configuration, the latch blocks the horizontal motion of the rim,
thus barring unauthorized entry. As the key rotates counterclockwise, it raises the latch
(countering the effect of the spring), disengages the rim, and pushes the rim back. When
the key breaks contact with the latch, the spring pushes the latch against the rim, causing

25

the latch to follow the contour of the rim. Rotating the key clockwise (not shown) pushes
the rim out, which locks the door.

Figure 12 shows the braking sequence of a drum with a shoe brake. The brake consists
of a hollow drum rotating around its center, two spring-loaded shoes mounted at their edges
to a fixed pin, and an activating lever. In the initial configuration, the drum rotates freely
and the cam is rotated clockwise. As the lever is turned, it pushes open the shoes. When
the shoes touch the internal surface of the drum, friction makes the drum stop rotating.

6 Beyond simple dynamics

In this section, we discuss ways to extend the coverage of kinematic simulation with simple
dynamics. In our previous paper, we describe methods for extending the kinematic cover-
age from 59% to about 90% while maintaining reasonable computational efficiency. These
extensions would raise the overall coverage from 48% to about 72%, since simple dynamics
covers 80% of the mechanisms. We now discuss extensions to simple dynamics. We consider
improved modeling, steady-state dynamics, and dynamical simulation.

The survey in Table 1 shows that simple dynamics covers 2096 out of 2648 mechanisms.
We can extend the coverage by more innovative modeling. The biggest payoff comes from
replacing 2D springs by 1D springs where possible ! This covers an additional 117 mecha-
nisms. Of the remaining springs, 76 require a 2D model and 10 are used in shock absorbers
or vibrators. This approach invests increased modeling effort for ease of analysis.

Fig 13a shows a switching lever with a true 2D spring that cannot be modeled with
1D springs. Lever 1 rotates about fixed axis A. Spring 2 holds lever 1 against one of the
stops a. The lever has two stable equilibrium positions at the two extremes and an unstable
equilibrium position in the middle.

Steady-state analysis covers an additional 269 of the remaining 435 mechanisms. Steady-
state analysis abstracts away transient acceleration and vibration, but derives the precise
steady-state effect of forces, masses, moments of inertia, and friction. The coverage includes
friction mechanisms (86), such as rollers, friction drives and friction clutches; mechanisms
with competing forces or inertia (91), such as governors and tripping mechanisms, brakes
(26), wedges and clamps (36); and measuring instruments (30), such as balances and dy-
namometers.

Fig 13b shows a mechanism covered by steady-state analysis: a self-disengaging friction
clutch. Cross-shaped disk 6 is mounted on input shaft 1. Four spring-loaded pads 7 are
symmetrically mounted on the disk. The springs pull the pads inward when the driving
shaft does not rotate. As the driving shaft accelerates, the centrifugal forces of inertia on
the pads increase, pushing the pads toward driven disk 8. The pads are pressed against the

1Springs play an important role in mechanisms: of the 2648 mechanisms, 565 or 21% contain one or more
springs.

26

BA“K

A Y

Figure 11: Animation of a rim lock. The top left snapshot shows a back view of a locked
configuration. The following snapshots show a front view of an unlocking sequence.

27

vrlock €D LBek&D

Figure 12: Animation of a shoe brake. The brake rotates in the first configuration and is
locked in the second.

Figure 13: Sample mechanisms not covered by simple dynamics: (a) a switching lever (343),
(b) a friction clutch (3405); (c) a clock escapement (2749).

28

driven disk, thereby transmitting the rotation and increasing the torque. If the speed of the
shaft falls below a threshold, the springs disengage the pads and the rotation is no longer
transmitted.

Further dynamical analysis is necessary for the remaining 106 (4%) mechanisms. The only
solution we can see is detailed dynamical simulation. This is necessary for simulating feeding
and sorting mechanisms (34), escapements (19), vibrators (20), springs used as vibrating
links (10), measuring devices such as accelerometers, tachometers, and dynamographs (12),
and others (11). The hardest devices to simulate are feeding and sorting mechanisms.

Fig 13c shows a mechanism that requires further dynamical analysis: an escapement-type
governor controlled by a balance. Weight () applies a clockwise torque to escapement wheel
3 about fixed axis B. Balance 4 oscillates about fixed axis D by the spiral spring 1 and has
a pin a sliding in fork b of anchor 2. This contact oscillates anchor 2 about fixed axis A
and its pallets allow intermittent rotation of escape wheel 3. In this mechanism, the precise
transient motion achieves the desired function.

7 Related work

Spatial reasoning about moving objects is an active research topic that spans mechanical
engineering, model-based reasoning, robotics, and graphics. Each field has its own goals and
emphasis. Mechanical engineering and model-based reasoning aim to simulate the behavior
of mechanisms accurately and efficiently. Robotics aims to plan the motion of robots in
cluttered environments. Graphics aims to produce realistic animations of interesting motions
by complex shapes. Our goals are closest to those of mechanical engineering and model-based
reasoning, although we share the other goals to some extent.

Traditional mechanical engineering simulators have been around the longest and are com-
mercially available. Some are tailored specifically to linkages, but others (such as ADAMS)
also handle fixed topology mechanisms with user-specified pairwise kinematics. The pack-
ages automatically derive either the Newton-Euler or the Lagrange equations of motion, a
mixture of algebraic and differential equations, then numerically integrate them for a given
initial condition. They presuppose that all contacts are permanent and hence that the equa-
tions are fixed and independent of the geometry of the mechanism. They uniformly consider
six degrees of freedom per part, regardless of the real degrees of freedom. Haugh [7] surveys
the commercially available packages of this type and describes test runs on large systems.
In one chapter, Chace [2] reports the simulation of a vehicle base with 42 degrees of freedom
and 580 motion equations.

Traditional simulators have several limitations. The user must provide the initial model.
The simulators cannot handle more general mechanisms in which the geometry of parts
affects behavior and the part contacts vary. Nor can they interpret the simulation results,
requiring the user to recognize periodic behavior and other stopping conditions.

29

Model-based simulators address these limitations by incorporating kinematic analysis
into dynamical simulators. Cremer [3] describes a simulator that uses a model-based three-
dimensional part representation and that handles contact changes, friction, and collisions.
The program only models a few shapes, such as spheres and polyhedra. It sets up the Newton-
Euler equations for a set of objects in an initial configuration, simulates until two objects
collide, modifies the equations to reflect the new configuration, and continues simulating.
The output of the program is an animation of the objects and graphs of the time evolution
of their configurations, velocities, and accelerations. Gelsey [5] describes a similar simulator
that also outputs behavioral summaries. Kramer [11] describes a linkage simulation program
that symbolically derives the kinematic equations and calculates the linkage configurations
for particular values of the input motion parameters.

Our program improves upon previous model-based simulators by being faster, more ro-
bust, and cover more mechanisms. We produce a region diagram of the mechanism kinemat-
ics, which supports symbolic reasoning about its behavior, in addition to a simulation. Our
program is more efficient than previous ones, both because the region diagram eliminates the
need for collision detection during simulation and because simple dynamics eliminates the
need for differential equations. Region diagrams also make our program more robust than
previous ones. Previous programs run the risk of jumping over narrow boundaries, especially
those with variable step-size integrators. For example, they can deduce that a rolling ball
crosses a narrow chasm. Our program will not miss the chasm because it is a different region.

Robotics research in motion planning addresses spatial reasoning problems akin to those
in mechanism analysis [12]. The basic task is to plan the motion of a robot between two
configurations in a cluttered environment. The field also studies extensions to the basic task,
including multiple robots, moving obstacles, constraints on legal paths, and path optimiza-
tion. Both motion planning and mechanism analysis rely heavily upon configuration space,
computational geometry, and differential topology. They differ in their task domains, hence
in the ways they use these tools. Motion planning searches the CS for a single path, while
simulation traverses the CS in the direction dictated by the input motion. Motion planning
occurs in a complex, low dimensional CS with little structure, whereas simulation occurs
in a low dimensional CS embedded in a high dimensional space of potential motions. Our
simulation strategy is inappropriate for motion planning because its underlying assumptions
apply to typical mechanisms, not to robots.

Computer graphics produces realistic looking (not necessarily true to physics) animations
of physical phenomena. For example, Hahn [6] describes a program that animates complex
rigid object motions, such as a chair falling down a staircase. The program formulates
and simulates the full dynamical equations. Although some of the graphics techniques are
relevant to our work, our tasks are quite different. We derive an explicit representation of
the behavior of a mechanism, whereas they visualize unstructured collections of objects. We
use animation as a tool for describing CS pathes and region diagrams, whereas they study
it in its own right.

30

8 Conclusions

In this paper, we present a practical simulation algorithm for rigid part mechanisms. The
simulation captures the kinematic constraints imposed by part contacts and input motions
along with the dynamical constraints imposed by gravity, springs, and friction. The program
represents the kinematics as a partition of the mechanism CS into regions of uniform motion.
It generates the simulation by tracing the CS path that the mechanism traverses under the
input motions and dynamical constraints. It produces a symbolic description and a three-
dimensional animation of the simulation. We believe that the symbolic output can serve as
the basis for automating other tasks such as design and diagnosis.

We develop simple, efficient algorithms that handle the salient behavioral aspects of most
mechanisms, rather than attempting to handle all aspects of all mechanisms. We formulate
a class of feasible mechanisms whose kinematic analysis is tractable. The class contains
linkages, fixed-axes assemblies, and combinations of the two. We develop a simple model
of dynamics that captures the steady-state effect of forces in most mechanisms without
the conceptual and computational cost of dynamical simulation. We assess the coverage
of feasible mechanisms and of simple dynamics with a survey of 2500 mechanisms from an
encyclopedia of mechanisms. We find that 59% of the mechanisms are feasible, 79% are
covered by simple dynamics, and 48% are both feasible and covered by simple dynamics.
Hence, kinematic simulation with simple dynamics covers roughly half of all mechanisms.

The guiding principle in our research is to exploit the structure and function of mech-
anisms. Mechanisms are designed to perform specific tasks. These tasks impose structural
constraints on the shapes, configurations, and interactions of the parts of the mechanism.
Every step of our algorithm relies upon this structure. Modeling and kinematics simplify
analysis because mechanisms have few degrees of freedom and because parts interact in
simple ways. Simple dynamics is informative because mechanisms are designed for regular
behavior. Our strategy is ineffective for unstructured systems, such as rockslides. Modeling
and kinematics cannot reduce the complexity of a rockslide because the rocks move in every
direction, have irregular shapes, and collide often. Simple dynamics tells us nothing because
the rocks slide erratically.

Our analysis algorithm is limited by the types of mechanisms it can analyze, by the
dynamical phenomena it can model, and by the quality of explanations it produces. In
Section 6, we discussed possible extensions that would significantly extend the kinematic and
dynamical coverage of the analysis. We now discuss full dynamical analysis and explanation.

Full dynamical analysis is necessary for correctly simulating mechanisms not covered by
simple dynamics and for accurately simulating covered mechanisms. Kinematic simulations
with simple dynamics sets the stage for full dynamical analysis. Modeling identifies the
relevant CS coordinates and possible part interactions. Subassembly analysis and simulation
compute part interactions and coordinate dependencies. This information simplifies and
speeds up full dynamical simulation.

31

We can formulate the full dynamical equations in CS coordinates instead of in part
coordinates, which typically reduces the number of equations from six per part to one per
part. Eliminating the redundant coordinates makes the remaining equations less stiff. We
need not test for part collisions at each integration step because the region diagram specifies
the configurations where parts collide. The simulator can find the initial region, integrate
the equations within the region bounds, then shift to the next region. This procedure should
combine the robustness and efficiency of kinematic simulation with the accuracy of traditional
simulation.

More sophisticated interpretation of the simulation output is necessary to hide irrelevant
details, such as gear chatter, and to identify behavior patterns, such as cycles and repetitions.
We can produce more focused descriptions by using the CS simplification and abstraction op-
erators developed by Joskowicz [9]. Simplification operators suppress irrelevant information
by adding constraints and assumptions. The constraints restrict the type and range of input
motions based on the operating context of the mechanism and on dynamical considerations.
Abstraction operators suppress details by defining multiple levels of resolution. Simplifica-
tion and abstraction are essential for many common tasks, such as comparing mechanisms or
classifying mechanisms by behavior. We can infer behavior patterns in kinematic simulations
with simple pattern matching techniques.

References

[1] Artobolevsky, I. Mechanisms in Modern Engineering Design, volume 1-4. (MIR Pub-
lishers, Moscow, 1979). English translation.

[2] Chace, M. Methods and experience in computer aided design of large-displacement
mechanical systems. In Haugh [7].

[3] Cremer, J. An architecture for general purpose physical system simulation—integrating
geometry, dynamics, and control. Technical Report 89-987, Cornell University, Apr.
1989.

[4] Doedel, E. AUTO 86 user manual: software for continuation and bifurcation problems
in ordinary differential equations. Technical report, Princeton University, Feb. 1986.

[5] Gelsey, A. Automated physical modeling. in: Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, 1989.

[6] Hahn, J. K. Realistic animation of rigid bodies. Computer Graphics 22 (1988) 299-308.
[7] Haugh, E. (Ed.). Computer Aided Analysis and Optimization of Mechanical System
Dynamics. (Springer-Verlag, 1984).

32

[8] Huynh, T., Joskowicz, L., Lassez, C., et al. Reasoning about linear constraints using

[10]

[11]

[12]

[13]

[14]

[15]

parametric queries. in: Proc. 10th International Conference on Foundations of Software
Technologies and Theoretical Computer Science, Bangalore, India, 1990.

Joskowicz, L. Simplification and abstraction of kinematic behaviors. in: Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence, 1989. Reprinted
in [15].

Joskowicz, L. and Sacks, E. P. Computational kinematics. Artificial Intelligence 51
(1991) 381-416.

Kramer, G. A. Solving geometric constraint systems. in: Proceedings of the National
Conference on Artificial Intelligence. American Association for Artificial Intelligence,
1990.

Latombe, J.-C. Robot Motion Planning. (Kluwer Academic Publishers, 1991).

Nikravesh, P. E. Computer-Aided Analysis of Mechanical Systems. (Prentice Hall, New
Jersey, 1988).

Sacks, E. P. Hierarchical reasoning about inequalities. in: Proceedings of the National
Conference on Artificial Intelligence, 1987. Reprinted in [15].

Weld, D. S. and de Kleer, J. (Eds.). Readings in Qualitative Reasoning about Physical
Systems. (Morgan Kaufman, San Mateo, Ca., 1990).

33

