OPTIMAL ALGORITHMS FOR COMPUTING CONNECTED
COMPONENTS OF BICHROMATIC
LINE SEGMENTS AND POLYGONS

David Dobkin
Jenny Zehong Zhao

CS-TR-366-92

(March 1992)



Optimal Algorithms for Computing Connected
Components

of Bichromatic Line Segments and Polygons '

David Dobkin and Jenny Zehong Zhao
Department of Computer Science
Princeton University
Princeton, NJ 08544

Abstract

A set of planar geometrical objects can be partitioned into connected components, where these
are defined by the reflexive transitive closure of the pairwise intersection or overlap relation. We
consider the problem of finding connected components of the union between m blue line segments
and n red line segments in the plane, assuming that two line segments are disjoint if they have
the same color. We solve this problem in O(N log N) time and O(N) space, where N = m+n, by
using a variant of the segment tree and union-find technique. It is then generalized to determine,
in the same time and space bounds, the connected components of bichromatic simple polygons
with N sides total, where polygons with the same color do not intersect or overlap.

Keywords. Computational geometry, line segment, connected components, interval graphs.

!This work was supported in part by the National Science Foundation under Grant Number CCR90-02352



Algorithms for Connected Components 1

1 Introduction

We say that two planar geometrical objects intersect or overlap if they have at least one point in
common. Given a set of such objects, its connected components are defined as the equivalence classes
of the relation defined as the reflexive transitive closure of the intersection relation. The connected
component problem is to find the connected components for a given set of objects.

In this paper, we will study the connected component problem for N bichromatic line segments.
A set of line segments is called bichromatic if they can be partitioned into two sets such that line
segments in the same set do not intersect with each other. Edelsbrunner, van Leeuwen, Ottmann
and Wood solved connected component problem for n orthogonal line segments in O(nlogn) time
and linear space by line sweeping [ELOW]. Our main result is an algorithm that solves the connected
component problem for bichromatic line segments in O(N log N) time and O(N) space. It improves
a previous O(N log? N) result by Guibas, Overmars, and Sharir. They also presented an O(n*/3+¢)
time algorithm that finds connected components for n line segments in general position [GOS]. Later
on we extended our first algorithm to solve the problem for bichromatic polygons.

Obviously we can first compute the intersections of a set of n line segments and then form its
reflexive transitive closure by standard techniques. However since there may be Q(n?) pairwise
intersections, such an algorithm would require time Q(n?). We will show how to fine the connected
components without explicitly constructing all the edges. The data structure we use is a modification
of a segment tree. We generate the result without explicitly going through every intersection. The
detail is shown in section 2, in section 3 we show how the algorithm can be generalized to solve
the same problem for bichromatic polygons. The same time and space bound is achieved, where
N is the total number of sides of the polygons. It is easy to see that our algorithm can solve the
connected component problem for N orthogonal line segments in the same time and space bound as
in [ELOW] by coloring the vertical line segments blue and horizontal line segments red. The time
and space optimality follows from the fact that the connected component problem for N orthogonal
line segments has a lower bound of Q(N log N).

2 Bichromatic Line Segments

2.1 Data Structure

In this section, we introduce our basic data structure, the segment tree. Recall in the problem we are
about to solve, we are given two sets of line segments, B = {by, b2, ..., b, } and R = {rq,79,...,7,}, of
m blue and n red line segments in the plane. Any two line segments of the same color are disjoint.
Our goal is to compute the connected components of the m + n line segments without having to
go through all line intersection points individually. Define N = m + n. We will use the segment
tree described in [CEGS] and the union-find operation to solve the problem in O(Nlog? N) time
and O(N log N) space. Later on we will show how the fractional cascading and topological sorting
technique can be used to improve the time bound to O(N log N) with a linear space cost.

Our first step is to construct a segment tree, 7, on the interval decomposition of the x-axis
induced by the x-coordinates of the endpoints of the given line segments. More specifically, 7 is



Algorithms for Connected Components 2

e .
blue line e —
------ red line - )
7 -_.____.- —
W
4
\ / I,
- ’
P4 4
’Ii ,I
Lo ’
’f I .
I”
- : -
i _,.--"""'—_
B, R, B} Ry
Figure 2.1:

defined”as follows. Let us assume that the x-cootdinates of the 2N end points are pairwise disjoint.
If they are not we can get this property by simulating an arbitrarily small perturbation of the x-
coordinates. As a result, the 2V x-coordinates decompose the x-axis into 2V + 1 (atomic) intervals.
7 is a minimum height ordered binary tree whose ith leaf corresponds to the ith atomic interval from
the left. Each interior node, u, represents an interval, I, u, that is the union of the intervals associated
with the leaves of the subtree rooted at u. Alternatively, we can think of u as representing the vertical
slab o, = {(z,y)|z € I,,y € R}. In the standard segment tree, each node x (internal and external)
has an associated list, L,_L, of all line segments, s, with the property that the vertical projection of s
contains I, but does not tontain Iy, with k the parent of p. In our version, we maintain four lists
with each node p. First we split L, into two standard lists, B, and R,, of the blue and red line
segments in L,. Furthermore, we associate with u two add_ltlona,l so-called hereditary lists, B}, and
R},. B}, contains all blue line segments stored in L, for a proper descendant v of y, and B contams
a.]l such red line segments. In other words, whenever we store a line segment s in some B, or R,, we
also store the line segment in the hereditary list of each proper ancestor y of v (see Figure 2.1).

For the applications that follow, it is helpful to regard each element of a standard or hereditary list
of anode y as representing the subsegment sN o, of the corresponding line segment s. As suggested
by this interpretation, we refer to line segments stored in the standard lists as long segments and to
those stored in the hereditary lists as short segments.

In a standard segment tree, the total size of all the lists L, is O(N log N). Our first observation is
that this is also the total size of all hereditary lists. Indeed, each line segment s is stored in O(log V)
standard lists. The interior nodes that store s in their hereditary lists form two paths both starting
at the root of 77 thus s is stored in at most O(log N) hereditary lists.




Algorithms for Connected Components 3

2.2 Algorithm

Next we show how to use the segment tree to solve the connected component problem for bichromatic
line segments.

The input to the algorithm is a set of red line segments R and a set of blue line segments B
where the same colored line segments don’t intersect each other. The output of the algorithm is a
list of connected components each of which is represented by line segments within. The outline of
the algorithm is the following:

Algorithm.
1. Construct the standard tree structure for UNION-FIND operation
by creating a single tree for each line segment in B and R.
2. Construct the segment tree 7 for B and R.
3. For each node p in 7 do
begin
3.1 sort B, and R, in decreasing y coordinates.
3.2 merge sort the two lists twice. once according to the left end points,
once according to the right end points, respectively
3.3 construct an interval graph for all blue segments in B,
from the resulting sorted list.
3.4 sweep the interval graph to form the connected components.
3.5 sort B}, and R, by binary searching the position
in R, for left end point and right end point of each
line segment in Bj.
3.6 repeat 3.3 and 3.4 for the new sorted list.
3.7 repeat 3.5 and 3.6 for R}, and B,.
End.

4. Traverse the resulting trees from UNION-FIND operation to report the connected components.
Each tree represents one connected component.

End of Algorithm.
Now we will explain in detail some of the steps in the algorithm.

3.3 Let the sorted list B, = (b1,b,...,b), and R, = (r1,72,...,7). For each blue segment b,
suppose its left end point is between r; and r;44 and its right end point is between r; and r;4q, If
1 = j, then b does not intersect any red line segment in pu. Otherwise b intersects with 7 in(; j)41,
<y Tmaa(i,j)» and we associate b with interval [min(i,j) + 1, maz(3, j)]. We create a new coordinate
system. The horizontal axis represents the index of R, and the vertical axis represents the index of
B,. Then we plot each blue segment with a horizontal line segment that spans the corresponding
interval. The resulting graph is called interval graph (see Figure 2.2).

3.4 Starting from the minimum bound of horizontal range in the interval graph, we sweep to
the right. The event list consists of line segments that intersect the sweeping line currently. If we
encounter a left end point of blue segment, we add it to the event list. Do a UNION-FIND on this



Algorithms for Connected Components 4

slab in segment tree A interval graph

Figure 2.2:

segment and any segment in the event list. If we encounter a right end point of blue segment, we
delete it from the event list. As we move to the right, every time we cross a grid point, we do
UNION-FIND on the red segment whose index is the horizontal value of the grid point with any
segment on the event list.

2.3 Analysis

Let the total number of blue segments be m and that of red segments be n, and N = m 4 n. thus
Step 1 takes O(N) time.
Step 2 takes O(N log N) time.

The time cost at each node p is O((m, +nj,)logm, +(n, +m})logn,) process time and O(m, +
nu + mj, + nj,) UNION-FIND merge time. Since the total size of the segment tree is O(N log N),
the merge time is O(Nlog N). The total process time is at most a factor of O(log N) over the total
size of the tree. So this algorithm works in time O(Nlog? N) and memory space O(N log N).

2.4 Correctness

First we will show by induction that if two line segments are in the same connected component, the
algorithm will report the correct result.

1. If the red line segment and blue segment intersect each other, then the intersection point will
fall in one slab in the segment tree. The intersection should be either between two long segments or
a long segment and a short segment. We don’t need to consider the case where the intersection is
between two short segment since it will be taken care of further down the tree.



Algorithms for Connected Components 5

Suppose the intersection is between blue long segment b and red long segment r. In step 3.3, we
assume that b intersects with red long segments 7in(; j)415 -++) Tmaz(i,j)- Lhen 7 must be among the
red long segments. In the interval graph, b spans the interval [men(i, j) + 1, maz(¢, 7)] and the index
of » must be the horizontal value of a grid point in that interval. According to step 3.4, b and r
will be merged together by UNION-FIND operation, if b is the only segment in the event list when
we sweep across r. If b is not the only segment in the event list, then r intersects more than one
segments in this slab. By merging r with any segment in the event list, r will eventually be merged
with b since all segment in the event list are merged together.

Similarly, we can show that the algorithm reports the correct result when the intersection is
between a long segment and a short segment.

2. If two line segments are connected through a sequence of intersections, by 1, each consecutive
pair will be in the same connected component. So they all belong to the same set at the end of the
algorithm.

It is straight forward to show that if the algorithm merges two line segments together, they indeed
belong to the same connected component.

2.5 Speeding up the Algorithm

First we show how to reduce the storage requirements. Observe that we don’t need to maintain the
entire segment tree, but only process it node by node. We therefore traverse the tree in preorder so
that at any time we maintain only a single path of 7. As proved in [CEGS], the total space at any
time is O(NV).

To cut down the time from O(N log? N) to O(N log N) we need to achieve two goals. One is to
avoid having to sort the standard lists at each node of segment tree. The other is to speed up the
search of elements of hereditary lists in the standard lists. The operation is shown in [CEGS]. We
will briefly describe the ideas below.

To achieve the first goal, we begin by finding a linear extension of the following relation on the
blue line segments: b < ' if the x-projections of b and b’ overlap and b’ lies above b along a vertical
line that intersects both. The relation can be computed in time O(mlogm) by a simple left to right
sweep, and a linear extension can then be found in time O(m). We sort R in a similar manner. If
we always maintain this order when we generate all the lists B, and R, from their parent hereditary
lists, we will automatically get all these lists sorted. The total time consumed by this procedure is
proportional to the total size of all lists which is O(N log V).

The second goal of speeding up the binary search can be achieved by fractionally cascading of the
the standard lists (see [CG] for a complete description of the data structuring technique). As we go
down the current path we maintain each standard list in a padded-up form, so that it also contains
some elements of the standard lists of ancestor nodes along the path. As we go down from node k to
one of its children v, we take every fourth element of the (padded) list By, pass down these elements
to » and merge them with B,. Similar action is performed on Rj and R,. These operations neither
increase the storage nor the time of the algorithm by more than a constant factor.

When we back up from v to k, we can assume inductively that each endpoint of any red line



Algorithms for Connected Components 6

segment r € RY U R, has been located among the line segments in B,. Since this list also contains
a portion of the list By, it can be done in an additional constant time per endpoint, by maintaining
appropriate pointers between these lists, to locate all these endpoints among the line segments in
B, as well. Same speedup can be achieved symmetrically for R. Notice that we thus construct the
lists in preorder and evaluate them in an order which is similar to postorder. More specifically, the
evaluation at a node k is done in two steps, once when we back up from its left child and then again
when the recursion returns from its right child.

Therefore the connected component problem for N bichromatic line segments in the plane can
be solved in O(NlogN) time and O(N) space.

3 Bichromatic Simple Polygons

Given blue simple polygons with total m sides, and also red simple polygons of total n sides in the
plane, we will show how to solve the connected component problem in this case in O(Nlog N) time
and O(N) space, where N = m + n.

Lemma 3.1 Given n by m bichromatic triangles, their connected components can be determined
in O(N log N) time and O(N) space, where N = n + m.

Proof. We prove the lemma by presenting an algorithm. Recall that two triangles intersect if, case
(1), they intersect on the boundary or, case (2), one encloses the other.

Case (1) Initially each connected component contains 3 edges of one triangle. We color all the
edges of blue triangles blue, and all edges of red triangles red. Then run the connected component
algorithm described in section 2 on these 3N blue and red line segments. The case where same
colored edges that share a common endpoint can be taken care of by simply ignoring the endpoint.

Case (2) Since the enclosure level is at most 1, i.e. there isn’t any red triangle that is enclosed in
a blue triangle which is also enclosed in a red triangle, and vice versa, we can do 2 left to right line
sweep to detect enclosures. First detect the case where blue triangles encloses red ones, and then
the other case symmetrically.

We show how to detect enclosure of red triangles by blue one. We do a plane sweep from left
to right through the triangles. The schedule is a sorted list of all vertices of blue triangles and the
left most vertex of each red triangles in increasing x-order. The cross-section of sweeping line is a
sorted list of blue triangles, defined by their upper and lower edges. If the vertex encountered by
the sweeping line is a left most vertex of a red triangle, we do a binary search to locate the blue
triangle it falls in. If there is such a triangle then check if the red triangle is enclosed by that blue
one in O(1) time. Merge them together if the answer is yes. In the case that a red triangle only has
a vertical left most edge, then we use that edge to do a range search to locate if there is a single blue
range on sweep line that encloses this red triangle. Then proceed as above. If the current event is a
vertex of a blue triangle, we either add, delete, or modify the range of the blue triangle according to
whether the vertex is the left most, right most, or middle vertex, respectively.

The total running time is O(N log N') and space is O(N).



Algorithms for Connected Components 7

We can extend the above algorithm to prove the following theorem

Theorem 3.2 Given a set of bichromatic simple polygons with N total sides, the connected com-
ponent problem can be solved in O(N log N) time and linear space.

Proof. First we triangulate each simple polygon in total O(N) time. Color all these triangles
that belong to blue polygons blue and those belong to red polygons red. Initially each connected
component contains all the edges (original and new) of one polygon. Then run the algorithm for
bichromatic triangles on these triangles.

Acknowledgments. The authors would like to thank Weiping Shi and Herbert Edelsbrunner for
encouragement and many helpful suggestions and discussions throughout the research.

References

[CE] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. Proc.
29th IEEE Sympos. Foundations Comput. Sei., 1988, 590-600.

[CEGS] B. Chazelle, H. Edelsbrunner, L. J. Guibas and M. Sharir. Algorithms for bichromatic line segment
problems and polyhedral terrains. Manuscript.

[CG] B. Chazelle and L. J. Guibas. Fractional cascading: 1. A data structuring technique. Algorithmica 1
(1986), 163-191.

[ELOW] H. Edelsbrunner, J. van Leeuwen, T. Ottmann and D. Wood. Computing the connected components
of simple rectlinear geometrical objects in d space. RAIRO Inform. Theor. 18 (1984), 171-183.

[GOS] L. Guibas, Overmars and M. Sharir. SWAP 89.



