A MONOTONICITY THEOREM FOR TANDEM QUEUES
Y.C. Tay
CS-TR-362-92

February 1992

A Monotonicity Theorem for Tandem Queues

YA, Tayg *
Department of Computer Science
Princeton University
yct@cs.princeton.edu

Abstract Tandem queues are often used for performance mod-
eling in production lines, computer systems and communication net-
works. Consider a series of tandem first-come-first-served queues with
single servers. The buffers may be finite or infinite. When a finite
buffer is full, the upstream server may suffer from transfer blocking or
service blocking. A job’s service requirements at various servers may
be correlated. A transient analysis shows that, if the network is open,
then response time decreases if a server is speeded up, or a finite buffer
increases in size, or service blocking is changed to transfer blocking at
some server; if the network is closed, then such changes increase the
throughput. The analytic technique is elementary, and the equations
can be used to simulate a network.

1 Introduction

Queueing networks with finite buffers have been used to model manufacturing systems,
computer systems and communication systems [A, AS, B, BS, DY, KR, P, R, SD]. These networks
are difficult to analyze, and even simple, intuitively obvious properties are hard to prove. For
example, one expects that the throughput of a closed network will be higher if its finite buffers are
replaced by infinite buffers, but this has not been proved [0]. We address this and related problems
here in the case of tandem queues.

Consider a network of first-come-first-served queues in tandem. The queues may have finite
or infinite buffers. If a finite buffer is full, the blocking scheme may be transfer blocking or service
blocking. (A transaction processing system, for example, may have such a mix of blocking schemes
[O].) For a given job, its service times at different servers may be correlated (as is the case for
the transmission times of a message as it hops from node to node in a communication network
[CP]). We give a transient analysis that shows, for an open system, the response time of a job
decreases if (1) the service times at some server decrease, or (2) service blocking at some finite
buffer is replaced by transfer blocking, or (3) the finite buffer at some queue increases in size. The
analysis also shows, for a closed system, that throughput increases under similar circumstances.
Such monotonicity results can be used to bound network performance [0, SY] (which is one reason
for allowing a mix of finite and infinite buffers).

We formalize the system in Section 2, derive equations that describe the path of a job
through the system, and provide estimators for various performance measures. We then give the
monotonicity proofs in Section 3, and contrast the results with related work in Section 4.

* On sabbatical from Dept. of Mathematics, National Univ. of Singapore (mattyc@nuscc.nus.sg).

1

2 Equations

Consider M first-come-first-served queues with single servers and in tandem. For each m,
1 < m < M, queue m has a buffer consisting of B, buffer slots, for some positive integer By,. The
server is at the first slot, and is referred to as a real server; each of the other By, — 1 slots has a
virtual server. A virtual server has zero service time.

The first B,, — 1 slots in a queue are finite — they contain at most one job each; the last (i.e
B,.-th) slot may be infinite, in which case it can contain any number of jobs. Thus a finite buffer
consists of some B, finite slots, and an infinite buffer consists of one infinite slot and By, —1 finite
slots. Figure 1 illustrates our model.

queue 1 queue 2 queue 3 queue 4
infinite buffer finite buffer infinite buffer infinite buffer
31:4 3232 Bg:l B4:3
infinite finite finite infinite finite
slot slots slots slot slots

\ / |

\ /
— T 13 -] T

AN I

virtual real virtual real real virtual real
Servers server Server server server servers server
slot number: 1 2 3 4 5 6 i 8 9 10
Figure 1 Terminology

We number each slot in increasing order, following the direction traveled by the jobs. Thus,
a job enters the system when it enters slot 1, proceeds from slot b to slot b+ 1 for each b, and leaves
the system when it finishes service at slot B = By + - -+ Bp. We assume slot 1 is infinite. These
are illustrated in Figure 1.

Consider a real server who is at slot b, where slot b + 1 is finite (b < Bam). In transfer
blocking, service begins once a job is before the server; when service ends, the job proceeds to slot
b+ 1 if the latter is empty, or else continues to occupy slot b for as long as slot b+ 1 is occupied.
In service blocking, a job that arrives before the server does not receive service for as long as slot
b + 1 is occupied.

Let Téj) be the arrival time (at slot 1) of the j-th job, where j = 0,1,2,.... For positive

2

integer b, let Tlfj) be the time when job j leaves slot b. Let Séj) be the service time of job 7 at slot
b (so S E‘T) = 0 if slot b has a virtual server).

Open and Closed Systems

The system is closed if every job, upon departure from queue M (equivalently, slot B),
triggers the arrival of another job. The total number of jobs in the system is therefore a constant,
say N, so Téj) = Tg_m for j = N,N +1,.... A system is open if the values of Téj) does not
depend on the form of blocking, nor on B,, and Sgk), for all m,b and k.

Thus, an open system is completely specified by M, B, the finiteness of each slot, the form
of blocking, T[EJ), SE(,J), and the initialization of job 0; a closed system is completely specified by N,
M, By, the finiteness of each slot, the form of blocking, S;J), and the initialization of the first N
jobs.

Initialization
There are various ways to initialize the system. We assume that job 0 is initialized thus:
TO =515 4... 459 for 1<b<B. (1)

For a meaningful initialization of a closed system, we assume — in addition to (1) — that B; > N
(equivalently, slot 1 is infinite), and the first NV jobs start at queue 1; i.e.

TO =gV =...= V-V =g, (2)

Virtual Server

Consider the j-th job entering slot b, at time Té:’_)1, where b > 1. If slot b has a virtual server,
then job j passes through immediately if slot b4 1 is empty, so Tb(j) — T,fj_)1. Otherwise, it stays in
slot j for as long as slot j + 1 is occupied, so Té“") = Téi;l). Therefore

1, = max(T)) + 5,7, T3 + 517). (3)

Real Server: No Blocking

 Suppose slot b has a real server who is never blocked (i.e. b = B, or slot b + 1 is infinite). If
T,fj_)l & Tlfj _1), then job j enters slot b before the previous job leaves (this can happen if slot b is

infinite), so job j must wait until ng_l) to get service. On the other hand, if Tﬁ)l > Téj_l), then
job j gets service immediately. Thus

19 = max(12,, 7679) + 59,
or TP = max(TP 50, TE 4 gy, (4)

3

Real Server: Transfer Blocking

Consider now a slot b with a real server who suffers from transfer blocking by (finite) slot
b+ 1. As in (4), service for job j ends at ¢t = max(Tb(i)p Tb(j_l)) + Séj). If t > T;i;l), then
job j finishes service at slot b after the previous job vacates the next slot, so job 7 can proceed
immediately to slot b+ 1. However, if ¢t < Tﬁ;l), then job j must wait till Tgi;l) before it can
leave slot . Thus

1 = mastmax(@2, T9) + 59, T43")

or Téj) = max(Tb(i)l + Sl(,j), Téj_l) + Séj), Téi;l)). (5)

Real Server: Service Blocking

Finally consider a slot b with a real server who suffers from service blocking. If Tifi)l > Tﬁ_}l) 3

then slot b + 1 is vacant when job j enters slot b, so job j is not blocked and can be served
immediately. If Tb(i)1 € T;i;l), then job j is either waiting (if slot b is infinite) or blocked at slot

b, and must wait till Téi;l) to get service. Therefore,

Ty = max(Ty7), T7") + 577,

or Ty = max(Ty + 537, TLY + 517). (6)

Performance Measures

We now list our estimators for the usual performance measures:

throughput A= (Ln)
Tp
1 L r .
" o _ LNl _)
response lime R - ;(B o)

Let b, denote the slot number for the (real) server of queue m, 1 < m < M.

o . AN
(real) server utilization pm = — jé_l R
A () _)
slot utilization iy = . jE:I(TbJ -7,

4

queue length Om = = (Téj) _ng)_l)
n m m
i=1

Let p,, x» be the probability that the queue length (including the job in service) at queue m
exceeds k. Then

queue length distribution Pon ¥ == =% if slot b,, — k is finite and k& < B,,

In transfer blocking, we say (real) server m is blocked if and only if b, is occupied by a job
whose service has ended; in service blocking, server m is blocked if and only if slot b,, + 1 is full.
Let py, biockea be the probability that server m is blocked. Then

transfer blocking Pm blocked = Ubpy — Pbu,

service blocking Din plocked = Wb 51

3 Analysis

The usual starting point for analyzing tandem queues is to assume that the arrival times
Téj) are independent and identically distributed random variables, and similarly for the service
times Séj), for 7 =0,1,.... Moreover, S{,j) and ng) would be independent for b # b'. This latter
assumption is unsatisfactory, since it is reasonable to expect that a job’s service times at different
servers would be correlated.

The model we have in mind consists of a network description ¢}, and a sample space S((Q))
for each @). @ is specified by the number of queues (M), the buffer sizes (B,,), the finiteness of
each buffer slot, the form of blocking and, for each m, a service time s, in time units per work
unit. The sample space §(Q) consists of job-lists; a job-list is a sequence of jobs (from a single
job class) specified by the service requirement Wr(,f), 1 < m < M, in work units for each job j in
the sequence, and the jobs’ arrival times Téj) if ¢} is open, or the number of jobs N if () is closed.
Thus, ngn) = S5m ,,(nj), where b,,, is the slot number for server m.

In the case of an open system, for example, one could construct S(Q) as the product of two
sample spaces, one of which specifies Téj),j = 0,1,... as, say, independent, identically and expo-
nentially distributed random variables, while the other specifies W},f) (the latter can be similarly
decomposed).

In our monotonicity result, we will compare two networks (J and Q on the same sample
space (S(Q) = S(Q)) by comparing their performance on the same sample point (i.e. job-list).

5

To begin, we recall equations (3)—(6):

i max(Tffi)l + Sﬁj), ngﬂl) + S,Ej)) real server, no blocking
) _ J max(Tﬁ)l + S ,(,j), ng 04 ng), T;i;l)) real server, transfer blocking -
L max(Tb(i)l - S,(,j), Tlgi;l) o S,Ej)) real server, service blocking
! max(Téi)l = S,()j), Tgi}l) + Séj)) virtual server

For a given network @, let a(Q) denote the variable a for that network, e.g. Téj)(Q) and A(Q).

Lemma 1

Suppose) and Q are identical networks except, for some server m, s,,(Q) < sm(Q). Then
T9(Q) < TH(() for all b and j.

Proof
Consider induction on b and j. Clearly, from the way Q and Q are initialized, TEEO)(Q) < Tén)(é)
for all 1 < b < B. Now suppose there is k¥ > 1 such that Té"’)(Q) e Téﬂ(é) forall1 <5< B and
j<k.

If Q and @ are open, then Ték)(Q) = Ték)(Q); if they are closed, then Ték)(Q) == Ték)(é) ifk< N

and Ték)(Q) = Tlgk_N)(Q) 5 TgCHN)(Q) = Ték)(Q) if K > N, by the induction hypothesis.

In any case, we have To(k)(Q) < TO(k)(Q). Starting with this fact, it now follows from the induction
hypothesis and equation (7) that T;k)(Q) % Tb(k)(é) for 1 <b< B. |

Lemma 2
Consider (real) server m in a network @, m < M.

(i) Suppose server m suffers from transfer blocking. If this is changed to service blocking, and
the resulting network is @, then Téj)(Q) < Tg”(@) for all b and 7.

(ii) Suppose slot b +1 is inﬁm'te. If this is changed into a finite slot, and the resulting network
is Q, then T9(Q) < TYW(Q) for all b and j.
Proof

(i) All equations in @ and @ are the same, except

T, (Q) = max(Ty)_; (Q) + 537, T (@) + 537, 1,720 (Q))
(8)
and T0(Q) = max(T_y (@) + 57, 700 Q)+517) .
The proof is by induction on b and 7, as in Lemma 1, and the induction step follows from

(8) (and T, < 7).

(ii) Consider first the case where server m in Q suffers from transfer blocking. All equations in
() and () remain the same, except

7(Q) = max(T_, (@) + 5, T¢IV (Q) + 5P)

and T;7(Q) = max(Ty)_,(Q) + 537, TP V(@) + 57, T/31(Q))-
Induction proves the claim.

The case where server m in Q suffers from service blocking now follows from (i). O

Lemma 3

Suppose slot k is finite, and is the last slot for queue m (m > 1) in network Q (i.e. k = b,y + 1).
Assume queue m has more than one slot in its (finite) buffer, so B,, > 1. Delete slot k to obtain
a network Q (so queue m in @ has B,, — 1 slots), but retain the slot numbering (so @ has slot
numbers 1,2,...,k =1 =bp_1,k+ 1 = b1 + 2,...,bp). If server m — 1 suffers from transfer
blocking, then T\(Q) < T\ (Q) for all j and b # k.

Proof
All equations in @ are the same as for Q, except for b =k — 1 and b = k 4+ 1. Accordingly, we
rewrite the equations for £ — 1 and & + 1.

T2(Q) = max(T2y(Q) + 521, T3V (@) + 52, T V(@)
= max(T\7(Q) + 59y, TE0(Q) + 57, max(TEV(Q), TE77(Q)))
=l T 1G] £870%, PEVG) 4500 2P a)

7P,(Q) = max(TF,(Q) + 59, T (8) + 59, T¢7V(§))
= max(T{7(Q) + 52y, TE V(@) + 594, TEP (@), TEV (@)
since T,gi_ll)(Q) > &12)(@)

For slot k + 1, consider the following three cases:

(1) If slot k& + 1 has a real server with no blocking, then

T (@) = max(T(Q) + 59, TEV (@) + 5L,
= max(max(T, (Q), TH(Q) + 50, TEV(@) +5E))
= max(T,gJ_)l(Q) + -5';(921, T;(ci.—i)(Q) + Si(c{gl

Tih(@) = max(T2y(Q) + S, TE" (@) + 5PN,

7

(2) If slot k£ + 1 has a real server with transfer blocking, then

Th(Q) = max(T(Q) + 57, TV (@ + 51, 105" (@)
= max(max(T (@), TER (@) + 59, TEP(@)+ 58, TE0(@))
=z T (@) #8005, TG+ 512, TH5(Q)

o a ; i ; —
Tia(Q) = max(T2 (@) + 5231, TR (@) + 5, Ta"(Q))-
(3) If slot k4 1 has a real server with service blocking, or a virtual server, then

Th(Q) = max(T(Q) + 55, THS (@) + 5120)
= max(max(T{?) (Q), TEZD (@) + 590, TEZ (@) +58))
=ma{ TP (@) + 59, TP @) +5%;, T8 @)+ 59,
= max(T,Ele(Q) + S}(cf?lﬁ Tifci_zl)(Q) + Sfc{lzl

T (@) = max(T(Q) + S, TE5" (@) + Si20).

The proof now proceeds with induction on b and j. From the initialization step, Tgo)(Q) = Tb(o)((:))
for all b, since SLG) = 0 (the deleted slot has a virtual server). Now suppose for some h > 1,
T9(Q) < TY(() for all j < h and all b.

If Q and @ are open, then T, (Q) = T{" (Q); if they are closed, then TMQ) = TM(Q)ifh < N
and To(h)(Q) = T(h_N)(Q) < TSL_N)(Q) = Téh‘)(é) if h > N, by the induction hypothesis. In any
case, we have Té (@) < TM(Q).

Now consider the equations for Téh)(Q) and Téh)(é) for b > 1. By induction on b (using the
equations above for b = k — 1 and b = k 4+ 1) and applying the induction hypothesis, we get
TM(Q) < TM() for all b. O

Lemma 4
Suppose slot k is finite, and is the last slot for queue m (m > 1) in network . Assume queue m
has more than one slot in its buffer, so B,, > 1. Delete slot k to obtain a network @, but retain
the slot numbering. If server m — 1 suffers from service blocking, then T, lfj)(Q) < Téj)(Q) for all j
and b # k.

Proof
As in Lemma 4, we first derive the equations for b=k — 1 in Q and Q.

T (@) = max(TP,(Q) + 59, TU-D(@) + §))
= max(T{7,(Q) + 59, max(T¢70(Q), TE2(Q)) + 54,
=max(TE%(@) + §2,, TE2@Q) + 52, T @) +59)

8

T2 (Q) = max(T2y(Q) + 524, TP (@) + 520)
=maX(ch”z(Q)+5'ff)p FE@) + B2, T +5 s TR T80
since TOV(@) > TE0(@) and TETV(Q) > TEP(Q)

For slot k + 1, the equations are as in the proof for Lemma 4. An induction on b and j, similar to
the one for Lemma 4, completes the proof. O

We reiterate that in the comparison below, the networks are evaluated on the same job-list.

Theorem
Let @) be a network.

(I) Let @ be identical to Q except, for some server m, s,,(Q) < sm(Q1).

(1) Let Q be identical to Q except, for some server m in @ that suffers from transfer blocking,
server m in Qg suffers from service blocking.

(III) Let Qg be identical to Q except some infinite buffer in Q becomes a finite buffer in Q.
(IV) Let Q4 be identical to Q except some finite buffer in @ has one slot less in Q4.
If Q is open, then R(Q) < R(Q;) for i = 1,2,3,4.If Q is closed, then A(Q) > A(Q;) for i = 1,2,3, 4.

Proof

If @ is open, we have
T

(@) - k@ = - 3 (191(@) - TH(@).
=1

If @ is closed, then

T n
Q) TG

The lemmas now prove the claim. O

AMQ) - A(@Qi) =

4 Related Work

In the discussion below, we gloss over minor differences in the models; e.g. for open networks,
Tsoucas and Walrand have a finite buffer for the first queue, and discard arrivals who find the buffer
full [TW]; for closed networks, Shanthikumar and Yao allow the jobs to be arbitrarily distributed
when the network is initialized [SY].

For an open network, monotonicity in (II) and (IV) of our theorem was proved by Tsoucas
and Walrand in the case where all buffers are finite and the servers (except the last) either all
suffer from transfer blocking or all suffer from service blocking. Their results extend to multiserver
queues.

For a closed network, monotonicity in (I) and (IV) was proved by Shanthikumar and
Yao. Again, all servers have finite buffers and the same blocking scheme, but may have queue-

9

dependent service times. They also proved monotonicity with respect to population size (for
N < max(Bj,..., Buym)).

Thus, there is currently no result in the literature that allows the arbitrary mix of finite and
infinite buffers, as well as blocking schemes, that we consider in our theorem. However, there is
considerable overlap between this work and recent work by Cheng, Glasserman and Yao. *

Cheng and Yao introduced the (a, b, k) model, where each queue m is described by a triple
(@msbm, k). For example, (By,, 0, By,) specifies service blocking for server m, while (B, 1, B,,)
specifies transfer blocking, so the blocking scheme is more general than what we consider here (it
also includes kanban blocking [SKCU]). The authors proved monotonicity in (I), (II) and (IV) for
an open network of (a,b,k) queues. They also presented results on throughput variability and
convexity, and two modes for initiating arrivals at the first queue.

Finally, Glasserman and Yao used a powerful technique (that views the network as a gener-
alized semi-Markov process) to prove several results on the allocation of buffers, including mono-
tonicity in (II) and (IV) for both open and closed networks of (a, b, k) queues [GY].

We now return to the other three papers, and consider their technique. Our idea of deriving
recursive equations for job departure times is the same as theirs, and independently explored by
Adan and Van der Wal in unpublished work [AV]. For example, Cheng and Yao used departure
times D7*, where D" = Téi) in our notation. Thus, they have

D;?" — maX(D;-n_l, D;?z_l, D;?%_-I;in“) + Sl()‘fn) for service blocking

and D} = max(max(D}”_l, D7)+ S fgi) 5 D;.”__klmﬂ) for transfer blocking,

where k,, is the buffer size. We can derive these from the equations for T,Ej), by iterating as in the
proofs of Lemmas 3 and 4 (for the case b=k —1).

Although these papers did not consider infinite buffers for open systems, their results can
be extended to permit an arbitrary mix of finite and infinite buffers (as we have done) by setting
D7 =0 for j <0, so their equations for D7 is the same as ours for T,f:;) where there is no blocking
(i.e. ky, = 00). In this way, their equations can be used to prove the monotonicity in (III).

The ng) equations here have an advantage over the D' equations, in that estimators for
the queue length distribution and probability of blocking can be directly expressed in terms of
T, Efj). This is why we consider an infinite buffer as consisting of B,, — 1 finite slots, followed by one
infinite slot. One application of the T,fj) equations is as a simulator for tandem queues — instead
of setting up a discrete event simulator with data structures for events, jobs, queues and monitors,
we can simply generate one job at a time and evaluate the T,fj) equations iteratively. In such a
simulation, we can estimate a queue length distribution for an infinite buffer up to an arbitrarily

* The results were obtained independently. I was aware of Shanthikumar and Yao’s paper,
but did not bring a copy of it with me when I arrived at Princeton in May 1991. After proving
the theorem in January 1992, I requested copies of related work from David Yao, and received the
three papers mentioned here [CY, GY, SY].

10

small tail by picking an arbitrarily large B,,. (Another possible use of the equations is as the basis
for approximations.)

Aside from the open problem concerning the replacement of finite buffers by infinite buffers,
Onvural also posed two questions concerning the monotonicity in slot utilization and probability
of blocking for a (real) server. None of the papers mentioned here considered these performance
measures. We have shown (in Section 2) how Tlfj) can be used to estimate these two performance
measures. We expect that, if their monotonicity can be established via the recursive relationship
among departure times, then it would be achieved through the Tb(j) equations.

There is another significant difference in our approach. The monotonicity results in the
other papers [CY, SY, TW] were stated in terms of the stochastic ordering <,;, where X <, Y if
and only if Prob(X > z) < Prob(Y > z) for all real z [KKO]. For example, Cheng and Yao proved
monotonicity in (I) by considering random variables ng and S’E{,:‘) such that (SE“:‘))?:] <st (géfﬂ));l:l
In other words, they stochastically compare the performance of Q and @, by picking one sample
point each from S(Q) and S (Ql) In our approach, however, we decoupled the network and job
descriptions, so that and Q, share the same sample space, and a comparison can be made with a
single sample point. This makes the proofs entirely elementary, and the technique more accessible.

Acknowledgment

Many thanks to Paul Spirakis, who — long long ago, in a galaxy far far away — encouraged
me to work on finite-buffer queues.

References

[A] L.F. Akyildiz, Mean value analysis for blocking queueing networks, IEEE Trans. Software
Engineering 14 (1988), 418-428.

[AS] T.M. Altiok and S. Stidham, A note on transfer lines with unreliable machines, random
processing ttimes, and finite buffers, IIE Trans. 14 (1982), 125-127.

[AV] 1. Adan and J. Van der Wal, Monotonicity of the throughput of a closed queueing network
in the number of jobs, Technical Report, Eindhoven University of Technology (1987).

[BI] S. Balsamo and G. Iazeolla, Some equivalent properties for queueing networks with and
without blocking, In Performance ’83, Agrawala and Tripathi (eds.), North Holland, Ams-
terdam (1983), 351-360.

[BS] J.A. Buzacott and J.G. Shanthikumar, Stochastic Models of Manufacturing Systems, Pren-
tice Hall, Englewood Cliffs, to appear.

[CP] P. Caseau and G. Pujolle, Throughput capacity of a sequence of queues with blocking due
to finite waiting room, IEEE Trans. Software Engineering 5 (1979), 631-642.

[CY] D.W. Cheng and D.D. Yao, Tandem queues with general blocking: a unified model and
comparison results, manuscript (Jan. 1991; revised: Aug. 1991), submitted for publication.

[DY] Y. Dallery and D.D. Yao, Modeling a system of flexible manufacturing cells, In Model-
ing and Design of Flexible Manufacturing Systems, Kusiak (ed.), Elsevier North Holland,
Amsterdam (1986), 289-300.

11

[GY]
[KKO]
[KR]
[0]

[P]

[R]

[SD]

P. Glasserman and D.D. Yao, Structured buffer-allocation problems in production lines,
manuscript (June 1991), submitted for publication.

T. Kamae, U. Krengel and G. O’Brien, Stochastic inequalities on partially ordered spaces,
Annals of Probability 5 (1977), 899-912.

A.G. Konheim and M. Reiser, A queueing model with finite waiting room and blocking, J.
ACM 23 (1976), 328-341.

R.O. Onvural, Survey of closed queueing networks with blocking, ACM Computing Surveys
22 (1990), 83-121.

H.G. Perros, Open queueing networks with blocking, In Stochastic Analysis of Computer
and Communications Systems, Takagi (ed.), Elsevier North Holland, New York (1989).

M. Reiser, A queueing network analysis of computer communications networks with window
flow control, IEEE Transactions on Communications 27 (1979), 1199-1209.

R. Suri and G.W. Diehl, A new building block for performance evaluation of queueing
networks with finite buffers, Proc. ACM SIGMETRICS Conference Measurement and
Modeling of Computer Systems (1984), 134-142.

[SKCU] Y.K. Sugimori, F. Kusunoki, Cho and S. Uchikawa, Toyota production system and kanban

[SY]

[TW]

system: materialization of just-in-time and respect-for-human system, Int. J. Prod. Res.
15 (1977), 553-564.

J.G. Shanthikumar and D.D. Yao, Monotonicity and concavity properties in cyclic queueing
networks with finite buffers, In Queueing Networks with Blocking, Perros and Altiok (eds.),
North Holland, Amsterdam (1989), 325-344.

P. Tsoucas and J. Walrand, Monotonicity of throughput in non-Markovian networks, J.
Applied Probability 16 (1989), 134-141.

12

