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Abstract

Consider a coloring of the n-dimensional Boolean cube with ¢ = 2° colors
in such a way that every k-dimensional subcube is equicolored, i.e. each color
occurs the same number of times. We show that for such a coloring we necessarily
have (k—1)/n > 6, = (¢/2—1)/(¢—1). This resolves the “bit extraction” or “¢-
resilient functions” problem in many cases, such as ¢c—1|n, proving that XOR type
colorings are optimal. We also study the problem of finding almost equicolored
colorings when (k — 1)/n < 6, and of classifying all optimal colorings.

1 Introduction

The bit extraction, aka ¢-resilient functions (see [CFG*85]), aka privacy amplification
problem (see [BBR88],[Bra89]) is the following. The vertices of the Boolean cube,
B" = {—1,1}" are to be colored with ¢ = 2° colors such that every k-dimensional
subcube is equicolored. Given n and s, what is the smallest value of k for which this
possible? Here, by a k-dimensional subcube we mean a subset of B" determined by
fixing the values of some n—k coordinates on B"; we denote the set of all such subcubes
by Hi. By equicolored we mean that every color appears the same number of times in
the subcube, i.e. 2¥/c times.

This question comes up in various contexts, such as in maintaining privacy (see
[BBR88]) and in deriving unbiased random bits from a source of bits with some un-
known subset of the bits being biased (see [CFG*85]). We refer to such a coloring as
a (¢;n, k)-coloring and write &(c,n) for the smallest value of k achievable for a given n
and c. In this paper we are primarily interested in viewing c as small or fixed, studying
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k as a function of n. We will study this problem and the problem of constructing
colorings which are approximately equicolorable.

The optimal known colorings are constructed as follows. If we identify the colors
with B?, then the coloring determines s Boolean functions fi,..., fs, fi: B® — {0,1};
conversely, any such s-tuple of Boolean functions determines a coloring. By an XOR
coloring we mean one where each f; is the XOR (exclusive-or, i.e. multiplication in
{—1,1}) of some subset of the coordinates, {z;,...,z,}, of B". It is easy to determine,
to within O(c), how small a k can be achieved via such colorings. For example, for
n divisible by ¢ — 1, it is easy to see that we can achieve k = nf. + 1 and no smaller
value, where 6, = (¢/2 — 1)/(¢ — 1). It follows that for fixed ¢ = 2° and any € > 0 one
has k(e,n)/n < 0. + € for n sufficiently large. There are no known values of ¢,n for
which one can provably do better than XOR colorings.

It has been conjectured that XOR colorings are optimal for any n,c = 2°. This was
proven for all n with s = 2 in [CFG*85] (and is obvious for s = 1). Here we prove the
following;:

Theorem 1.1 For any (c;n,k) coloring we have (k —1)/n > 6.. -

Corollary 1.2 For ¢ — 1|n, n > 0, XOR colorings are optimal. For any n,c, XOR
colorings are within (c — 2)/2 of optimal.

It is a non-trivial problem to determine exactly what value of k one can achieve by
XOR colorings when ¢ — 1 does not divide n, but one can do so in certain cases to
obtain other bounds as a corollary. For example, one also gets:

Proposition 1.3 For n > 2 and = —2,-1,0,1,¢/2 — 1,¢/2,¢/2+ 1 (mod ¢ — 1),
XOR colorings can achieve 1 + [nf.| and hence are optimal. For n > 2 and = 2
(mod ¢ — 1) with ¢ > 8, optimal XOR colorings achieve 2 + [nf.|, and hence yield
k’s at worst within 1 of optimal. For ¢ = 8 the former and latter congruences hold
according to whether n 2 (mod 7) or not. For any n,c, XOR colorings are within
c/4 of optimal.

In particular, n = 2 (mod 7) is the simplest case in which we don’t know if XOR
colorings are optimal.
We are also interested in two related problems:

Problem 1.4 For k < k(c,n), how close (in various metrics involving Hy) to equicol-
orable can be achieved by a c-coloring of B™?

Problem 1.5 Classify all optimal colorings or s-tuples of functions, at least for c—1|n.
Are there optimal colorings not obtainable as XOR type colorings?

The author knows of no optimal colorings other than XOR colorings.

In this paper we study problem 1.4 for the metric L?(H;) (defined in section 3).
We give a lower bound on the distance to “equicolor” one can achieve for k < (¢, n).
One remarkable fact is:



Theorem 1.6 For ¢ — 1|n, the optimal XOR coloring is closest to equicolorable in
L*(Hy) for any k.

In general, XOR colorings are not closest to equicolor for many important metrics.
For example, consider the case n = ¢ = 4,k = 2. Fix an optimal XOR coloring
v:B* — B?, and let §: B* — B? be the coloring defined on B* regarded as B®> x B
via §(z,1) = y(z), and é(z,—1) = o(y(z)) for any permutation, o, of B? of order 4.
Every H € H, contains at least three colors for é, while for any XOR coloring there
are H’s which contain only two colors. In particular, § is closer to equicolor than any
XOR coloring in the RP(H}) metric defined in section 3. In general, for k one less than
what can be achieved by the best XOR coloring for fixed ¢, n, the best XOR colorings
are equicolored on almost all H’s, but on the other H’s they avoid half the colors! It
would seem that one could do much better by spreading out badness of these H’s to
a much larger subset of Hi. It would be interesting to know (or have a reasonable
conjecture) about the closest to equicolor colorings for various sup-type norms, such
as RP(Hy) or L*(Hy).

In the proof that XOR colorings are optimal for ¢ = 4 of [CFG*85], one produces
from an optimal coloring fi, fo two subsets of variables X7, X; whose XOR’s yield
an optimal coloring (any X3, X, with the Fourier coefficient of fi, fa, fi + f2 non-
vanishing at, respectively, X;, X3, X; + X, will do). This proof does not directly
generalize because of the possibility of cancellation of Fourier coefficients in computing
a convolution, and theorem 1.1 somehow precludes very bad cancellation. It would be
nice to find a generalization of the method in [CFG*85], understanding precisely how
much cancellation can occur in such convolutions. In our paper there is no explicit
reference to Fourier coefficients of the f;’s. They occur only implicitly, in that the
eigenspace of the adjacency matrix of B" corresponding to the eigenvalue n — 2r is
precisely the (R-linear) span of the collection of all XOR’s of r variables.

In section 2 we give a short proof of theorem 1.1 and prove some facts about the
optimal XOR colorings, proving proposition 1.3. In section 3 study the approximate
equicoloring problem for L2. To do so we study, for a subset C' C B™, the statistics p;
defined to be the probability that a random vertex at distance ¢ from a random vertex
of C is again a vertex of C. We refer to this as the profile of C. The profile has many
intriguing properties, and we comment on some of them in section 4. It seems im-
portant to understand the profile better, for example, in order to study approximately
equicolored colorings in different norms such as the sup-type norms— while the method
of section 3 does not directly generalize to the sup-type or to other L? norms, there is a
natural generalization of the profile which determines distance to equicolor in L? for p
an even integer; understanding the profile and “higher-order” profiles might shed light
on the L? problem for larger p’s (and maybe, thus, p = co). In section 5 we comment
more on problem 1.5, giving a simple geometric characterization of all XOR colorings.

The author wishes to thank Kai Li, Bernard Chazelle, and Avi Wigderson for useful
comments and discussions.



2 The Bit Extraction Problem

We begin by proving theorem 1.1. We do this via a somewhat stronger statement. We
say that a subset C' C B" is 1/c dense in H;, if

CNH 1

Theorem 2.1 If there exists a 1/c dense in Hy, subset of B", then (k—1)/n > 0..

Theorem 1.1 follows by taking C' to be the set of vertices of any fixed color of a (¢; n, k)
coloring.

Proof Consider the adjacency matrix, A of the Boolean cube, and y¢, the character-
istic function of C' in B". Clearly (Axc, x¢) = 0. On the other hand, the eigenvalues
of A are n — 2r with r = 0,1,...n, and the corresponding eigenspaces, E,, are just
the spans of all XOR’s of r variables. If v, is the projection of x¢ onto E,, setting
Mr = |vr‘2/|Xc|23 we have

zn: _ZIUTP_I A _n _ 2 _ 2w 5
o =1, (Axo,xc) = X (n—2r)|o|* = xc|?* Yo (n — 2r)p..

r=0 B IXC|2 r=0 r=0

But Ey corresponds to the trivial eigenvector, (1,...,1), and so g = |C|/n = 1/¢;

also, the assumption that C is 1/c dense in Hj), means that vy = -+ = v, = 0 and
hence py = +++ = i = 0. Hence
i i 1 c—1
0<nu+ Y., (n—2r)p, <npo+(2k—2-n) >, p,=n-—+(2k—2—n) Y
r=n—k+1 r=n—k+1 < =

and so g 5

ok —1)—= 2 ne—,

c c
which is the desired result.
O

We will now work out the optimal XOR colorings for some special cases to deduce
corollary 1.2 and proposition 1.3. Let £xor(c,n) denote the optimal k& achievable by
XOR colorings. We will have occasion to use the easy:

Proposition 2.2 If there exists an (c;n,k)-coloring, then for any integer r > 0 there
exist (;n +r,k +r) and (¢;nr,(k — 1)r + 1) colorings, and for any positive integer
r < k there ezists a (c;n — r, k) coloring.



Proof If v:B™ — B? is such a coloring, then any projection m: B™*" — B™ yields
an (¢;n +r,k +r) coloring, vy o 7. Similarly, 4": B,,, — (B)" defined in the obvious
way, followed by ¢: (Bx)” — By given by bitwise XORing yields an (¢;nr, (k—1)r+1)
coloring. Similarly, restricting v to any n — r dimensional subcube of B™ yields a
(¢;n —r, k) coloring.

The above proposition implies that &(c,n + 1) — (¢, n) is either 0 or 1, for all ¢, n,
and similarly for kxor (since the new colorings produced from 7 are XOR colorings if
7 is).

To analyze the optimal XOR colorings, first recall that in general fi,..., f; yield
an Hj, equicolored coloring iff all XOR’s of a subsets of {fi,..., fs} yields a function
which is half 1, half -1 on every H € Hy, (see, for example, [CFG*85]; this is just
to say that the standard 2° x 2° Hadamard matrix is invertible). So for a subset
T c S ={l1,...,s}, consider the XOR of the f; with i € T, which we denote fr.
If the f; are XOR’s of a subset the variables X = {zy,...,2,}, then so is each fr.
Furthermore, an XOR of the variables is half 1, half -1 on Hj iff it is the XOR of
at least n — k + 1 variables. This reduces the analysis of optimal XOR colorings to
a question about the possible Venn diagrams of s subsets, Xj,...,X,, of X (or to a
question about error correcting codes, as in [CFG*85]).

Namely, for a non-empty T' C S, consider the size of the corresponding component
of the Venn diagram on the Xj’s,

It = | (NierXi) N (Nigr X5) |,

where X; is the complement of X; in X. The X;’s correspond to an Hj equicolored
coloring iff for all U C S,

> Ir >n—(k-1). (2.1)
|TAU|=1  (mod 2)
Furthermore if there exist non-negative, integral I satisfying the above equation with
n > k, then clearly there exists a (¢;n, k) XOR coloring.
Summing the above over all U shows that

kxor(c,n) > 14 nb,, (2:2)

and if equality holds then each of the inequalities of equation 2.1 holds with equality;
the invertibiliy of the standard Hadamard matrix implies that equality holding in all
the above inequalities necessitates It = n/(¢—1). So for ¢—1|n, any choice of X; with
It = n/(c—1) for all T yields an optimal coloring, and any optimal coloring occurs
in this way. For ¢ — 1|n we use the term balanced XOR coloring for any optimal XOR
coloring to emphasise the fact that all I7’s are equal. Furthermore we have

Proposition 2.3 For n > 2 and = —2,-1,0,1,¢/2 — 1,¢/2,¢/2+1 (mod ¢ — 1),
kxor(c,n) = 1 + [nb.], and thus optimal colorings can be achieved by XOR colorings
in these cases.



Proof (In analyzingn =¢/2—1,¢—3 (mod ¢— 1) we are assuming ¢ > 8 in what
follows, so that, e.g., sxor(c,c — 3) exists, i.e. B3 > ¢; we needn’t worry about
these cases for ¢ = 4,2.) If kxor(c,n) = 1 + [nb,] for some n = ng, then it holds
for all n = ng + r(c — 1) with r any positive integer (by adding r to each Ir). So it
suffices to check the above in the cases n = ¢/2 — 1,¢/2,¢/2 + 1,¢ — 3,¢ — 2,¢ — 1,¢,
and to note that 1 4+ [nf.] < n for n > 2. For n = ¢ — 1 this is also obvious, i.e.
kxor(c,¢—1) = ¢/2, and equation 2.2 implies that £xor(c, ¢ — 3), kxor(c,c—2) > ¢/2
and thus, by proposition 2.2, = ¢/2 as well; similarly kxor(c—1,¢) > ¢/2+1 and thus
= ¢/2+ 1. For n = ¢/2 we take the “odd coloring,” namely It is = 1,0 according to
whether or not |T'| is odd. It is easy to see than any U has |T NU| odd for at least
half the T' with |T'| odd, and so kxor(c,¢/2) < ¢/4 + 1. Equation 2.1 implies that
kxor(c, ¢/2 — 1), kxor(c,¢/2) > ¢/4+ 1 and kxor(c,¢/2+1) > ¢/4+ 2, and so by the

above coloring and proposition 2.2 we are done.

O

For general n the problem of determining xxogr (¢, n) is more difficult. However, for
fixed c it suffices to check the cases n = 1,2,---,0(c?) to determine £xor(c,n) for all
n. That is, for a fixed r € [0,c — 2] let K = K(r) be the smallest integer such that for
all m sufficiently large there exists a (¢; (c—1)m+r,(c/2—1)m+ K +1) XOR coloring.
By the above we have K(r) > rf., K(0) =0,K(1) =1,K(¢/2—1) = K(¢/2) =c/4 =
K(c/241)—1,K(c—3) = K(c—2) = ¢/2—2. Proposition 2.2 implies K(r) < ¢/2—2
for all r € [2,c — 4] and that for any r € [1,¢— 2], K(r) — K(r — 1) is either 0 or 1.

Lemma 2.4 An XOR coloring with It =0 for some T has (k—1)/n > 1/2. For any
r there exists a unique mo = mo(r) < 2K(r) — r such that there exist (c;(c — 1)m +
r,(c/2—1)m + K + 1) for all m > my.

Proof The first statement follows from summing over all U with |[TNU| =1 (mod 2).
For the second part, mo obviously exists, and the coloring at n = (¢—1)mo+r must have
at least one I equal zero, or else we could subtract 1 from all the I7’s to get a coloring
as above with m = mg — 1. So the first statement applies to yield mo < 2K (r) —r.

O

In particular, checking kxor(c,n) for n = 1,2,...,0(c?), we can determine all K(r)’s,
and therefore all kxor(c,n) with n > mo(r)(c —1) +r = O(c?) by the above. Another
consequence of the above is:

Proposition 2.5 K(2) =2 forc=2°> 8, and forn > 2 and =2 (mod ¢ —1) we
have kxor(c,n) = 2+ [nb,]. In general K(r) = [r8.] iff forn=r (mod c—1) and
n sufficiently large have kxor(c,n) =1+ [nb,].



Proof K(1) =1 implies that either K(2) is 1 or 2. The lemma implies that to rule
out K(2) being 1 it suffices to check the case my = 0, i.e. n = 2; for n = 2 it is easy
to see that given any 71,7, C S there exists a U with |T3 N U| and |T3 N U| even,
provided that s > 3. Hence K(2) = 2, and mo(2) = 1, i.e. for n = ¢+ 1 we can achieve
kxor(¢,n) = 2+ [nf.]. The results on K clearly translate into the last sentence of the
proposition.

Proposition 1.3 is a consequence of the above.

3 Almost Equicolored Colorings and Profiles

For a c-coloring, v: B™ — B?, we define its L?(H}) distance from equicolor via

”’f”Lp(Hk) Z Iy v)”LP(‘,‘-{k):
veB s

where for a C C B" (and a fixed ¢ = |C|/n in mind) we define the summand via

P
IC sy = 2 |1C N HI = H]/e]".
HeH;

This is one sense in which we can measure how close to being equicolored a coloring is.
In this section we study the case p = 2. There are other important metrics suggested
by the applications, and we mention
P - x -1 2y — 2k—1 .
||7||RP(H;¢) HE'Hk,Glgl]?’,IG|=23_1 h/ ( ) | ’
this measures how well the bits y extracts work as a random source to an RP algorithm,

G being interpreted as the set of witnesses.
We study ||C||z2(x,) for a C C B™ via C’s profile in the following sense:

Definition 3.1 The profile of a C' C B™ is the collection of numbers, p;, defined via

|C NTi(v)]
OIS o
where T';(v) denotes the set of vertices of B™ of distance ezactly i to v (in paricular,
ITi(v)| = (:‘)) For a coloring v:B™ — B® we define its profiles to be those of the
unicolored subsets of B, i.e. sets of the form v~1(v) for some v € B?; if these profiles
are indentical we refer to the profile of ~.



Intuitively p; measures that probability that in picking a random v € C and then
random node of distance ¢ to v the new node will also lie in C.

Consider, for a C C B™ with |C| = n/c,
0; = IClL2gey = 2 (ICNH| = [H|[e) = 3 |CNH = 3 (|H|/e)"

HeH; HeH; HeH;

These o;’s measure the L? distance to being equicolored, o; vanishing precisely when
the coloring is ‘H; equicolored. Clearly the o; can be expressed in terms of the p;, via

> onap= ¥ (200

HeH; upeC \J P(U,

(where p denotes the distance in B™) and a short calculation yields:

o= (1) o)
= (D)2 )-0)0)

Let A; denote the i-th neighbor matrix of B", i.e. with a 1 or a 0 in the v,w entry
according to whether or not v, w are vertices of distance  in B". We have

Proposition 3.2

where

- (Aixe; xc)
1()

We now give a lower bound for oy, which also proves theorem 1.6. Before doing so,
we remark that if ¢ — 1|n, we expect that the balanced XOR yields the lowest o;. It is
easy to see that the profile of any balanced XOR, which we denote p;, is given by the
recurrence,

n 1-p; v . . .

Diyr = - - -pi—1 Vi > 2, Po=1, pp =
n—i11—c¢ n—1

(see the next section). In particular, all inequalities derived in this paper for o; are
designed to be tight for the p;’s.
We notice that the p; can be related to the p,’s of last section. Namely, it is easy
to see that
AA=(+ DA+ (n—i+ 1A,



and hence we can write the A; = ¢;(A), where ¢; is a polynomial of degree i given by

xq;(x n—1+1 .
git1(z) = z'q-|-(1)_ o gi-1(z), Vi>2, po=1q==z

So consider the polynomials

’ ( )QI - .

o = {(n) (_?j i (Sj(A)XC,XG)) _

c \J c |C]|
Proposition 3.3 The s;’s are given by
r+(n—2; :
sn(e) = ZEE=H) 0y viz1,  se) =1

n—j
Proof It is clear from the definition of the s;’s that they are polynomials of degree j
satisfying
2
@i = T (T 16)
HeH; \zeH

for any f € L?(B™). The right-hand-side of the above clearly vanishes if f is the XOR
of r variables with r > n — j + 1. Since such an f has eigenvalue n — 2r, we conclude
that s; has roots —n,—n +2,...,—n +2(5 — 1). It remains to determine the leading
coefficient; clearly ¢; has leading coefficient 1/:!, and from equation 3.1 it follows that

that of s; is 1/(;‘) times that of ¢;.
O
From this we can give a general lower bound on o;:

Theorem 3.4 For any j <1+ 6.n we have

(s;(A)xcrx0) _ 1 c—1
> —s:(n)+ s;|—nf(c—1)],
o) 2 o™ i(=n/(c~1))
equality holding iff ¢ — 1|n and all p;’s vanish except for po = 1/c and py_g,) =
(c—1)/e. If —=n/(c — 1) = t + a with t an integer and a € (0,1), we also have the
sharper bound

SJ' A N c—
( Exf;c;)w) 2%53"(”)"' cl

((1 = @)s;(t) + asi(t +1)),

with equality iff py = (1 — a)(c—1)/c, pe41 = a(c—1)/c. In particular, for c—1|n any
optimal coloring for o; has the same profile as that of the balanced XOR coloring.

9



Proof The function

otherwise

) E{ Sj(w) ifz>2(j—-1)—n

attains the same values as s;(z) on the eigenvalues of A, and so

S A Cy - 3
( ( )X XC) Zsj(n _ 2?“)#'1- = ZQ(n — 2?")#7-

(XC’ XO) a r=0 r=0

Recall that p, € [0,1], go = 1/¢, and since (Axc, Xc) = 0 we have
Z(” —2r)p, 2 0;
r=0

this implies that

-

v

Zlu'rzc_ls i(n—Zr) n'ur

r=1 c r=1 m=1 F'm &= ]'

But g(z) is convex, and is strictly convex and monotone increasing for z > 2(j —1) —n,
and 2(j —1) —n < (260 —1)n = —n/(c —1). Hence the theorem follows from standard
facts on convex functions.

4 More on the Profile

In this section we further study the profile of a C C B™ with |C| = n/c. We believe
that understanding the profile is a more robust way of studying the problem of approx-
imately equicolored colorings for different metrics. For example, for p an even integer
we can define “higher-order” profiles which determine the L? distance of C to 1/c dense;
namely, for each (pgl)-tuple of integers {in,5} ranging over 1 < a < 8 < p, we count
the number of p-tuples of points (uy,...,u,) with p(ta,ug) = tsg. So understanding
such higher-order profiles might lead to understanding approximately equicolored col-
orings for the L? metrics, p > 2. However, at present we cannot even give a full proof
of theorems 1.1 or 1.6 via a direct analysis of the profile. Yet the profile does have
certain interesting properties, which we comment on here.

We start by deriving some inequalities satisfied by the p;. If p(u,v) = ¢ and
p(v,w) = j, then p(u,w) =i+ j — 2r for some r, and counting for a fixed u,w with
p(u,w) =i+ j — 2r the number of v satisfying the above, it follows that

min(i,5) : 9 (2 <o
Ady= 5 A (z +.J r) (n (t+7 ?“))

e i—r r

10



It is tempting to try to derive inequalities based on the above. Let us write f; = A;x¢.
Notice that for C' given by a balanced coloring, the f; and f; won’t be proportional,
and applying Cauchy-Schwartz directly to (f;, f;) will yield inequalities which are not
all tight in this case; what is true is that f; and f; are constant on C and on its
complement, C, and so we make the following definition.

Definition 4.1 We say that f; and f; are positively (evenly, negatively) alligned if

ﬁ(fiafj) > (?) (?) (Pipj gl —1:)—(11—1),-))

(respectively, = and <).

Proposition 4.2 For any 1,7 we have

=~ Pitj—ar i—rj—rrn—i—j+r

according to the allignment of f; and f;.

ALV

 6)6) (o t=2),

Clearly f; and f; are evenly alligned if both are constant on C' and C, and so for the
balanced coloring profile we obtain

. n Lo 1—=p)(1 —p; i . .
Pit1 = .lpﬂ’j-l-( 1;1)_(1 J)]—n“jpj—h Vi>1.

Proposition 4.3 f; is nonnegatively alligned with itself. In particular, proposition 4.2
holds with > for i =j.

Proof We have
(fe, £) = (s i) + (s fodms

where (-, -)¢ denotes the inner product of B, functions restricted to C' (i.e. summing
over only vertices of C') and similarly for (-, -)z. For v € C, the average value of f is

pi (’:), for v ¢ C, the average value is (1 — p,,)(’:) /(¢ —1). Applying Cauchy-Schwartz
we have )

(fi'.' 1)0
(1: 1)0 ’

where 1 denotes the all 1’s vector, and similarly for C, from which the proposition
follows.

(fi, fi)e 2

11



The following is another approach to the approximate equicoloring problem. If it
were true that f; were always nonnegatively correlated with f;, then it would follow

that
(1 —p)(1 —Pj)l _ J

c—1

n
A > . r—7 »
Pit+1 2 - [Pl}’; + -Dj—1

—J
If so, one could inductively bound the partial sums

L (j
Til = E (i)Pﬁ

1=l
as
i 2 api + Bipi-1 + i,
for constants oy, f;,7; depending only on p;. The inductive step uses the inequality on
p; in terms of p;_; and p;_,, and the induction continues as long as «; is positive; the
inductive step yields
Jj—=1+1 n ) —1+1 l
Al = ———— (51 * ‘"“—szﬂ) y Ba=1- ! a )
m n— m

n—1I

with a; = 1, 8; = 0, where n = p; —(1—p;)/(c¢—1) (the ; are unimportant in checking
the positivity of the ;’s). Numerical experiments done by the author indicate that o
always remain positive. If generally true, this would give another proof of theorem 1.6,
in cases where f; and f; are always nonnegatively correlated.

Unfortunately, it can happen that f; and f; are negatively alligned. Namely, if C
lies in the subsets of vertices with, say, z; +---+z, = 1, then (f}, f1) = 0 for all  even.
It would be interesting to see if, say, in such a case there would be enough positive
allignment between f; and f; for [ odd so as to allow a modification of this method to
deduce theorems 1.1 and 1.6.

We finish this section with the following curious observation about classifying the
profiles which give o}, = 0 for a fixed k. Such p;’s must satisfy o; =0 for all y > k. So

consider the system of equations in the variables (po, ..., pn;¥):
2 (n—1 27 .
Z (n ) (n)p; =p—y; Y ES<g S, Po = V. (4.1)
=1\ €

In the above we have thrown in a dummy parameter v to make the system homoge-
neous; in our case, v = pp = 1. Although the p; satisfy further constraints, this linear
system alone is quite interesting. One can write a very simple basis for the solutions
(Po, - - - Pa; v) of this system which has some curious properties.

For any integer r let

Pr=(0,1,-2,3,...,(-1)""n";0),
and let E =(1,1,...,1;1).
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Proposition 4.4 The collection E, P', P?, ..., PF=! form a basis of the solution set of
equation 4.1. In other words, solutions are characterized by v = py and the recurrence
(6 +1)* (o = 1)p; =0 fori >k, where o is the index downshifting operator, o(p;) =
Pt-1-

The above vectors are clearly linearly independent, and it is easy to check that E
satisfies equation 4.1. To verify that the above PT are also solutions, it suffices to check
that P("), whose general p; term is (—1)**'n(") where n(") = n(n —1)---(n —r + 1),
satisfies equation 4.1; this easily reduces to the fact that the sum of alternating binomial
coefficients, (g) = ({P + (;) — ... is zero. The first part of equation 4.1 is a system of
n — k + 1 equations lower triangular in pg, ..., p,; these equations and the last, py = v
are therefore linearly independent.

An interesting easy consequence is

Corollary 4.5 The p;’s are given by p; = (—1)'r(j) — 1/c for some polynomial r of
degree k — 1 = nf,.

We also mention one more solution to equation 4.1, which is rather curious. Let
P = (po,..-,Pn; 1) be the vector with p; determined by the conditions

A

p():la ﬁlz"'zﬁk—lzoa

and p; for § > k recursively determined via

" k\ . k\ .
bt (1) P (k) Bis = 2/c. (4.2)

Proposition 4.6 P is a solution to equation 4.1. Assume 2¥/c > 4. Fori > k the
P;’s are integers, alternating in sign, and increasing in absolute value. equation 4.1.

Proof P clearly satisfies (6 + 1) Yo —1)p; = 0 for ¢ > k. So we have p; =
(=1)7¢(j) — 1/c for some polynomial g of degree < k — 1. Assuming 2¥/c > 4, since
po =1and p; = --- = pr—y = 0, it is easy to see that ¢ has one root in each of
(—00,0),(1,2),(2,3),...,(k— 2,k — 1), and then that the absolute values of the p; is
strict increasing.

5 Locally Symmetric Colorings and Concluding
Remarks

We consider the problem of classifying for ¢ — 1|n all optimal colorings, i.e. with
k =1+ nf.. We call a coloring, v: B® — B® locally symmetric if there is an 5 such
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that for all v € B,,, exactly nn of v’s neighbors are colored v(v), and every other color
occurs among v’s neighbors exactly n(1 — n)/(c — 1) times. In addition we say that
the coloring is sparse if n = 0. The balanced coloring has this property.

More generally we define a coloring to be I'y-symmetric if there is an 5 such that for
every v € B™ exactly (Z)n of I'x(v) have the same color as v, and the other colors each

occur (’;)(1 —1n)/(c — 1) times. An easy induction argument shows that any locally
symmetric coloring is also I'y-symmetric for all k, and that their profile is determined

by po =1, pr =1, and

n (1_P1)(1_p.7) . J Vj>1

é—1 n—jpj_l’

Pit1 = — lPle +
Since the p;’s are determined by the y,’s, an optimal locally symmetric coloring for
¢ — 1|n must have n = 0, i.e. must be sparse.

We also remark that locally symmetric colorings are precisely those whose unicolor
sets, C, have f; = A;xc constant on C and C. Such colorings have f;, f; evenly alligned
for all ¢, 3.

We pose two questions, which we cannot resolve at this point:

Problem 5.1 Are all optimal colorings necessarily locally symmetric, at least if ¢ —
1|n?

Problem 5.2 Are all locally symmetric sparse colorings necessarily XOR colorings?

Regarding the latter question, and XOR colorings in general, one can make the
following observation. Consider a general cycle of length 4 in B, (vo,v1,v2,vs,vo).
XOR colorings satisfy the following two conditions:

1. v(v3) depends only on (vp),y(v1),¥(v2), not on the particular cycle,
2. 7(vo) = 7(v2) implies y(v1) = 7(vs).

Proposition 5.3 Any locally symmetric coloring satisfying the above two conditions
is an XOR coloring.

Proof Fix any coloring, 7, of B”, and a vertex, v € B,,. We define a group law on
the colors as follows. We can assume 7 < 1, or else there is nothing to prove. So for
any 7; # 7, neither equal v(v), there exist neighbors vy, v, of v with 4(v;) = ;. There
exists a unique vs making v, vy, vs, vy a simple cycle of length 4; define v, + 7, to be
¥(vs). If 43 = v, define their sum to be y(v), and if one of 41,7, is y(v) define their sum
to be the other «;. That this defines defines a commuatative, associative group law,
with identity y(v), and every other element of order 2, is an easy consequence of the
above conditions; for example, commutativity follows from the fact that if vg, v1,vs, v3
is a simple cycle then so is vy, vs, ve,v1; associativity follows from the fact that the
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sum of three colors is the antipodal point to vy in a subcube of B™ isomorphic to B3.
This sets up an isomorphism between the colors and B*. One can similarly show that
for every cycle (v, v1,v2,v3,v0) we have the sum of the colors vanishing (i.e. = y(v)).
Setting coordinates on B™ so that v is the origin, the coloring of the neighbors of v
determine XOR’s, fi,..., fs such that the f;’s induce the given coloring on v and its
neighbors. The conditions on the coloring imply, by induction on k, that for any k the
coloring determined by the fi,..., f, agrees with the original coloring on I'x(v).

O

Of course, in the above proposition, one can replace the local symmetry condition by
the condition that, say, each v € B™ has all colors appearing among its neighbors
except for, possibly, its own color. Call such a coloring connected. We can restate the
first problem as:

Problem 5.4 Is any optimal coloring necessarily connected and does it necessarily
satisfy the above two conditions?
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