Distributed EZ

Alvaro E. Campos and David R. Hanson
Department of Computer Science, Princeton Universily,

Princeton, NJ 08544

Research Report CS-TR-349-91
September 1991

Abstract

EZ is a system that integrates traditional operating systems and
programming languages into a very high-level, persistent, string pro-
cessing language. This paper describes the design and initial imple-
mentation of a distributed memory manager that distributes EZ’s
virtual address space transparently among a network of homoge-
neous computers. The design adapts the techniques used in recent
implementations of shared virtual memory for use in EZ’s persistent
environment. Unlike most implementations of shared virtual mem-
ory, control information is distributed and migrates. This mem-
ory manager works in concert with a distributed mark-and-sweep
garbage collector, which is also concurrent and real-time. This col-
lector trades time for space and minimal disruption of mutators,
which reduces communication costs.



Introduction

A system that integrates language and operating system concepts into a
single system offers a different perspective on some time-honored features of
traditional operating systems. Traditional file systems are an example; there
is no reason why files cannot be regarded simply as persistent values bound
to variables. Once this “traditional barrier” is breached, it is natural to
view all objects — records, arrays, procedures — as persistent values, which
leads to one language that supports both programming and manipulating
the environment.

EZis alanguage-based, exploratory programming environment that sup-
ports this view [10, 17]. It accomplishes this integration by encapsulating
system services as features in a very high-level language, and by providing
a large, persistent virtual address space.

Previous research on EZ focused on language design — finding suitable
linguistic encapsulations for system services. This approach has worked well
for some services, e.g., file systems and processes, but other services strain
this approach. Tough examples include interactive devices and distributed
systems.

This paper reports on the different, but complementary, approach used
to accommodate distribution in EZ. Instead of language design, this ap-
proach focuses on language implementalion — finding suitable techniques
for distributing the EZ virtual address space transparently among a network
of homogeneous computers.

The EZ System

EZ is a high-level string processing language with a persistent memory that
permits it to double as a programming environment. Services provided by
traditional operating systems are cast as EZ language features. Values exist
indefinitely or until changed, so EZ’s strings and associative tables subsume
traditional file and directory services. Associative tables are also used for
procedure activations [10] and for threads, i.e., lightweight processes, and
low-level synchronization [17].

References [10] and [17] describe the syntax and semantics of EZ in detail.
Briefly, EZ is a high-level string-processing language derived from Icon [13]
and its predecessors. It shares many of their attributes, such as run-time
flexibility, typed values and untyped variables, heterogeneous structures,



automatic type conversions, and mechanisms for runtime scope control. EZ’s
built-in types includes numerics, strings, procedures, and associative tables.
EZ has the usual control constructs, which are driven by the absence or
presence of values. Everything in EZ, including program code, resides in a
single, persistent, 32-bit virtual address space.

EZ is not the only system that offers persistence. APL systems have
always operated in a persistent workspace, and some Smalltalk and Lisp
systems offer similar facilities [22, 25, 32, 34]. Others have added persistent
data types and procedures to Pascal-like languages [3, 4], some languages
have mechanisms for transmitting arbitrary values between programs and
hence long-term storage [18], and most object-oriented languages have fa-
cilities for saving some objects on disk for later retrieval [23, 28]. Persis-
tence is also an important aspect of some programming environments for
traditional languages [35] and for maintaining programming environment
databases [33]. The key difference between these systems and EZ is that
most offer persistence as a separate facility and usually restrict it to data.
Persistence pervades EZ and applies to both data and active objects, like
procedure activations and processes.

As described in Reference [17], EZ has an interpreter-based implemen-
tation similar in detail to other very high-level languages [12]. The virtual
address space resides on disk and is managed by a virtual memory man-
ager that caches pages in memory. Currently, all memory management is
done by software. The interface between the interpreter and memory man-
ager consists of two functions: GetPage(a, mode) returns a “handle” to the
page that encompasses address a, and PutPage(h, dirty) releases the page
given by handle h. mode indicates access mode and is either read or write,
and dirty indicates whether or not a writable page was actually modified.
Handles are simply the memory address of the in-cache copy of the page.
Flushing the cache saves the system state.

Unlike the clients of memory managers in operating systems, the EZ
interpreter is a “trusted” client and is therefore given complete ownership of
pages requested via GetPage. Other interpreter threads can request the same
page. As in classical readers/writers applications, multiple read requests are
granted, but write requests are given exclusive access. The interpreter itself
is written to avoid deadlock, but it is possible to write EZ processes that
deadlock just as it is possible to write programs with threads in Mach [6]
that deadlock, for example.



Distribution

The EZ address space is distributed transparently among a set of homoge-
neous processors by replacing the memory manager by one that is based on
the recent implementations of shared virtual memory [20, 21, 24, 29]. The
shared virtual memory manager attempts to collect recently accessed pages
at the processor that accesses them. In this design, identical copies of the
new memory manager run at each processor, and the entire virtual address
space is distributed among the secondary storage devices of the individual
processors. Fach manager caches the pages that its interpreter clients are
using, and these pages are accessed via GetPage as described above. The
managers hide all distribution details. Managers replicate pages to permit
multiple readers, but permit only one writer in order to maintain coherence.

Coherence

Since GetPage yields ownership of a page to the client interpreter, the man-
agers cannot use invalidation techniques [20] to maintain coherence. Page
ownership migrates to the manager that needs to grant write access to the
page. At any time, each page is owned by exactly one manager, and that
owner is responsible for maintaining the disk copy of the page. Consequently,
pages migrate among local disks.

Each cached page is known to a manager as invalid, shared, or unique.
Invalid pages are those owned by other managers for which the cached copy
is known to be out of date. A new copy must be fetched from its owner the
next time access is requested. Shared pages are those for which the cached
copy might be up to date and other managers might also have shared copies.
Read requests for shared pages can be granted after the owner confirms the
validity of the local copy. Unique pages are those that are owned by the
local manager and for which there are no valid copies elsewhere. Read and
write requests for these pages can be granted without communicating with
other managers.

As suggested above, a manager maintains a page cache and an ownership
table, which lists all of the pages owned by the manager and their disk
addresses. For each cached page, the cache entry holds a pointer to the local
copy of the page, the page status (invalid, shared, or unique), a reference
count, an ownership hint, a valid copies hint, a dirty bit, and a queue of
pending access requests. The last three entries apply only to locally owned

pages.



For remote pages (i.e., pages owned by another manager), the reference
count is the number of read accesses that have been granted in response
to GetPages from local interpreter threads. For owned (and hence local)
pages, this count is the number of local read and write accesses that have
been granted plus the number of remote managers that have granted access
to their copies of the page (which they obtain on the first access request).
PutPages decrement the count. For remote pages, a message is sent to the
owner when the count reaches 0, and the owner then decrements its counter.

For owned pages, write requests are queued until the count becomes
0. Once granted, the count becomes 1. For remote pages, write requests
cause the local manager to ask the page’s owner to transfer ownership to
the local manager, which occurs when the owner’s count becomes 0. Once
transferred, the write request is granted as above.

The ownership hint identifies owned pages and gives the probable identi-
ties of their owners. The owner’s identity accompanies the copies of remote
pages when they are fetched. Responses always include the owner’s identity,
which updates this field, if necessary.

The valid copies hint is a bitmap that identifies other managers to which
valid copies of the page have been sent. It is used to avoid sending copies of
pages unnecessarily.

Pages with a 0 reference count and no pending requests may appear on
one of four LRU lists, which are consulted for page replacement. When the
manager must replace a cache entry, it uses the first entry on the list of
invalid pages. If this list is empty, it uses the first entry on list of remote
shared pages. Doing so obligates the local manager to fetch a new copy of
the replaced page, if it is accessed again.

If both of these lists are empty, the first entry on the list of unique pages
is used. Selecting a page from this list obligates the manager to reread it, if
it is accessed again, but there is no network cost associated with this choice.

If all else fails, the first entry on the list of owned shared pages is used.
There are valid copies of these pages elsewhere, but the manager must “for-
get” about these copies because it is about to reuse the valid copies hint
in the cache entry. Consequently, subsequent read requests from remote
managers will cause the page to be resent, perhaps unnecessarily.

Communication

Communication between managers is based on reliable, order-preserving
datagrams. Request messages have a type, which identifies the request,



a sender, which identifies the initiating manager and its processor, and an
address, which is the virtual address of interest in the request. Acknowledg-
ment messages have a sender, which identifiers the owner of the page, and
an optional page, which is a copy of the page itself.

The sender helps managers differentiate between local and remote re-
quests. The addresses in remote requests always specify pages; local requests
mirror the semantics of GetPage and can specify any virtual address and the
page containing that address is returned.

Calls to GetPage and PutPage generate four message types. GetPage
generates read and write requests. PutPage generates clean requests, which
indicate that the client is finished with the page and has not modified it,
and dirty requests, which indicate that the client is finished with the page
and modified it.

Most requests are for pages that the local manager owns, and handling
these is straightforward. Requests for pages that the local manager does not
own require communication with other managers, specifically the owner of
the requested page. There are seven message types involved in this commu-
nication, which are refinements of the four types described above.

GetPage for read access causes the local manager to send a copy request
to the page’s owner who grants the request by sending a copy of the page.
If the local manager already has a copy of the page that it believes is valid,
a read request is sent to the owner. The owner simply grants access, but
includes a copy of the page if it is possible that the requester’s copy is
invalid. When a read-only page is returned via PutPage, the local manager
decrements its reference count on the page and, when the count reaches
0, sends the owner a decrement request, which is the remote equivalent of
clean.

Calls to GetPage that request write access causes page ownership to
transfer to the requester. The local manager sends the owner a write or
fetch request depending on whether or not it holds a valid copy of the page.
The owner grants the request, including a copy of the page, if necessary, and
marks its copy of the page as invalid since it is no longer the owner and its
copy of the page is now obsolete.

If a requesting manager does not know the owner of the desired page (e.g.,
because it does not hold a valid copy of the page), it broadcasts equivalents
of the message types described above to all managers. Only the actual
owner responds to these messages, which identifies the owner for subsequent
requests and reduces broadcast traffic. Messages directed to a manager that
is no longer the owner of the desired page are turned into broadcast messages



by the recipient or simply forwarded if the recipient has an ownership hint
for the page.

Implementation

The implementation of the memory manager consists of about 900 lines
of ANSI C, not including the thread and communication packages. The
interpreter and runtime system consist of another 5,000 lines.

Each cached page is served by a thread, which processes requests from a
per-page FIFO service queue. When the queue becomes empty, the thread
terminates. Requests that cannot be satisfied immediately because the page
is busy are queued and serviced when previous requests complete. Using
one thread per page serializes requests and simplifies programming.

Other threads accept requests from remote managers and append them
to the service queue of the appropriate page. These threads also initiate
per-page threads as necessary.

Garbage Collection

Earlier versions of EZ used an off-line garbage collector to reclaim inacces-
sible pages in the disk representation of the virtual address space. This
approach is fine for a prototype and, as shown by the Oberon system [37],
perhaps adequate for a non-distributed, “single-user” EZ system that is
subject to frequent idle periods, but an off-line approach is unsuitable for a
distributed system.

Distributed EZ will use a distributed garbage collector that works in
concert with the shared virtual memory manager described above. It is a
distributed mark-and-sweep collector [5, 7, 27], and it is concurrent and real-
time. Technically, algorithms based on reference counting [11, 19] are more
efficient, but require additional data for every pointer that might refer to
a page on another processor, or additional synchronization between subsets
of the processors at each reference. Besides, these algorithms cannot handle
cycles, which makes them unsuitable for EZ where cycles abound.

Likewise, copying collectors are also more efficient and can be made
both concurrent and real-time [1]. Most designed for distributed address
spaces are not concurrent nor real-time, and some require special hardware
to be efficient [14] or impose restrictions on inter-processor pointers, such as
double indirection [26]. More importantly, objects in EZ’s virtual address



space cannot move; this restriction greatly simplifies the implementation of
the persistent address space.

For systems with large, persistent address spaces, efficiency is less im-
portant than concurrency. Indeed, all that is required is that the collector
replenish the supply of free pages fast enough so that applications rarely have
to wait to allocate a new page, and that it eventually collects all inaccessible
pages.

An identical copy of the collector runs forever on each processor (tech-
nically, there is a collector for each memory manager). As usual, a collec-
tor marks all pages that hold accessible objects starting from a few system
“root” objects. It also marks pages referenced from within ob jects on marked
pages, which may cause some inaccessible pages to be marked. Indeed, the
collector is conservative: it marks a superset of the accessible pages and
collects only a subset of the inaccessible ones [7]. It repeats the collection
continuously, so it eventually reclaims all pages that are not referenced by
accessible pages.

Each collector processes only the pages owned by its cooperating memory
manager. After marking the accessible owned pages, a collector exchanges
information about inter-processor references with the collectors on the other
processors. This information feeds another marking cycle that expands the
local collector’s set of accessible pages. This activity continues until no
collector can expand its accessible page set.

Concurrent collectors need the cooperation of mutators when updating
references. In particular, when a reference is updated, either the old target
or the new target must be marked atomically. Failure to do so may cause the
collector to reclaim either the old or new target erroneously. Most collectors
mark the new target to avoid hanging on to the page holding the old target
unnecessarily. EZ’s collector, however, marks the old target for two reasons.
First, marking the new target requires direct mutator assistance. Second,
marking the old target permits the collector to use virtual memory hardware
to mark pages referenced by a page before it is modified [2]. At the beginning
of a collection, all owned pages are set to read only. The first write to a
page causes a page fault, and pages referenced within the faulted page are
marked before the fault handler approves write access to the page. Marking
the referents of a page before it is updated is equivalent to marking the old
targets of updates. Similar comments apply to calls to GetPage for write
access, but virtual memory hardware is unnecessary.

At any time during marking, each page is marked with either white, grey,
or black. Stop-and-collect, uniprocessor collectors that are not concurrent



use only two colors; the third, grey, labels pages that have been marked but
not yet traversed for pointers.

At the beginning of each collection, locally owned pages have the same
color, say, white. After marking, pages will be colored either white or black,
and white pages can be reclaimed. As suggested above, some black pages
may really be inaccessible, but they will be reclaimed during a subsequent
collection. Pseudo-code for the collection algorithm is shown in Figure 1.
Initially, refain and gather are black and white, respectively. The colors
reverse roles in subsequent collections.

Locally free pages are colored black so that the memory manager can
allocate them without help from the collector. Owned pages are set to
readonly so that their referents will be marked if they are modified, as
described above. The referents of the local roots are colored by Shade,
which colors owned white pages grey or adds remote pages to m, which is
empty initially.

Marking then begins to cycle. In each cycle, locally owned grey pages
are scanned. As shown in Figure 1, scanning a page shades its referents,
colors the page black, and unprotects it. Scanning a page may yield another
grey page, but this activity ends eventually. Once all grey owned pages are
scanned, all pages reachable from local roots are colored black, and m is the
set of all remote pages that should have been colored grey.

A subset of m is broadcast to other processors. This subset is the set of
pages that have not been announced by previous broadcasts. cycle records
the size of this subset, and m is added to M, which accumulates remote
pages announced by any processor. The collector then consumes similar
messages from the other collectors, accumulates their sizes in cycle, and
shades the pages mentioned in the messages. This shading colors owned
white pages grey or adds remote pages to M. These messages serve not
only to communicate the remote page references between collectors, but
also to synchronize them.

As collection progresses, each collector’s M becomes larger until m — M
becomes empty, i.e., until the successors of all grey pages everywhere have
been colored black. At that point, all owned white pages are added to the
set of free pages, the roles of white and black are reversed and collection
begins anew.

Space efficiency and minimal disruption of mutators are more important
than time efficiency of the algorithm itself. There are reasonably efficient
representations for all of the data structures used in the algorithm. Marks
are kept in a private bitmap, 2 bits per page. Page sets for k, m, and M



retain «— black
gather «— white
do forever
Me—m«20
for every p € free pages do Color(p) — retain
for every p € owned do Access(p) — readonly
for every reference r in the local roots do Shade(Page(r), m)
do
while there is a p € owned A Color(p) = grey do Scan(p, m)
cycle — |m — M|
broadcast m — M
M— MUm
for every other processor P do
receive message k from P
cycle — cycle + |k|
for every p € k do Shade(p, M)
m«—
while cycle > 0
for every p € owned do
if Color(p) = gather then free pages — free pages U {p}
gather, retain < retain, gather

Shade(p, s):
if p € owned then
if Color(p) = gather then Color(p) — grey
else s — sU {p}

Sean(p, s):
for every reference r in p do Shade(Page(r), s)
Color(p) « retain
Access(p) « read/write

Figure 1: Garbage Collection Algorithm.



are represented as lists of arrays of page numbers or page ranges, and most
page ranges can fit in 32 bits as a 22-bit page and a 10-bit spread or as two
16-bit page numbers. The memory manager already maintains owned as a
sorted list of page ranges, and Shade threads a list through these entries to
maintain a set of owned grey pages. Finally, free pages is a list of available
pages represented by a list of arrays of page numbers stored in disk blocks as
in UNIX [31]. It is accessed as a LIFO list, so the first disk block is almost
always in the memory manager’s cache.

Discussion

Implementation of the garbage collector and the communications layer and
integrating these components into the EZ system are underway. These
changes also necessitated basic changes in the EZ virtual machine in or-
der to insure atomicity and consistency.

Previously, many primitives that accessed shared memory (as opposed
to per-thread memory) accepted pointers into the cache as operands because
the previous version of GetPage was atomic and uninterruptible. The dis-
tributed memory manager forced these kinds of primitives to be decomposed
and re-cast in terms of three operations on associative tables: membership
testing, insertion, and deletion. These operations are atomic with respect to
the tables on which they operate, but can be interrupted by other, unrelated
operations.

Performance measurements will undoubtedly induce modifications to the
design and to the current implementation. For example, even though rel-
atively few shared pages are actually modified, EZ’s adherence to strict
consistency may lead to thrashing, which might be attacked by selective use
of release consistency within the interpreter, or by instituting a minimum
ownership time [9], which would give owners time to complete several mod-
ification operations before a page changed owner because of a write request.

Other than the interface via GetPage and PutPage, there is little in
the virtual memory system that is specific to EZ. These techniques can be
applied to other distributed persistent languages and environments.

EZ’s 32-bit virtual address space is too small, especially in light of the
impending availability of 64-bit processors. The techniques described in this
paper can accommodate such large address spaces, but other techniques
might have advantages. Pointer “swizzling” [36] could be used for a non-
distributed EZ, but it is unclear how to adapt this technique to distributed
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systems.

Another alternative design under consideration accommodates multiple
virtual address spaces anywhere in a network and achieves distribution by
inter-address space references. This approach can be viewed as the com-
plement of the distributed memory manager approach. Here, the original
memory manager remains nearly untouched, but the language, interpreter
and runtime system are modified.

References to other address spaces are made through inter-address space
pointers. These pointers are functionally equivalent to capabilities used in
some distributed systems [30]. They contain an address space identifier and
an address within that address space. Capability-like rights could be added
to restrict the set of legal operations.

The attraction of this approach is that address spaces could be encap-
sulated as tables much like strings encapsulate files. The cost, however, is
that the interpreter must take special action in order to access these tables.
Efficient implementation techniques for this kind of dereferencing have been
used in other high-level language systems [12, 16], in heterogeneous sys-
tems [8], and for implementing implicit synchronization [15]. Pages would
not migrate in this approach, which simplifies memory management and in-
creases reliability. Remote dereferencing translates into essentially remote
procedure calls to GetPage and PutPage.

Reliability and fault tolerance for distributed persistent systems like EZ
remains an important area for future work. Currently, distributed EZ uses
timeouts to recover from network and machine failures. These timeouts
cause the memory manager to terminate the requesting EZ process. This
somewhat unsatisfying approach works for user-level processes, but is un-
acceptable for system-level processes, like the garbage collector, and other
mechanisms are under investigation.
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