-

|

W

CLOVER: A USER GUIDE

Dimitris Doukas
Andrea S. LaPaugh

CS-TR-345-91

August 1991

CLOVER: A User Guide

Dimitris Doukas and Andrea S. LaPaugh
Department of Computer Science
Princeton University

August 7, 1991

Abstract

CLOVER is a timing verification system for digital systems. It was designed to handle medium size asynchronous
systems, particularly interface systems, but can be used with synchronous systems as well. A wide range of basic
components can be used with CLOVER, including user-defined components. To use CLOVER, the designer provides
a description of the design in the hardware description language PDL-e and a description of the timing constraints
that the design should satisfy in CLOVER’s constraint language ATCSL. CLOVER derives an event graph for the
design using an event-based timing simulator and checks the satisfaction of each constraint within the event graph.
In this report we present a detailed description on the use of CLOVER from the user perspective. A detailed
documentation of all CLOVER’s features is given, accompanied by simple but illustrative examples.

CLOVER: A User Guide

Dimitris Doukas and Andrea S. LaPaugh
Department of Computer Science
Princeton University

August 7, 1991

1 Introduction

In this paper we present a detailed description of the use of CLOVER from the user perspective. A detailed
documentation of all CLOVER’s features is given, accompanied by simple but illustrative examples. A complete
and formal presentation of the concepts and semantics of CLOVER, can be found in [5]. Here we will give a brief
summary of CLOVER’s main features.

CLOVER is a system for the description and timing analysis of medium size asynchronous interface systems,
where the basic components can be as simple as a logic gate or as complicated as a complex functional module. Of
particular interest are the description and analysis of bus interface circuits where more complicated timing relations
exist between signals. The components and the wires of the designs assume bounded delays; in the current version
of the system wires may only assume constant delay values.

CLOVER is a verification system which draws advantages from both tools like simulators and timing analyzers
and tools based on formal verification methods. Simulators and timing analyzers do not provide a sophisticated
specification model, and therefore they can verify a limited number of timing relations. Formal verification proofs
on the other hand can be quite tedious, unless the design is small. The timing behavior in CLOVER is described
within a formal specification model. The model is based on dependency graphs and vectors of signal values over
time. Relations specifying transition of signals to different values, timing bounds between transitions and sequencing
of transitions over time (transition history) can be easily described within the model. The model is an improvement
over existing temporal specification models (e.g., temporal logic [4]) because it defines a framework which allows the
expression of timing relations over the absolute timing of signals and reference to different instances of the same
signal over time.

The verification methodology of CLOVER is based on event graphs. We call this analysis method event graph
verification. An event graph contains the necessary information to verify a timing constraint specified with our
specification model. It contains both dependency and timing information about signals. Event graphs are derived
from the implemented design using event-driven time simulating techniques.

In Figure 1 we schematically present the organizational structure of CLOVER, depicting the main components of
the system. During verification, the tool matches the intended temporal behavior of a design against the event graph
of its implementation, identifying and reporting violations. The timing behavior is described within CLOVER’s
formal specification model. To derive the event graph of the implementation, we do an event-driven time simulation
of the implemented design. The simulator is based on an extended six-value system (presented in Section 3); it takes
as input the netlist of the implemented circuit and the behavioral descriptions of the design’s constituent modules
and derives as output the timing behavior of the implementation, in the form of an event graph. The netlist of the
circuit is obtained after describing the design with the hardware description language PDL-e.

CLOVER runs under the UNIX operating system; we assume that the user is familiar with basic concepts of
UNIX, such as directories, files and environment variables. In order to use the system, the user has to know how to
program in the C programming language. Next we show how the depicted components of CLOVER in Figure 1 are
interfaced from the user point of view.

(PDL-¢)
Timing Specification
Simulator of the implementation

)]

1

™~ i

1 Behavioral Specification 1

! '

]]

Event Graph
Temporal Behavioral
Verifier Specification
Error Report

Figure 1: System Organization

1.1 Interfacing CLOVER’s Components

Assuming that we want to verify a design named foo, the following steps need to be taken (a detailed description of
each step will be presented in the following sections):

1. The design has to be structurally described. A design in the structural domain of description is viewed as a
collection of functional modules interconnected with wires. The description is the equivalent of a graph with
nodes representing the design’s functional modules and edges representing the wires which interconnect them.
We call this graph the netlist of the design. Assuming a direction on the flow of signals, from inputs to outputs,
the graph becomes directed.

To structurally describe a design, CLOVER uses a hardware description language: PDL-e. To specify the
structure of the design foo the user has to write a PDL-e program. We call this program: foo.pdl. Because
the simulator manipulates the structure of a design in the form of a netlist, the PDL-e description has first
to be transformed to a netlist description. Program pdi2net is used to accomplish this transformation. The
transformation is a two step operation: first, pdi2net, implicitly compiles and executes file foo.pdl to derive
an intermediate netlist representation (we call it a pif representation) in a file called foo.pif; then, during
the second step, it transforms the pif description to a representation readable by the simulator. This netlist
representation is derived in a file called foo.net.

2. Next the behavior of the modules comprising the design has to be described. The functional behavior of
a module can be defined as a function which transforms the discrete-valued input events of the module to
discrete-valued output events. The input and output events assume values from the extended value system
we use. Given a certain combination of input events the module responds after some time with a certain

combination of output events. The response times define the timing behavior of the module. The behavior of
a module is the combination of its functional and timing behaviors. The behavioral description of a design is
dependent on the behaviors of its constituent functional modules.

We distinguish two kind of modules: standard (i.e., standard gates, latches, flip-flops etc.) and user-defined
(modules whose behavior is defined by the user). There is a built-in library containing the behavioral descrip-
tions of standard-modules. If the design foo is comprised of standard modules, whose behavioral descriptions
exist in the built-in library, then there is no need for user-intervention at this step. Otherwise, if user-defined
modules are specified, then the user is responsible for specifying their behavior by writing C' functions. All
user-defined functions should be part of a user-defined library. The names of the functional modules in the
PDL-e description should be the same as the names of the corresponding C' functions which describe their
behavior. Program user_lib will compile the user-defined library and link it to the standard-modules library.

3. Before running the simulator the user specifies in a command file, foo.com, the signal values for the design’s
primary inputs. In Section 3.4 we introduce a set of simple commands which guide the operation of the
simulator and initialize the values of the primary input signals.

4, Having specified feo both structurally and behaviorally we are ready to run the simulator by supplying the
input file foo.com. To run the simulator we execute program clsim. The simulator derives the event graph,
recorded in the file foo.sim. In a report file, foo.rep, the simulator reports possible violations detected during
simulation, for example, set-up or hold time constraint violations, oscillation, undefined signals, incorrect input
values etc. Finally the clsim program, as it reads the netlist file foo.net, creates a file foo.nam which contains
all the names of the signals defined in the foo.pdl file. This information will be used from the timing constraints
specification language parser to identify the acceptable identifier names for signals and events.

5. The user has to specify the timing constraints which characterize the design foo, by writing an ATCSL program.
We call this program: foo.con.

6. Finally, the user has to run the verifier. The inputs for the verifier are the constraint file, foo.con, and the
event graph foo.sim. The verifier will parse the constraint file and after performing the verification process will
report identified violations. The verifier produces two report files: errors are reported in file foo.err; warnings
are reported in file foo.war. When trace analysis is requested by the user, signal traces are reported in file
foo.trc. A trace is a detail description for every specified signal of the design. The description includes the
events which constitute the signal, their timing characteristics and their dependency relations. A trace analysis
will help the designer identify or better understand the reason for a violation. To run the verifier we execute
program verify.

All the names of the files generated by CLOVER are comprised of two parts separated by a dot (.); we call
them the prefix and the extension. For example, file foo.con has foo as its prefix and con as its extension. The
prefix usually corresponds to the name of the design under verification. The extension characterizes the type of
the file (constraint file, pdl file etc.). As a common procedure in order to run a CLOVER'’s program we need only
to provide the name of the design under verification (i.e., clover_program foo in the previous discussion); implicitly
CLOVER will append the appropriate extension. However, and in order to permit verification of the same design
under different parameters each program provides certain options which permit the user to assign names to files with
a name prefix different from the name of the design under verification. For example, we may want to verify design
foo under two different set of constraints specified in files fool.con and foo2.con. To do that the verification program
verify provides an option (-C') to assign, as an argument, an explicit name for the constraint file. In that case we
would run the verification program two times as: verify -Cfool.con foo and verify - Cfoo2.con foo.

The user, after specifying the necessary files, can either run the individual programs one by one (as indicated in
the above steps) or can call clover foo to automatically apply all the necessary steps for the verification of the design
named foo. Clover will automatically step through each verification step.

By running clover with the option -L a name for the user-defined library is specified. Thus clover - Llibrary_name
foo will verify the design foo using library_name as the user-defined library. A textual interface based on UNIX curses
(a package of screen functions with optimal cursor motion) has been implemented which allows the user to verify a

design at once or apply the individual steps one by one according to the information provided in the next sections.
The use of the interface is self-documented and it is initiated by calling the program view_clover. In Appendix B we
summarize the necessary steps which need to be taken by the user for a complete verification session.

For every file used or created by the system (during verification of foo) we specify in the following table which
component of CLOVER uses or creates that file.

File Created by | Used by
foo.pdl User pdl2net
foo.pif pdiZnet pdi2net
foo.net pdi2net clsim

foo.com User clsim
built-in library System clsim
user_library User clsim
foo.sim clsim verify
foo.rep clsim User
foo.nam clsim verify
foo.con User verify
foo.err verify User
foo.war verify User
foo.tre verify User

The details of the use of the programs implementing the desired functions of each particular component of CLOVER
are presented in the following sections. The document is organized as follows: in Section 2 we present the hardware
description language PDL-e. Section 3 describes the behavioral specifications of standard and user-defined hardware
modules and contains the information needed to run the simulator. The timing constraints specification language,
ATCSL, and the use of the verifier are presented in Section 4. Finally, in Section 5 we provide information needed
for the initial setup of the system and the current status of its development.

2 PDL-e: A Hardware Description Language

To structurally describe a design, CLOVER. uses a hardware description language, PDL-e, whose properties are
presented in this section. PDL [10], is a generator language, developed at Princeton, for register transfer design. The
user writes C' programs that generate register-transfer machines and optimize the logic design using the Berkeley
optimizer, mislI [3]. PDL-eis an extension of PDL with different objectives: those of a hardware description language.
Since PDL-e has been built on C, it offers all of the advantages of a high-level programming language. The use of
functions makes hierarchical design feasible and natural. Regular structures are very easy and elegant to describe.
For some designs, there is an analogy between the program that generates the structural description of the design
and the one which specifies the behavior of it (see examples in [10]).

As we said earlier, a design in the structural domain of description is viewed as a collection of functional modules
interconnected with wires. These wires are connected to the input and output ports of the modules. In order to
specify wires, PDL-e offers a wire basic type. Variables referring to wires have to be declared as of type pointer to
wire. For such a declared variable to represent a “physical” wire a built-in function (gef-wire) exists which creates
a unique “physical” wire. Furthermore, other provided built-in functions allow the explicit naming of a wire, the
changing of a wire’s name and the connection of two wires together (see next section for a complete presentation).
For a wire variable to have some meaning it has to be associated with a module’s input or output port. This is
accomplished when we structurally describe a functional module. In the structural domain we can view a functional
module as being a black box (in terms of its behavioral characteristics) with a determined number of input and
output ports. In order to “create” the structural description of a functional module we need to specify the module’s
input and output ports. The built-in, PDL-e function, create_fun fulfill this purpose. Create_fun associates wire
variables with the input and output ports of the module under description.

Given a design named foo the user writes the structural description of it in the file foo.pdl. In order to derive
the netlist of the implementation first we run the program pd{2net. By calling pdi2net foo the program will look for
a file named foo.pdl and it will produce an intermediate representation of the netlist in a file called foo.pif. This
intermediate representation indicates the input and output wires for each defined functional module, and contains
information about the connectivity of wires and the equivalence of names for wires assigned more than one names.
The user though does not have to be aware of the contents of the pif file. The final form of the netlist which will be
used as an input for the simulator is derived in the file foo.net.

2.1 PDL-e Built-in Functions

The wire is the basic type in PDL-e. Furthermore, PDL-e offers the user the ability to group a set of wires using
the wire_array type. The built-in functions of PDL-e are basically functions to manipulate wires and wire_arrays.
We should be able to create a wire, to name a wire, to change a wire’s name and to connect wires together. Finally
PDL-e defines the built-in function create_fun which takes a variable number of arguments; it is used to describe
arbitrary functional modules with certain input and output ports.

wire *get_wire() The function get_wire returns a pointer to a wire, creating a unique wire. With this function a
declared wire variable is instantiated as a real “physical” wire.

wire_array *get_wire_array(int n) The function gei-wire_array returns a pointer to an array of n wires, creating
7 unique wires.

wire *name._wire(char *name) The function name_wire returns a pointer to a wire with name the string name.
That way the user can assign names to input and output ports of modules. Note the distinction between the
wire variable name and the wire name.

wire_array *name_wire_array(char *name, int n) The function name_wire_array returns
a pointer to an array of n wires, with name the string name.

connect(wire *wl, wire *w2) The function connect connects wires wl and w2. This is the equivalent of con-
necting, through a wire, input and output ports of two modules.

connect_array(wire_array *wl, int f1, int t1, wire_array *w2, int £2, int t2) The function connect_array
connects wires wi1f1] through wift1], to wires w2[f2] through w2/t2], respectively. Connecting two wire arrays
with t1 — fI # 12 — f2, results in a violation and the program is terminated.

wire *change name(wire *w, char *name) The function change_name changes the name of
wire w to name and returns a pointer to the renamed wire. The old name is still valid. We usually use this
function to assign names to the output wires returned by the function create_fun (see description below).

wire_array *change name_array(wire_array *w, char *name, int f, int t) The function
change-name_array changes the name of wires w/f] through wft] to name, and returns a pointer to wire.array
w. The old name remains valid.

wire_array *create_fun(char *format, argl, arg2, ...) The function is used for the structural description of
user-defined or standard-defined modules. In Appendix A we present the standard-modules (and their names)
currently defined in our built-in library.

Create_fun takes a variable number of arguments and returns a pointer to a wire_array which represents
the output wires of the defined module. The first argument format, is a string constituted of conversion
specifications each of which is used to interpret the rest of the arguments of create_fun (as does printf() in C).
Each conversion specification begins with a % and ends with a conversion character. Six conversion characters
are supported; with them the user can specify the name of the described module, the input and output ports of
it (using wire or wire_array types) and the delays associated with the wires connected to the input and output
ports of the module (only constant wire delay values are supported in the current version of the system). The
following table explains in more details the use of each conversion character.

In[1]

mo) [
#’///} Data D - Latch Out

A

I Clock

Figure 2: D-latch and AND gate in series

Conversion Char | Input Data; Argument Type

s Input is a string characterizing the name of the described module
w Input is a pointer to a wire representing an input wire. If the
conversion character w is followed by the character ¢

(wc) that will indicate that the corresponding input wire is a
control signal. This information can be used when we determine timing
causality dependencies.

w Three arguments should correspond to this conversion character.
The first two denote the wire.array limits (from, to).

The last is a pointer to a wire_array representing input wires.

W can be followed by the character ¢ to indicate

a wire.array of control signals (We).

d If present, should immediately follow a %w conversion specification.
Input is an integer which determines the delay, of a previously
specified wire.

D If present should immediately follow a %W conversion specification.
Input is a set of integers which determine the delay

of a previously specified wire_array. The first number of the

set indicates the cardinality for the rest of the integer set.

Q) Input is an integer which determines the number

of output ports of the defined module.

2.2 PDL-e Specification Examples

As our first specification example we present the PDL-e description for the circuit shown in Figure 2 (an AND gate
and a D-lafch connected in series). We call this design an and-dlatch.

#include "pdlpif.c" /# Must appear in all pdl-e descriptions */

/* The macro D_latch(i, en) will "create" the structural description of the */

/* module D_latch, with two inputs of type wire. The macro is defined to */

/#* return a variable of type wire because the D_latch has a single output port */
/# (this is accomplished by taking as output the first element (indexed by [0]) */
/* of the wire_array returned by create_fun). %/

#tdefine D_latch(i, en) create_fun("%s %w %w %0", "D_latch", i, en, 1)[0]

main ()

{

wire *cl, *d, *out;

Small_Module A

Figure 3: Hierarchical Connection of Modules
wire_array *ij;

/* Create a wire_array with two elements and name "In" (In[0], In[1]) */
i = name_wire_array("In", 2);

/* Create a wire with name "Clock" */
¢l = name_wire("Clock");

/* Create the module AND with output named "Data"); #/
/* AND is predefined in pdlpif.c */
d = change_name(AND(i[0], i[1]), "Data");

/* Create the module D_latch with inputs d, cl */
/% and output named "Dut" #*/
out = change_name(D_latch(d, cl), "Out"™);

Note here that all pdl files should include the file pdipif.c. In pdipif.c there are predefined definitions for the
standard gates AND, OR, NOT, NAND, NOR and XOR, (their corresponding implementations are modules -and,
-or, -not, _nand, _nor and _zor defined in Appendix A). As a result the user does not have to “create” them using
the built-in function creafe_fun. The next example will show how we can take advantage of the high-level structure
of PDL-e to hierarchically describe a design.

‘We want to describe the specification of the module Big-Module 3A, which consists of three modules Small_module
A, connected as shown in Figure 3. The PDL-e description follows:

#include "pdlpif.c"

wire_array *Small_Module (wire #*i)

{
/* Create Module Small_Module */
return create_fun("%s %w %0", "A", i, 2);

IB__DCOMDC |>:0um

Figure 4: N inverters in series

}

wire_array *Big Module (wire #*i)
{

wire_array *tmp, *tmp_out;

tmp = get_wire_array(4);

/* Big_Module 3A is created by calling Small_Module()
with a Small_Module output as an input */

tmp_out = Small_Module(i);

connect_array (tmp, 0, 1, Small_Module(tmp_out[0]), 0, 1);

connect_array(tmp, 2, 3, Small_Module(tmp_out[1]), 0, 1);

return tmp;

: ;
main ()

£

wire *i, *o;

/* Name input wire as "I" %/

i = name_wire("I");

/% Create module Big_Module with input "I" and output "0'" */
change_name_array(Big_Module(i), "0", 0, 3);

Finally the last example will show how naturally regular structures can be specified within PDL-e. We will
specify N inverters connected in series as they appear in Figure 4.

#include "pdlpif.c"
ftdefine N 4

main ()

{

wire *in, *tmp;

int d;

char *name[] = {"Outi", "0ut2", "Out3", "Out4"};

in = name_wire("In");

for (i = 0; i < N; i++) {
tmp = change_name (NOT(in), name[il);
in = tmp;

3 Describing Behavior with CLOVER

In CLOVER we use the C' programming language to program the desired behavior of a functional module. As
a result the behavior of a module is represented as a C' function. As stated earlier, we distinguish two kinds of
functional modules: standard and user-defined. A built-in library exists which describes the behaviors for standard
components like gates, latches, multiplexers. User-defined modules can range in complexity from a simple gate to a
complex hardware component. The user has the ability to code the behavior for any user-defined component of the
design, at different levels of detail. This is a very important feature for hierarchical analysis and verification. The
names of the user-defined functions should be the same as the corresponding names used to “create” these modules
in the pdl file. During the operation of the circuit, functional modules communicate with each other through their
input and output ports. Output signals appear, after some propagation delay time, at the output ports as a response
to an input signal vector. In describing the behavior of a module as a C function, the input and output ports of the
module and the corresponding propagation delay times are arguments of the C function. The C function receives its
input values through the arguments which correspond to the input ports of the module and returns its output values
through the arguments which correspond to the output ports of the module. At the same time, the arguments of
the C function which correspond to the propagation delays through the module return the propagation delay times
for the reported output values. That way, two communicating modules are represented during simulation as two C
functions which exchange information through their corresponding arguments. The parameter set of a user-defined
behavioral description C' function is presented in Section 3.1.

An extended value system is used for the characterization of the module’s output values. The following table
defines the values of the extended value system and their meaning:

VALUE MEANING
0 Value stable at zero
1 Value stable at one
T Signal monotonically increasing from zero, called rising
f Signal monotonically decreasing from one, called falling
c Signal is changing, any transitions acceptable
8 Signal is stable either at zero or one
u Same as changing, but it is used only for initialization, called undefined

The user does not have to use the undefined value. The simulator uses this value internally for initialization purposes.
As an example, we present below the extended functional table of the function NOR, based on the extended value
system:

o
=

g ®m o o =l

2w o o= o|z
2 00 0 o e
£ 0o oo oM
£ o 0o oo oaolo
2 0 00 ocn|n
=T~ — I~ I~ = =

C OO COoO OO

To illustrate how we program the behavior of a module, we present the program for the behavioral description of an
AND gate with two inputs and one output. We assume that the gate propagation delay can range from 10 to 15ns
for rising transitions, and from 9 to 14ms for falling transitions. For simplicity we assume a two-value system with
the values zero and one. The use of the parameter mode will be explained in Section 3.2.

int and (int *in, int #**out, int **tmin, int **tmax, int *mode)

{

/* Time low to high minimum = 10 - maximum = 15 ns */
/* Time high to low minimum = 9 - maximum = 15 ns #*/
/* *mode is initialized to -1 by the simulator */

if (in[0] == 70’ || in[1] == 20?) {
/* if either input is zero the output will become zero */
o[0J[0] = ?0?; tmin[0][0] = 9; tmax[0][0] = 15;

}

else {
/#* if both inputs are one the output will become one */
o[01[0] = ’1’; tmin[0][0] = 10; tmax[0][0] = 15;

¥

Since the behavior of the functional modules is programmable, we can explore ways to describe more accurately
the behavior of the analyzed design. Consider for example, the behavior of a flip-flop. We know that if the
set-up constraint is violated the flip-flop’s output may fall into a metastable state for an unbounded (practically
“large”) amount of time. In Section 3.2 we show how violations of the set-up and hold time constraints of standard
modules like flip-flops and latches can be detected (a detailed description of the behavior of a D-lafch is presented
in Section 3.2). A flip-flop behavioral description which accounts for a set-up or hold time constraint violation will
determine dynamically the output of the module when the violation is detected. A metastable state, in this case, can
be represented by assigning to the flip-flop’s output signal a changing value for a “large” amount of time; the exact
amount of time is also programmable. A static approach will detect a violation without propagating its effects to
the rest of the circuit. That way a less accurate behavior of the design will be obtained. The dynamic approach will
propagate the effects of the violation to the rest of the circuit. That way, however, we may inhibit the verification of
constraints not dependent on the detected timing violations. For example when a changing value is used to represent
the output signal value of a flip-flop in a metastable state, constraints which use the same output signal with zero or
one value will fail to evaluate because these values will never appear. Since the behavior is programmable the static
or the dynamic approach can be used; their combination may provide the designer with a better understanding of
the design.

3.1 Parameters Definition for a User-Defined Function

The parameters and the meaning of a user-defined behavioral description function, are presented next:

int #in In is a pointer to the array of the module’s input values. The size of the array equals the number of the
module’s input ports (this information is contained in the netlist of the design).

int **¥out QOut is an array of pointers. The size of the array equals the number of the module’s output ports. Each
pointer points to an array of signal values. Each array is the response to in on a particular output port. It is
thus clear that we can model a behavior where one input transition causes more than one output transitions
on the same port.

int #*tmin T'min is an array of pointers with size equal to the number of the module’s output ports. Each pointer
points to an array which contains the minimum propagation delay times for every output signal on every
output port. The designer has total freedom in assigning these delays based on the input values. For example
differences between the delays of rising and falling transitions can be very easily coded in the behavior.

int #*tmax Same as {min to determine the maximum propagation delay time for the output signals.

int *mode Mode is an array of pointers with size equal to the number of the module’s output ports. Mode is used
to control delayed evaluation discussed in Section 3.2. The simulator initially initializes the elements of the
array to value —1. The following interaction takes place during simulation: when the functional module wishes
to delay evaluation for some output signal at port ouifi/, the corresponding element of *mode, modefi], is set

10

to a positive value ¢ which denotes (to the simulator) that the output signal at port out/:] will be evaluated
in delayed mode after time ¢ (see next section). For user-defined modules the user’s C' code for the module
behavior is responsible for assigning the delayed time ¢. The simulator will delay the evaluation for time ¢ and
will assign to modefi] the negative value —2. After time ¢ the delayed evaluation will take place; the negative
value —2 of mode[i] will indicate (to the module) that the incoming evaluation is one that had been rescheduled
for delayed evaluation at the output port outfi/. Note here that we do not carry along the value of the delayed
time ¢. As a result, we cannot distinguish between more than one incoming delayed evaluation referring to the
same output signal. However, this situation never occurs in practice; incoming events scheduled at the same
port at time ¢; will be preempted by earlier events scheduled at time ¢, when #5 > #;. Unless the functional
module again assigns mode[i] a positive value, the simulator will reset mode/i] to —1.

3.2 Handling State Information During Event Driven Simulation

An important shortcoming of the standard event-driven process is that it is memoryless. An event may have an
effect on the circuit only at the time it comes out of the event queue. After that time, the event is lost. If, during
the behavioral evaluation of a module, we allow events which come out of the event queue to reenter the queue and
reappear (delayed) after some specified time, then some sort of memory (state) is added on the standard event-driven
mode of operation. In that case we say the the module is evaluated in delayed mode. The mode of evaluation is
determined by the use of the mode parameter, which either is negative meaning standard mode, or is an integer
which specifies the time the event should reappear in the event queue. The default state of operation is the standard
mode; the system initializes the mode parameter to a negative value (—1).

Consider as an example the behavioral description of a D-latch. In the standard mode of operation (no delayed
mode) the D-latch will pass its input value to its output port whenever the enable signal is “on” (enable is “on”
only when it assumes the value one). At the same time we would like to ensure that the last input signal (while the
enable was “on”) assumed its value at least a set-up time before the falling edge of enable (that is when enable went
“off”). Finally for the hold time to be satisfied the input which changed last before the enable went “off” should
retain its value at least a hold time after the falling edge of the enable signal.

From the above description it is clear that in order to ensure that no set-up time violation exists when an input
signal appears at the input port of the D-latch, we should wait until at least a set-up time or until the falling edge
of the enable signal appears. Since the standard event-driven mode of operation is memoryless this check cannot be
made during running time and as a result the behavioral description of the D-latch will be static (the response of
the D-latch will not depend on whether a set-up time violation occurred or not). To allow for a dynamic behavioral
description we should evaluate the D-latch module in delayed mode.

In a dynamic description, the D-latch operation can be described in two states. In the initial state the input
event appears for the first time; If the enable signal is “on” we reenter the input event into the queue specifying that
the D-latch output should be evaluated for this event in delayed mode after a time equal with the set-up time. Next
time this event appears we evaluate the module in delay mode and we check for a possible sef-up time violation. If
the enable signal is “off” and we are in the initial state then we should check for a hold time violation. If the enable
signal is “off” and we are in delayed evaluation mode then we should check for a set-up time violation. In case a
new input event appears before the delayed event then the state of the operation is reinitialized to the starting state.
The old delayed event will be preempted when it comes out of the queue since it was originally scheduled before the
new input event. Note that if two events occur simultaneously, e.g., both enable and input change at the same time,
the events will come out of the queue for processing one at a time in arbitrary order. At the end of this section we
give the code for the complete behavioral description of a D-latch.

It is interesting to see what else we have accomplished here: the behavior of a D-latch is described in a way that
the simulator can check the standard timing constraints of the D-latch (set-up and hold time) while evaluating the D-
lateh description. In this way, a verification for these constraints is provided for free, as part of the simulation process.
Any violation found is reported in the simulator’s report file. The same standard constraints can be expressed within
CLOVER’s specification model and verified by the verifier. However, it would be inconvenient for the user to specify
the same constraints for every standard module like a latch or flip-flop of a design’s implementation and name every
input and output signal of these modules (signals should be named in our specification model).

11

m | Dlaeh | 9w

N
En
]
N
Set-Up 1 Hold
Iﬂ ?
i ——
:
: ...
En
Figure 5: D-Latch Set-up and Hold Times
in
.. '
1
. .
y '
In e SetUp oooeon, - _ time
: 1
1 1
' H
.]
' i
En S| S [S——— i....en_in
i :
1
'e..... Delayed Evaluation »ie.. Simulation Time

Figure 6: Set-up Violation

Behavioral Description of a D-Latch

extern int get_ev_info(char, int, char, int, int #*, int *, int *);
extern int retain_value();
extern int SIM_TIME;

int D_latch (int *in, int **out, int **tmin, int *%*tmax, int *mode)

{

int in,
int en_

width, elem;
in, en_width, en_elem;

int set_up = 5, hold = 20;

VE]
/*
VE]
/*
/%
/*
/*

SN74LS373; CL = 45pf; Rl = 667 w */

Time low-to-high (data) typical = 12 - maximum = 18; */
Time high-to-low (data) typical = 12 - maximum = 18; */
Time low-to-high (enable) typical = 20 - maximum = 30; */
Time high-to-low (enable) typical = 18 - maximum = 30; */
set_up = 5; hold = 20; (See Figure 5) */

Data come on input port zero */

12

/* Enable comes on input port one %/

/* The get_ev_info function returns the initial time, */

/% the width and the index of an event by using */

/% information from the event graph */

get_ev_info(’i’, 0, in[0], -1, &in, &width, &elem);
get_ev_info(’i’, 1, in[1], -1, %en_in, ken_width, &en_elem);

if (in[1] == ?1’) { /* Enable is on %/
/* Check if enable or data signal changed last */
if (en_in == SIM_TIME) { /# Enable signal changed last */
if (in[0] == *1’) { tmin[0]1[0] = 20; tmax[0][0] = 30; }
else

if (in[0] == 20?) { tmin[01[0] = 18; tmax[0][0] = 30; }
else { /# For every other value assume worst case values */
tmin[0][0] = 18; tmax[0]1[0] = 30;

}
out[0][0] = in[0];
}
else { /* Data signal changed last or Delayed Evaluation #/
if (mode[0] == -2) {
/* in is the original initial time of the delayed event */
if (in < en_in) {
/* Set-up constraint is violated and we report it (not shown) */
/* A glitch should have occurred on enable (Figure 6) */
/* Keep the previous value */
out[0]1[0] = retain_value(); return;
}
/* The set-up time constraint was not violated */
out[0][0] = in[0];
tmin[0][0] = 12 - set_up; tmax[0][0] = 18 - set_up;
}
else {
/* Delay evaluation for a set_up time period */
mode[0] = set_up;
/* The simulator puts the delayed input value */
/#* into the simulation queue */

}
}
else { /* Enable is not one */
if (en_in != SIM_TIME) { /# Data signal changed last */
/* Check for set-up time violation */
if (mode[0] == -2) {
/#* Set-up constraint is violated and we report it (not shown) */
/* The input signal is not latched and its effect is lost */
/* Keep the previous value */
out[0][0] = retain_value(); return;
}
/* Check for hold time violation #*/
if (SIM_TIME - en_in < hold) {
/* Hold time is violated, output becomes not stable */
out[0][0] = ’c’; return;

13

3.3

/* Check if delayed input value occurs simultaneously with enable */
if (en_in == set_up + in &% mode[0] == -2) {

/#* Latch the delayed input value %/

out[0][0] = in[0];

}

else {
/* Keep the previous value */
out[0] [0] = retain_value();

}

Simulator Built-in Functions

For a more complete and accurate description of the behavior of the circuit components, access to global simulation
time is provided and there are built-in functions which give the user the capability to obtain information about the
event graph at any state of the simulator. Thus information about the initial time and the width of events as well as
the dependency relation between events can be obtained. This information can be used as conditional qualification
in the behavioral description of the user-defined functional modules. Their definition follows:

int get_ev_info(char inout, int p, char ¢, int index, int *in, int *w, int *elem) This function

char

returns timing information about specific events appearing on the input-output ports of the circuit modules.
The inout parameter determines if the event appears on an input or output port p of the module (we also
represent that as a [inout, p] port). It takes values from the set { ’’, o’} where i’ denotes an input port
and ’o’ denotes an output port. The port numbers follow the index numbers of their corresponding input or
output signals. With the parameter ¢ the value of the event is specified. It takes values form the set { '0’, 'I’,
', ’f’, ’s’, ’¢’ }. Parameter indez specifies the index of the event. When it assumes the value —1 then we
refer to the latest event created up to this point of the simulation. The initial time, width and index of the

event are returned with the parameters in, w and elem respectively.

We saw in the D-latch behavioral description that we used this function to obtain information about the timing
characteristics of the enable and the input signal. We were able to determine which of these two signals changed
last and describe accordingly the latch behavior.

get_value(char inout, int p) The function returns the value of the latest event which appears on port finoul,
p]. This function can be particularly useful in cases where the behavior of a module depends not only on its
current inputs but also on its previous outputs (e.g., an RS flip-flop). Then we can use get_value() to find out
the value of the old outputs and use it to calculate the new ones.

int retain_value() This function is used to indicate no change to an output value. It is useful to describe behavior

of memory elements like latches and flip-flops, for example, where the output signal retains its value when then
enabling signal is “off”.

int cau_depend(char *portl, char c1, int index1, char *port2, char ¢2, int index2) The function returns

one(1) if the event with value ¢! and index indez! on port port! timing causes the event with value c¢2 and
index indez? on port port2. Otherwise the function returns zero(0). By port! we refer to the port where the
signal with name port! appears (similarly for port2).

One of the problems with min-max delay simulators is the report of spurious errors (e.g., glitches) in cases where
in reality these may never take place (e.g., the problem of hazard detection due to reconvergent fanouts). The
reason for that is because of the pessimism involved in the min-max delay calculations. By using the function
cau-depend we can improve the accuracy of the reported errors by excluding from consideration sequences of
signals which can never occur. For, example if we know that signal B timing causes signal C then we know
that C' would never precede B. If B and C were input events to a functional module M, then we can program

14

the behavior of M accordingly (using cau_depend in order to avoid spurious errors involving signal C preceding
signal B).

SIM_TIME This is not a function but rather a global variable. It gives the user access to the internal global time
of the simulator.

Before running the simulator and if new user-defined modules have been defined, we have to compile the user-
defined library and link it to the standard modules library. To do that the user uses the program user_lib. By
calling user_lib library_name, the program will parse the user-defined library, library_name, identifying the names of
user-defined modules and subsequently will compile and link them with the standard library. The parse program
will create a C' structure relating user-defined functions and their names. The first field of the structure is a
character string where the name of the user-defined module (in the pdl description) is stored. The second field is a
pointer to the function which specifies the behavior of the same module. This structure is recorded in a file named
Jun_library-name.c where library-name is the name of the user defined library. Note that library-name can either be
a plain file name or a full path name. After linkage, an executable version of the simulator will be created at the
user’s current working directory.

3.4 Running the Simulator

In order to run the simulator we have built a small set of commands to guide its operation. These commands are
presented next. In the description of a command’s format we adopt the following convention: everything in bold
letters represent characters which should be typed as they appear; everything in italics are variables assigned values
from the user, according to the specifications of the command.

set The set command is used to assign signals (initial values) to the primary inputs of the circuit. The format of
the set command is:

set signal_-name n valuey start_timeg . ..value, stari_time,

By signal-name we specify the name of the wire where the specified values appear. Number n is an integer
which specifies the number of distinct events (values) assigned to signal_-name. The values of the events and
their starting times are specified next. For example, the command:

set Signal 2r 0 f 10

will create event Signal.r[0] with starting time 0 and event Signal.f/0] with starting time 10.

set_array The sel_array command has similar functionality as the set command but it is used in order to assign
values to an array of signals. The format of the set_array command is:

set.array from-to signal_-name value_assignments

The numbers from and to are integers specifying the array bounds. The part value_assignments is similar to
the part of the sef command which follows the signal_name and it should assign values to the elements of the
signal array signal_name from from to to (events of first array element are assigned first, events of second array
element are assigned second and so on). For example, the command:

set_array 0-1 Signal 2r 0f 102 ¢ 10 s 20

will create the events Signalf0].v[0], Signal[0].f{0], Signal[1].c[0] and Signal[1].s[0] with starting times 0, 10,
10 and 20 (time units) respectively.

periodic Special provision exist in order to give a periodic signal as input, something which is necessary for syn-
chronous designs with clocks. The format of the periodic command is:

15

periodic signal_name period iteration value_assignmenis

period is an integer which determines the period of the periodic signal. Iteration is an integer which if negative
specifies infinite periodicity and if positive specifies the number of the desired iterations of the periodic signal.
The part value_assignments is similar to the part of the set command which follows the signal_name and it
should assign values to the events (events of the first period) of the periodic signal signal_name.

periodic.array The periodic_array command has similar functionality as the periodic command but it is used in
order to assign values to an array of periodic signals. The format of the periodic_array command is:

periodic_array from-to signal-name value-assignments
The numbers from and {o are integers specifying the array bounds. The part value_assignments is similar to

the part of the periodic command which follows the signal_name and it should assign values to the elements of
the signal array signal-name from from to fo. Each signal of the array can be assigned its own period.

print The print command is used to print the waveforms of signals selected by the user. The format of the print
command is:

print signal_name value

The simulator reports in the rep file the timing characteristics (starting time and ending time) for all events
with name signal_name and value value. Violations for non-existent signals are also reported in rep.

print_array The print_array command is used to print the waveforms of array of signals selected by the user. The
format of the prini_array command is:

print_array from-to signal_-name value

The integers from and {o specify the array bounds. Out of bound indices are reported in the rep file.

time The #ime command is used to print the current simulation time. The format of the command is:
time

clock When we run the simulator for a certain number of clock cycles, the clock command is used to determine the
desired clock period. The format of the command is:

clock clock_period

where clock_period is an integer specifying the desired clock period.

run The simulator starts running using the run command. The command has three possible formats:
run time time

Time is an integer which specifies the maximum simulator time the simulator is allowed to run. The second
format of the command is:

run cycle cycle_number

The simulator runs for a number of cycles equal to cycle_number. The clock period had to be given before with
the clock command. The last format of the command is:

16

MEANING

unit delay model

minimum - maximum delay model
probabilistic delay model

slope delay model

FNQECICI oY

Table 1: Delay Models

run for

The simulator runs “forever” until its event queue becomes empty. In reality there is an internal time-out period
after which the simulator stops running; its current value is 3000 time units. Note that infinite execution can
still occur because simulator time need not progress.

erase The erase command initializes the state of the simulator, and it is used when we want to test the design for
more than one input vector (case analysis). Case analysis may be necessary in order to obtain more accurate
results and to avoid problems like false-paths [11]. The format of the erase command is:

erase

Expressions can be commented in a .com file using symbol # as a delimiter.

Now we are ready to run the simulator. The simulator program is called clsim. Given the design foo the command
clsim foo will run the simulator producing an event graph. Following the same convention we used for the other
programs of CLOVER, the user is able to use names for the files used by or derived from the simulator with a prefix
part different from foo. The following options are used for that purpose:

-N The format -Nfool will result in using file fool.net as the input netlist file for the simulator.
-C The format -Cfool will result in using file fool.com as the command file for the simulator.
-S The format -Sfoo! will derive the event graph for foo in file fool.sim

-R The format -Rfool will result in using file fool.rep as the report file of the simulator.

The simulator supports both the inertial and the transport timing models [1]. Transport model is the default
timing model. Running clsim with the option -i switches the timing model of the simulator to the inertial model.
Finally the user is able to determine the delay model used during simulation. This is accomplished with the option
-d. The format used is -ddelay-model where delay-model is an integer which determines the desired delay model.
Table 1 associates d with different delay models. The default model and the only currently implemented model is

the min-max model.
Coming back to the example in Figure 2 we create the following com file to simulate design and-dlatch:

Initialize the array In; In[0] is stable between 0 and 80ns
and changing the rest of the time. In[1] is stable between
20 and 95ns and changing the rest of the time. #

set_array 0-1 In 2 s 0 c 80 3 c 0 8 20 c 95

The Clock has a period of 100ns. For the first

period it assumes value one between 50 and 70 ns. #
periodic Clock 100 -1 3 0 0 1 50 0 70

17

run the simulator for two cycles;
every cycle has a period of 100 ns. #
clock 100

run cycle 2

Print the timing characteristics for signal
Out with values stable and changing. #

print Out s

print Out c

After running clsim and_dlatch we will get the event graph for and_dlatch in file and-dlatch.sim and the report
file for the simulation in file and_dlatch.rep. In file and-dlatch.nam the names of the signals defined in foo.pdl are
recorded. In this case four names are recorded: In, Out, Data and Clock. The rep file contains the result of the print
command. For each valued signal specified in print the interval of time during which this signal holds is reported.
The report file is presented next: '

Signal: Out Value: s
80 168

Signal: Out Value: c
68 80, 168 infinity

By infinity (an INT_-MAX integer) we indicate that signal Qut.c was holding value changing when the simulation
was terminated.

4 The ATCSL Language and the Verifier

We will start by presenting the basic concepts of events and signals as these concepts are defined in the specification
model of CLOVER (formal definitions can be found in [6]). An informal presentation of the basic operators of the
language will be given next, followed (in Section 4.1) by a formal syntax specification of ATCSL.

Signal & Event Under CLOVER’s specification model an event is defined as the occurrence of a new value assumed
by a circuit port at some point in time during the operation of the circuit. An event is characterized by a
5-tuple < P,V,I,T,W > where P is the port assumed the new value, V is the value assumed by the port, I is
the index of the event (the I + 1th time, counting from I = 0, during the operation of the circuit where port
P assumed the value V'), T is the starting time of the event and W is the width of the event: the time during
which the event retains the value assumed at time 7.

A signal S on a port P is defined as the set of events, over time, which occur on port P. In particular we
define a V-signal SV on a port P as the set of events which occur on port P and assume the same value V.
The timing characteristics of a V-signal (width and initial time) are defined as vectors with the corresponding
timing characteristics of the events which constitute the V-signal as elements. A V-signal characterized by
the 5-tuple < P,V,n, T, W > is represented as P.V (in ATCSL a port is described by its name), where n
is the number of events which comprise V-signal P.V. For example to refer to a V-signal on a port § with
value rising(r), we say: S.r. For simplicity we will usually call P.V a signal rather than a V-signal. Any event
appearing on S with value r will be one of the n events which comprise signal S.r. We will refer to them as:
S.rfi] where 0 < i < n. We refer to the initial time of signals and events using the function start. For example
the initial time of event S.r[i] is represented as: start(S.r[i]). Similarly we refer to the width of a signal or
event using the function width. For example the width of signal S.r is represented as: width(S.r). Finally the
number n of events S.r[i] which comprise signal S.r (cardinality of S.r) is referred by card(S.r).

Arithmetic Operators ATCSL supports the standard four arithmetic operations.

18

OPERATOR | MEANING
+ Addition
- Subtraction
* Multiplication
/ Division

Relative Operators ATCSL supports six relative order operations.

OPERATOR MEANING
5 Greater
>= Greater than or Equal
< Less
<= Less than or Equal
= Equal
= Not Equal

Timing Assertion We use the arrow operator (—) to express a timing assertion relation. The definition of
the arrow operator is that of the assertion relation. We represent the relation that signal P;.V; asserts,
signal P;.V5 within a time range from time min to time maz as: P1.Viy — [min maz] P;.V5. This means
that for each index i, 0 < i < min(card(P1.V1), card(Py.V3)) if P;.Vi[i] occurs then P,.V3[i] occurs and
{start(T3[i]) > start(T1[i])+min} A{start(T3[i]) < start(Ti[i])+maz}.

Composite Operators ATCSL provides a small set of 2-operand operators over signals and events, whose semantics
can be defined using the arithmetic and relative operators of the language and the initial times and widths of
the operands. These operands are provided because they capture composite concepts which are very commonly
used in specification problems. The first three operators can be defined over two signals, two events or one
signal and one event operands. We first define these three operators over two event operands. Then we adapt
the definitions for the case of two signal operands and the case of one signal and one event operand. The fourth
operator, SYNC, is defined only over two signal operands. For the definitions we will assume two event operands
Ey:< Py, V1,1, Th, Wy > and Ej :< Py, Vo, J,T5, Ws >, and two signal operands 57 :< P, H,n,ﬂ,wl > and
Sy i< Pg,Vz,m,'f“;,Wz >, where n < m.

1. WHILE: We define £y WHILE E; as: {T; < Th'} A {T> + W2 > T1 + Wh}. The operator WHILE
specifies that the event E; appears and holds while signal E5 holds.

2. BEFORE: We define Fy BEFORE E, as: {11 < To} A {Th + Wi < T3}. The operator BEFORE
specifies that the event E; should start and cease before the appearance of the event Fs.

3. OVERLAP: We define Ey OVERLAP Ej as: {T1 < Ta} A {Tz <Th + W1 < T3 + Wa}. The operator
OVERLAP specifies that the event F1, which starts earlier than event Es, ceases to hold while the Fy is
still holding its value.

4. SYNC: We define S; SYNC [from to] Sa as: Vi,0 < ¢ < n,35,0 < j < m such that {T1[i] > Ta[j]+
from} A{Ti[i] < Ts[j]+te}. The operator SYNC is used to specify that the events of signal S; appear
in synchrony with and within a time range of the events of signal S3. This is a very commonly used
specification in synchronous designs, where usually the signal Sy is a clock signal. The time bounds from
and to may also assume negative values.

When the operands of the operators WHILE, BEFORE, OVERLAP are either two signals or one signal and
one event the definitions are adapted as follows (We use OP to declare any one of the above three operators).
We define S; OP S5 as: Vi,0 < i < n, P1.Vi[i] OP P5.Va[i]. We define S; OP E; as: Vi,0 < i< n, P1.Vi[i] OP
E;.

WHILE, BEFORE, OVERLAP, SYNC are also defined over what we call value_intervals. A wvalue_interval is
a set of time intervals during which two signals assume or do not assume the same value. Given signals S; and

19

Sy we characterize the former condition as: val('S;) = wal(Sy) and the latter as: val(S1) /= val(Sy). For
example, we can describe the specification that V-signal Ss should appear while signals S; and S, assume the
same value as follows:

Ss WHILE (val (S;) = val (S2))

Like V-signals, value_intervals can be indexed to select a particular time interval.

Timing Causality Assuming two signals < Py, Vq,nq, T;, Wi > and < Py, Vo, no, ’f'.z, Wa > we represent the relation
that Py.V; timing causes P.V5 as:

PV = PV,

Similarly for two events (the causality operator = is typed as the combination of symbols = and >).

Strong Dependency We represent the relation that signals
< OP],OVl,ml,O_Tl,OW1 Py e g S OPk,OVk,mk,O-Tk,OWk >
strongly depend on signals

< IP, IVi,na, IT4, IV >, ..., < 1P, IVi,m, I, I >

INPUT(IP,.1V;,. .., IP.1V;) = OUTPUT(OP,.0V, ...,OP;.0V;)

Similarly for events.

Weak Dependency We represent the relation that signals
< 0P, 0V, my, O_Tl, OVVi 55 5005 < O P OV M O_Tk, Oﬁfk >
weakly depend on signals

< IPy, IVi, g, IT1, IWG >, ..., < TPy, Vi, m, I, TWR >

PATH(IP,.IVi, ..., IP.1V;) = TO(OP,.0W, ...,0P;.0Vi)

Similarly for events.

Logical Operators ATCSL supports three logical operations.

OPERATOR | MEANING
&& Logical AND

I Logical OR

! Logical NOT

Universal Quantification is defined over the indices of the events which appear in a relation. It is represented in
ATCSL using the command FOR of the form:

20

FOR (i; from; to; step;) { Timing or Dependency Relations }

Where from < i < te and 7 increases each time by step.

Existential Quantification is defined (like universal quantification) over the indices of the events which appear
in a relation. It is represented in ATCSL using the command THERIS of the form:

THERIS list { Timing or Dependency Relations }

Where in list we specify indices of events and their range. An example of a list can be:
i [froml : tol], j [from?2 : to2].

Conditional Evaluation We define two classes of conditionally evaluated relations: conditional timing relations
(CTR) and conditional dependency relations (CDR). A conditional timing relation (CTR) is defined as follows:
1. IF (conditional predicate) { Timing Relations or CTRs }
2. IF (conditional predicate) { Timing Relations or CTRs } ELSE { Timing Relations or CTRs }
3. FOR (i; from; to; step;) { Timing Relations or CTRs }
4. THERIS list { Timing Relations or CTRs }

Similarly, a conditional dependency relation (CDR) is defined as follows:

L. IF' (conditional predicate) { Dependency Relations or CDRs }
2. IF (conditional predicate) { Dependency Relations or CDRs } ELSE { Dependency Relations or CDRs }
3. FOR (i; from; to; step;) { Dependency Relations or CDRs }
4. THERIS list { Dependency Relations or CDRs }
The conditional predicate can be a timing or a dependency relation. The interesting point is that a set of
conditionally evaluated timing relations may assume a dependency relation as a predicate and, similarly, a set

of conditionally evaluated dependency relations may assume a timing relation as a conditional predicate. This
is the only (restricted) form allowed where timing and dependency relations may be mixed.

To separate timing and dependency relations in an ATCSL program, we use the keywords TIMING and DEPEN-
DENCY (if both are present, timing relations should precede dependency relations). The following is an example
syntax:

TIMING
{

timing relations

}
DEPENDENCY
{

}

dependency relations

4.1 Formal Specification of the Language

In the formal specification of the language below, keywords are shown in bold font, alternatives are separated by
vertical bars, parentheses indicate grouping, optional clauses are indicated by brackets, and optional repetition is
indicated by braces.

21

var_decl:
indez_identifier [= scalar-constant] { , indez_identifier [= scalar-constant] }
indez_identifier:

identifier
range:

scalar-constant | [-]MIN | [-]MAX
value:

1|0|r|f|s]|c
signal:

identifier . value
signal-event:

signal [[indez_ari-ezp |]
event_signal_exp:

start (signal_event)

width (signal_event)

card (signal-event)
valinterval:

(val (identifier) (=|!=) val (identifier)) [[indez-ariezp |]
indez_ari_ezp:

card (signal_event)

indez_identifier

scalar-constant

(indez_ariezp)

indez_ariezp (+ |- | * | /) indez-ari_ezp
lim_ari_ezxp:

event_signal_exp

indez_identifier

scalar-constant

(tim-ari_ezp)

tim-ari-ezp (+ |- | * | /) tim_ari_ezp
tim_rel_ezp:
tim_ariezp (> | >= | < | <=|=|!=) tim_ari_ezp

interval_ezp:
(signal_event | val-interval) WHILE (signal-event | val-interval)
(signal-event | val.interval) BEFORE (signal_cvent | val-interval)
(signal_event | val-interval) OVERLAP (signal-event | val_interval)
(signal | valinterval) SYNC [range range | (signal | val-interval)
timing-assertion:
signal_event — > [range range] signal_event
list:
identifier [range : range |
lim-ezistential_exp:
THERIS list { , list } (timing)
tim-universal-ezp:
FOR (identifier ; indez_ari-ezp ; indez-ari-exp ; inder_ariexp) timing
tim_rel:
timrel ((&& | |1 |!) tim_rel
tim-rel_ezxp
interval_ezp
timing-assertion
tim_existential_exp

22

tim_universal_exp

(tam_rel)
timing:

timing { timing }

{ timing }

tim_rel ;

IF' (tim_rel | dep_rel) timing [ELSE timing]
causal_rel:

signal_event => [[range range |] signal_event
strong_rel:

INPUT (signal_event { , signal_event }) => OUTPUT (signal_event { , signal_event })
weak_rel:

PATH (signal_event { , signal_event }) => TO (signal-event { , signal_event })
dep_ezistential_ezp:

THERIS list { , list } (dependency)
dep_universal_ezp:

FOR (identifier ; indez_ari_ezp ; indez_ari-ezp ; indez_ariexp) dependency
dep-rel:

dep_rel (&& | || |!) dep-rel

causal_rel

strong-rel

weak-rel

dep_ezistential_exp

dep_universal_exp

(dep-rel)
dependency:

dependency { dependency }

{ dependency }

dep-rel ;

IF (tim_rel | dep-rel) dependency [ELSE dependency]
timing constraint:

[var-decl ;] TIMING timing end

[var-decl ;] DEPENDENCY dependency end

[var_decl ;] TIMING timing DEPENDENCY dependency end

A scalar-constant is an integer number. An identifier is an alphanumeric string. An index identifier can be any
alphanumeric string; a signal or event name can be any string contained in the file foo.nam created by the simulator.
Declared variables are not initialized by the system. The order of evaluation for the expressions is left-to-right.
Comments are supported and commented expressions are described between the delimiters /* and */ (like in C).
The MIN and MAX keywords correspond to minus and plus infinity respectively. Internally they are assigned the
values INT_-MIN and INT-MAX.

4.2 Using the Verifier

Having specified the timing constraints in ATCSL and derived the event graph using the simulator, we are ready to
run the verification program verify. By calling verify foe the verification program will use files foo.con, foo.sim and
foo.nam and will produce error or warning reports (if any) in files foo.err and foo.war respectively. Following the
same convention we used for the other programs of CLOVER, the user is able to use names for the files used by or
derived from the simulator with a prefix part different from foo. The following options are used for that purpose:

-A The format -Nfool will result in using file fool.nam as the file where the acceptable signal names are recorded.
This file will be used while parsing the constraint file.

23

-C The format -Cfoo! will result in using file fool.con as the file where the timing constraints, specified in ATCSL,
are recorded.

-S The format -Sfoo! will result in using file fool.sim as the file where the event graph is recorded.

-E The format -Efoo! will result in using file fool.err as the error report file and file fool.war as the warning report
file.

In order to produce a trace file we have to run the verification program with the option -i: werify -t foo. This
will produce the trace file foo.trc. Again we can use the -F option to change the default name.

As an example we will verify the circuit of Figure 2, given the event graph produced in the previous section,
against the following timing requirements specified in the and_dlatch.con file:

TIMING

{
/* Width of Output stable should be grater than 200 ns */
width(Out.s) > 200;

¥

DEPENDENCY

&
/# In[1] should cause the output to become stable %/
In[1].s => Out.s;

}

end

We run the verification program by calling verify and-dlatch and we get the following error report in file
and-dlatch.err:

Timing Relations

*kkk gidth(Out.s) > 200
Signal OQut.s index: 0 from: 80 to: 168
Violate(s) rel_operator: ’>’ against the number: 200

Dependency Relations

***% In[1].8 => Out.s
No existing causality path between events: In[1].s[0] and Out.s[0]
There is a strong dependency path between the two events

The error in the timing causality relation is due to the fact that in the D_latch the latest arriving input signal
enabling the output is the control signal (here the clock) rather than the Data.s signal. However, the output
signal assumes the value of the input signal. In case we want to verify dependency relations without taking into
consideration control signals, CLOVER, permits the user to explicitly define control signals in the PDL-e description
of the design. For example, we can specify a D_latch module as follows:

#tdefine D_latch(i, en) create_fun("%s %w %wc %0", "D_latch", i, en, 1)[0]

Here we used the %we specifier to specify that the en input in a D_latch is a control signal. Now the verification
of the and_dlatch design will show no dependency violations:

Timing Relations

#*%% gidth(Out.s) > 200
Signal Out.s index: 0 from: 80 to: 168

24

Violate(s) rel_operator: ’>’ against the number: 200

Dependency Relations

No errors

5 Initial Setup

The following default locations are used to install CLOVER’s programs:

Executable Files CLOVER /bin/cputype

Standard-Modules Library CLOVER/lib/cputype

Include Files CLOVER finclude
Source Files CLOVER/src

The prefix CLOVER is a location chosen by the installer of the system. It is set (by the installer) in the makefile
(clover-make) which does the installation (see below). The suffix cputype in the directories for the executable
and library files of CLOVER is provided to allow for different binaries of CLOVER. corresponding to different cpu
types. The environment variable CLOVER is a user-defined variable which should assume the same value as the
corresponding value of the prefix CLOVER. This variable is to be used by the pdi2net program (see the corresponding

manual page for more details).

The following table indicates the files used by the system and their corresponding location.

Ezecutable Files (CLOVER/bin/cputype) pdi2net, user_lib, clsim

vertfy, clover, grammar
parse, look, view_clover

Standard-Modules Library (CLOVER /lib/cputype) chip_lib.o, simulator.o
Include Files (CLOVER /include) declarations.h, sim.h, net.h
Source Files (CLOVER/src) comparison.c, stmulator.c, constraint.y

interface.c, pif2graph.c, parse.c
search.c, userlib.c, clover.c, pdl2net.c
my-alloc.c, my-error.c, my-string.c
i_node.c, pdlpif.c, declarations.c
chip_lib.c, fun_chip_lib.c, usleep.c

To create the executable files the following makefiles are provided. The table below indicates the correspondence

between makefiles and created executables.

clover-make

emp-make
pdl_make
stm-make
cns-make
ini-make
parse-make
user-lib-make

Create files clover, verify, pdl2net, clsim,
grammar, view-clover, search, user_lib
simulator.o, chip-lib.o
Creates file verify
Creates file pdi2net
Creates file clsim, simulator.o, chip_lib.o
Creates file grammar
Creates file view_clover
Creates file parse
Creates file user_lib

25

To initially install the system, the user who does the installation has first to create directory CLOVER/src and
then has to put all the makefile, source and include files of CLOVER under it. Next, the following three steps need
to be taken in order:

1. make -f clover-make setup
During this step the bin, lib and include directories of CLOVER are created. Furthermore, all include files are
copied in the corresponding include directory of CLOVER.

2. make -f clover_make
This command builds all the binary files of CLOVER, and puts them under the installer’s current directory
(which should be the directory CLOVER /src).

3. make -f clover_make install
During this step the binary files created in step 2 are placed under their corresponding directories. To account
for different cpu types, clover-make installs the executable and library files of CLOVER under the right
subdirectory of bin and lib by using the command cputype found in /usr/local/bin. In case this command is
missing the installer has to do the corresponding actions manually or he/she can use another command with
similar functionality (the variable BIN in clover-make would have to be changed accordingly).

The variables of the Makefile (clover-make) CC, CLOVER permit the installer to choose C' compiler (it should
be ANST), and prefix part (CLOVER) for the directories of CLOVER.

The makefile cns_make analyzes syntactically (calling yacc [9]) the constraint expressions written in ATCSL.
It creates the executable file grammar which is called internally by verify and creates a parse tree of the ATCSL
expressions. The parse tree is recorded under the /usr/tmp directory and it is removed, after being read, by verify.
The user should not be aware of the specifics of grammar (therefore grammar is undocumented).

The makefile parse_make creates the executable file parse. Parse is called internally by user_lib; it parses the
user-defined library to identify the names of the user-defined functions (parse, like grammar, is undocumented).

To run clover the core simulator and the standard-defined module libraries have to be linked with the user-
defined modules. The linkage takes place only if a user-defined library name is provided through the —L option of
clover (see Appendix B). The user should have defined the environment variable CLOVERSYSLIB in order for
the linkage to be successful (otherwise he/she should have a copy of simulator.o and chip_lib.o in his/her working
directory). This variable should assume as a value the path name of the library directory where the files simulator.o
and chip_lib.o are located (CLOVER /lib/cputype). The system assumes by default that the user’s include and library
files necessary to compile user-defined modules are found in the user’s current working directory. However, for a user-
customed environment, the environment variables CLOVERLIB and CLOVERINC are provided allowing the
user to designate alternate places for the locations of his/her include and library files. After linkage, an executable
version of the simulator will be created at the user’s current working directory (by default). The option —B is
provided with clover and user_lib to permit the user to indicate an alternate location for the derived executable
(clsim) of the simulator. In order to refer to the derived clsim instead to the clsim found in CLOVER /bin/cputype,
the directory where the derived clsim will be placed should precede in the user’s path declaration the path defined
by CLOVER/bin/cputype.

5.1 Current Status

CLOVER has been used to specify and verify two rather large hardware designs: the first design is the SPUR PCC-
SBC interface [8] which interconnects two synchronous subsystems that have asynchronous clocks. The other is the
Multibus Design Frame [2], a synchronous interface attached to the asynchronous Multibus. We are still working on
refining and debugging the system as well as augmenting the standard-module defined library. Forward any question,
remark or bug reports to aslp@princeton.edu.

Acknowledgements This research was partially supported by DARPA/ONR. contract N00014-88-K-0459. The
authors would like to thank Wayne Wolf for the insightful discussions we had and his useful comments. We
would like to thank also Richard Lipton for giving us the motivation to search for a good specification method
for timing constraints.

26

A Standard-Defined Modules

The following table contains the list with the standard modules currently defined by CLOVER. The first column
characterizes the module and the second column describes the name by which the module is identified by CLOVER.
This name should be used in a create_fun definition for a PDL-e description.

Standard Module Name
AND gate with two inputs —and
AND gate with two inputs (fast technology) fand
AND gate with eight inputs (fast technology) -fand8

OR gate with two inputs -or
OR gate with two inputs (fast technology) for
NOR. gate with two inputs -nor
NOR gate with two inputs (fast technology) fnor
NOR gate with three inputs -nor3
NAND gate with two inputs -nand
NAND gate with two inputs (fast technology) _fand
Exclusive Or —Tor
Exclusive Or (fast technology) —fzor
Inverter -not
Inverter (fast technology) —fnot
Inverter with open collector -not-oc
Inverting Buffer -not_buffer
Buffer _buffer
D-latch D_latch
D-latch (fast technology) D_flatch
D Flip-Flop D_FF
D Flip-Flop (fast technology) D_fFF
Synchronizer -syne
Synchronizer with Clear Signal -synce
RS Latch RS
RS Flip-Flop RS_FF

In order to facilitate the search for the characteristics of a particular standard-defined module, we have implemented
a command which can be used with an on-line library containing information about each defined-module’s proper-
ties. Such properties may include load and temperature information, functional tables, and delay characteristics in
minimum-maximum form. Currently only a skeletal library showing the format of information is provided. To do a
search, the user has to call the program look. By calling look search_string the program will search the information
library with name library_information in the current working directory for properties regarding a module identified
by search_string. Search-string can either be the name of a module (as this name has been defined in the above table)
or can be the serial number characterizing such a module under a certain technology (i.e., SN74F30 for an AND
gate implemented with fast technology). In case we want to use a different name for the information library we can
call look with the option -f: look -flibrary-name will read the library library_name instead of the library_information
library (a full path name can also be used). The look program will search for an exact match of the searching string.
When a partial matching is requested then a set of possible modules matching the requested test will be displayed.
This can be accomplished by running the look program with the option -p (for partial matching). The information is
represented in a form which can be included as a comment in a C file (for example it can be included as a comment
in a behavioral specification of a user-defined module).

27

B Steps for a Complete Verification Session

We assume again that the user wants to verify a design named foo. He/she first has to create the files foo.pdl (struc-
tural description of foo), foo.com (commands to run the simulator) and foo.con (specification of timing constraints).
If the user-defined library assumes the name library_name then all the user has to do to verify design foo is to type:

clover -Llibrary_name foo

The command should be executed in the user’s directory where the files foo.pdl, foo.con and foo.com reside. All
the other files created by clover will be stored in the same directory too. In the user’s path, this directory must be
searched before CLOVER/bin/cputype to find the correct version of clsim. If the user does not have or does not
want to use his/her user-defined library then he/she can simply type:

clover foo
While the program is executed messages printed on the screen indicate the current phase of the verification procedure:

> clover foo

Create foo.net file

Parse library_name

Compile user-defined library: library_name

Link standard, user-defined libraries and simulator object file
Create foo.sim file

Parsing Constraint file foo.con

Verify - create foo.err - foo.war file{s}

Initially the structural description of foo is translated into a netlist description (file foo.net) to be used by the
simulator. Then the user-defined library is parsed to identify the names of the user-defined functions and link
these names to the corresponding names of the user defined-modules defined in the pdl structural description. A C
structure is used to record this correspondence. The first field of the structure is a character string where the name
of the user-defined module (in the pdl description) is stored. The second field is a pointer to the function which
specifies the behavior of the same module. For a user-defined library with name library_name this structure is stored
in a file named fun_library-name This file will be compiled and linked with the standard and user-defined libraries
and the simulator object code file. After linkage, an executable version of the simulator will be created at the user’s
current working directory, called clsim. Next, the simulator runs and produces the event graph of foo in file foo.sim.
Finally the constraint file foo.con is parsed and together with file foo.sim is used by the verifier to report error or
warning messages.

By executing clover foo all the intermediate files created or used by the system assume the same prefix: foo. The
following options are provided to permit the user to indicate a different prefix part for a particular file used during
some phase of the verification:

-A The format -Afool will result in using file fool.nam as the file where the acceptable signal names are recorded.
This file will be used while parsing the constraint file.

-C The format -Cfool will result in using file fool.con as the file where the timing constraints, specified in ATCSL,
are recorded.

-E The format -Efoo! will result in using file fool.err as the error report file and file fool.war as the warning report
file.

-N The format -Nfool will result in using file fool.net as the input netlist file for the simulator.
-M The format -Mfool will result in using file fool.com as the command file for the simulator.
-S The format -Sfoo! will derive the event graph for foo in file fool.sim

-R The format -Rfool will result in using file fool.rep as the report file of the simulator.

28

When running clover we assume by default that the simulator uses the transport timing model and that the
delay model is the min-max model. As was explained in Section 3.4 we can use options -i, -d to alter these
defaults. Executing clover -1 foo will switch the timing model of the simulator to the inertial one. Executing clover
-ddelay_-model foo (where delay_model is an integer from one to four) a delay model will be assumed according to the
Table 1. However, only the minimum-maximum delay model is implemented. Finally in order to produce a trace
file we have to run clover with the option -#: clover -t foo. This will produce the trace file foo.trc. Again we can use
the -F option to change the default name.

Clover in reality is a script which executes step by step the programs corresponding to each phase of the verifi-
cation. The user is able to execute these programs independently. The following is a list of independent executions
(with the acceptable options for each program) which result in a complete verification session:

pdi2net [-c] foo
userdib [-Be] library-name
clsim [-NCSRdi] foo
verify [-FACSEt] foo

29

CLOVER: A User Manual

30

pdi2net 31

NAME
pdl2net—Transforms a pdl description to a netlist (net description)

SYNTAX
pdl2net [options] design_name

DESCRIPTION

Pdl2net derives the netlist of the design design_name. The program takes as input a structural description
of design_name written in the PDL-e hardware description language and stored in file design_name.pdl. By
calling pdi2net design_name the program will look for a file named design_name.pdl and it will produce the
netlist of the design in a file called design_name.net. Before creating the netlist of the design, pdiZnet will
have first to compile file design.name.pdl. All pdl files should include the file pdipif.c. Pdlpif.c is located in
directory CLOVER /src, where the value of CLOVER is determined by the installer; for the compiler to find this
include file the user can either obtain a copy of the file on his/her current or include directory (designated by
CLOVERINC), or he/she can declare in his/her environment the environment variable CLOVER assuming
the value CLOVER.

OPTIONS
The following option is recognized by the pdi2net command.

-ccompiler name The default C-compiler used by pdiZnet for the compilation of a pdl file is the ANSI-C
compiler lec [7]. With the -c option the user is able to use the compiler of his/her choice (for example
compile_name).

FILES
Design_name.{pif, net}

SEE ALSO
user_lib, clsim, verify, clover

user_lib 32

NAME
user_lib—Compiles the user-defined library and links it to the standard modules library

SYNTAX
user_lib [options] library_name

DESCRIPTION

User_lib will parse, calling parse (undocumented), the user-defined library, library-name, identifying the names
of user-defined modules and subsequently will compile and link them with the standard library. The user
should have defined the environment variable CLOVERSYSLIB in order for the linkage to be successful
(otherwise he/she should have a copy of simulator.o and chip_lib.o in his/her working directory). This variable
should assume as a value the path name of the library directory where the files simulator.o and chip_lib.o are
located (CLOVER/lib/cputype). After linkage, an executable version of the simulator will be created at the
user’s current working directory (by default). The option —B (see below) is provided with user_lib to permit
the user to indicate an alternate location for the derived executable (clsim) of the simulator. In order to refer
to the derived clsim instead to the clsim found in CLOVER/bin/cputype, the directory where the derived clsim
will be placed should precede in the user’s path declaration the path defined by CLOVER /bin/cputype.

The parse program will create a C' structure relating user-defined functions and their names. This structure
is recorded in a file named fun_library-name where library_name is the name of the user defined library. By
default the user-defined library is located under the user’s current working directory. A full path name instead
of a simple file name (for the user-defined library) can be used to designate an alternate location. The user’s
current working directory is also assumed to be the default place for the location of the user’s include and
library files necessary to compile user-defined modules. For a user-customed environment, the environment
variables CLOVERINC and CLOVERLIB are provided allowing the user to designate alternate places for
the locations of his/her include and library files.

OPTIONS
The following options is recognized by the user_lib command.

-ccompiler_.name The default C-compiler used by user_lib for the compilation of the user’s-defined library is
the ANSI-C compiler lcc. With the -¢ option the user is able to use the compiler of his/her choice (for
example compile_name).

-Bpath_name After linkage, an executable version of the simulator will be created at the user’s current
working directory (by default). The option —B permits the user to indicate an alternate location for the
derived executable (clsim) of the simulator, indicated by the string path-name. The string should be a
full pathname name.

FILES

Fun_library_-name.c

SEE ALSO
pdI2net, clsim, verify, clover

clsim 33

NAME

clsim—Derives the event graph of a design after event-driven simulation

SYNTAX
clsim [options] design_name

DESCRIPTION

Clsim performs event-driven simulation on the design design_name and derives the event graph of it, in the
file design-name.sim. Clsim uses by default the minimum-maximum delay model and the transport timing
model. Before starting the simulation the design first has to be structurally (design-name.net file) and be-
haviorally (standard and user-defined libraries) specified. The user guides the operation (non interactively)
of the simulator by writing a command file design_name.com. In a report file, design_name.rep, the simulator
reports possible violations detected during simulation, for example, set-up or hold time constraint violations,
oscillation, undefined signals, incorrect input values etc. Finally the clsim program, as it reads the netlist file
destgn-name.net, creates a file design-name.nam which contains all the names of the signals defined in the
destgn_name.pd! file. This information will be used by the timing constraints specification language parser to
identify the acceptable identifier names for signals and events.

OPTIONS
The following option are recognized by the clsim command.
-Nfoo The option will result in using file foo.net as the netlist file for the simulator.
-Cfoo The option will result in using file foo.com as the command file for the simulator.
-Sfoo The option will derive the event graph in file foo.sim.
-Rfoo The option will result in using file foo.rep as the report file of the simulator.

-1 The simulator supports both the inertial and the transport timing models. Transport model is the default
timing model. Running clsim with the option -i switches the timing model of the simulator to the inertial
model.

-ddelay.model delay-model is an integer which determines the desired delay model. The next table associates
d with different delay models. The default model and the only currently implemented is the min-max
model.

MEANING

unit delay model

minimum - maximum delay model
probabilistic delay model

slope delay model

LS R =T

FILES
Design_name.{sim, rep, nam}

SEE ALSO
pdl2net, usel_lib, verify, clover

verify 34

NAME
verify—Verifies a set of ATCSL specification against an event-graph implementation of a design

SYNTAX verify [options] design_name

DESCRIPTION
Verify verifies an ATCSL specification of design-name (file design-name.con) against an event-graph (stored in
file design_name.sim) of an implementation of the design design_name. The verification program will use files
design_name.con, design-name.sim and design-name.nam and will produce error or warning reports (if any)
in files design_name.err and design_name.war respectively. To syntactically parse the ATCSL expressions and
create a parse tree, verify calls internally program grammar (undocumented).

OPTIONS
The following option are recognized by the verify command.

-Afoo The option will result in using file foo.nam as the file where the acceptable signal names are recorded.
This file will be used while parsing the constraint file (con file).

-Cfoo The option will result in using file foo.con as the file where the timing constraints, specified in ATCSL,
are recorded.

-Sfoo The option will result in using file foo.sim as the file where the event graph is recorded.

-Efoo The option will result in using file foo.err as the error report file and file foo.war as the warning report
file.

-t This option will derive a trace file for design-name: design_name.trc. Again we can use the -E option to
change the default name.

FILES
Design-name.{err, war, trc}

SEE ALSO
pdI2net, usel lib, clsim, clover

clover 35

NAME
clover—Produces an event graph of a design using event-driven timing simulation techniques and verifies the
behavior of the design (specified in ATCSL) against the derived event graph.

SYNTAX

clover [options] design_name

DESCRIPTION

Clover is a script which executes step by step individual programs corresponding to different phases of the
verification process. Initially the structural (pdl file) description of the design design_name will be transformed
to a netlist description (net file) which will be fed to the event-driven simulator. All pdl files should include
the file pdipif.c. Pdlpif.c is located in directory CLOVER /sre, where the value of CLOVER is determined by
the installer; for the compiler to find this include file the user can either obtain a copy of the file on his/her
current or include directory (designated by CLOVERINC), or he/she can declare in his/her environment the
environment variable CLOVER. assuming the value CLOVER.

Before starting the simulation and if the —L option has been used, clover will parse, calling parse (undocu-
mented), the user-defined library identifying the names of user-defined modules and subsequently will compile
and link them with the standard library. The user should have defined the environment variable CLOVER-
SYSLIB in order for the linkage to be successful (otherwise he/she should have a copy of simulator.o and
chip_lib.o in his/her working directory). This variable should assume as a value the path name of the li-
brary directory where the files simulator.o and chip_lib.o are located (CLOVER/lib/cputype). After linkage,
an executable version of the simulator will be created at the user’s current working directory. The option
—B (see below) is provided with clover to permit the user to indicate an alternate location for the derived
executable (clsim) of the simulator. In order to refer to the derived clsim instead to the clsim found in
CLOVER/bin/cputype, the directory where the derived clsim will be placed should precede in the user’s path
declaration the path defined by CLOVER /bin/cputype.

The parse program will create a C' structure relating user-defined functions and their names. This structure
is recorded in a file named fun_library_name.c where library_name is the name of the user-defined library. By
default the user-defined library is located under the user’s current working directory. A full path name instead
of a simple file name (for the user-defined library) can be used to designate an alternate location. The user’s
current working directory is also assumed to be the default place for the location of the user’s include and
library files necessary to compile user-defined modules. For a user-customed environment, the environment
variables CLOVERINC and CLOVERLIB are provided allowing the user to designate alternate places for
the locations of his/her include and library files.

After simulation the behavior of the design is recorded in the form of an event graph in file design_name.sim.
Finally the verification program will verify a set of specifications for design_name expressed in ATCSL (file
design_name.con), against the derived event graph and will report possible violations

OPTIONS
The following options are recognized by the clover command.

-Llibrary name Specifies the name of the user-defined library to be: library_name.

-Bpath name If the — L option is used, after linkage, an executable version of the simulator will be created at
the user’s current working directory (by default). The option — B permits the user to indicate an alternate
location for the derived executable (clsim) of the simulator, indicated by the string path_name. The string
should be a full pathname name. Option —B has no effect if option —L is not also used.

-ccompiler_ name The default C-compiler used by clover for the compilation of the user’s-defined library and
the user’s pdl files is the ANSI-C compiler lcc. With the -¢ option the user is able to use the compiler of
his/her choice (for example compile_name). This should be another ANSI C compiler.

-Nfoo The option will result in using file foo.net as the netlist file.

-Cfoo The option will result in using file foe.con as the file where the timing constraints, specified in ATCSL,
are recorded.

-Mfoo The option will result in using file foo.com as the command file for the event-driven simulator.
-Sfoo The option will derive the event graph in file foo.sim.
-Rfoo The option will result in using file foo.rep as the report file of the simulation.

-Afoo The option will result in using file foo.nam as the file where the acceptable signal names are recorded.
This file will be used while parsing the constraint file (con file).

-Efoo The option will result in using file foo.err as the error report file and file foo.war as the warning report
file of the verification procedure.

-t This option will derive a trace file for design_name: design_name.trc. Again we can use the -F option to
change the default name.

-i The simulator of clover supports both the inertial and the transport timing models. Transport model is the
default timing model. Running clstim with the option -i switches the timing model of the simulator to
the inertial model.

-ddelay_model delay_model is an integer which determines the desired delay model. The next table associates
d with different delay models. The default model of clover and the only currently implemented is the
min-max model.

d | MEANING
1 | unit delay model
2 | minimum - maximum delay model
3 | probabilistic delay model
4 | slope delay model
FILES
Design-name.{pif, net, sim, nam, rep, err, war, trc}, Fun_library_-name.c
SEE ALSO

pdl2net, usel_lib, clsim, verify

36

look 37

NAME

look—Searches a library containing information about properties of standard and user-defined functional mod-
ules

SYNTAX
look [options] search_string

DESCRIPTION

CLOVER provides an on-line library containing information about the properties of each defined functional
module (standard or user-defined). Such properties include load and temperature information, functional ta-
bles, and delay characteristics in minimum-maximum form. Look facilitates the search through this library.
By calling look search_string the program will search (in the current working directory) the information li-
brary with the defanlt name library_information, for properties regarding a module identified by search_string.
Search_string can either be the name of a module or can be the serial number characterizing such a module
under a certain technology (i.e., SN74F30 for an AND gate implemented with TTL fast technology). The
information in the library is represented in a form which can be included as a comment in a C file (for example
it can be included as a comment in a behavioral specification of a user-defined module).

OPTIONS
The following option is recognized by the look command.

-fnew_name This option permits the use of a new name (here new_name) other than the default as the name
of the information library. A full path for the name of the library can also be used.

-p The look program searches for an exact match of the searching string. When a partial matching is requested
then a set of possible modules matching the requested test will be displayed. This can be accomplished
by running the look program with the option -p (for partial matching).

get_wire 38

NAME
get_wire, get_wire_array, name_wire, name_wire_array, connect_wire, connect_wire_array, change_name, change_-
name.array, create_fun—These are the built-in functions of PDL-e. They manipulate wire and wire_arrays.
With them we can create a wire, name a wire, change a wire’s name and connect wires together. The function
create_fun is used to describe arbitrary functional modules with certain input and output ports

SYNTAX
#include “pdlpif.c”

wire *get_wire()

wire_array *get_wire_array(n)
int n;

wire *name._wire(name)
char *name;

wire.array *name.wire(name, n)
char *name;
int n;

void connect(wl, w2)
wire *wl, *w2;

void connect-array(wl, f1, t1, w2, £2, t2)
wire_array *wl, *w2;
int f1, t1, £2, t2;

wire *change name(w, name)
wire *w;
char *name;

wire_array *change name_array(w, name, f, t)
wire_array *w;

char *name;

int f, t;

wire_array *create_fun(format, [, arg] ...)
char *format;

DESCRIPTION
The function get_wire returns a pointer to a wire, creating a unique wire. With this function a declared wire
variable is instantiated as a real “physical” wire.

The function gel_wire_array returns a pointer to an array of n wires, creating n unique wires.

The function name_wire returns a pointer to a wire with name name. That way the user can assign names to
input and output ports of modules.

The function name_wire_array returns a pointer to an array of n wires, with name name.

The function connect connects wires wl and w2. This is the equivalent of connecting, through a wire, in-
put and output ports of two modules.

The function connect_array connect wires wi/f1] through wift1], to wires wi1[f2] through w2[t2], respectively.
Connecting two wire arrays with ¢ — fI # {2 — f2, results in a violation and the program is terminated.

The function change_name changes the name of wire w to name and returns a pointer to the renamed wire.
The old name is still valid. We usually use this function to assign names to the output wires returned by the
function create-fun (see description next).

The function change-name-array changes the name of wires w/f] through wft/ to name, and returns a pointer
to wire-array w. The old name remains valid.

The function create_fun is used for the structural description of user-defined or standard-defined modules.
Creale_fun takes a variable number of arguments and returns a pointer to a wire_array which represents the
output wires of the defined module. The first argument format, is a string constituted of conversion specifica-
tions each of which is used to interpret the rest of the arguments of create_fun (as does printf() in C). Each
conversion specification begins with a % and ends with a conversion character. Six conversion characters are
supported; with them the user can specify the name of the described module, the input and output ports of
it (using wire or wire.array types) and the delays associated with the wires connected to the input ports of
the module (only constant wire delay values are supported in the current version of CLOVER). The following
table explains in more details the use of each conversion character.

Conversion Char | Input Data; Argument Type

s Input is a string characterizing the name of the described module
w Input is a pointer to a wire representing input wire. If the
conversion character w is followed by the character ¢

(wc) that will indicate that the corresponding input wire is a
control signal. This information can be used when we determine timing
causality dependencies.

w Three arguments should correspond to this conversion character.
The first two denote the wire_array limits (from, to).

The last is a pointer to a wire_array representing input wires.

W can be followed by the character ¢ to indicate

a wire-array of control signals (We).

d If present, should immediately follow a %w conversion specification.
Input is an integer which determines the delay, of a previously
specified wire.

D If present should immediately follow a %W conversion specification.
Input is a set of integers which determine the delay

of a previously specified wire_array. The first number of the

set indicates the cardinality for the rest of the integer set.

0] Input is an integer which determines the number

of output ports of the defined module.

39

get_ev_info 40

NAME
get_ev_info, get_value, retain_value, cau_depend — These functions are used in the description of user-defined
modules and return information about the initial time and the width of events as well as information about
the kind of dependency relation between events, while these events are generated during simulation. They can
be used for the behavioral description of user-defined functional modules

SYNTAX
int get-ev.info(inout, p, c, index, in, w, elem)
int p, index;
char inout, c;
int *in, *w, *elem;

get_value(inout, p)
int p;
char inout;

retain_value()

cau-depend(portl, cl, indexl, port2, c2, index2)
int index1, index2;
char *portl, *port2, cl, c2;

DESCRIPTION
The function get_ev_info returns timing information about specific events appearing on the input-output ports
of the circuit modules. The inout parameter determines if the event appears on an input or output port p of
the module (we also represent that as a [inout, p] port). It takes values from the set { %’, 0’} where %’
denotes an input port and ’o’ denotes an output port. The port numbers follow the index numbers of their
corresponding input or output signals. With the parameter ¢ the value of the event is specified. It takes values
from the set { ’0°, ’1°, °r’, °f’, ’s’, ’c’ }. Parameter indez specifies the index of the event. When it assumes the
value —1 then we refer to the latest event created up to this point of the simulation. The initial time, width and
index of the event are returned with the parameters in, w and elem respectively. The function returns —1 if
the event we are interested in does not exist; an error message is reported in the simulator’s report file (rep file).

The function get-value returns the value of the latest event which appears on port finout, p/. This function can
be particularly useful in cases where the behavior of a module depends not only on its current inputs but also on
its previous outputs (e.g., an RS flip-flop). Then we can use get-value() to find out the value of the old outputs
and use it to calculate the new ones. The function returns —1 when an event cannot be found on port [inout, p].

The function retain_value is used to indicate no change to an output value. It is useful to describe behav-
ior of memory elements like latches and flip-flops, for example, where the output signal retains its value when
then enabling signal is “off”.

The function cau-depend identifies if there is a timing causality dependency between two events. It returns
one(1) if the event with value ¢/ and index indez! on port port! timing causes the event with value ¢2 and
index indez2 on port port2. Otherwise the function returns zero(0). If either one of the requested events cannot
be identified the function returns —1 and an error message is reported in the simulator’s report file (rep file).
Only signals which appear at named ports can be checked for timing causality.

References

[1] Larry Augustin. Timing Models in VAL/VHDL. In IEEE International Conference on Computer-Aided Design,
1989.

[2] G. Borriello and R. Katz. Design Frames: A New System Integration Methodology. In Chapel Hill Conference
on VLSI, May 1985.

[3] R. K. Brayton et al. MIS: A Multiple-Level Logic Optimization System. IEEE Transactions on CAD, November
1987.

[4] M. Browne, E. Clarke, and D. Dill. Automatic Circuit Verification Using Temporal Logic: Two New Examples.
In G. J. Milne and P. A. Subramanyan, editors, Formal Aspects of VLSI Design. Elsevier Science Publishers,
1986. '

[5] D. Doukas. A New Specification Model for Timing Constraints and Efficient Methods for their Verification.
PhD thesis, Princeton University, CS department, January 1991.

[6] D. Doukas and A. LaPaugh. CLOVER: A Timing Constraints Verification System. Technical Report CS-TR-
274-90, Princeton University, CS department, 1990.

[7] Christopher W. Fraser and David R. Hanson. A retargetable compiler for ANSI C. SIGPLAN Notices, 26(10):to
appear, October 1991.

[8] M. Hill. Design Decisions in SPUR: A VLSI Mutliprocessor. IEEE Computer, November 1986.
[9] Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler.

[10] R. Lipton, D. Serpanos, and W. Wolf. PDL++: An Optimizing Generator Language for Register Transfer
Design. In International Symposium on Circuits and Systems, New Orleans, LI, May 1990.

[11] P. McGeer and R. K. Brayton. Efficient Algorithms to Find the Longest Viable Path in a Combinational Circuit.
In 26th Design Automation Conference, 1989.

41

