A THEORY FOR DEADLOCKS

Y. C. Tay
W. Tim Loke

CS-TR-344-91

Ausust 1991

A Theory for Deadlocks *

Y.C. Tay and W. Tim Loke
Department of Mathematics
National University of Singapore

Abstract

Deadlock detection is an elementary problem in computer sci-
ence, yet algorithms for detecting deadlocks over resources in a dis-
tributed system are curiously prone to errors. This anomaly calls for a
theory that will help us understand existing algorithms and design new
algorithms.

Surprisingly, most papers in the literature have either no defini-
tion of what a deadlock is, or a bad definition; this fact itself accounts
for many of the errors. The first task in developing a theory is therefore
to choose an appropriate definition for a deadlock. Since this theory
is to be used for the analysis and synthesis of detection algorithms, it
should focus on what an algorithm can observe (in this sense, it is an
operational theory); accordingly, the definition chosen here is in terms
of locally observable facts, and does not use real time.

The theory begins with a rigorous formulation of the interaction
between processes and resources, and its development is via logical de-
duction, rather than operational arguments. The results examine the
effect of aborting processes on deadlock detection, clarify the difference
between a process and a resource, and reveal the structure of detection
algorithms.

To illustrate its application, the theory is used to analyze several
errors and algorithms in the literature.

* Part of this work was done when Y.C. Tay was on sabbatical at Princeton University. W.
Tim Loke was supported by the Science Research Program. This report is a revised version of
Research Report 459 (Apr. 1991), Department of Mathematics, National University of Singapore.

1 Introduction

In the previous decade, several algorithms were proposed for detecting deadlocks over re-
sources in a distributed system. Despite the elementary nature of the problem, many of these
algorithms contain errors. There are two reasons for this. First, there is a carelessness in the defi-
nition of a deadlock: most papers have an incomplete, ambiguous or bad definition, or no definition
at all. Second, there is no theory for analyzing detection algorithms. The absence of a theory leads
to a variety of techniques that do not draw upon a common body of results, and the ad hoc nature
of this endeavor therefore makes it prone to errors.

We study both issues in this paper. Qur purpose is to provide a rigorous definition of a
deadlock and construct a theory based on this definition. The development of such a theory is
overdue: In their surveys of deadlock detection, Elmagarmid [E] attributed the many errors to
the “lack of unified means by which researchers may specify their algorithms”, and Knapp [K]
concluded that “only rigorous proofs, using as little operational argumentation as possible, suffice
to show the correctness of these algorithms”.

Specifically, this paper presents a rigorous formulation of the assumptions concerning pro-
cesses and resources, examines the issues in defining a deadlock, develops the theory from our
assumptions and definitions, and applies it to an analysis of existing algorithms.

We begin by formalizing the request-to-release cycle in the acquisition of resources by pro-
cesses. All operational assumptions are distilled as axioms, so that a theory can be constructed
by logical deduction instead of through operational arguments. The axioms are in terms of logical
edges and logical time. Logical edges underlie the data structures in detection algorithms, while
logical time underlie their proofs of correctness. We thus obtain a unified framework for analyzing
detection algorithms.

To motivate our definition of a deadlock, we first review other definitions in the literature
and explain why they are unsatisfactory. For example, many papers use process-to-process edges
for their waits-for graphs, when in fact the appropriate ones to use are resource-to-resource edges.

All current definitions use real time; in contrast, we define a deadlock in terms of a vector
of local times. Our main reason for doing so is as follows: From the point of view of a detector,
everything it can deduce must be based on what it can observe of what is true at various sites.
By adopting a definition that is in terms of local times, we reflect this reality and facilitate the
development of a theory that is based on locally observable facts. Such a theory is then immediately
applicable to the analysis of existing algorithms and the synthesis of new algorithms. In this sense,
the definition provides for an operational theory.

We also introduce the concept of a quasi-deadlock. The importance of this concept lies in
the conjunction of two facts: (1) what most existing algorithms detect is a quasi-deadlock, and (2)
a quasi-deadlock may not be a deadlock — the timing of aborting processes distinguishes one from
the other.

However, a deadlock is intuitively equivalent to the existence of a cycle at some (scalar)
instant in some waits-for graph. We prove this equivalence, which is in fact partial because (again)

of aborting processes. Besides formalizing our intuition, the result shows that our definition of a
deadlock in terms of a vector of local times is a generalization of a definition that is in terms of
real time.

We next formalize several concepts that arise in deadlock detection. These concepts are of
two types; one type concerns the coexistence of certain logical edges, and the other concerns the
ordering in logical time of certain events. We then develop a theory to relate these concepts to a
deadlock.

There are two reasons for developing this theory: first, it should help us grasp the ideas
behind the various algorithms, and thus clarify the confusion caused by the.errors and also bring
some coherence to the diversity of techniques; second, new architectures and new applications
will call for new tailor-made detection algorithms, and this theory should form a foundation for
constructing such algorithms (which would be, one hopes, error-free).

The theory makes three contributions: (1) It examines the role of aborting processes in
deadlock detection — hence the concept of a quasi-deadlock. (2) It analyzes the difference between
a process and a resource. For instance, it shows that the order in time of formation is important
for edges local to a process, but for edges local to a resource, it is the order in the time of deletion
that is important. (3) It reveals the structure of a deadlock detector to be a collaboration of the
two concepts just mentioned; viz. a typical detector is based on the deductions, via the ordering
of some events, that follow from some coexistence observation.

Although this work is motivated by distributed deadlocks, the theory applies to centralized
systems as well. And although it is focused on deadlock detection, it also applies to deadlock
avoidance — we illustrate this by proving a folk theorem on resource ordering.

The theory is applied to an analysis of several well-known errors and algorithms in the
literature. Among the latter are Obermarck’s distributed waits-for graphs, Chandy and Misra’s
probes, Mitchell and Merritt’s labels, as well as Chandy and Lamport’s snapshots. Our ability to
apply, with ease, the theory to these algorithms supports our claim that logical edges and logical
time provide a unified framework for analyzing detection algorithms, and that a theory based on

observable local facts would be easy to apply.

In the following, Section 2 (Axioms) states formally the assumptions we make about the
system, Section 3 (Definition) presents our definition of a deadlock, Section 4 (Theory) develops
the theory from Sections 2 and 3, Section 5 (Application) examines the physical aspects of the
system and critically surveys the literature, and Section 6 (Conclusion) summarizes what we have
learnt and indicates some directions for future work.

2 Axioms

The theory we are constructing will be based on the axioms and lemmas in this section.
These axioms serve to make rigorous and explicit all necessary operational assumptions. Our
formulation of these axioms here may not be the most concise or the most elegant, but that does
not matter; our focus is on the results that follow from the axioms, and we believe that any other
rigorous treatment of the deadlock detection problem will yield the same results.

In the same vein, the notation we use may not be the best. Our aim at providing a uniform
framework requires that we keep track of the timing of all events (requests, receipt of messages,
aborts, etc.), because different algorithms base their actions on different sets of events. Qur notation
captures all events concisely, if cryptically.

We first describe informally the system we are considering; this description should help the
reader tackle the axioms and notation that follow.

The system consists of processes and resources. Processes and resource managers commu-
nicate by sending and receiving messages. A process requests for exclusive access to one resource
at a time, and does not release resources it has acquired while waiting for an outstanding request.
A process may abort at any time, thus releasing all resources it has acquired and canceling all out-
standing requests. A resource manager can grant received requests in any order and after arbitrary
delays, as long as there is no more than one granted request for the resource at any time.

2.1 Logical Edges

Processes are elements of a nonempty set P, and resources are elements of a nonempty set R.
Let @ = PUR. For each () € Q, there is a nonempty set of ()-time (or local time) T that is totally
ordered by some <q. The elements of 7 = |, o 7q are called times. If (7o, <q) = (Tq', <qr) for
all @,Q" € Q, so 7T is totally ordered, we say there is a common clock. Lamport’s logical clock [L]
and real time are examples of a common clock. Our model includes the possibility that real time
exists, but 7 is not real time itself.

All times are logical; we do not assume the existence of physical clocks. The physical
implications of our axioms are discussed in Section 5.1.

The predicates 2e and 3e are defined over 7% and 73 respectively, where e = PR, PR, RP
or RP, and P € P, R € R. The atom 2¢(7,t) is called an edge, and t is the time of formation of
the edge. (Thus the time of formation, as well as the timestamp 7', are integral to the definition of
the edge.) The atom 3e(T,t,t") implies 2¢(T,t) — see Lemma 1(iii) — and ¢ is called the time of
deletion of the edge 2¢(T,1).

Henceforth, we write e(T,t) for 2e(T,t) and e(T,t,t") for 3e(T,t,t'). An edge e(7T,t) is local
to Q € Q if and only if e = QQ' or e = Q'Q for some @', and time s is local to e(T,t) if and only
if s € 7o where e(T,t) is local to (). For example, Rﬁ(T,t) is local to P, and any s € 7Tg is local
to RP(T,t).

2.2 Logical Time

We assume there are no lost, fraudulent or duplicated messages. This assumption is formal-
ized by the first three axioms, which are for two message predicates send and receive defined over
Ox AxT and @ x Q@xT x T respectively.

Axiom Al send(Q,Q',t) — (t € Tg) A It receive(Q,Q’,1,1")
[send(Q),Q',t) means () sends a message to @' at @-time ¢; no message is lost.]

Axiom A2 receive(Q,Q',t,t") — (t' € Tg:) A send(Q,Q", 1)
[@' cannot receive a message that was never sent.]

Axiom A3 receive(Q,Q',t,t') A receive(Q,Q',t,t") — t' ="
[Messages are not duplicated.]

The following macro-predicates are useful in the statement of some of the axioms.

[request message)] req-msg(P, R, T, T,t") = ﬁR(T, T) A receive(P, R, T, ")
[grant message] grant_msg(R, P,T,t,t") = RP(T,t) A receive(R, P,t,t')
[release message] rel_msg(P,R,T,t,t") = Ju Rﬁ(T, u,t) A receive(P, R, t,t')

Messages and <g induce a partial ordering < on 7, as follows [L]:
For all t1,%; € 7, t; < t3 if and only if

(i) t1 <q t for some @) € Q, where #1,t; € Tg,

(ii) receive(Q1,@Qa2,t1,t;) for some Q1,Q; € Q, where t; € Tg, and t; € Tg,,
or (iii) ¢y <t and t < ¢, for some t € 7.

We assume that the physics of message delivery guarantees the existence of such an ordering.
In particular, for ¢;,%; € Tg, t1 < {3 if and only if ¢; <g t;. This is a constraint that a common
clock must satisfy. We write ¢; < t5 if t; <g t; and @ is clear from the context.

2.3 Aborting Processes

A process may abort at any time, but it cannot request for more resources after that.
Formally, we have a predicate abort, defined over P x 7 and satisfying two axioms:

Axiom A4 abort(P,t) — (P € P)A (t€ Tp)
[abort(P,t) means process P aborts at P-time ¢.]

Axiom A5 abort(P,p) A PR(T,T)— T <p
[P issues no more requests after it aborts.]

As before, we define an abort message as follows:
abort_msg(P, R,t,t') = abort(P,t) A receive(P, R,t,t')

4

2.4 Edges Local to a Process

We first consider edges local to a process. For expository purposes, we assign a resource
manager Mpr to each R € R. A process P can request a resource R at any time T, a fact
represented by the edge ﬁR(T ,T). It then waits to receive the grant message from Mp. The
edge is deleted at time v, i.e. ﬁR(T, T,v), when P stops waiting, either because it receives the
grant message, or because it aborts. If it receives the grant message, we say it acquires R, and
this is represented by RP(T, v). Sometime later at v’, say, P releases R and deletes Rﬁ(T,v), ie.
RI_J'(T, v,v'). This description, with further details, is formalized by Axioms A6 to A13.

Axiom A6 PR(T,t)— (T € Tp) A (t = T) A send(P, R,T)
[PR(T,T) means P sends a request for R at local time T.]

Axiom A7 PR(T,T,v)— (v € Tp) A PR(T,T)AVz < v~PR(T, T, 2)
[P stops waiting for R at time v.]

Axiom A8 PR(T, T)AVz < p—J_"R(T, T, z) A abort(P,p) — ﬁR(T, T,p)A send(P, R, p)
[When P aborts, it cancels outstanding requests.]

Axiom A9 f;R(T, TYAVz < pﬂﬁR(T,T, z) A grant_msg(R, P,T,r,p) — ﬁR(T, T,p)
[P stops waiting for R when it receives the grant message.]

Axiom A10 PR(T,T,v)A ~abort(P,v) < RP(T,v)
[Rﬁ(T,v) means P requested R at time 7" and acquires it at time v.]

Axiom A11 RP(T,u) — 3r grant_msg(R, P, T,r,u)
[P acquires R only if it was granted.]

Axiom A12 RP(T,u,v) — (v € Tp) A RP(T,u) A (u < v) AVz < v~ RP(T,u, z) A send(P, R,v)
[P releases R — only once — through a message to Mpg.]

Axiom A13 Rﬁ(T,u) AVz < pﬂRﬁ(T, u, z) A abort(P,p) — RP(T,u,p)
[When P aborts, it must release any resource it is holding.]

2.5 Edges Local to a Resource

We next consider edges local to a resource. Suppose process P sends at time T a request
for R, which the resource manager Mg receives at time z; we represent this with PI?:(T ,z). If Mg
grants the request at time y, the edge is also deleted at y, i.e. PE(T,:U,y). The grant itself is
represented by another edge RP(T,y), which is deleted, say EP(T, Y,y’), only when Mg receives

a message at time y' from P for releasing R. The details are specified by Axioms A14 to A19.

Axiom A14 req_msg(P, R,T,T,z)A —~(3p3r abort_msg(P,R,p,r)A (r < z)) — PR(T,z)
[PR(T,z) means Mg receives at time z a request from P — sent at time T — and
the request was not nullified by P aborting.]

Axiom A1l5 Pff(T,m) — req-msg(P,R,T,T,)
[MR notes an outstanding request only if it receives a request message.]

Axiom A16 PR(T,z,y) — (y € Tr) A PR(T,z) A (z < y) AVz < y~PR(T, z,2)
[Mp cancels an outstanding request only once.]

Axiom A17 PI_?:(T, z,y) A ~3p abort_msg(P, R, p,y) — send(R, P,y)
[If Mg cancels P’s request, either P aborted or M, is sending a grant message.]

Axiom A18 dz P}_?:(T,m,y) A send(R, P,y) < }_?,'P(T,)
[RP(T,y) means Mg grants R to P via a message sent at R-time y.]

Axiom A19 RP(T,z,y) — (y € Tr) A R'P(T, z) A dp rel_msg(P,R,T,p,y)
[Mp retrieves R from P only if P releases it.]

2.6 Constraints on Processes and Resources

The rest of the axioms, A20 to A24, formalize behavioral assumptions about processes and
resources. Essentially, they say that resources are not shared and a process does not request a
resource it already holds, nor make requests or release resources while waiting for a request to be
granted. We need a definition of existence to formalize the latter constraints.

We say an edge e(7,t) formed before time s if and only if ¢ < s. Further, e(T,t) ezists at
time s if and only if s : (T, t), which is defined by
p:e(T 1) = e(Tit) A & 48 AV <La—e(Pd,).

If 7 is real time or if s is local to (7, t), then s : ¢(T,¢) means the edge has formed and has not
been deleted by time s. For example, we can formalize the concept of a blocked process thus: P is
blocked at local time t € 7p if and only if ¢ : ﬁR(T,T) for some resource R and some time 7. If
T is not real time and s is not local to the edge, say s € T, then s : e(T,t) intuitively means
could have heard about the formation of the edge, but not its deletion.

Note carefully the meaning of —s : e(T',t) — if e = RP, say, it is possible that RP(T,t) and
the edge does not exist at some s € 7g, t < s, although Mg did not receive the release message
from P by time s.

Axiom A20 ﬁP(T,:c) A ﬁP’(T',m') Az < 2')— Iy <2’ RP(T,z,y)
[If R is granted to P and later to P’, then it was earlier retrieved from P.]

Axiom A21 RP(T,z)A RP'(T',z) — (P = P)A(T =T")
[R cannot be granted to two different processes simultaneously.]

Axiom A22 PR(T',T")At: RP(T,u) —» T' # 1
[A process does not request a resource it is already holding.]

Axiom A23t: PR(T,T)A PR'(t,t) > (T=t)A(R= R')
[A process does not request any resource while waiting for a resource.]

Axiom A24 RP(T,u,v)Av' : PRI(T',T") = v # v
[A process does not release any resource while waiting for a resource.]

Axioms A23 and A24 say that a process has single locus.

2.7 Other Constraints

There are three other constraints that would be needed in a real system, but which we omit
from our list of axioms because they do not affect the theory:

PR(T,z) Az < r—PR(T,z,2) A abort_msg(P, R,p,7) — PR(T,z,r) (i)
P}_?:(T, z,y) A Ip abort_msg(P, R,p,y) — —send(R, P,y) (ii)
RP(T,t) AVz < r=RP(T,t,z) A rel_msg(P, R, T, p,7) — RP(T,t,r) (iii)

In (i), Mg is required to cancel outstanding requests from aborted transactions; in (ii), Mg must
not grant R to an aborted transaction (see A18); in (iii), Mz must retrieve R when informed that
it has been released. Violation of these constraints may make a resource forever unavailable, but
it wouldn’t affect the soundness of the theory. Note from the omission of these constraints that we
do not attempt to be complete in our axiomatization.

2.8 Lemmas

The following lemmas are immediate consequences of the axioms. Several of the claims are
“obvious”, and serve as operational arguments in the literature. The results are rather unreadable,
so we have added annotations. (Incidentally, a comparison between a formal statement and its
annotation shows how difficult it would be for an operational argument to be precise.) The proofs
follow directly from the axioms, but are even more unreadable, so we put them in an appendix.
The reader who wants to be convinced that we use no operational argument in our proofs, or who
wants to see how we work with the axioms, should peruse the appendix.

The first thing to note from the axioms is that times of formation and deletion are always

local to the edge. For example, PE(T,x,y) implies z,y € 7r. In trying to grasp these results
intuitively, one should take into account the possibility that the time of existence of an edge may
not be local to that edge.

The first lemma lists the elementary properties of edges.

Lemma 1

(i) e(T,t) implies PR(T,T)and T <t (T < tif e # PR).
[All edges originate from a request for a resource.]

(ii) e(T,t) and e(T,t') imply t = ¢'.
[Time of formation of an edge is unique.]

(iii) e(T,t,t") implies e(T,t) and ¢ < ¢'
[An edge can be deleted only if it formed earlier.]

(iv) e(T,t1,t3) and e(T,t},t,) imply ¢, = ¢} and ¢, = t5.
[Time of deletion of an edge is unique.]

(v) e(T,t,t") implies s : e(T,t) for all t < s < t'.
[An edge exists at all times after its formation and before its deletion.]

vi) s:e(T,t) implies s’ : e(T,t) for all t < s’ < s.
p ;
[If an edge exists at time s, it exists at all earlier times after its formation.]

The second lemma makes deductions about the existence and deletion of edges.

Lemma 2

(i) RP(T,u) implies ¢t : PR(T,T) for all T < t < u.
[After requesting a resource and before acquiring it, the process must wait.]

(ii) EP(T, z) implies for all T < t < , either t : PR(T,T) or abort(P,p) for some p < t.
[After a request is issued and before it is granted, the process is waiting for the resource.]

(iii) PR(T,z) implies for all T < t < =, either ¢ : PR(T,T) or abort(P,p) for some p < t.
[After a request is issued and before it is received, the process is waiting for the resource.]

(iv) PR(T,T, v) implies PE(T,m,y) for some z and y, T < = < y < v, or abort(P,v).
[P stops waiting for R when P aborts or P is granted R.]

(v) s: PR(T,z) implies s : PR(T, T) or abort(P,p) for some p < s.
[If Mg has not yet granted P’s request, then P — if unaborted — must be waiting for R.]

(vi) s : RP(T,u) implies s : RP(T, z) for some z < u.
[If a process is holding a resource R, then Mg has not yet retrieved R.]

8

(vii) Suppose RP(T,u) and ﬁR(T’,T’). If u <T', then RP'(T,u,'U) for some v < T".
[If P is waiting for R, which it has acquired before, then P must have released R earlier.]

(viii) Suppose RP(T,z)and t : PR(T,T). If z < t, then s : RP(T,z) for all z < s < t.
[Mp could not have retrieved a resource it has granted to P if P is still waiting for it.]

The third lemma considers the consequences if two edges exist at the same time.

Lemma 3

(i) s: Rﬁ(T, u) and s : Rﬁ(T',u') imply T =T' and u = v'.
[A process cannot have two requests for the same resource satisfied simultaneously.]

(ii) s : PR(T,T)and s : PR(T',T') imply R=R' and T = T".
[A process cannot simultaneously wait for two different resources.]

(iii) s: Rﬁ(T, u) and s : P.R'(T',T') imply u < T".
[If P is holding R and waiting for R, then R was acquired before the latter request.]

(iv) s: RP(T,z) and s : RP'(T",2') imply P= P, T =T' and = = a'.
[R cannot be simultaneously granted to two different processes.]

(v) Suppose s : RP(T,u) and s : PR(T',T'). If RP(T,u,v), then PR(T',T',v") for some
v <.
[If P is holding R and waiting for R’, then it must acquire R’ before releasing R.]

(vi) Suppose s : P’E(T’, z')and s : EP(T,w). If P'R'(T', &', y'), then either abort_msg(P', R,p',y")

for some p’ or RP(T,z,y) for some y < y'.
[If P'is waiting for R, which has been granted to P, then R must be retrieved from P before

being granted to P’.] O

3 Definition

Before defining what a deadlock is, we first review (Section 3.1) the current definitions of a
deadlock. The definition we give (Section 3.2) is not based on simultaneity, but we show (Section
3.3) that this definition is equivalent, almost, to the simultaneous existence of a cycle of edges.
Even so, our definition of simultaneous existence does not assume there is real time.

3.1 Review: What is a deadlock?

All definitions of deadlocks are in terms of a waits-for graph of some kind, and all current
definitions of such a graph assume there is real time. (Deadlocks are not defined in some papers
[CKST, CL, HR, K, KS, SN].)

When a deadlock is defined in terms of a waits-for graph, how the edges in this graph are
defined becomes crucial. In many definitions, the waits-for graph consists of process-to-process
edges, where a process is sometimes called a transaction. Obermarck [0], for example, define
these edges to “represent the wait-for relationship between transactions”, but does not define the
relationship itself. There are similar omissions in other papers [RBC, KKNR].

For Mitchell and Merritt [MiMe], “an edge indicates that one process is waiting on a
resource held exclusively by another”. That could mean ¢ : I—’"R(T’ ,T") and ¢t : RI_J'(T, u) for some
R,ort: ﬁ'R(T', T") and t : EP(T,), or some other possibility. There is a further ambiguity in the
location of {. One cannot claim that ¢ is in real time — Mitchell and Merritt’s edges are physical
(i.e. some data structure), so the location of ¢ must be specified. Several other papers adopt a
similar definition [GS, KMIT, SKYO, TB].

Wuu and Bernstein use a waits-for graph wherein an edge exists from P' to P if P’
“executes a request operation for a resource owned by” P, and this edge exists from the time the
request arrives at the resource to the time P releases it [WB]. As in the previous case, the edge
definition is ambiguous. Furthermore, the definition of existence leaves out the possibility that
when P’s request arrives at the resource R, P’ may be waiting for R while some P is holding R;
if now P" releases R and P acquires it, the definition would give an edge from P’ to P that exists
from the time P'’s request arrives at R, possibly before P even started. Again, several papers share
this problem of not considering the consequences when resources are released, as when a process is
aborted to resolve a deadlock [CM, KMIT, MeMu, O].

Badal uses both processes and resources in his graph [B], where an edge “from a resource
node to a transaction node indicates that the transaction has a lock on the resource”, while an
edge “from a transaction node to a resource indicates that the transaction has placed an intention
lock on that resource”, meaning the transaction is waiting to lock it; and “a cycle in the (graph)
indicates the existence of a deadlock”. Since Badal’s lock tables are kept at the resources, the edges
are of the form f?:P(T, z) and P’ E(T' , ") respectively. Now consider the case where 7 is real time,
and let » < s < t. Suppose

EgPl(T1,$1), P]él(T{,wi), Elpg(Tg,mg), P()R'U(T(;,IBB) and EﬂPQ(Tg,mg)

all exist at time r. At time s, P; releases Ry and requests R, i.e. R{]}_)’Q(Tg,ug,s) and P, Rs(s,s)

10

for some uy. If Py’s request reaches R, at time t, before P,’s release reaches Ry, then a cycle exists
at time ¢, but it will be broken once Ry’s manager receives P,’s release message.

Sanders and Heuberger also use both processes and resources in their waits-for graph
[SH], in which an edge from Q" to @ “represents the situation where (Q') is waiting for (Q) to do
something”, and a deadlock corresponds to a cycle in this graph. By their description, the edges
are of the form PR(T,T) or RP(T,z). Again consider an example where 7 is real time, and

EzP1(T1,J’)1), ﬁlRl(T{,T{), R.lpo(Tg,ﬂro), P‘{]RO(Té,Té) and R.()Pg(Tg,mz)

all exist at time r. Suppose r < s < t. Now P, releases Rg at time s and then sends at time ¢
a request for R, i.e. Rgﬁg (T, ug, s) and }32 R (t,t) for some ug. If Py’s release message does not
reach Ry by time ¢, then the cycle

EzPl(Tl,ml), ﬁ1R1(T{,T;), R.lpo(To,.’Eo), }_).()RO(TO',T[';), EUPQ(Tg,ﬁg) and ﬁng(t,t)

exists at time ¢. But there is no deadlock, because once Ry’s manager receives the message,
RoP>(T2, z3) is deleted and the cycle is broken.

Although the authors’ operational description of an edge from @ to @' seems to be from
()’s point of view, their implementation of this definition is at (}’. For example, an edge from P to
R is inserted into their physical waits-for graph only when the request arrives at R, and this edge
is removed when the request is granted. Similarly, insertion and deletion of edges from R to P
coincide (respectively) with P’s receipt of the grant message and P’s release of the resource. Thus
a cycle among Fy, Py, P, and Ry, Ry, Ry in this implementation will instead be of the form

Rzﬁ] (T1, ’{L1), P] El(T{, :Ei), Rlﬁo(To, ’ELO), .P(]R’[)(T‘;, 326), Roﬁz(Tg, ’U,g) a.nd PZR'2(T2’, m;)
By Corollary 6, the simultaneous existence of such a cycle of edges does in fact imply a deadlock.

We see from this review that most papers in the literature for distributed deadlock detection
have either no definition of a deadlock, or a definition that is ambiguous, incomplete, or erroneous.

3.2 Definition

How should a deadlock be defined? If we follow the common perception of a deadlock as a
cycle of processes waiting for each other simultaneously, then the definition would have the form
“there is a deadlock at time ¢ if and only if C(¢)”, where C is a statement about the existence
of a cycle. Such a definition would be unsatisfactory because the fundamental characteristic of a
deadlock is not that the processes are in a cycle, but that they must wait forever for the resources
they requested. Moreover, what would ¢ be?

The nature of ¢ is related to the existence of real time, over which there is a controversy. To
paraphrase Pratt’s argument [P], for three processes, one on Earth, one orbiting Jupiter, and one
swinging pass the sun, what definition of real time would be relativistically acceptable?

If we do not assume the existence of real time, then there is no concept of a global state and
t would be some local time. In that case, the meaning of “there is a deadlock at time ¢” becomes

11

unintuitive, because t is not physically related to the local times elsewhere in the system. It is then
necessary to specify the local times t;,...,t, for the processes that are involved, so the definition
would instead be of the form “there is a deadlock at #y,...,t, if and only if D(¢y,...,t,)”, where
D is some predicate. However, we should insist that such a definition agree with our intuition in
the presence of real time.

There is another, more important, reason why we favor a definition that is in terms of a
vector of times, and which we will give later (Section 3.4). In any case, we are now led to the
following scheme for defining a deadlock: The definition will be in terms of D(ty,...,t,), where D
is a condition on processes that causes them to wait forever. Furthermore, if real time exists, then
D(t1,...,ts) must be equivalent to C(t), where C specifies the existence of a cycle.

Let n be a positive integer. A resource n-cycle is a set of edges P; R.,'(Ti-’, z}) and R'.iPi_l(T,-_l sZ41)
where i € Z,, (i.e. 1 =0,1,...,n — 1 and addition and subtraction are modulo n). The following
illustrates a resource 3-cycle:

P, Fy R

Rl 0 P2
(T7,21) (To,x0) (T3 ,xy) (Ta,a2)

Py

R
(T;;!Irg) (T‘!'ml)
Thus, Badal defines a deadlock as the (simultaneous) existence of a resource n-cycle of edges.

Similarly, a process n-cycle is a set of edges R.,-+113;-(T5,u;) and P;-R,'(Ti' ,T!) where i € Zy.
The following illustrates a process 2-cycle:

(Tis8i) . (T8 T (To,uo) (Ty,Tp)
Ry 1]Plll Ry OOPDOO Ro

Intuitively, since processes have single locus (A23, A24) and resources are not shared (A20,
A21), we expect the processes, as well as the resources, in a deadlock to be distinct. Formally, we
say Fo,...,Pp—1 and Rp,..., R,y in a process n-cycle are distinct up to cyclic repetitions if and
only if n = gc for some positive integers ¢ and ¢, ¢ > 2, Py,..., P._1 are distinct, Rg,..., R._; are
distinct, and for all i € Z,,, &; = a4, for a = P,R,T,T',u. Thus, the process n-cycle consists of
q repetitions of a cycle with ¢ distinct processes.

We say processes Fy, ..., P,_1 are quasi-deadlocked at py, . . ., p,_1 over resources Ry, ..., R,_1
if and only if for each i € Z,,,
(a) p; € Tp, pi: R5+113;(T,~,u1-) and p; : I_’;Ré(T{,T{) for some T3, T} and u;, and
(b) there is z;_y such that I_Z'iP,,;_l(T'_l,:ni_l) but ﬂpiR-.g(T;,w;,y;) for all 2}, y! < ;.

Further, we say Fp, ..., P,—1 are deadlocked at py,...,p,_1 over resources Ry, ..., R,_; if and only
if they are quasi-deadlocked and for all 4, € Z,,, —abort(P;,p) for all p < p;.

In the above definitions, condition (a) says that each process P; observes — at local time p;
— the existence of two edges R.;+113;(T¢,u5) and P;Ri(T{ ,T}), while condition (b) says that each
resource R; was granted to P;_y at z;_1, and the request from P; has either not arrived, or has
arrived but not been granted by time z;_;. If processes do not abort, then a quasi-deadlock is a
deadlock; otherwise, one must check the extra condition that differentiates the two. Intuitively,
this extra condition says that each P; could not have heard about an abort by any of the other
processes at time p;.

12

The following result justifies these two definitions.

Theorem 4
Suppose Py, ..., P,_; are quasi-deadlocked at py, . . ., p,—1 over resources Ry,..., R_1. Then n > 2
(so there are at least two processes) and
(i) if I_"kRk(T,’c,T,;,’UL), then abort(P;,p) for some i € Z,, and some p < v}, (thus, unless one of
the processes aborts, all of them will wait forever for the resources they requested); and
(ii) if Po,..., Pp—1 are deadlocked, then Py,..., P,_1 and Ry, ..., Rn_1 are distinct up to cyclic
repetitions.

Proof

Suppose n = 1, so pp : Roﬁo(To,ug) and po : ﬁgRo(Té, Ty). If Ty < To(< uwo < po), then (Lemma
1(vi)) To : ByRo(T},T}); but RoPy(Ty,uo) implies (Lemma 1(i)) PyRo(To, Tp), thus contradicting
(A23) T} < Tp. If up < TY(< po), then (Lemma 1(vi)) Ty : RoPy(Tp,uo), contradicting (A22)
FoRo(T4, T3).

Therefore Ty < Ty < wug, so (Lemma 2(i)) T} : PyRo(To,To), and hence (A23) To = T§. Now
(Lemma 3(iii)) up < Tj = To, and we get a contradiction.

(i) Suppose P‘kRk(ch,T;c, v.) and ~abort(P;,p) for all i € Z,, and all p < v},. Then —~abort(Py, v},)
implies (A10, Al1) R'kPk(T',yjc) for some y;, < v, so (A18) PyRi(T},=),y)) for some
z, < Y}, and (from (b)) xx_1 < y}.

If 2}, < zp_1(< y}.), then (Lemma 1(v)) zx_q :PkR'k(ch,:z:;c), 0 Tp_q : BpPry (Tr=1525-1)
and PpRi(T},), y}) imply (Lemma 3(vi)) By Pe1(Tk—1,2k-1,yk-1) for some ye_1 < yh.

If 251 < @} (< y,), then RyPy_1(Tk_1,2xk_1) and RyPi(T},v}) again imply (A20)
Ry P (T—1,2—1,Yx—-1) for some yr_1 < ;.

Either way, Ry Pi_1 (Tk-1,Tk-1,Yk—1) now implies (A19) Rkﬁk_l(Tk_l, Uk—1,Vk—1) for some
Vk—1 < Yr—1. It follows (A24) that Py_y Ry_1(T}_,,T}_,) does not exist at vj_;.

Now vy_1,T;_ € Tp,_,,soeithervy_y < T} _;,0or T}_, < vip—g and Py Rii Tt itk)
for some vj_; < vg_y. But vg—y < Tf_; and px—q : Pr—1 Re—1(Tf_,,Th_;) imply vp—1 <
Pk—1, 50 RpPr_1(Tk-1,ur—1) does not exist at py_1, contradicting pg—1 : Rk Pr—1(Th—1, uk-1)

Thus P.kRk(TL,T;;,v;c) illlplies Py BT oy Ty) SOT some Ut g L Vi, Y &
Y < vy. Inductively, PyRy(T},T},v,) and the cycle Z,, imply PyRy(T}, T}, v) for some
v < v}, contradicting Lemma 1(iv). This contradiction proves the claim.

(ii) Suppose P; = P; for some i,j € Z,, i # j, so we have p; : P;R;(T!,T!) and p; : IE‘;RJ-(T;,T;).
We may assume 7] < T7. Suppose 7] < T}. Then (A23) P;R;(T!,T!) does not exist at T,
so P;R;(T},T},v}) for some v} < T]. By (ii), we have abort(P,,,p) for some m € Z, and

141 Vg

some p =% v} < T} < pj, contradicting the hypothesis. Hence T} = T}, and (A23) R; = R;.

Suppose R; = R; for some 4,5 € Z,, © # j, so we have p;_; : Riﬁ;»i—l(T,‘_l,’Mi_l) and
Pi—1 - R,-Pj_l(Tj_l,uj_l). Also (All) Rz'Pi—l(Ti—lamé—l) and R‘in—l(Tj—lawj—l)a where

13

i1 < u;j—q and z;_; < wj_y. Since z;_1,z;_1 € Tg,, we may assume z;_1 < T;_1.
Suppose z;_1 < z;_1. Then (A20) R5P5_1(T5_1,$i_1,yi_1) for some y;—1 < z;_1, so (A19,
Lemma 1(iii)) Rt-P',;_1(T.i_1, #i—1,v;—1) for some v;_; < y;_;. That implies (Lemma 3(v))
13;;_1Ri_1(Tf_1,Ti'_1,vi_1) for some v]_; < w;—;. By (ii), we have abort(P,,,p) for some
m € Zy and p L vi_; < w1 < yi-1 < Tj1 < uj_1 < pj_1, contradicting the hypothesis.
Hence 2;_1 = z;_1,80 (A21) T;_; = Tj_; and P;_; = P;_;, and (Lemma 1(ii)) u;—1 = ©;j_3.

Therefore Py,..., P,_1 are distinct if and only if Ry,..., R,_1 are distinct. If Py, ..., P,_;
are not distinct, say P; = P; for some 4,j € Z,, 1 < j and j—i minimal, then inductively over
Z,, we have a;_q4 = a;j_q for a = P,R,T,T',u and d = 0,1,2,.. in particular, oy = a,
where ¢ = j — 4, 50 ay = agy. for k € Z,,.

Let n = gc + r, where ¢ and 7 are the quotient and remainder when n is divided by ¢ (so
0 <r < c). Then oy = a,; since ¢ is minimal, we have r = 0, so n = qc.

Finally, by the minimality of ¢, Fy,..., P._; are distinct and Ry, ..., R._1 are also distinct;
furthermore, (a) and (b) are satisfied for ¢ € Z,, so Fp,..., P.—1 are quasi-deadlocked and
¢ > 2. Thus, Py,...,P,—1 and Ry,...,R,_1 are distinct up to cyclic repetitions. O

Conditions (a) and (b) form the predicate D, and Theorem 4(i) says our definition of a
quasi-deadlock has the property (viz. perpetually waiting processes) we required of D earlier.
Surprisingly, there is no proof in the literature of this property, except for an early version (twenty-
odd years ago) by Shoshani and Coffman [SC] for a centralized system. (Bracha and Toueg used
a related property to define a deadlock [BT].) Any previous attempt to prove some version of
Theorem 4(i) from existing definitions of a deadlock would have revealed the unsatisfactory nature
of these definitions.

Why quasi? First, it is possible that Py, ..., P,_y are quasi-deadlocked, but one of them has
“already” aborted; second, Fy,..., P,_1 may not be distinct. We illustrate these with the example
in Figure 1, which has real time as a common clock.

Ry b, ————— R, —— PRJR
PO S Rl e P1 T Rz
P5Ro(0,0) R1Py(5,7) PyRy(14,14) Py R;(20,21)
PsRo(0,1) Ry Py(5,8) PLRy(15,15) abort(P;,23), Py R1(20,20,23), Ry Py (15,19,23)
RoP3(0,2) P, R3(9,9) PyRy(15,16) Ry Pi(15,17,24)
RoP5(0,3) PyR3(9,10) R,Py(15,17) R, Py(14,25)
P3R3(4,4) R3P3(9,11) PyRy(14,18) Ry Py(14,26)
PyR4(5,5) PyR3(4,12) RyPy(15,19) PyRo(26,27)
PyR(5,6) R3P5(9,13) P Ry(20,20) PyRy(26,28)

Figure 1 Py, Py, P, P3 quasi-deadlocked at 27, 21, 14, 9 over Ry, R1, Ry, R3.

14

In Figure 1, Py, Py, P», Ps are quasi-deadlocked at 27, 21, 14, 9 over Ro, Ry, R2, R3, but P; has
already aborted by time 27. Moreover, it is possible that P, = Py (see their actions at 8, 9, 26 and
27).

These observations motivated our definition for a deadlock: In our definition, a deadlock is
a quasi-deadlock with a restriction on the timing of aborting processes; this restriction eliminates
the first problem in the example, and consequently (Theorem 4(ii)) removes the second problem as
well.

On the second problem, if the processes are quasi-deadlocked and Py, ..., P,—1 and Rg, ..., Ry—1
are distinct up to cyclic repetitions, does that mean there is a deadlock? No, and the scenario in
Figure 1 is a counterexample.

In the definition of a deadlock, condition (b) is used to “hold” the cycle together — it is
easy to construct an example to show that, without this condition, we may not have a deadlock.
However, condition (a) suffices to define a deadlock if the cycle exists “simultaneously”.

3.3 Simultaneity

We now consider the second requirement we set down for our definition, which is to relate it
to our intuition of a deadlock as a set of processes waiting simultaneously for one another. Formally,
we say a set of edges exist simultaneously at time ¢ € 7 if and only if they all exist at time ¢. Thus, if
t: R.5+1]3;(Ti, u;) and ¢ : ﬁ,-Ri(Tf,Ti’) where 7 € Z,, then the process n-cycle exists simultaneously
at t.

Theorem 5

(i) If a process n-cycle exists simultaneously at time ¢, then the processes in the cycle are
deadlocked at some pg,...,p,_1, where p; <t foralli € Z,.

(ii) Suppose Fy,...,P,_1 are deadlocked at pg,...,p,—1 over Rg,...,R,_1, and for each 1,
pi = t and —abort(P;, p) for all p < t. Then the process n-cycle exists simultaneously at t.

Proof

(i) Assume t : R,—HP}(Tg-,ui) and ¢ : ﬁR,—(T{,T;), where ¢ € Z,,. Note that u;,T] € Tp,. If
T! < u;, then T} < u; <t (from ¢ : R.,:+1P'5(T1-,u,:)) and t : E’Ri(T{,T{) imply (Lemma 1(vi))
pi: ﬁ’Ri(T;,T{) and p; : Ri+1]3;(T4,ui), where p; = u;. If u; < T/, the same is similarly
true for p; = T!. Thus, for each i € Z,, there is p; € Tp, such that p; : P;R;(T!,T!) and
i R,;+1I35(T,-,u,-). Note that for all i € Z,,, Ri+115;(T,-,ui) implies (A11) Ei+1Pi(Ti,$i) for
some z; < ;.

Suppose PkR'k(ch,cc;ﬁ,yL) for some 2}, < y, < zg—1. If abort_msg(Py, Ry, p',y,) for some
p', then abort(Py,p') and p' < y,. Now (A5) T < p' < yh < @1 < uk—1 < t and
}s ﬁkRk(T,’c,T,’c) imply (Lemma 1(vi)) p' : FkRk(T;;,T,’c). That implies ﬂP’kRk(T]’C,TIQ,z) for
all z < p', and thus (A8) P, Ry(T],T},p') — a contradiction.

15

Therefore —~abort_msg(Py, Ry, p',y}) for all p'. Then (A17, A18) RyPy(TL,yh). If yf =
T—1, then RyPy(TL,y,) and BPi_1(Th—1,z5—1) imply (A21) Py_y = Py and Tx_; = T},
so Ry Pr_q (Tk—1,ug—-1) becomes Rkﬁk(ch,uk—ﬂ and thus (A10) ﬁkRk(ch,ch,uk—}L), which
contradicts uy_1 <t and t: ﬁkRk(TIQ,ch).

Therefore yj, < zx—;. Nowt: Rkﬁk_l(Tk_l,uk_l)implies (Lemma 2(vi)) 1t : EkPk_l(Tk_l, Tp-1)-
Since y;. < xx-1, we have (A20) R'kPk(TL,y;c,zL) for some z}, < z_;. But R‘kPk(T,’c,y;G,zfc)
implies (A19) Ry Py(T}, u, v) for some u < v < 2}, and hence (Lemma, 1(iii), A10) PRy (T}, T}, u),
contradicting u < v < z;, < zp_1 <uk_1 Jtandi: ﬁkRk(TJ,‘;,TIZ).

We conclude that —quR'k(ch,mfk,yfg) for all z},y;, < @k_1, so the processes are quasi-
deadlocked. Next, suppose abort(P;,p)and p < p; for some i, j € Z,. Then (A8) PR;(T!,T!, =)

for some z < p < p; < t, contradicting ¢ : ER,-(TE-',T{). Therefore Py,..., P,_1 are dead-
locked.

(ii) The deadlock implies that for each i € Z,,, p; : Rijq]_’}(Ti, u;) and p; ﬁ,-Ri(T{, T!) for some
Ti, T!,u;. Since p; < t, these edges formed before t.

Suppose P'kRk(T,L,T,’C) does not exist at ¢, so P'kRk(T};,T};, v},) for some v}, < ¢. Then
(Theorem 4(ii)) abort(P;,p) for some j € Z,, and p < v}, < ¢, contradicting the hypothesis.
Therefore t : B;R;(T!,T}) for all i.

Next, suppose Rk_l_lﬁk(Tk,uk) does not exist at ¢, so Rk+1ﬁk(Tk,uk,Uk) for some v, < t.
Then (Lemma 3(v)) P‘kRk(ch,T;;,vfc) for some v}, < vi, < t, contradicting ¢ : P R(T}, T}).
Therefore t : Ri+1]5;(T,;, u;) for all 1. O

We should stress that the time of simultaneous existence ¢ in Theorem 5 is a local time and
not necessarily a real time. In contrast, all other definitions of deadlocks that we know of, save one
[BT], are in terms of simultaneous existence with respect to real time.

If we consider each pair ¢ : R,-HI-’;(T,-,@L,;) and 7 : ﬁ,-Ri(Ti’,T;) to mean the existence at ¢ of
an edge from R;yq to R;, then the characterization is in terms of a cycle of resource-to-resource
edges, contrary to the common intuition that a deadlock arises from the simultaneous existence of
a cycle of process-to-process edges (Section 3.1).

There are essentially four ways to define a simultaneous cycle of edges. One of them —
a process n-cycle — leads to a deadlock (Theorem 5(i)), but two others — including a resource
n-cycle — do not. (See Section 3.1; the asymmetry between processes and resources is further
elaborated upon by the results in Section 4.) We consider the fourth in the following corollary.

Corollary 6
Suppose t : Ri+113;;(Ti,ui-) and 1 : HE(T{,E,"-) for i € Z,. Then P,,...,P,_, are deadlocked at
some g, ..., Pn—1 Over Ro,..., R, 1.

16

Proof
t: P,Ri(T!,«}) implies (Lemma 2(v)) t : PiR{(T!,T!) or abort(P;,p;) for some p; < t, where (A4)

pi € Tp,. Suppose abort(P;,p;). Then (Lemma 1(i), A5) T; < p;.

If (T; <)pi < ui, then (Lemma 2(i)) =P;Riy1(Ti, T;, 2) for all z < pi, so (A8) B;Riyy(Ti, T, pi).
On the other hand (Lemma 2(i)), p; : P;Riy1(T;, T;) — a contradiction. Therefore u; < p;. Then
(A13) R;Hﬁ-(Ti, u;,v;) for some v; < p; < t, contradicting ¢ : Ri+1}3~i(Ti,ui)-

We conclude that abort(P;, p;) is impossible, so ¢ : P}Ri(Tf' T!) and (Theorem 5(i)) the processes

1?7

are deadlocked. O

By this corollary, we see that if there is a cycle in Sanders and Heuberger’s implementation
of their waits-for graph (Section 3.1), then there is indeed a deadlock.

3.4 The Definition Revisited

We expect the reader to ask: Is the idea of a quasi-deadlock necessary? And isn’t our
definition of a deadlock rather complicated for such a simple concept?

To answer the first question, we should point out that many of the algorithms in the literature
detect, in fact, quasi-deadlocks (Section 5.2). For the theory constructed with our definitions to
be useful in the analysis and synthesis of detection algorithms, it is therefore necessary to capture
this natural concept of a quasi-deadlock. Furthermore, in the context of understanding the errors
in the literature, the importance of quasi-deadlocks is evident from the fact that some of the errors
are in fact quasi-deadlocks; the reason for this can be surmised from the example in Figure 1.
The concept of a quasi-deadlock has not arisen before only because many papers do not take into
account the effect of aborting processes.

For the second question, we have previously explained why the definition should have the
form D(p1,...,pn). It remains to verify that our definition of a deadlock agrees with our intuition
in the presence of real time. Indeed, if there is real time, then we can let 7 be the set of real
times; now Theorem 5 says that Fy,..., P,_; are deadlocked at pg,...,p,—1 if and only if the
process n-cycle exists at time ¢ = max{pg,...,pn—1}. One could therefore view our definition as a
generalization of a definition that uses real time.

But we do not seek generality for its own sake. The primary reason for adopting the com-
plicated definition is that we want the theory to be applicable, and we therefore base it on what
a deadlock detector can observe. As validation, note that our definition can be used in Chandy
and Lamport’s snapshot algorithm for deadlock detection [CL] (see Section 5.2). Even if real time
exists, the deductions that the detector can make about what is happening in real time must still
be based on its separate observations of what is true at various sites; Theorem 5(ii) illustrates such
a deduction. The complicated form of the definition is simply because it is an ensemble of local
facts.

With our definitions, one could call the ensuing theory (Section 4) an operational theory, in
the sense that it is based on what is observable.

17

4 Theory

In this section, we formalize the concepts used in various detection algorithms and relate
them through a body of results. These results underlie the existing algorithms, and are illustrated
in Figure 2. Their proof do not rely on operational arguments; rather, they are simply logical

consequences of the axioms that codify the operational assumptions.

Thm 7(ii)

gy
coexistence-
ordering d
A

hm 8

Thm 13

dﬂ
Lem 11 4

L

AEC

deadlock AREC

APEC edge-ordering
hm 10
2P

L

quasi-AEC

pipelining

Figure 2 Overview of results.

18

The theory reveals the following structure in a typical deadlock detector: the algorithm
starts by observing the simultaneous existence of certain pairs of adjacent edges, and deduces the
existence of a deadlock from an (observed or imposed) ordering in the timing of events. We examine
the former in Sections 4.1, 4.4 and 4.6 (on AEC, APEC and AREC), and the latter in Sections
4.3, 4.5 and 4.7 (on two-phase locking, coexistence ordering and pipelining). Section 4.2 is on edge-
ordering, which is a central concept in the theory. Although the theory is developed for deadlock
detection, it can also be applied to deadlock avoidance; this is illustrated in Section 4.8 (on resource
ordering).

We make one definition before proceeding: A double n-cycle is a set of edges R¢+1}3,-(T 5w
P{Ri(T! T-’), Pgéi(Ti’,mg) and RiPi—l(Ti—l,CUi—l), where 7 € Z,.

1)1

Note that in a process n-cycle, each R,;HP;-(T,-,m) implies (All) Ei+1Pi(Ti,:ri) for some
@i < u; and each P;R;(T!,T!) implies (A14) P;Ri(T!,«}) for some z! (T! < '), unless Mg, received
an abort message from P; before it receives the request message. Thus if the processes do not abort,

then every process n-cycle implies a double n-cycle, and so does every resource n-cycle.

4.1 AEC: Adjacent Edges Coexist
We begin the theory with a partially equivalent condition for quasi-deadlocks.

Two edges e(T,t) and €'(T",t') are adjacent if and only if e = RP and ¢’ = PR', or e = PR
and ¢ = RP'. Two adjacent edges coezist at time ¢ if and only if they both exist at time ¢. For
example, PI;’:(T, z)and RP'(T',z') coexist at time ¢ if ¢ : PR(T,z)and t : RP'(T’,2'). We say there
is AEC (for adjacent edges coezist) in a double n-cycle if and only if there exist P;-times p; and R;-
times r; such that p; : Ri+;ﬁ(Ti,ui), P ¢ E-R,;(Ti’,Tf), 7 PiR',;(T;,m‘;) and 7; : R:P;_4 f Gy)
forall:ie Z,,.

Theorem 7

(i) Suppose processes Fy,..., P,_q are quasi-deadlocked. If none of them aborts, then they are
in a double n-cycle with AEC, and whose every edge e(T, 1) exists at all local times s > t.

(ii) If there is AEC in a double n-cycle, then the processes are quasi-deadlocked.
Proof

(i) Suppose Fy,..., P,_1 are quasi-deadlocked at py,...,pn—1 over Rq,..., R,_1, and for each
t€Zdy,, p;: Ri+1Pg(Ti,ui), pi : BR(T!, T)), R5+1P,:(T,;,:E5), and (A6, A1, Al4) P;Ri(T},z!)
for some .

Consider any ¢ € Z,,. By Theorem 4(ii), p : I_J.,;Ri(T-' T!) for all p € Tp,, T! < p; moreover,

1?1 1

as in the proof of Theorem 5(ii), ¢ : Riy1 f%(Ti, u;) for all ¢ € Tp,, u; < q.

Next, if E,-H Pi(T;, zi,yi) for some y;, then (A19) R,:_l_lf’.,;(T,-, u;, ;) for some v;, contradicting
the previous observation. Therefore r : R;P;—1(Ti-1,2i-1) for all r € Tg,, ;-1 < 7.

19

Finally, suppose P:,;R'i(Ti’, z},y:) for some y!. Since P; does not abort, we have (A17, A18, A1)
grant_msg(R;, P;, T/, y!, 2') for some 2', so (A9) P;Ri(T!, T}, z) for some z < z', contradicting

Theorem 4(ii). We conclude that s : P;R;(T!,z}) for all s € Tg,, = < s.

Since z;_1,z; € Tg,, we haver; : R',-P,;_1(Ti_1,m,-_1) and 7; : PiR’i(T;, ot) forry = max{m.1, 2},
so there is AEC.

(ii) Suppose p; : R.,;+1I_3’..,-(T¢,u,-), pi : P;Ri(T! s i S8 AN Piﬁg(Ti',wi) and 7; : BiPi_1(Ti—1,Ti—1)

% i

for all ¢, so there is AEC in a double n-cycle.

If Pkﬁk(ch,mf.c,y;c) foisome Tty Yy <oy, then P,-cR‘k(f_lj}c,m'}c) does not exist at zy_1 < 71,
contradicting ry : Py Ry(T},z}). Hence for each i, =P Ry(T},zt,y!) for all 2}, y! < z;_1, so
the processes are quasi-deadlocked at pg,...,pn_1. O

In Theorem 7(i), it is necessary that the processes do not abort. To see this, suppose there
is real time and the last process to close the cycle in a quasi-deadlock aborts; the double n-cycle
may never form if the abort message overtakes the request message in reaching the resource (see
A14). This argument holds per force in the case of deadlocks.

Since Theorem 7 establishes an equivalence between quasi-deadlocks and AEC, why not use
AEC as the definition of a quasi-deadlock? After all, AEC is simpler than conditions (a) and (b)
in our definition, and it is also locally observable. The reason for not doing so lies in the fact that
the equivalence in Theorem 7 is only partial, and this can be illustrated with an example.

Consider a scenario where there is real time and all processes in a deadlock cycle have made
their requests except Py, and all resource managers have received the requests except Mp,. Now,
at time pg, Py sends a request for Ry, and the request is received by Mg, at time ry. Between times
po and rp, the processes are already deadlocked — by our definition — but the double n-cycle has
not yet formed, so we do not have AEC yet. (In Chandy and Misra’s terminology, the processes
are in a dark cycle [CM].) This example also explains why we do not state a converse to Corollary
6, in contrast to Theorem 5.

4.2 Edge-ordering

We next give a necessary condition for quasi-deadlocks. We say the pair of adjacent edges
RP(T,u) and PR'(T ', T') obeys edge-ordering if and only if u < 7”, i.e. P acquires R before
requesting R'. By Lemma 3(iii), if s : RP(T, u)and s : ﬁR’(T’,T’) for some s, then this pair obeys
edge-ordering. Of course, the converse is false, that is if Rﬁ(T, u), I_"R’(T’,T’) and u < T, that
does not imply that the two edges coexist at some time, since we may have RP (T,u,v) for some
v &I

We say the pair of adjacent edges P'R(T’,2') and RP(T,z) obeys edge-ordering if and
only if P’E(T’,w’,y') and —abort(P’,p) for all p < y' imply I_?:P(T,a:,y) for some y < 3, so R is
retrieved from P before being granted to P', unless P’ aborted. By Lemma 3(vi), if s : P'E(T', ')
and s : EP(T, x) for some s, then this pair obeys edge-ordering. Again, the converse is false, i.e.
edge-ordering does not imply coexistence.

20

We say a process, resource or double n-cycle obeys edge-ordering if and only if every pair of
adjacent edges in the cycle obeys edge-ordering.

Theorem 8
Consider a double n-cycle. If the processes are quasi-deadlocked, then the cycle obeys edge-ordering.

Proof
Suppose the processes are quasi-deadlocked. Then (Lemma 3(iii)) the process n-cycle obeys edge-
ordering. Now consider any 7, and suppose P,;R.,;(T,‘-’,w‘é,yﬁ) and —abort(P;, p;) for all p; < y;. Since
the processes are quasi-deadlocked, we have z;_1 < y! where R;P;_1(T;—1, ;1) is in the resource
n-cycle.

If 2;_y < !, then either R;P;_, (Ti-1,%i=1,¥i-1) forsome y;_1 < z! < yl,orz!: R:P 1(Ti—1,2i1).
For the latter, } : P;R;(T}, z}) and —~abort(P;, p;) for all p; < y! imply (Lemma 3(vi))

Eipi_l(Ti—l,wé—l,yi~1) for some ;1 < ;.

Kz, <zi_i(< y!),then z;_, : P,:R',;(Ti-' z!); this and z;_q : R’gPi_l(T,:_l,a:i_l) again imply (Lemma

b3 |

3(vi)) RiPiz1(Ti=1,2i-1,9i-1) for some yi_1 < yl.

We conclude that the resource n-cycle obeys edge-ordering. O

From Theorem 7(i), we know that if the processes in a quasi-deadlock do not abort, then
the edges are never deleted, so the resource n-cycle obeys edge-ordering vacuously. If some of
the processes do abort, then edges are deleted and the resource n-cycle disintegrates, but this
disintegration will, by Theorem 8, obey edge-ordering.

4.3 Two-phase Locking

Several algorithms for deadlock detection are specifically designed for databases, whose
processes (i.e. transactions) must usually satisfy serializability [BHG]. The following condition
guarantees that processes are serializable:

2PL RP(T,u,v)A PR(T",T") - T' < v

A process is 2PL (two-phase locked [EGLT]) if and only if it satisfies the above condition, which
says that it cannot make another request once it has released a resource. A process that is 2PL
thus have two phases: a resource acquisition phase followed by a resource release phase.

Lemma 9
Suppose P is 2PL. Then

(i) PR(T,T) and PR(T',T") imply T = T';
(ii) RP(T,u)and RP(T',u') imply T = T’ and u = u;
(iii) RP(T,u,v)and PR'(T',T") imply PR'(T',T",v") for some v' < v

21

Proof

(i) Assume T # T'. Since these are P-times, we may assume T < T', so PR(T,T) formed
before 7". ﬁR(T’,T’) implies (A23) ﬁR(T, T) does not exist at T”, so P'R(T, T,v) for some
v < T'. Now abort(P,v) would contradict (A5) v < T" and PR(T",T"), so (A10) RP(T,v).
This, P'R(T’,T') and v < T’ then imply (Lemma 2(vii)) RP(T,v,v") for some o' < T,
which makes PR(T",T") impossible (2PL). We conclude that 7' = T".

(i) RP(T,u) and RP(T',«') imply (A10) PR(T,T,u) and PR(T',T',u'). It follows from (i)
and Lemma 1(iv) that 7 = 7" and u = «'.

(ili) RP(T,u,v)and PR'(T',T") imply (2PL) T" < v, so PR'(T",T") formed before time v. But
RP(T,u,v)implies (A24) PR'(T',T') does not exist at v, so PR'(T',T",v") for some v’ < v.
(W

A quasi-double n-cycle is a set of edges Riy1 Pi(Ts,us), PiRi(T!,T!), RiPi_1(T",zi—1) and
P;R;(T}",x}) for i € Z,, i.e. it is a union of a process n-cycle and a resource n-cycle. Thus a double
n-cycle is a quasi-double n-cycle with T; = T} and T} = T}” for all 7. The next result shows that

Theorem 7(ii) is true for quasi-double n-cycles, if processes are 2PL.

Theorem 10

Suppose processes are 2PL. If there is AEC in a quasi-double n-cycle, then the processes are quasi-
deadlocked.

Proof

Let the edges be as in the definition of a quasi-double n-cycle. Note that 7! and T} are P;-times.
Assume T} < T!. Since (Lemma 3(iii)) u; < T! < T!, Riy1P;(T;, u;) formed before T!'. Now (A22)
R,+1I_5(T1,ut) does not exist at T, so R1+1I3(T,,u“v1) for some v; < T}', which is impossible
(2PL). Assume 7! = T!". Then (A23) R; = Ri41, so (AEC) p : R;P,(Ti, u;) and p : P;Ry(T!,T!) for
some p € Tp,. But (Lemma 3(iii)) u; < T < p, so (Lemma 1(vi)) 77 : R,,,P,(T“u,), contradicting
(A22) P,Ry(T!, T}

We conclude that T/ > T!. Now Riy1P;(T!, ;) implies (A18, Al) grant_msg(Riy1, Pi, T]', zi,ul)
for some u. Since R;y1 P(T!,«;) implies (Lemma 1(i)) PiRip1(TV,T!") — and T} < z; < u!! —
we get (A9) PR 1 (T, T!, p) for some p < u!f. Thus (A10), either abort(P;,p) or Riyi P(T", p).

Now suppose abort(P;,p), so (A5) T! < p. Since T! < T!, we have (A23) P,Rip1(TV, T!",v!) for
some v}’ < T!. Since (A5) -abort(P;,v!"), we get (A10) Rip1 Pi(T!,v}"), so (A11)
grant_msg(Riyy, P;, T, r,v) for some r. Hence (Lemma 1(ii), A3) z; = r and u! = v/ < T! < p,
contradicting p < u.

It follows that Riy1 Pi(T!,p), so (A11) grant._ msg(Riv1, Pi, T}, 7, p) for some 7. Hence z; = r and
ul = p, 50 Riy1 P(T!, u). By Lemma 9(ii), T; = T!. Moreover, P;R;(T!",z!) implies (Lemma
1(i)) PiRi(T",T}"), so (Lemma 9(i)) T/ = T/".

We thus get a double n-cycle, and since there is AEC, the claim follows from Theorem 7(ii). O

22

In Figure 2, we abbreviate this result as “quasi-AEC plus 2PL imply quasi-deadlock”.

4.4 APEC: Adjacent Process Edges Coexist
Consider now a double n-cycle of edges RiyyPi(Ti,u;), PiRi(T!,T!), Pz'R‘i(T;’mé) and

1? 1
R;iP;_1(Ti—1,%;—1), where i € Z,,. We say there is APEC (for adjacent process edges coezist)
in the cycle if and only if p; : Ri.}.]ﬁi(Ti,ulj) and p; : }_:’;Ra-(T-’ T}), where p; € Tp,, for all ¢; i.e.

%7 1
adjacent edges coexist in the process n-cycle, and the times of coexistence are local. APEC is, in

a sense, half of AEC.

By Lemma 3(iii), if there is APEC in a double n-cycle, then the process n-cycle obeys
edge-ordering. Lemma 11 says the converse is true if processes are 2PL.

Lemma 11
Suppose processes are 2PL. If a process n-cycle obeys edge-ordering, then there is APEC in the
double n-cycle.

Proof

Assume we have Rﬁ(T, u) and ﬁR'(T’,T'), where u < T”. Since Rﬁ(T, u) formed before 7", either
RP(T,u,v) for some v < T' or T' : RP(T, u). But Rﬁ(T,u,v) would imply (2PL) 7" < v, a
contradiction. Therefore RP(T,u) and PR'(T',T") coexist at time T’. The claim follows. O

APEC and deadlocks are closely related; indeed, condition (a) in our definition of a quasi-

deadlock is precisely APEC. The next theorem states some sufficient conditions which would yield
a deadlock when added to APEC.

Theorem 12
Suppose a double n-cycle obeys edge-ordering. If there is APEC, and for all ¢, j € Z,,, ~abort(P;, p)
for all p < p;, then the processes are deadlocked.

Proof
Suppose there is edge-ordering, and p; : R,;+113,-(T,;, Wil i I_J;R,-(T-' T/) and EiPi_l(Ti_l,wé_l) for

1? 2
all 7 € Z,,. Assume we have Py Ri(T}, 2}, y;) for some k and 2}, 9} < #x—1 < up_1.

Now -abort(Py,p) for all p < y, since y} < @p_1 < ug—1 < pg—1, so edge-ordering implies
Ry Pr_1(Tk-1,%k—1, Y1) for some y;_; < yi. But (Lemma 1(ii)) 2x—1 < Yk-1, 50 ¥} < Tg-1 <
Yk—1 < Yj, a contradiction.

We conclude that for each i € Z,,, ﬂPiR'i(T{,:cg,yt'-) for all 2%, y; < z;_y, so there is a deadlock. [

4.5 Coexistence Ordering

Deadlock detection depends fundamentally on the order in which events occur and facts are
observed. This is most obvious in the role and definition of the next concept.

23

Suppose there is APEC in a double n-cycle, where p; : R,-+1I_3‘;-(Ti, u;) and p; : P;R; (T, T

for i € Z,, and p}, : Ry Py(T, ug) and pj : P'ORO(T[{,T[','), where p € Tp,. We say there is coezistence
ordering if and only if pp < py < -+ < pp—1 < p}.

Theorem 13
If there is APEC and coexistence ordering in a double n-cycle, then the cycle obeys edge-ordering.

Proof
APEC implies (Lemma 3(iii)) the process n-cycle obeys edge-ordering, so it suffices to prove that
the resource n-cycle obeys edge-ordering.

Suppose P R;(T!, 1,y,’) —abort(P;,p) for all p < y!, and -R;P;_ 1(Ti—1,2i-1,y) for all y < »i.
Then (A17 A18) R; P;(T},y:). Tt follows (Lemma 3(iv)) that R Pi_ 1(Ti-1,2;-1) does not exist at
yz? 50 yz € Wjeggor By =BT a0 = T: and z;_; = y;—l-

For the Ia,tter, Pi1: R,;I_’;_l(Ti_l,ui_l) becomes p;_{ RJ_’;(,ui—1), 50 (A10) PR, (T', s Ab=q Js
But T/ i-1 = pl 1 < p; and p; : PR, J(T!,T]) imply (Lemma 1(vi)) pi—1 : P;R; (T"),

1?71 [Rt]

contradjctmg BR; (T}, T!,ui-1) and u;—1 < pi—1.

Therefore y; < z;_1. Now R.,-P,-_l(Ti_I,m,;_l) implies (A18, A1) grant_msg(R;, Pi—1,Ti—1,%i-1,Y)
for some y. But R;P;_(Ti-1,u;—1) implies (A11) grant_msg(R;, Pi_1,Ti—1,z,u;—1) for some z.
Hence (Lemma 1(ii) and A3) z = z;—1 and y = u;—1, 50 Ti_1 < U;i_1.

Now y! < Zi—1 < Uio1 X Pi-1 < Pi, SO Pi P.R; (T T 1mp]jes (Lemma 2(viii)) p; : BiPi(T!, ob).

However, R; F(T, ,yi) and R;P;_ 1(Ti-1,2i—1) imply (A20) R, :Pi(T}, yi, z) for some z < z;_; < p;,
contradicting p; : B;P;(T!,y!).

We conclude that if P;E; (T}, z%,y!) and —~abort(P;,p) for all p < !, then R.Ajpi_l(Ti_l,Q}i_l,‘yi_l)
for some y;_1 < y!, so the resource n-cycle obeys edge-ordering. O

In Theorem 13, can APEC itself imply edge-ordering in the double n-cycle? No; otherwise,
Theorem 12 would mean that APEC implies a deadlock if the processes do not abort, thus making
condition (b) in the definition of a deadlock redundant.

4.6 AREC: Adjacent Resource Edges Coexist

Consider again a double n-cycle of edges R P;(Ti,u;), BiRi(T!,T}!), PiRi(T!,2!) and
R; P;_1(Ti—1,2i—1). We say there is AREC (for adjacent resource edges coezist) in the cycle if and
only if r; : R',-P,‘-_1(T1;_1,u@-_1) and 7; : P.gf_i.,;(Ti-’,mi), where r; € Tg,, for all i € Z,,; in other words,
adjacent edges coexist in the resource n-cycle, and the times of coexistence are local. If APEC is
one half of AEC, then AREC is the other half. We want to show that this half is equivalent to
AEC if processes are 2PL.

24

Theorem 14
Suppose processes are 2PL. If there is AREC in a double n-cycle, then the cycle obeys edge-ordering.

Proof

Suppose r; : B; Pi_ (L, Bi—1), T ¢ PR(T 1+1P(T,,u,) and PR(, where 1 € Z,,.

R ‘t

Assume edge-ordering is violated. Since there is AREC, the resource n-cycle obeys edge-ordering
(Lemma 3(vi)), so the violation is in the process n-cycle, say T/ < uj. Then, Py Ri(T},T}) formed
before uy, so either Py Ry(T}, T}, v},) for some v}, < ug, or uy : P‘kRk(T};,T};).

Suppose uy : PkRk(T,’c,T,’c) Note that Rk+1Pk(Tk,uk) implies (A10) PkRk_l_l(Tk,Tk,uk) T, <
Th(< ug), then (Lemma 2(i)), T}, PkRk.,.l(Tk,Tk) contradicting (A23) PkRk(Tk, T ATy < Tl

ui), then (Lemma 1(vi)) Ty : Py Ri(T}, T}), contradicting (A23) PyRiy1(Tx, Ti). If Tp = T}, then
ﬁk Ri(T},T}) and PyRpyr(Ts, Tk) imply (A23) Ry, = Ryyr. It follows (A10) from Ry Pi(Tx, us)
that ﬁkRk(Té,TL,uk), contradicting wuy, : P’kRk(T{C,T{c).

We conclude that Py Ry(T}, T}, v}) for some v}, < uy. This implies (Lemma 2(iv)) that abort(Py,v})
or Pk}_l'k(T}’c,ch,c,'yfc) for some y;, < v,. Assume abort(Py,v}), so (A5) Ty < v,. Then (A8)
ﬁkRkH(Tk,Tk,z) for some z < v. If v, < uy, then Rk.}.lﬁk(Tk,uk) implies (Lemma 2(i)) v, :
PkRkH(Tk,Tk) — a contradiction. If v}, = ug, then Rk+1Pk(Tk,uk) implies (A10) -wabort(Pk,'Uk)
— another contradiction.

Therefore Py Ry(T}, @', y}.) for some Yy, < vy If abort(Py, p) for some p < y;,, then (A5) T} < p— so
Py Ry(T}, T}) formed before p — and (A8) Py, Ry (T}, T}, z) for some z < p; this and Py Ry(T1, TL, v})
imply v}, = z < p < ¥, contradicting y}, < v},. Therefore —abort(Py, p) for all p < y,.

By edge-ordering of the resource n-cycle, we have EkPk_l(Tk_l, Tk-1,Yk—1) for some yr_1 < yp, so
(A19) Ry Py_y(Tk—1,uk—1, k1) for some vx_q1 < yr—1 and (Lemma 9(iii)) Py—1 Re—1(Th_1, Th_1,vh_q)
for some v},_; < vk_1.

Thus P'kRk(T,:,T,'c,v,’k) implies By Ri—1(T}_1, T} _1,v)_q) for some vf_; < vk—1 < Yr—1 < Y} <
v}.. Inductively, we get a contradiction from the cycle.

We conclude that the process n-cycle also obeys edge-ordering. El

Corollary 15
Suppose processes are 2PL. Then there is AREC in a double n-cycle if and only if there is AEC in
the cycle.

Proof
By definition, AEC implies AREC. For the converse, AREC implies (Theorem 14) edge-ordering
since the processes are 2PL. The claim now follows from Lemma 11. O

4.7 Pipelining

A major difficulty in analyzing distributed systems is that messages may not be pipelined,
i.e. they are not delivered in the order they are sent. Formally, we say messages are pipelined if

25

and only if they satisfy the following condition:

Pipelining receive(Q,Q’, s, s") A receive(Q,Q",t,t)A (s <t) = s' <t

Lemma 16

Assume messages are pipelined.
(i) receive(P,R,p,r),p: P'R(T,T) and 7 : Pé(T’,m’) imply T = T".
(i) receive(R, P,r,p), r: RP(T,z) and p : RP(T', ') imply T = T".

Proof
Note from the messages that p € 7p and r € 7g in both cases.

(i) Assume T < T". If (T <)T" < p, then p : PR(T,T) implies (Lemma 1(vi)) T" : PR(T,T),
contradicting (A23) ﬁR(T’,T'). If p < T, then ﬁR(T’,T’) implies (A6, A1, A3, Al5)
receive(P, R, T',z"), so r < «' (pipelining), contradicting r : PR(T",z").

Assume T' < T. PR(T',z') implies (Lemma 1(i)) PR(T',T"), so (A23) PR(T',T',v") for
some v’ < T. I_)'R(T,T) implies (A5) —abort(P,v'), so (A10, All) R'P(T’,u’) for some
u' < v' and hence (A18) PE(T',x',u’), where u' < v' < T'; this contradicts T < p<r < u'
(from r : PR(T",2")).

We conclude that T = T".

(ii) RP(T',u') implies (A11) RP(T",2') and receive(R, P,z',u') for some z'. Since u' < p (from
p: Rﬁ(T’,u’)) and receive(R, P,r, p), we have z' < r (pipelining).

If z < 2'(< r), then 2’ : RP(T’,2') and (Lemma 1(vii)) 2’ : RP(T,z), so 2 = 2’ (Lemma
3(iv)), contradicting z < z'.

Therefore &' < (< 7). Since p : RP(T"', u') implies (Lemma 2(vi)) p: RP(T",a"),and r < p
(from receive(R, P,r,p)), we have (Lemma 1(vii)) z : éP(T’,m'). Now z : RP(T,z) implies
(Lemma 3(iv)) T' = T". O

Pipelining can replace the 2PL restriction on processes in Theorem 10, in the following sense:

Theorem 17

Assume messages are pipelined. Suppose there is AEC in a quasi-double n-cycle, and messages are
received as follows: For all i € Z,,,

recefve(R K gavraint 1), v P,:R}(T;”,mﬁ), T; R.,-P,;_l(Ti"_l,a:,-_l), Pl Riﬁz’—l(Ti—],ui—l) and
receive(Pi, Riy piy), pi : Rig1 Pi(Tiy us), pi: I_’;Ri(Ti’,Ti’), 1t} PBiRATH j2b).

Then the processes are quasi-deadlocked.

Proof
By Lemma 16, receive(R;, P;_1,7;,p}_,) implies T;_y = T!" ; and receive(P;, R;, p;,r:) implies T =
Tim. ThUS, Pi: Ri+1Pé(Ti> ui)? pi: -lisi(T:,T:)a Ty P@Ei(T:, "Bi)? and L RiP'i_l (Ti_1’$i_l) for all

t € &y, i.e. AEC in a double n-cycle. By Theorem 7(ii), the processes are quasi-deadlocked. O

26

In Figure 2, we abbreviate this result as “pipelining plus quasi-AEC imply quasi-deadlock”.

4.8 Resource Ordering
To round off, we prove one result on the avoidance of deadlocks, rather than their detection.

In an operating system, an hierarchical ordering of resources may exist or can be imposed
[H, Mi]. To see how such an ordering can be exploited, suppose there is a partial order < on the set
of resources R. We say processes obey resource ordering if and only if they satisfy the following
condition:

Resource Ordering 7': RP(T,u) A PR(T',T") — RaR'

This condition says that if process P is holding resource R when it requests resource R', then R
and R’ must follow the partial order.

Theorem 18
There are no quasi-deadlocks if processes obey resource ordering.

Proof

Suppose Py, ..., P,_1 are quasi-deadlocked at pg,...,p,_1 over Ry,..., Rn_1, and for each i € Z,,,
Pi : Riy1Bi(Ti,u;) and p; : PiRi(T!, T!). Then (Lemma 3(iii)) u; < T/ < p;, so (Lemma 1(vi)) T/ :
Rg+1]5;(T,,-, u;) and R;1<R; by resource ordering. Induction on Z,, gives R,_1<-+--aR1aRy<a R, _1,
contradicting the partial order. O

In particular, if processes follow the partial ordering of resources in their requests (ﬁR(T, T)A
PR'(T".,T") A T <T' — R<aR'), then there will be no deadlocks. This is a well-known folk
theorem in deadlock avoidance.

27

5 Application

We first discuss the conditions that the axioms impose on a system in terms of implementa-
tion (Section 5.1), then we use our results to survey the literature (Section 5.2).

5.1 Physically Speaking

Many papers on distributed systems assume (some implicitly) the existence of real time.
There are two aspects to this concept. Physically, it is an absolute Newtonian time, a totally
ordered set, and every event in the system is associated with a point in this time (e.g. see [NT]).
Logically, it is a total ordering of all the events in the system (e.g. see [HF]). The latter is a stronger
requirement: the existence of a physical real time does not induce a total ordering of events, since
there may be simultaneous events. (Note that the simultaneous existence in Section 3.3 does not
mean there are simultaneous events.)

If one chooses to accept existence of real time (either version), then it can be modeled by a
common clock, i.e. a totally ordered 7. Note that the values on this clock would not be observable
in general. An example of an observable common clock would be where the system is centralized;
for example, if all processes and resource managers share the same processor, then the processor
physically imposes a total ordering of all events. Another example of an observable common clock
would be Lamport’s implementation of a logical clock [L].

We do not assume the existence of real time. The assumptions that we do make about time
(in Section 2) can be realized as follows: Each site has its own physical clock, which processes and
resource managers resident on that site can read. Thus, for any @, Q' € Q, 7o and 7 are either
equal or disjoint. For @ and @' at the same site, a message from) to @' could be interpreted as
either a transfer of processor control, or a write-and-read of a shared variable. Nonetheless, the
partial ordering requires that ¢ < ¢’ if receive(Q,Q’,t,t"). We could do away with the physical clock
all together, so each 73 is simply a total ordering of events in). This models the case where @
moves from site to site.

Note that the distributed nature of the system (e.g. communication topology, process mi-
gration, etc.) is modeled entirely through the partial ordering on time. As in Lamport’s clock, the
existence of real time is irrelevant to the above realization of our model. (The existence of real time
does not compel a model to explicitly represent it.)

Lemma 1(iii) claims that e(7,¢,t¢") implies ¢ < t'. One would reasonably expect this to be
so for e = RP, but what about e = PR, say? If PE(T, t,t') implies ¢t < t', that excludes the
possibility that a request is granted as soon as it is received by Mg. We did in fact explore the
theory for the case where ¢t = t' is possible, but the coincidence in edge formation and deletion times
introduces numerous special cases that throw no new light on the theory. Given that the events
involved require multiple instructions in any case (e.g. a lock-unlock pair in a database system may
take a hundred instructions [G]), we believe the small loss in generality (¢ < ¢’ instead of ¢t < #') is
justified in return for the removal of those special cases.

Similarly, if P and R share the same clock, one could argue that Mg can grant R to P, and

28

P acquire it at the same moment, i.e. RP(T,t), RP(T,t') and ¢ = #'. However, this is ruled out
by All, which implies that ¢ < t'. This follows from the previous observation that even for P and
R at the same site, a message cannot be received at the instant it is sent.

In general, events such as sending and receiving messages, or requesting and granting re-
sources, are not atomic in terms of machine instructions. (Indeed, Obermarck has observed that
deadlock detection in centralized systems is also prone to error, if care is not taken to ensure that
certain actions by the detector are atomic [0].) The axioms, however, assume that a single logical
time can be assigned to these events. This means that each event should be implemented in a
critical section, wherein the event will not be interrupted, so that it is effectively atomic. Some
axioms in fact require atomicity of multiple events. For example, A8 requires that the time when
a process aborts and when it cancels an outstanding request must be the same. The obvious way
to ensure this would be to put in critical section the instructions for both events.

More on the physical aspects of messages: By requiring acknowledgment of a received mes-
sage, lost messages can be resent, so Al can, in principle, be satisfied. (In any realistic system,
there will always be lost messages.) We do not concern ourselves with fraudulent messages, so
A2 is acceptable. With the help of message identifiers, we can ignore all but one among copies
— cf. Al — of the same message, thus satisfying A3 effectively. Message identifiers can also be
used to enforce pipelining: received messages are processed in the order that they are sent by the
sender. Note that requests should be timestamped, and grant and release messages must be tagged
with the timestamp (e.g. T in grant_msg(R, P,T,t,t')) of the relevant request. This timestamp is
unnecessary if processes are 2PL (Lemma 1(i) and Lemma 9).

What do logical edges correspond to physically? One possibility would be to materialize
these edges exactly. For instance, P could have a data structure for physical edges, and a physical
edge for Rﬁ(T,u) would be created when P receives notification at P-time u from Mg that it has
been granted R (where P requested at P-time 7T'), and deleted when P releases R at P-time v,
corresponding to Rﬁ(T, U, v).

In practice, logical edges may not correspond exactly to data structures. It is common to
define a waits-for graph with process-to-process edges; such an edge should imply some coexistent
logical edges r : P'R(T",2') and r : RP(T,u), where r € T. As suggested by the logical edges, the
physical process-to-process edge should be maintained by resource managers, not by the processes
(as is usually done); otherwise, errors are likely to occur. An appropriate physical edge to keep
with processes would be a resource-to-resource edge defined by p : Rﬁ(T ,u)and p: ﬁR’(T 5l
where p € 7p. Such edges would be useful to the detection of deadlocks (as our very definition of
a deadlock suggests) but, curiously, we know of no algorithm that uses such edges.

A process can abort because of a software or a hardware failure, or because it is asked to do
so, say by the concurrency control or the load manager. If it restarts later, A5 requires it to assume
a different identity (becomes a different P within 7). Similarly, for two-phase locking to make
sense, a terminated transaction must assume a new identity before running again. The axioms do
not cover resource failures. We assume that such failures will be transparent, in that their recovery
will be in a manner consistent with the axioms.

29

Note that the axioms do not require that a resource manager Mg must grant R to waiting
processes in any particular order, nor that it must grant an outstanding request if no other process
has acquired R.

Finally, although A23 and A24 require that processes have single locus, that does not mean
that a process must be idle while waiting to acquire a resource: the axiom does not exclude the
possibility that a process continues computation after sending a request; it only requires that the
process cannot send another request or release a resource. Specifically, the axiom allows a process
to send and receive messages while it is waiting for a request to be granted. This is necessary since
the process must, for instance, continue to participate in a deadlock detection algorithm.

We should emphasize here that the axioms are of no central importance — they are only
a means to an end (namely, the theory). We view them simply as a rigorous formulation of our
operational assumptions.

5.2 Survey

In Section 3.1, we reviewed the definition of deadlocks in the literature. We now review
the algorithms that have been proposed. This survey is not meant to be comprehensive — only
some segments of some papers are mentioned here. Our selection is based on whether the theory
in Sections 3 and 4 has something to say about the selected material.

We only describe the algorithms in the abstract, omitting details (e.g. data structures)
that are not relevant to an understanding of the algorithms. For expository reasons, we adopt an
operational description of the algorithms, so the reader should refer to the relevant definitions for
our precise meaning. Where an algorithm is more general in its assumptions (e.g. several allow
sharing of resources), our comments apply only to the special cases where our restrictions apply.
We assume the reader is familiar with the algorithms.

The terms phantom deadlock and undetected deadlock, widely used in the literature, implicitly
assume there is real time — a phantom deadlock is one declared by a detector at real time ¢ when
in fact the system has no deadlock at that time, and the system has an undetected deadlock at real
time ¢ if the detector has not yet found the deadlock at that time. Accordingly, our comments on
phantom and undetected deadlocks will be in the context of real time.

The first paper to present a deadlock detection algorithm for a distributed system is by
Menasce and Muntz [MeMu|. We consider here one of the two algorithms they proposed. In
this algorithm, they use process-to-process edges, where an edge P’ P exists if P’ is “a (process)
requesting resource R” and “the resource R cannot be granted to P’ because it is being held by
P”. Following this description, we say there is an edge P’P if and only if for some R and some
T T P’R'(T’,a:') and z' : EP(T,:U), i.e Mg receives a request from P’ while R is yet to be
retrieved from P. For any P’ and P", there is a transitive edge P’ + P" if and only if there is an
edge P'P", or there are transitive edges P’ *x P and P % P" for some P. The algorithm declares a
deadlock if it finds a transitive edge P * P.

Now P * P implies a cycle of edges PPy, P P,,..., P,_1 P. Corresponding to these edges are

30

resources Ry, Ra,..., R,, and there is AREC in the resource n-cycle implied by the edges. Since
Menasce and Muntz assume processes are 2PL, it follows from Corollary 15 that there is AEC in
the double n-cycle, and therefore a quasi-deadlock, by Theorem 7(ii). The example of Figure 1
shows that this quasi-deadlock detected by the algorithm can be a phantom.

Gligor and Shattuck point out that message delays can cause undetected deadlocks in
Menasce and Muntz’s algorithm [GS], and list two possible remedies, both of which try to make
sure a cycle of edges is always detected. However, this does not suffice to eliminate undetected
deadlocks from the algorithm. To see this, note that the definition of P'P does not cover the case
where the transaction holding resource R when the request from P’ arrives at Mg is some P,
P" # P. For example, P may acquire the resource after P releases it, while P’ continues to wait.

The idea of process-to-process edges originates from waits-for graphs that are used in the
case of centralized systems. Obermarck’s algorithm is based on an extension of the waits-for graph
to distributed systems [O]. In his algorithm, sites construct portions of a waits-for graph, and send
parts of those graphs to other sites. Several authors, including Obermarck himself, pointed out
that the algorithm suffers from phantoms. However, the counterexamples are based on non-2PL
processes. Indeed, as in Menasce and Muntz’s algorithm, the edges in Obermarck’s graph imply
AREC, which is equivalent to AEC if processes are 2PL (Corollary 15). Therefore, if the algorithm
is used by processes that are 2PL, then the declared deadlocks are quasi-deadlocks.

An algorithm that uses both processes and resources as nodes for its edges is Ho and Ra-
mamoorthy’s two-phase algorithm [HR], which has a deadlock detector D that is a distinguished
process. All sites where processes initiate must report to D the edges that they are aware of. For
example, P’s site must report every pair Rﬁ(T, w) and PR'(T',T") that exist at the time the site
reports. It follows that any cycle detected would have APEC. By Theorems 8 and 12, it is neces-
sary and sufficient to ensure there is edge-ordering for the algorithm to correctly detect deadlocks,
if processes do not abort. The algorithm neglects this extra condition, and Jagannathan and
Vasudevan has given an example [JV] to illustrate the gap.

Ho and Ramamoorthy also give a one-phase algorithm that requires all processes and re-
source managers to report edges they know about to the detector. The detector verifies that any
quasi-double n-cycle in the reports is in fact a double n-cycle before declaring a deadlock. Since
there is AEC, Theorem 7(ii) says that the declared deadlock is at least a quasi-deadlock. By
Theorem 10, the verification is redundant if processes are 2PL.

The correctness of the converse — if there is a deadlock, then the reports will contain a
double n-cycle with AEC — depends on the definition of a deadlock. As illustrated in Section
4.1, in the window of (real) time between when the last request in the cycle is sent and when it is
received, there is (in our definition) a deadlock without a double n-cycle, so undetected deadlocks
are possible within this window. Ho and Ramamoorthy requires that the one-phase algorithm be
run periodically, so the deadlock will eventually be detected anyway.

Wuu and Bernstein has a variation [WB] to complement Ho and Ramamoorthy’s algo-
rithms: all resource managers are to report periodically to D all edges they are aware of individually.
If there is a resource n-cycle in this collection of edges, a deadlock is declared. Wuu and Bernstein

31

proved that this scheme has no phantoms if processes are 2PL. There is another proof of this result
using serializability theory [BHG].

What the algorithm detects is a quasi-deadlock: Observe that there is AREC in the implied
double n-cycle, so there is AEC if processes are 2PL (Corollary 15), and hence a quasi-deadlock
(Theorem 7(ii)). If none of the processes aborts, then this is a deadlock. However, one should be
careful about asserting that if none of the processes spontaneously aborts — i.e. for reasons other
than breaking a deadlock — then there is a deadlock (see [BHG]). Refer again to the example in
Figure 1, with P, = Py. Suppose at time 22, Mg, and Mg, report edges to D, where the deadlock
between Py and P is found, and P; is asked to abort at time 23. Now the other edges form, and
Mpg, and Mg, send their edges to D. Unless the detector at D does some preprocessing of the
edges it now has, it may declare a deadlock involving Py, Ps, and the already aborted P;.

Wuu and Bernstein also stated the following result: If all edges of a cycle in the transaction
wait-for graph have coexisted, then there must be a deadlock. Two problems with their definition
of this graph (in terms of process-to-process edges) are mentioned in Section 3.1.

Kshemkalyani and Singhal propose a correction to Ho and Ramamoorthy’s two-phase
algorithm, as follows [KS]: In the first phase, each process P reports all existing edges RP(T,u)
and PR'(T", T") to the detector D. If these reports together contain a process n-cycle, the detector
starts the second phase by requesting another round of reports. For every PR'(T',T") and RP(T,u)
on the process n-cycle in the first-phase, if ﬁR’(T’,T') reappears and there is RI_"(T",u) in the
second phase reports, then the detector declares a deadlock.

In their proof, the authors assume that time is dense, i.e. for every r,s € T, r < s, there is
t € Tg such that r < ¢t < s. This assumption is not necessary, as is evident in the following analysis
of their algorithm. Suppose the detector declares a deadlock, where the relevant process n-cycle
in the first-phase reports is I_);-R,-(thr ,T!) and Riy1 Pi(Ti, u;), p; and p} are the Pi-times when P;
sends its reports in the first and second phase (respectively), and ¢ the D-time when the detector
initiates the second phase. Then p; < t, and thus 7} < ¢ and u; < t (since p; : I_);;R,-(T{,T;) and
P;: Ri+1ﬁi(Ti,ui)) for all i € Z,,. Further, ¢ < p! for all 4.

Note that Rﬁ(T,u) and RP(T",w) imply T = T". (Suppose not, say T' < T". Then
T < T" < u implies (Lemma 2(i)) T" : PR(T,T), contradicting (A23) PR(T",T").) Therefore,
if Ri+1ﬁ,‘(T{',ui) appears in the second phase, then T; = T}. Since p! : I_’;-Ri(T{,T{) and pl :
Rip1 Pi(Tiyui), T! 2t < pb and u; <t < p}, we have (Lemma 1(vi)) t : P;R;(T!,T!) and ¢ :
R,-HI_",-(Ti, u;) for all ¢ so by Theorem 5(i), Py, ..., P,_1 are deadlocked.

Conversely, if Fy,..., P,_1 are deadlocked at pyg,...,pn—1, each P; sends a first-phase report
after p;, and none of them aborts, then (Theorem 7(i)) the detector will detect the deadlock after
a second phase.

Kshemkalyani and Singhal also give the following one-phase algorithm: As before, the de-
tector D requests a report of edges from each process. Assume there are altogether N processes in
the system, and P; sends its report at P;-time p;. Here, each process has its own clock (which is
a vector [Mal), so 7p, N Tp; = ¢ for i # j, and each P must send no message while waiting for a
resource, i.e. t : PR(T,T) and send(P,Q,p) imply t # p. (Presumably, the report to D does not

32

count as a message.) Suppose there is a process n-cycle p; : Riy1 Pi(Ti,u;) and p; : P,R/(T!,T!)

where (without loss of generality) i € Z,,,n < N. f T! A p; foralli € Z,,, j € Zy and 7 # j, then
D declares a deadlock.

Now assume a deadlock is declared at D-time ¢; if P; = D, then p; = t. (Kshemkalyani and
Singhal implicitly assume that P; # D for all ¢« € Zy.) Note from the receipt of the reports that
pi = t. Assume for some k and v} < t, P'kRk(T;;,ch,vjc). Then Py # D (otherwise, v, < t = p,
contradicting py : P’kRk(TIQ, T})). Assuming D gets no messages aside from the reports requested
from processes, v), < t implies there is p;, j € Zy, such that v}, < p; < ¢; but T} < v}, which now
contradicts 7, £ p;. We thus have, in this analysis, ¢ : P‘éR,-(T,‘-’,Té’) for all 7 € Z,,, and therefore
(Lemma 3(v)) ¢ : Riy1 ﬁ,:(Ti, u;), so Po,..., P,_1 are deadlocked (Theorem 5(i)).

Conversely, suppose D receives all reports by D-time ¢ and t : RHII_’;(T,-,U,-) and t :
P;Ri(T!,T!) for i € Z, (the authors use real time), so Pp,..., Py,—1 are deadlocked. If T} < p;
for some i € Z,, j € Zn, i # j, then T! < p; < t implies (Lemma 1(vi)) p : P;R;(T},T!) for all
T; < p < pj, so P; sends no messages for all such p, i.e. ~send(P;,Q,p) for all p, T! < p < p;.
This contradicts T] < p;, because Tp, N Tp, = ¢, so the ordering T} < p; must be via messages.
We conclude that 7} £ p; for all i € Z,,, j € Zn, i # j, so the deadlock is detected.

In a departure from previous methods, which try to construct some sort of a waits-for graph,
Chandy and Misra’s algorithm works by traversing such a graph with a probe [CM]: When a
resource manager Mg receives a request from P while R is already granted to some process P’ it
initiates a probe in a message to P’; this probe is forwarded via coexistent adjacent edges. If Mg
receives the probe back, it declares a deadlock.

Now each forwarding of the probe implies a pair of coexistent adjacent edges, so the return of
the probe implies AEC in a quasi-double n-cycle. Moreover, the times at which the probe is received
and forwarded are also the times at which the coexistence is locally observed. Since Chandy and
Misra assume messages are pipelined, their algorithm is an application of Theorem 17. Specifically,
pi = p; for all < and r; = r} for all ¢ # 0, assuming Mg, initiates the probe; if Mg, receives the
probe back at r{, then the processes in the cycle are quasi-deadlocked.

It is possible that the deadlock is a phantom. Consider the following scenario for Figure 1:
Mg, and Mg, both initiate probes (at times 12 and 18, say), with Mg,’s probe leading the way
round the cycle. When Mg, ’s probe is forwarded by P, Mg,’s probe already returns; a deadlock
is detected and P, aborted. Now Mg,’s probe returns, and the deadlock is again declared, but now
it has become a phantom, since P; has aborted. The possibility of a phantom is not considered by
the authors since they do not consider aborting processes (even for deadlock resolution).

In their proofs, Chandy and Misra use logical edges that are assigned colors. While their
black edge corresponds to PE(T, t), their white and grey edges are defined in terms of real time.
For example, they define a grey edge from P to R to exist at time t, say, if “(P) has sent a request
to (Mpg) which (Mg) has not received yet” — this corresponds to ¢ : PR(T,T)AVz —t : PR(T, z).
This definition is ambiguous unless the location of ¢ is specified (i.e. for which @ is t € 7g?), or
there is real time.

33

This probe algorithm was extended by Sinha and Natarajan, who allow forwarding of
probes to be postponed and preservation of information from probes forwarded by aborted processes
[SN]. Both extensions aim at minimizing the number of probes sent, while the latter also fills in
the omission by Chandy and Misra on the release of resources. To reduce further the number of
messages, Sinha and Natarajan assume that processes have priorities, which are used to decide the
initiation and forwarding of probes.

The idea behind their algorithm is clear from Theorem 17: It is not necessary to have p; = p}
and r; = r}; rather, a probe received-by an active process can be held in reserve, and forwarded
when the process is blocked, so p; < p;. Similarly, we can have r} < r;. If the conditions for
Theorem 17 are satisfied, then the algorithm would successfully detect a quasi-deadlock.

Choudhary et al give four examples [CKST] to illustrate gaps in this algorithm. In the
first counterexample, the crucial error lies in having the probes sent from process to process, thus
making Theorem 17 inapplicable. The probes should have been saved by resource managers as well
as processes, as in the original Chandy and Misra algorithm. The second and third counterexamples
produce phantom deadlocks that are in fact quasi-deadlocks. The fourth counterexample involves
clean messages that serve to remove probes from aborted processes, but such messages are outside
the scope of our theory.

Mitchell and Merritt’s labeling algorithm [MiMe] is similar to probe algorithms in that
it passes a label from process to process, much like the forwarding of probes but in the opposite
direction in the deadlock cycle. (See also Section 3.1.) The idea behind their algorithm is as
follows: When a process makes a request (ﬁR(T, T)), it sends a label to every process P’ waiting
for a resource R' it is holding (say, T : R’ﬁ(T’,u’) and T : P'R'(T",T")); a process that receives
a label and has an outstanding request passes on the label in the same manner; a process that
receives a label originating from it declares a deadlock.

A returning label indicates a process n-cycle (which implies a double n-cycle), and the
label passing ensures there is APEC and coexistence ordering. By Theorems 12 and 13, there is
a deadlock if the processes have not aborted. Depending on how P’ is determined, undetected
deadlocks are possible.

Mitchell and Merritt’s labels do some updating as they pass through each process, but this
plays no role in ensuring that the detected cycle is a deadlock — it is just a device for them to
prove their algorithm correct, and at the same time single out a victim to break the deadlock.

Finally, we should mention Chandy and Lamport’s shapshot algorithm [CL], which can
be applied to deadlock detection. To do so, they require a stable property y, whose domain is
the set of possible §’s, where each S is a set of process and channel states. The authors do not
specify what y is for deadlock detection (nor define what a deadlock is), but Theorem 7 offers one
possibility: it says that AEC is a stable property of quasi-deadlocks. Now AEC is defined in terms
of locally observable facts, so it can serve as y (with & appropriately defined). The restriction on
the timing of aborting processes can also be verified from the local records of message history, and
trivially stable, so this restriction and AEC can serve as y for detecting deadlocks. Alternatively,
we can use our definition of a deadlock itself as property y.

34

6 Conclusion

We pointed out in the introduction that the errors in deadlock detection algorithms are
caused by a carelessness in defining a deadlock and the absence of a theory. Having addressed both
issues in the preceding sections, we now summarize our conclusions (Section 6.1) and indicate some
directions for future work (Section 6.2).

6.1 Summary

Perhaps because deadlocks in a centralized system are so elementary and believed to be well-
understood, some authors seem to consider a formal definition of distributed deadlocks unnecessary
[CKST, HR, K, KS, SNJ, or else a straightforward extension sufficient; for the latter, witness the
many definitions [GS, KMIT, MeMu, MiMe, O, SKYO, TB, WB] that follow the usual practice
— for centralized systems — of defining the waits-for graph with process-to-process edges. One of
Sinha and Natarajan’s errors arises because their probes bypass resources and are sent from process
to process.

There are two complications that cause errors in the definition of process-to-process edges.
One complication is the release of resources [MeMu, WB]; the other is the confusion between
the “true state” of a system and a local view (by a process or resource manager) of this state,
a confusion that leads to ambiguities in the definition of such edges [GS, KMIT, MiMe, SKYO,
TB]. These complications are evident when we try to understand a statement like “P is waiting
for P, a variant of which is usually used to define process-to-process edges. This statement
also illustrates the weakness in operational arguments: their language is imprecise and implicitly
assumes the existence of real time. One difficulty we faced in our survey is in (formally) interpreting
the operational definitions and descriptions in the literature.

Aside from the definition of edges, another source of error is the intuition that a deadlock
is a cycle of processes waiting simultaneously. Even if we take care to define edges as between
processes and resources, there are four possible ways of defining a cycle of simultaneously existing
edges. Only two of these four possibilities lead to deadlocks (Theorem 5(i), Corollary 6), while the
other two do not (Section 3.1).

Among the errors that are not related to the definition of a deadlock, some would have
been obvious in the light of a theory: Ho and Ramamoorthy’s two-phase algorithm neglected edge-
ordering (Theorem 12) and some of Obermarck’s phantoms can be exorcized by two-phase locking
(Corollary 15, Theorem 7(ii)). If one realizes that what a particular algorithm detects is a quasi-
deadlock, then its vulnerability to phantoms would have been clear [CM, SN]. There is also a series
of errors (see [CKST, RBC, SH]) arising from ad hoc techniques for optimizing the probe algorithm
and which fall outside the scope of our theory.

We turn now to the theory’s contribution towards our understanding of deadlocks and their
detection.

With one exception, every algorithm we examined starts with either APEC or AREC in
a double n-cycle, and augment it with some constraint on the timing of events. (The exception

35

is Chandy and Lamport’s snapshot detector [CL], which can work directly with our definition of
a deadlock.) The algorithms that start with APEC are those that have the processes (or their
managers) participating in the deadlock detection [HR, KS, MiMe], while those that start with
AREC have the resource managers doing the detection [MeMu, O, WB]; where both processes and
resource managers participate, the algorithm starts with AEC in a quasi-double n-cycle [CM, HR,

SN].

Two-phase locking is a constraint on the order in which a process may request and release
resources, while the passing of probes (with pipelining) and labels is witness to a constraint on
the timing of certain events (Theorem 13 and Lemma 16). The constraint imposed by two-phase
locking augments AREC in a double n-cycle [MeMu, O, WB] or AEC in a quasi-double n-cycle [HR]
for the detection of a quasi-deadlock (Theorem 10, Corollary 15 and Theorem 7(ii)). Similarly, the
constraint witnessed by probe-passing augments AEC in a quasi-double n-cycle [CM, SN] (Theorem
17), and the constraint (coexistence-ordering) witnessed by label-passing augments APEC in a
double n-cycle [MiMe] (Theorems 12 and 13).

The role played by constraints on the timing of events in detection algorithms illustrates
our claim (in the Introduction) that logical time underlies their proofs of correctness. This role is
most evident in the new concept of edge-ordering, which manifests itself in one of the errors [HR],
and which is central to several results in the theory (Theorem 8, Lemma 11 and Theorems 12, 13,
14). Indeed, from the point of view of deadlock detection, the purpose of coexistence ordering and
two-phase locking is to impose edge-ordering when there is, respectively, APEC (Theorem 13) and
AREC (Theorem 14).

Edge-ordering also captures an asymmetry between processes and resources: the order of
formation is important for edges adjacent to a process, but the order of deletion is important for
those adjacent to a resource. We noted such an asymmtry previously in relation to Corollary
6, and in the remark that resource-to-resource edges are better suited to deadlock detection than
process-to-process edges, but the difference in behavior between processes and resources, in general,
is obvious from an overview of the results (Figure 2). This difference indicates that the approach
— favored by some authors [BT, SH] — of not distinguishing between processes and resources will
be limited in scope. For instance, it is not clear how two-phase locking and aborting processes can
be modeled if we do not distinguish between processes and resources.

Besides revealing the structure of deadlock detectors and clarifying the difference between
processes and resources, the theory also determined how deadlocks are affected by the timing
of aborting processes (Theorems 4(i), 5(ii) and 13). The latter is an issue sidestepped in several
papers (by not considering aborts), and which is important because an aborting process can confuse
a deadlock detector, as in the example of Figure 1. Most algorithms detect quasi-deadlocks, which
is fine if processes do not abort, since a quasi-deadlock is a deadlock in that case (Theorem 4(i)). If
processes can abort, however, then the detector must be careful to avoid being confused (Theorem

4(ii)).
Finally, we note that the easy applicability of the theory to very different algorithms supports

our claim that the analytic framework is unified, and justifies our choice of focusing on locally
observable facts.

36

6.2 Further Development

The theory can be further developed in several ways. First, if we view the acquisition of a
resource as locking that resource, then the theory can be refined to differentiate between exclusive
and shared locks. It can also be extended to model systems which assign priorities to processes
(an analog of resource ordering in Section 4.8) and abort processes as a way of resolving conflicts
[RSL]. One may also wish to consider the effect of resource failures — the counterpart of process
abortion — and their recovery [BHG].

One important direction of development begins with relaxing the assumption of single locus,
so processes can make requests and release resources while they are waiting for a resource. This
includes Chandy et al’s AND model [CMH]. Note that allowing a waiting process to release resources
adds to the confusion because now deadlocks can be broken spontaneously [SC]. Continuing from
there to the OR model would include communication deadlocks [CJS], and lead to Bracha and
Toueg’s N-out-of-M model [BT].

Acknowledgment

We thank King Y. Tan for suggesting condition (b) in the definition of a deadlock, and Ted
Johnson for many detailed comments that significantly improved our presentation. Section 3.4 was
prompted by Vassos Hadzilacos, who described our definition of a deadlock as formidable.

37

Appendix: Proofs of Lemmas

Lemma 1

(i) e(T,t) implies PR(T,T) and T <t (T <t if e # PR).
[All edges originate from a request for a resource.]

(ii) e(T,t) and e(T,t") imply t = ¢'.
[Time of formation of an edge is unique.]

(iii) e(7',t,t") implies e(7T,t) and t < ¢
[An edge can be deleted only if it formed earlier.]

(iv) e(T,t1,%2) and e(T,t},t) imply ¢, = ¢} and t; = ¢}.
[Time of deletion of an edge is unique.]

(v) e(T,t,t') implies s : e(T,t) for all t < s < t'.
[An edge exists at all times after its formation and before its deletion.]

(vi) s:e(T,t)implies s’ : ¢(T,t) for all t < s' < s.
[If an edge exists at time s, it exists at all earlier times after its formation.]

Proof

(i) (a) PR(T,t)implies (A6) T = t.
(b) PE(T, t) implies (A15) ﬁR(T,T) and receive(P, R,T,t); the latter implies 7" < t.

(c) }_?:P(T, t) implies (A18) PR'(T,x,t) for some z. PE(T,m,t) implies (A16) z < t and
PE(T,:C), and thus ﬁR(T,T) and T < z < t, by (b).

(d) RP(T,t) implies (A11) RP(T,r) and receive(R, P, r,t) for some r. From (c), we get
PR(T,T)and T < r < t.
(i) (a) PR(T,t)and PR(T,t) imply (A6) t =T = ¢'.

(b) PR(T, t) and PR(T,t') imply (A15) receive(P, R,T,t) and receive(P, R, T,t"); thus
(A3) t =t

(c) RP(T,t) and RP(T,t') imply (A18) PR(T,x,t) and PR(T,',t') for some z and
z'. Therefore (A16, A15) receive(P, R,T,z) and receive(P, R,T,z"), so (A3) z = z’.
Suppose t # t', say t < t'. Then PR(T,z,t) contradicts (A16) PR(T,z,).

(d) RP(T,t) and RP(T,t') imply (A11) RP(T,r) and receive(R, P,r,t) for some 7, and
f?:P(T, ') and receive(R, P,r',t') for some 7'. From (c), r = 7/, s0 (A3) t = t'.

(iii) e(T,t,t") implies (A7, A12, A16, A19) e(T,t). For e = PR and RP, we have (A12, A16)
t<t'. Fore= PR,if abort(P,t"), then (A5) T < ¢'; if ~abort(P,t'), then (A10) RP(T,1'), so

38

T < t' by (i); either way t = T < t'. For e = RP, we have (A19) RP(T,1), RP(T,u,v) and
receive(P, R, v,t') for some u. Now RP(T,u,v) implies (A12) Rﬁ(T, u), so (All) R'P(T,z)
and receive(R, P, z,u) for some z. By (ii), t = z. Also, Rﬁ(T, u,v) implies (A12) u < v, so
t=z <y 4V,

(iv) By_‘(ii) and (iii), e(T,11,t3) and e(T,t},t5) imply t; = ¢} = t, say. For_’e = PR, PR and
RP, we have (A7, A12, A16) t; < tj and t) < ty, so t; = th. For e = RP, we have (A19)
Rﬁ(T,x,y) and receive(P, R, y,t;) for some z, y, and Rﬁ(T,(L", y") and receive(P, R, y’,t})
for some z', y'; now we have z = 2’ and y = ¢/, so (A3) t2 =).

(v) Let t < s < t'. By (iii), (T, t,¢") implies (T, t). If ¢(T,t) does not exist at s, there is s’ < s
such that e(7,t,s"). By (iv), s' = t/, so ' < s; this contradicts s < ¢'. Therefore s : ¢(T,).

(vi) Let t < &' < s. If e(T,t) does not exist at &', there is t' < s’ such that e(7,¢,#). But
t' < s' < s,50 e(T,t) does not exist at s, a contradiction. Therefore s : (7T, 1). H

Lemma 2

i) RP(T,u)implies t : PR(T,T) for all T < ¢ < .
¥
[After requesting a resource and before acquiring it, the process must wait.]

(ii) RP(T, z) implies for all T < t < z, either ¢ : PR(T,T) or abort(P,p) for some p < t.
[After a request is issued and before it is granted, the process is waiting for the resource.]

(iii) P}_?:(T, z) implies for all ' < t < z, either ¢ : ﬁR(T,T) or abort(P,p) for some p < ¢.
[After a request is issued and before it is received, the process is waiting for the resource.]

(iv) PR(T,T,v) implies Pff(T,:c,y) for some z and y, T < & < y < v, or abort(P,v).
[P stops waiting for R when P aborts or P is granted R.]

(v) s: PR(T,z) implies s : ﬁR(T,T) or abort(P,p) for some p < s.
[If Mg has not yet granted P’s request, then P — if unaborted — must be waiting for R.]

(vi) s : RP(T,u) implies s : RP(T,z) for some z < u.
[If a process is holding a resource R, then Mg has not yet retrieved R.]

(vii) Suppose RP(T,u) and PR(T',T"). If u < T", then RP(T,u,v) for some v < T".
[If P is waiting for R, which it has acquired before, then P must have released R earlier.]

(viii) Suppose RP(T,z) and t : PR(T,T). f & < t, then s : RP(T,z) for all z < s < ¢.
[MR could not have retrieved a resource it has granted to P if P is still waiting for it.]

Proof

(i) RP(T,u) implies (A10) PR(T,T,u), so (Lemma 1(v)) ¢t : PR(T,T) for all T < t < .

39

(i) Lat: T 2.1 <% z. EP(T,m) implies (Lemma 1(i)) PR(T,T). Suppose -t : PR(T,T) and
—abort(P, p) for all p < t. First, FR(T, T,y) for some y < t. Then (A10) Rﬁ(T, Y), so
(A11) RP(T,r) and receive(R, P,r,y) for some r. By Lemma 1(ii), 7 = z, so & < y, which
contradicts y = £ < . We conclude that either ¢ : ﬁR(T, T) or abort(P, p) for some p < t.

(iii) Let T < t < x. Suppose —t : PR(T,T) and —abort(P,p) for all p < t. As in (ii), we have
RP(T,y) for some y < t, and EP(T, r) and receive(R, P,r,y) for some r. Hence (A18),
PR(T, z,r),80 & < T <y = t, contradicting ¢ < z. The contradiction proves the claim.

(iv) Suppose —abort(P,v). Then (A10) RP(T,v), so (A11) RP(T,y) and receive(R, P, y, v) for
some y. Therefore (A18) PE(T,m,y) for some z, T' < ¢ < y < v (Lemma 1(i, iii)).

(v) s : PR(T,z) implies (Lemma 1(i)) PR(T,T) and T < z < s. Suppose -s : PR(T,T) and
—abort(P, p) for all p < s. As in (iii), we have P}_?:(T, z,r) for some 7 < s, contradicting the
existence of PR(T,z) at time s.

(vi) s : RP(T,u) implies (Lemma 1(i)) T < u =< s and (A11) RP(T,z) and receive(R, P,z,u)
for some 2 < u. Since z < u = s, either s : EP(T,:r:) or EP(T,;::,@;) for some y < s. The
latter implies (A19) Rﬁ(T, u,v) and receive(P, R,v,y) for some v < y < s, contradicting
s : RP(T,u). We conclude that s : RP(T,z).

(vii) Since RP(T,u) and u < T", either T' : RP(T,u) or there is v < T' such that RP(T,u,v).
Now, PR(T',T") implies (A6) T" € Tp, so (A22) we cannot have 7" : RP(T,u). We conclude
that RP(T,u,v) for some v X T". Since v,T' € Tp (A12, A6), we get v < T".

(viii) Suppose z < s < t. Then either s : R'P(T,a:) or EP(T,z, y) for some y < s. For the latter,
we have (A19) RP(T,u, v) for some u < v < y, and thus (Lemma 1(iii)) RP(T, u) and (A10)
PR(T,T,u), which contradicts ¢ : ﬁR(T, T),since u < v < y < s X t. We conclude that
s: RP(T,z). O

Lemma 3

(i) s: RP(T,u) and s : RP(T',u') imply T = T’ and u = o'
[A process cannot have two requests for the same resource satisfied simultaneously.]

(ii) s : PR(T,T)and s : PR'(T',T") imply R = R' and T = T".
[A process cannot simultaneously wait for two different resources.]

(iii) s : RP(T,u) and s : PR'(T',T") imply u < T".
[If P is holding R and waiting for R', then R was acquired before the latter request.]

(iv) s: RP(T,z) and s : éP’(T’,;v') imply P . T =T"and z = &',
[R cannot be simultaneously granted to two different processes.]

40

(v) Suppose s : RP(T,u) and s : PR'(T',T"). If RP(T,u,v), then PR(T',T',v'") for some
v < v,
(If P is holding R and waiting for R’, then it must acquire R’ before releasing R.|

(vi) Suppose s : P'R(T',z")and s : RP(T, z). If P’E(T’, ¢',y"), then either abort_msg(P', R,p',y")
for some p' or EP(T,x,y) for some y < 3/'.
[If P’ is waiting for R, which has been granted to P, then R must be retrieved from P before
being granted to P'.]

Proof

(i) Suppose T # T". Since T, T’ € Tp, we may assume T < T'. We have (Lemma 1(i)) PR(T,T)
and ﬁR(T’,T'), s0 (A23) PR(T,T) does not exist at T7'. But T < 7", so ﬁR(T, T,v) for
some v < T". Tt follows (A10, Lemma 1(iv)) that u = v < T", so either T" : RP(T,u) or
RF(T, u,y) for some y < T" < u' < s. The former is impossible (A22); the latter contradicts
8 Rﬁ(T, u). We conclude that 7' = 7", and thus v = v’ (Lemma 1(ii)).

(ii) As in (i), suppose T < T'. But s : ﬁR’(T’,T’) implies T! < s, so s : ﬁR(T, T) implies
(Lemma 1(vi)) T' : PR(T,T), contradicting (A23) PR'(T',T'). We conclude that T = T".
Now T : PR(T,T) and PR/(T,T) imply (A23) R = R'.

(iii) Note first that u,T,T7' € 7p. Suppose T' < w. U T < T', then T < T' < wu implies
(Lemma 2(i)) T* : PR(T,T), contradicting (A23) PR/(T",T') and T # T'. ¥ T' < T,
then 7/ < T < 4 < s and s : ﬁR'(T’,T’) imply (Lemma 1(vi)) T : ﬁR’(T’,T"), similarly
contradicting PR(T,T). If T = T', then T : PR(T,T) and PR'(T,T) imply (A23) R = R;
moreover, S : Rﬁ(T, u) implies (A10) ﬁR(T, T,u) and u < s, contradicting s : ﬁR(T,).
We conclude that u < T".

(iv) If z = ', then (A21) P = P' and T = T', so suppose z # z'. Since z,z' € Tg, we may
assume z < z'. Then (A20) EP(T,x,y) for some y < z' < s, contradicting s : RP(T,z).

(v) From (iii) and s : PR'(T",T"), we get u < T" < s, so (Lemma 1(vi)) T’ : RP(T,) and thus
T' < v. Therefore, either ﬁR’(T’,T’,’U') for some v’ < v, or v : ﬁR'(T',T’), but the latter
contradicts (A24) RP(T,u,v).

(vi) Suppose ~abort_msg(P', R,p',y") for all p'. Then (A17, A18) P'}_?:(T’, z',y") implies RP’(T’, y').
Note that z,y' € 7z and & < s (from s : RP(T,:E)). If y < z(<s), then -s : P'R(T",2"),
contradicting the hypothesis. Therefore 2 < 4. Now 7' : }_?:P(T,m) would imply (from
y' R.P’(T’,y') and (iv)) ¢ = y', a contradiction. Hence —y" : RP(T,Q?), i.e. }_?:P(T,a:,y) for
some y < y'. O

41

References

[B]
[BHG]
[BT]
[CJS]

[CKST]

[CL]

[CM]

[CMH]
[E]
[EGLT]
[G]
[GS]

[H]
[HF]

D.Z. Badal, The distributed deadlock detection algorithm, ACM Trans. Computer Systems
4, 4(Nov. 1986), 320-337.

P.A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control and Recovery in
Database Systems, Addison-Wesley, Reading, Massachusetts (1987).

G. Bracha and S. Toueg, Distributed deadlock detection, Distributed Computing 2(1987),
127-138.

I. Cidon, J.M. Jaffe and M. Sidi, Local distributed deadlock detection by cycle detection
and clustering, IEEE Trans. Software Engineering SE-13, 1(Jan. 1987), 3-14.

A.N. Choudhary, W.H. Kohler, J.A. Stankovic and D. Towsley, A modified priority based
probe algorithm for distributed deadlock detection and resolution, IEEE Trans. Software
Engineering SE-15, 1(Jan. 1989), 10-17.

K.M. Chandy and L. Lamport, Distributed snapshots: determining global states of dis-
tributed systems, ACM Trans. Computer Systems 3, 1(Feb. 1985), 63—75.

K.M. Chandy and J. Misra, A distributed algorithm for detecting resource deadlocks in
distributed systems, Proc. ACM Symp. Principles of Distributed Computing, Ottawa,
Ontario (Aug. 1982), 157-164.

K.M. Chandy, J. Misra and L.M. Haas, Distributed deadlock detection, ACM Trans. Com-
puter Systems 1, 2(May 1983), 144-156.

A.K. Elmagarmid, A survey of distributed deadlock detection algorithms, ACM Sigmod
Record 15, 3(Sept. 1986), 37-45.

K.P. Eswaran, J.N. Gray, R.A. Lorie and I.L. Traiger, The notions of consistency and
predicate locks in a database system, Commun. ACM 19, 11(Nov. 1976), 624-633.

J. Gray, Notes on data base operating systems, in Operating Systems — An Advanced
Course, R. Bayer et al (eds.), Springer-Verlag (1978), 393-481.

V. Gligor and S. Shattuck, On deadlock detection in distributed databases, IEEE Trans.
Software Engineering SE-6, 5(Sept. 1980), 435-440.

V.W. Havender, Avoiding deadlock in multitasking, IBM Systems Journal 2(1968), 74-84.

J.Y. Halpern and R. Fagin, Modelling knowledge and action in disiributed systems, Dis-
tributed Computing 3(1989), 159-177.

G.S. Ho and C.V. Ramamoorthy, Protocols for deadlock detection in distributed database
systems, IEEE Trans. Software Engineering SE-8, 6(Nov. 1982), 554-557.

J.R. Jagannathan and R. Vasudevan, Comments on ‘Protocols for deadlock detection in
distributed database systems’, IEEE Trans. Software Engineering SE-9, 3(May 1983), 371.

E. Knapp, Deadlock detection in distributed databases, ACM Computing Surveys 19,
4(Dec. 1987), 303-328.

H.F. Korth, R. Krishnamurthy, A. Nigam and J.T. Robinson, Proc. ACM Symp. Princi-
ples of Database Systems, Atlanta, Georgia (Mar. 1983), 192-202.

S. Kawazu, S. Minami, K. Itoh and K. Teranaka, Two-phase deadlock detection algorithm
in distributed databases, Proc. Int. Conf. Very Large Data Bases, Rio de Janeiro, Brazil
(Oct 1979), 360-367.

42

[KS]

[MiMe]

[NT]

[0]

[RBC]

[RSL]
[SC]
[SH]

[SKYO]

A.D. Kshemkalyani and M. Singhal, Correct two-phase and one-phase deadlock detection
algorithms for distributed systems, Proc. IEEE Symp. Parallel and Distributed Process-
ing, Dallas, Texas (Dec. 1990), 126-129.

L. Lamport, Time, clocks, and the ordering of events in a distributed system, Commun.
ACM 21, 7(July 1978), 558-565.

F. Mattern, Virtual time and global states of distributed systems, in Parallel and Dis-
tributed Algorithms, M. Cosnard et al (eds.), North-Holland (1989), 215-226.

D.A. Menasce and R.R. Muntz, Locking and deadlock detection in distributed data bases,
IEEE Trans. Software Engineering SE-5, 3(May 1979), 195-202.

T. Minoura, Deadlock avoidance revisited, J. ACM 29, 4(Oct. 1982), 1023-1048.

D.P. Mitchell and M.J. Merritt, A distributed algorithm for deadlock detection and res-
olution, Proc. ACM Symp. Principles of Distributed Computing, Vancouver, British
Columbia (Aug. 1984), 282-284.

G. Neiger and S. Toueg, Substituting for real time and common knowledge in asynchronous
distributed systems, Proc. ACM Symp. Principles of Distributed Computing, Vancouver,
British Columbia (Aug. 1984), 281-293.

R. Obermarck, Distributed deadlock detection algorithm, ACM Trans. Database Systems
7, 2(June 1982), 187-208.

V. Pratt, Modeling concurrency with partial orders, Int. J. Parallel Programming 15,
1(1986), 33-71.

M. Roesler, W.A. Burkhard and K.B. Cooper, Efficient deadlock resolution for lock-based
concurrency control schemes, Proc. Int. Conf. Distributed Computing Systems, San
Jose, California (June 88), 224-233.

D.J. Rosenkrantz, R.E. Stearns and P.M. Lewis II, System level concurrency control for
distributed database systems, ACM Trans. Database Systems 3, 2(June 1978), 178-198.

A. Shoshani and E.G. Coffman, Detection and prevention of deadlocks, Proc. Princeton
Conf. Information Sciences and Systems, Princeton, New Jersey (Mar. 70), 355-360.

B.A. Sanders and P.A. Heuberger, Distributed deadlock detection and resolution with
probes, Proc. Int. Conf. Distributed Algorithms (Sept. 1989), LNCS 392, 207-218.

K. Sugihara, T. Kikuno, N. Yoshida and M. Ogata, |A distributed algorithm for deadlock
detection and resolution, Proc. IEEE Symp. Reliability in Distributed Software and
Database Systems, Silver Spring, Maryland (Oct. 1984), 169-176.

M.K. Sinha and N. Natarajan, A priority based distributed deadlock detection algorithm,
IEEE Trans. Software Engineering SE-11, 1(Jan. 1985), 67-80.

W.C. Tsai and G.G. Belford, Detecting deadlock in a distributed system, Proc. IEEE
Infocom, Las Vegas, Nevada (Mar. 1982), 89-95.

G.T. Wuu and A.J. Bernstein, False deadlock detection in distributed systems, IEEE
Trans. Software Engineering SE-11, 8(Aug. 1985), 820-821.

43

