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Abstract

We study algorithms for geometric range searching, particularly for the problems of report-
ing and counting points inside of axis-parallel rectangles and simplices in Fuclidean d-space.
Lower bounds are discussed as well as the models of computation in which the lower bounds
hold. The relevance of these models to practical computing is considered. We then present
two new lower bounds for geometric range searching. Related to the problem of computing
partial sums off-line, we show that given an array A with n entries in an additive semi-
group, and m intervals of the form I = [, j], where 0 < i < j < n, then the computation
of Aft] + -4 A[j] for all I} will require Q(n 4+ m a(m,n)) semigroup additions. Here, o
is the functional inverse of Ackermann’s function. Related to the problem of simplex range
reporting we prove that given a collection P of n points in d-space, any data structure
which can be modeled on a pointer machine and which can report the » points inside of an
arbitrary d-simplex in time O(n® +r) will require storage Q nd(—8)—e ), for any fixed € > 0.

Both of these lower bounds are tight within small functional factors.
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Tell me how you are searching, and I will tell you what you are searching for.

Ludwig Wittgenstein
PHILOSOPHICAL REMARKS
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Chapter 1

Introduction

A mong the most typical activities in information processing is searching [54]. Order,

such as having the data sorted, is desirable primarily because it makes searching more
efficient. Geometric search is the study of the order inherent in geometric spaces and its
exploitation for the purpose of search. In this thesis we discuss lower bounds — essentially
a quantification of the freedom from disorder geometric spaces have. Although the interest
and aim of the study is with respect to computers as we model them today, in fact, the
lower bounds have more to do with the intrinsic structure of geometrical objects and their
relationships.

The abstract models of computation used in this thesis have been introduced to make
the study of lower bounds easier. Generally, they emphasize the inherent complexity of the
search space by allowing unlimited capabilities for solving problems other than those related
to exploring this space. In reality, computers do not have unlimitied capabilities, and so real
computers are restrictions of these ideal conceptualizations. This makes the lower bounds
stronger: they remain true within realistic models of computation, and therefore these lower
bounds have practical implications.

This thesis concentrates on the following type of geometric search problem. Given a
set of n points in E?, Euclidean d-space, find the points contained in g, where ¢ is some
natural subset of E?. By “natural” we mean that it is some familiarly occurring object in
geometry. The subset ¢ is called a query or a range. Our research concerns the effect of
restricting the queries to some family and preprocessing the point set as to render efficient
the search for points inside any query taken from the family. The problem derives its

name from the class of queries to which we have restricted ourselves. We have, for example,
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rectangular range searching, simplex range searching, halfspace range searching and spherical
range searching when the query family is the set of all rectangles, simplices, halfspaces and
spheres, respectively.

There are two varieties of range searching. In range reporting we report all points inside
the query while in range counting we simply give a count or, more generally, a sum of weights
over the points inside the query. This sum may have two distinct algebraic structures: a
group or a semigroup. A semigroup is a group without subtraction. A good example to keep
in mind is the semigroup formed by a set of linearly ordered elements with addition being
defined as a + b = max(a,b). It is not possible to define subtraction for this semigroup.
This contrasts with the situation where subtraction is simply forgotten about.

The two original results presented in this thesis are:

1. We give a lower bound for the off-line partial-sum problem: Given n points 2q,...,2,
arranged left to right on a line, with weights w(z;) in an additive semigroup and a set

of m intervals I on the line, compute the sum

> w(a),

z€l}

for all k = 1,...,m. We show that this requires (n + m a(m,n)) semigroup ad-
ditions in the arithmetic model of computation. Here, a is the functional inverse of

Ackermann’s function.

2. We give a lower bound on the space-time tradeoff of simplez range reporting on a
pointer machine: Given n points in Euclidean d-space, we preprocess the points so
as to be able to report those points contained in an arbitrary query simplex in time
O(n® 4 1), where 7 is the number of points reported and 0 < § < 1. We show that
any such algorithm running on a pointer machine will require space pd(1-6)—e ), for

any fixed ¢ > 0.

These results are joint work with Bernard Chazelle. The first result has appeared in journal
form in [29].

The naive solution to geometric searching is to check, one by one, which of the n points
in the data set lies inside the query. Either report or form the cumulative sum of the points
for which the answer is yes. For this solution, call it algorithm A/, the three measures of

complexity which we will concern ourselves are easily determined. The preprocessing time
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Ppr(n)is O(1): no computation is performed ahead of time in order to aid query processing.
The space Sxr(n) is O(n): we need only store the n points in order to answer any query.
The query time Qar(n) is O(kn), where k is the time needed to decide whether a point is
inside the query. Since the query objects are familiar geometric ob jects, rectangles, spheres,
etc., k will be a constant.

We are interested in finding data structures which can speed up the processing of queries
by preprocessing the point set beforehand. An algorithm A proceeds in two steps. Presented
with point set P containing n points, the algorithm precomputes a data structure of space
Sa(n) in time P4(n). The resulting data structure is denoted Ap. Presented an arbitrary
query ¢ from the family of permissible queries (), the algorithm computes Ap(q), which,
in the reporting variant is ¢ N P, in time Q4(n) = O( f(n) + |¢N P|). In the counting
variant, Ap(q) = - ,e,np w(p) is computed in time @ 4(n) = O( f(n) ), where w is a weight
function from points to a semigroup. The intuitive meaning of these definitions is that the
preprocessing is a one-time setup cost for the data structure. Queries will be answered
immediately upon presentation. Either the large number of queries over the lifetime of the
data structure or the importance of prompt responses will justify the time and space spent
in preprocessing.

These definitions hold for the static geometric searching problem. One can also discuss
the dynamic variant. Instead of simply presenting the point set at first and all at once,
insertions to and deletions from the point set are possible. The cost of these operations

under worst case or amortized measures will be discussed in the text.

1.1 Motivations

Because it combines computers with geometry, computational geometry enjoys wide appli-
cation. The usefulness of computers is a perhaps surprising but nonetheless obvious fact
of modern life. They are the best tool to use on almost any repetitive task or one which
requires the handling of large quantities of similar information. They can perform long,
tedious, but otherwise straight-forward calculations without fatigue or error. The practical
relevance of geometry, insofar as it is the primary mathematical model of the perceptible
world, is not doubted. But it, too, can have surprising application areas: consider how
geometry is used to study and understand the solutions of simultaneous linear equations.

Geometric range searching comes up in computer graphics, where it is needed for hidden
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surface removal or locating the mouse cursor among windows. Hidden surface algorithms
require that at each small pixel in the image, the object closest to the viewer be determined,
see Sutherland, Sproull and Schumacker [91] for an overview of hidden-surface removal in
pratice; the reader is referred to the following papers for a more computational geometry
approach: McKenna [66], Fuchs, Kedem and Naylor [48], Paterson and Yao [79] [80], Reif
and Sen [83], Bern [13], Overmars and Sharir [76] and Mulmuley [72] [73] In VLSI, range
searching is used to check that design rules are being obeyed and in the display and main-
tenance of the data base of rectangles that make up a design. The design of VLSI uses
rectangles to demarcate implantation sites whose interface forms the active components,
Mead-Conway [68], and design rules relate the semiconductor physics to a simple set of
geometric relationships between these rectangles. Checking the rules provides an example
of geometric search, Lauther [59], Baird [7]. For robotics, range searching is an important
part of motion planning, and in pattern recognition and learning theory, geometric ideas
lead to the need to understand geometric searching. Statistical data analysis can often be
recast as a problem of geometric search, Shamos [88], as can several problems in general
database theory. In navigation and aviation, several direct examples can be offered: check-
ing the quadrant for high objects or shallow waters, locating the nearest radio station for
triangulation.

A lower bound is somewhat of a negative result, particular lower bounds which establish
a problem as being of a high order of complexity. However, by closing definitively an unprof-
itable avenue of attack, they have a positive effect. Attention is directed away from solving
the impossible. Often, by changing the definition or the preconditions of the problem, the
lower bound can be circumvented. This has the interesting consequence of making possible
predictions about the structure of computation devices whose workings are unknown but
whose performance is visible. To the engineer it suggests the most gainful happenstance to
exploit to insure an economical solution.

The exploration of lower bounds in computational geometry has resulted in some im-
portant concepts and theorems in combinatorics. The exchange of intuitions that occurs
by thinking about combinatorial problems in terms of geometric structures can result in
greater understanding of both. The connection discovered between k-sets and halfspace

range searching is an example of such a situation.
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1.2 Models of computation

The following three models of computation will be used in this thesis: the random access
machine, the pointer machine and the arithmetic model. Other models exist, such as the
cell probe model of Yao [105] and the algebraic decision tree model introduced by Reingold
[84], Rabin [82], Dobkin and Lipton [38], Yao [104], Steele and Yao [89] and Ben-Or [8].
The random access machine, or RAM, is the most realistic model, it incorporates the
capabilities of a typical modern computer. Since it is used for upper bounds, that is, to
describe algorithms, it is important not to give it too much power, but within that general
guideline, one is free to endow it with whatever functions appear to be reasonable and

convenient. A standard definition can be found in Aho, Hopcroft and Ullman [2].

1.2.1 The pointer machine

The pointer machine model goes back to Kolmogorov and Uspenskii [55] [56], with some
early work also done by Schonhage [87]. Our description is taken from Tarjan [93], where
the model was used to prove lower bounds on the time to compute sequences of unions
among disjoint sets. Certain variations on the pointer machine are used by Chazelle [18]
for the development of algorithms. This requires that the specific powers of the processing
unit be delineated, and it is desirable that they be modest. As a model for lower bounds
in reporting-type problems, it is used in the research on orthogonal range reporting by
Chazelle [20] and on simplex range reporting by Chazelle and the author, Chapter 4.

We describe the model proposed by Tarjan [93]. A pointer machine manipulates two
kinds of objects, data and pointers. The data objects can be taken from a wide class of
commonly understood data types: integers, reals, strings, booleans, vectors, and so forth.
Pointers are references to records which are stored in memory. A record has a fixed format
of named fields. Each field is either a data field, where one datum of any type can be placed,
or a pointer field, where one pointer can be placed. Besides this memory, the machine has
a finite supply of two kinds of registers, data registers and pointer registers, and a program
consisting of a numbered sequence of instructions. The instructions set is shown in Table
1. The last instruction of every program is a halt, and each instruction cost one unit of
computation.

For the purposes of the lower bound, we modify this model so as to make computation

less expensive. Therefore our lower bound holds in this standard model as well as many
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| instruction I description |
r—{ Place a null pointer in register 7.
e Copy ' to r. Registers must be of the same type.
r—rin .| Copy field n of memory pointed to by register ' into r.
rpo—r Copy 7' into field n of record pointed to by r.
r— f(r', ") Apply function f to values in 7’ and r” placing result in r.
create r Create a new record and place a pointer to it in r.
halt Halt execution.
if P(r,r') then go to I | Conditionally branch, where P can be any predicate,
I an instruction number.

Table 1: Pointer machine instruction set.

variants of it. In fact, we do not charge nor consider the mechanism by which the pointer
machine computes except for charging one unit for each record accessed. However, we
do stipulate that a record can be accessed only by possessing its pointer. More formally,
the memory is modeled as a directed graph, and the computation follows edges inside this
graph, with one unit of computation charged for each edge traversed. The pointer machine
can modify this graph and create new nodes in the graph. To report a point p, the machine
navigates through memory in order to discover a node in which p has been placed. A more

complete discussion of this machine can be found in Chapter 4.

1.2.2 The arithmetic model

The arithmetic model is due to Fredman [45] and Yao [107]. In these papers, it was a
question of proving lower bounds for orthogonal range queries. The model has also been
used by Chazelle [19] to establish lower bounds in simplex range searching. It has been
used by Chazelle and Welzl [31] for algorithm design, but this was to prove the optimality
of the lower bound, not to describe a practical solution. It is easily argued that the cost of
computing in the arithmetic model is not realistic. It does not require an explanation of or
a cost for address calculations, for instance. On a RAM, these calculations are part of the
algorithm and they must be specified and have their cost accounted for.

This model is used for the counting version of range searching. During the preprocessing
phase, the algorithm computes values of a suite of generators { g1,...,9m }. Each generator

is a sum,

9= Z (Mjw(pj),

JEG;
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where {py,...,pn } are the points, w is the weight function, a; is a positive integer, and
Gi C [1,n] is the set of points on which generator g; depends. The number of generators
is the size of the data structure. Each query ¢ will be computed by taking a subset G(q)
of [1,m] and forming the sum over g; for all j € G(g). For the algorithm to be correct, it
must be true that,
> wlp)= > g
pEPNg J€G(q)

for all weight assignments to P. The size of G(g) is taken to be the query time of the algo-
rithm. That is, when answering a query we only charge for additions among the generators,
we do not charge for the decision as to which generator to use.

Additional stipulations are put on the model so as to make the results reasonably general
and to avoid trivialities. In particular, the semigroup must be faithful. When we return to

this model in Chapter 3 we shall define it more carefully and address its subtleties.

1.3 Preliminaries on data structures

Some of the results in geometric searching are instances of general techniques in data struc-
tures. Bentley [10] and Bentley and Saxe [12] showed how data structures for decomposable
problems can be used as subroutines inside of a larger construction in order to dynamize
and add range restrictions to the original solution. We shall use this result in various places
of the thesis, and therefore present it here. A more complete study of general techniques
for dynamizing data structures is the work of Overmars [77]. Our interest is just to present
the two theorems which will be cited later on in this text.

Let the query relation for query ¢ over data set P be signified symbolically by (g, P).
Perhaps the result is a boolean, perhaps it is a count. We assume it is an element of an
additive semigroup. A decomposable problem over P can be broken into smaller problems

and the partial results summed.

Definition 1.3.1 A decomposable data structure is one in which the query relation Q(q, P)
can be written as,
k
Q(q, P)=_Q(g, P,
=1
where P = Py U ---U Py, is any disjoint union, and %, is some commutative, associative

operator with unit.
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We first explain how to add range restriction to any data structure solving a decomposable
search problem.

Let the points p of the data set P have a key 7(p) € £, where £ is a totally ordered
set. Adding range restriction to a query ¢ means that the query can be performed over
any subset of P described by P|; = {p € P|7(p) € I} where I is an interval in £. If the
problem is decomposable, we add range restriction by building a balanced binary tree with
the set {m(p)|p € P} stored in order at the leaves and attaching to each node v in the
tree the data structure for range searching in P|;, where I is an interval in £ containing all
elements found in the descendant leaves of v. Any interval I in £ can be decomposed into
O(logn) intervals Iy,..., I} such that for each ¢ there is a node in the tree carrying a data

structure for P| 1,- Since the problem is decomposable,

k
Ap(q) =) Ap (9);

where the sum must be correctly interpreted, according to the nature of the problem.
Instead of a binary tree, we can use a k-ary tree and we iterate for each of d coordinates of

range restriction:

Theorem 1.3.1 (Bentley [10]) For a decomposable search problem, given an algorithm
A with preprocessing P4(n), storage Sa(n) and query time Q 4(n), range restriction along
d coordinates can be added. Assuming that P4 and S4 grow at least linearly, and Q 4 is

monotone increasing, and k an integer, the new algorithm A’ has
o preprocessing Pa(n) = O( P4(n)(log,n)?),
o storage S4(n) = O( Sa(n)(logyn)?), and
o query time Q 4(n) = (klogy, n)?Q 4(n).

See also Theorem 6 of Mehlhorn [70, page 47], and the work of Willard [101], and Lueker
and Willard [103].

This construction has the structure of a binary tree and can be modified to accommodate
inserts and deletes using another fairly general technique. Given a node » in a binary tree
with v descendents, A of which are descendents of the left-son of v, the balance of v is /v,
the fraction of descendents of v which are left-descendents. A weight balanced tree of balance

« is a binary tree for which all nodes have balance within [@,1 — @]. This structure was
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first defined by Nievergelt and Reingold [74]. Inserts create new leaves and new nodes, and
deletes destroy them, possibly taking a weight balanced tree out of its allowable balance
interval. If a is in the interval (1/4,1— 1/+4/2], it can be shown that the tree can recover
from the out-of-balance condition by a simple, local restructuring of internal nodes.

In the case of the data structure with range restriction added, there is a tree which
accomplishes the range restriction, and its internal nodes have large data structures attached
to them. The restructuring of the tree will require the rebuilding of the lower level structures
attached to the nodes. However, it is exponentially rare that the nodes near the root will
be restructured, consequently, that large attached structures will be rebuilt.

Suppose that when node v becomes out-of-balance, the rebuilding replaces v with a
node of balance inside [(1 + §)a,1 — (1 + §)a], where § is some fixed positive rebalancing
parameter. By the nature of a weight balanced tree, if v is at level 4, it has between 1/(1—-a)’
and 1/(1 — a)"*! leaves below it. Assume that v is at level 4 and is freshly rebuilt, but a
insertions and b deletions passed through v and caused it to have balance less than «, but
v is again at level 7 (it may have left that level and returned). With all these assumptions,

a calculation we will not reproduce here, see Mehlhorn [69, page 196], shows:

ad

u+b>m.

And many of these insertions and deletions occurred while v was at levels ¢ — 1,4, or ¢ + 1.
If we credit the pair (v,%) each time an insertion or deletion goes through v while it is at
level 1 — 1,4, or ¢ 4+ 1, then over a sequence of m insertions or deletions, at most 3m credits
will in total be given to pairs (w, %), summed over all w in any intermediary tree.

Hence B(%), the total number of rebalancings of nodes at level i, satisfies,

~ _ 3m(l - a)
B('l") S T,

and C(7), the total cost of rebalancing at level 4, is bounded by
C(i) < B()Pa(1/(1 = a)*1),

where P4(n) is the preprocessing cost for a structure with n elements. Starting with an
empty tree, we can evaluate this sum for a given preprocessing cost function over all i =

0,...,logm. The result we shall need is:
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Theorem 1.3.2 (Mehlhorn) For a decomposable search problem, with preprocessing
Pa(n) = O(n(logn)®), any fized b > 0, the algorithm A’ of Theorem 1.3.1, can be dy-
namized to handle a sequence of m insertions and deletions in total time O(m(logn)*+4+1),

The preprocessing, space and query asymptotics of the dynamized version are those of A'.

1.4 Mathematical preliminaries

A linear space over a field K of finite dimension d is the vector space K¢. The unique zero
element 0 is called the origin of the linear space. Affine space over K of finite dimension d is
a set of points for which the linear space of dimension d over the K acts simply transitively,
that is, for every two points z,y there is a unique element of the linear space which takes
z to y. The linear space is called the space of translations. Having distinguished a point
in affine space, the two are related by the natural bijection sending 0 to the distinguished
point. The image of linear subspaces in the affine space by way of this bijection are the flats.
One-dimensional flats are called lines. Flats of codimension one are called hyperplanes.

Our attention shall generally be restricted to the d-dimensional Euclidean geometry E¢
resulting by taking the field to be the reals. Given a point set in E?, its affine hull is the
smallest dimensional flat containing all points in the set. For two points p and ¢, its affine
hull is the line of all points Ap + (1 — A)g as A ranges over the reals. The points for which
0 < A <1 are between p and ¢. A set S C E% is convez if for all 2,y in S, all points between
x and y are also in S. The convex hull of a set of points CH(P), is the smallest convex
set containing all the points. Its relative interior is denoted C'H(P)°. The convex hull of
a finite point set is a polytope. The boundary of a polytope, CH(P)\ CH(P)°, contains
polytopes of dimensions 0 through d — 1, called the faces of the polytope. Dimension 0
faces are called vertices, dimension 1 faces are called edges, and dimension d — 1 faces are
called facets. Points are affinely independent if the affine hull of all of the points has greater
dimension than the affine hull of any proper subset of the points. A simplex is the convex
hull of d 4+ 1 affinely independent points in d space. A polyhedral set is the intersection
of a finite number of halfspaces. It includes the notion of polytope, but also non-compact
convex objects which contain an infinite ray. The definition of faces, facets, edges and
vertices generalize to polyhedral sets. Additional facts about polytopes will be taken from
Griinbaum [49].

Projective space over K of dimension d is the space of one-dimensional subspaces of
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K1 1t is affine space with a “hyperplane at infinity” attached. It is different from affine
space (all pairs of hyperplanes meet) but can be covered with d + 1 copies of affine space.
Our interest is only to state a duality result useful for transforming geometric problems.
Suppose K is the set of reals. The space orthogonal to a one-dimensional subspace of K9+1

is a d-flat, and this correspondence is bijective,
{Mw|AeK} {we K |{w,v)=0}, ve K

Using this correspondence, any nondegenerate bilinear form becomes a pairing of (projec-
tive) points and hyperplanes which preserves incidence, see Samuel [85]. The resulting
involutory map D from points to lines and lines to points such that D? = 1 is a duality
transformation.

Any of the standard affine pieces of projective space omits the hyperplane at infinity
(a different one each time), hence a pencil of lines is missing from the range of this trans-
formation. The classical inversion with respect to a circle is this duality when the missing
pencil is pointed at the center of the circle p, and p is necessarily sent to the line at infinity
by D. Another important duality often used to transform geometric problems is inversion

with respect to a paraboloid:

(plv---apd)'_’ {(ﬂ?],...,ﬁ?d)e Ed|2g=_1lmipi:$d+19d}a

see Edelsbrunner [39]. The missing pencil is the family of vertical lines hence their common
point is at infinity and is sent to the line at infinity, which is also a member of this pencil.
Having extracted this pencil, the position of a point p with respect to a line [, whether it
is below, on or above, is well defined and reversed by duality. For instance, if p is below [,
then D(p) is above D(I).

A complez is a finite collection of polyhedral sets in E? which includes all the faces of
its members and such that any two members intersect only along a common face. It is
more common to consider the relative interior of each polyhedral set as being the member
object of the complex, then the complex is a partition of a subset of E4. The d, d — 1, 1
and 0 dimensional members of the complex are called the cells, facets, edges and vertices
of the complex, respectively. An arrangement induced by a set H of n hyperplanes in E?
is the complex formed by taking all the connected components of E? \ (Upeyh) and all
faces of each component’s closure. Again, each face is replaced by its relative interior. This
complex, therefore, is a partition of E%. A complex with all members the (relative interior

of ) simplices which partition a polytope is a triangulation of the polytope.



Chapter 2

Prior work

T he complexity of a geometric searching problem is determined by matching a lower

bound with an eflicient algorithm with query time of equivalent asymptotic order in the
same model. Usually, algorithms are stated in terms of realistic models of computation,
such as a RAM, while lower bounds use abstract models, such as a pointer machine. Despite
this, agreement is quite good between the upper and lower bounds of the problems treated
in this thesis, and it gives a clear indication of the problem’s computational complexity.
We will review the literature of geometric range searching, especially for orthogonal
range searching, simplex range searching and half space range searching. Both upper and
lower bounds are described, because we want to establish what the complexity of range
searching is. Although the new work in this thesis is for lower bounds, the upper bounds

are just as important for a clear picture of computational complexity.

2.1 Orthogonal range searching

In orthogonal range searching, the set of queries @ is the collection of axis-parallel rectangles

in Euclidean d-space, and P is a finite set of points,

Q {gC E?|q=[a1,b1] X -+~ X [aq, b4] },
P = {p€Ei=1,...,n}

In the reporting variant, we report all points in P N ¢ where ¢ is any rectangle in @. The
counting variant gives the size | P N ¢|, or, more generally, the sum of weights w(p) for all

p € PN g, w being any function from P into a commutative semigroup.

12
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We first discuss two classical solutions, the k-d-tree and the range tree. The k-d-tree
is simple and uses minimal space: only what is needed to store the input. The range tree
is a fully dynamic data structure, that is, one which supports inserts to and deletes from
the point set, as well as efficient queries. It is possible to improve on these algorithms if
semi-dynamic or static structures are all that is required. We survey some improvements

in Section 2.1.2 and discuss lower bounds in Section 2.1.3.

2.1.1 The k-d-tree and range tree

The k-d-tree, due to Bentley [9], is a k-dimensional binary tree. A one-dimensional binary
tree is constructed by recursively halving a set of ordered elements by its median element.
One method to define its k-dimensional generalization is to move circularly through the
coordinates as the recursion proceeds.

Let m; be projection onto the i-th coordinate and, for simplicity, assume that m;(P) is
injective for every ¢ = 1,...,d. The recursive construction of the tree is described by the
function 7 (¢, R, P) which accepts index 7 € [1,d], a rectangle R and point set P as input.
Let a be the median value of m;(P) (fixed ¢), F; be all p € P such that m(p) < a, P,
be all p € P such that m(p) > a. Let p be the unique point in P with m;(p) = a. Set
i’ =14 1if i # d, else ¢/ = 1. The function 7 (%, R, P) returns the tree with the set { p, R}
stored at the root; its left-son is the tree 7(4', RN {z; < a}, P;); its right-son is the tree
T(i',Rn{z; > a},P,). Calling 7(1,(-00,00)% P) constructs the full k-d-tree for point
set P.

Search on query rectangle ¢ is performed recursively. The rectangle R associated with
a node stands in one of four relationships with ¢. It is either contained in R, contains R,
is cut by R or avoids R. If it contains R then report the points at all descendent leaves of
the node. If it avoids R, do not search the descendents of the node. In either of the other
two cases, recursively search the descendents of the node.

Building the tree takes time @(nlogn ) and space ©(n). The run time analysis was
given by Lee and Wong [60] somewhat later. It requires a careful argument to count the

worst case number of nodes visited in the tree.

Theorem 2.1.1 (k-d-tree) The k-d-tree uses space O(n), can be conslructed in time
O(nlogn ) and answers d-dimensional orthogonal range queries in time O(n'~/*+| PN q|)
for the reporting problem. For counting (with additional information stored in the internal

nodes) the time is in O(n'~1/4),
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In the interest of clarity, we have described a greatly enhanced k-d-tree. It is easy to
modify the construction so that it requires no storage beyond recording the input. A binary
tree of n nodes can be represented in a RAM without pointers in an array with n rows,
Tarjan [94]. Let the array have d columns, one for each coordinate. The point p is stored in
the row assigned to its node, but we do not store the rectangle R, as it is easily reconstructed
during the search phase.

Another data structure for orthogonal range searching is the range tree, due to various
researchers: Willard [99], [101], Lueker [61], [103], and Bentley [10], [11]. Tt is another
extension of the binary tree, this time giving polylogarithmic search time with a small
additional cost in storage.

Orthogonal range searching is a decomposable problem: it is possible to report the
intersection ¢N P for some query rectangle ¢ and points set P by reporting (¢n P )U(gN P")
where P = P'U P" is a disjoint union. Likewise, >-(¢NP) = > (¢n P')+ 3> (¢n P"). Hence
general techniques are available for adding range restriction to the special case of dimension
one. That is, using space O(n) and preprocessing O(nlogn) it is elementary to build a data
structure solving interval range reporting in time O(logn + r) for r points reported, and

interval range counting in time O(logn). Using Theorem 1.3.1 and Theorem 1.3.2,

Theorem 2.1.2 (Range tree) The range tree solves orthogonal range reporting over a set
of n points in E* in time O( (logn)?+r), for r points reported, and space O( n(logn)~1). It
requires O( n(logn)?) preprocessing. Insertions and deletions are supported in O( (logn)?)

time in the amortized sense.

A technique explored by Lueker [61] and Willard [99] improves the run time of the range
tree by a factor of log n for reporting mode. The next to last level of the range tree will be
a tree organized according to the y coordinate with, at each node, a list of points organized
by @ coordinate. The collection of lists associated with the children of a node is a partition
of the node’s associated list, and the order in each sublist is consistent with that in the list.
Given a two-dimensional rectangle, it will be broken into k£ < 2logn subrectangles along
the y direction, and in each of k& nodes associated with a subrectangle, a binary search on
the z coordinate will be required. Instead of searching each node independently, Willard
and Lueker observed that from the position in the parent list, the position in a child list
can be recovered by following a pointer prestored in the correct entry of the parent list.

Hence, after searching once in the list at the root, stepping from list to list requires only
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O(1) time. Therefore the last two levels of search cost O(logn), rather than O( (logn)?).
However, for counting in an arbitrary semigroup, the range tree as described is optimal
for a fully dynamic data structure. Fredman [45] has shown that a sequence of n deletes,
inserts and orthogonal range queries will require Q( n(logn)?) time in the worst case in
the arithmetic model of computation. This result has been extended to groups by Willard

[102], but only under some strong restrictions.

2.1.2 Reporting and counting on a pointer machine

The storage required for range counting in either the RAM or pointer machine models can

be reduced by the introduction of functional data structures,

Theorem 2.1.3 (Chazelle [18]) Orthogonal range counting on n points in B4, ford > 1,

ts posstble by an algorithm A of performance,
o Pa(n) = O(n(logn)™1),
o Sa(n) = O(n(logn)*~?),
o Qa(n)=0((logn)?").
This algorithm runs on a RAM or a pointer machine.

Note that the pointer machine referenced by this theorem does not require infinite processing
power; any processor which can perform shifts will be adequate. These data structures begin
with range trees, but data which is stored is replaced with procedures that can compute
it on-demand. Because the time to reconstruct the information is carefully controlled, the
view from outside of the data structure is unchanged.

In the case of orthogonal range reporting, a gap between the RAM and the pointer ma-
chine models exists, provably. In Chazelle [18], it was shown that range reporting on n points
in E4in a RAM model of computation takes O( (logn)?~! +r) time and O( n(logn)?—2+=)
space, for any fixed real £ > 0. However, as is shown in Chazelle [20], if such an algorithm
on a pointer machine has query time O( (logn)® + r), for any arbitrarily large constant b,
then the space must be in Q(n(logn/loglogn)¥~1). By a result of Chazelle [15], this is
(almost) tight.

On the other hand, if insertions and queries are permitted, Yao [107] has shown for

dimension one and Chazelle [21] has extended the result to arbitrary dimension d that
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range counting on a RAM will require Q( n(logn/loglogn)®) time to process O(n) insert
and query operations in the worst case.

We conclude this section with a review of Chazelle’s algorithm for orthogonal range
reporting on a pointer machine in polylogarithmic time and O( n(logn/loglogn)?~! ) space,
showing the lower bound to be almost tight. The algorithm takes advantage of a principle
called filtering search which means that search time is partially hidden behind the time to
report the result. Consider, as a simple illustration of this principle, the interval stabbing
problem defined as follows: Given n intervals I on a line, preprocess them so that for any
point z the set of intervals of I which contain z can be reported in time O(logn 4 r) where
r is the number of reported intervals. Using filtering search, Chazelle [15] gave a solution
to this problem using space in O(n).

The algorithm will use a solution to the grounded range search problem as a subroutine:
Given n points in the plane, report all points in a range [a,b] X (—o00,y], that is, in an
improper rectangle whose lower edge is at minus infinity. McCreight [65] introduced a
structure called a priority search tree which uses space O(n) and makes possible reporting
for grounded range search in time O(logn + r), for r points reported.

These two problems are fused together to solve orthogonal range reporting in the
plane. Partition the n points into approximately logn sets Pi,..., P, according to their
z-coordinate. Connect the points in each P; into an chain ascending by y. Flattening each
F; by projecting onto y, these chains becomes sets of intervals. Preprocess for interval stab-
bing the intervals resulting from flattening all these sets, P; through F;. Also, preprocess
each P; twice for grounded range reporting, once where the grounded edge is off to infinity
towards the left and again for a grounded edge off to infinity towards the right. Apply this
construction recursively inside each F;.

To answer a query, check first if it falls inside a P;. If so, recur. Otherwise, cut the query
up into at most logn pieces, no more than two of which are grounded rectangle queries.
For the perhaps empty middle piece, do interval stabbing for the bottom edge of the query
rectangle. Throw out those intervals stabbed which belong to P; not fully inside the query
rectangle. For the rest, follow the chain of points in each F;, beginning with the upper
point of the stabbed interval, reporting as each point is discovered, until the query interval
is exited from above.

The claimed space bound for two dimensions follows from noting that the number of

recursive applications of the data structure is O(logn/loglogn) and each level takes space
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O(n). The time bound is verified by noticing that the descent of the data structure will
take at most O(logn/loglogn), and the two grounded queries, the stabbing query and the
filtering of unneeded intervals will all take O(logn) each. We extend this result to higher
dimensions using the vehicle of Theorem 1.3.1, setting (logk) to a constant in algorithm A

below, and to [eloglogn/(d — 1)] in algorithm B below, giving the following result:

Theorem 2.1.4 (Chazelle [15]) Orthogonal range reporting on n points in E* for d > 1

on a pointer machine can be accomplished by algorithm A with performance,
o P4(n) = O(n(logn)*"),
o S4(n) = O(n(logn)?1/loglogn),
e Qa(n) = O((logn)¥" 4 r) for r points reported,
and by algorithm B with performance,
o Pg(n) = O(n(logn)i-1),
o S5(n) = O(n(logn/loglogn)*"),
o Qu(n) = O((logn)?=1*% 4 1) for r points reported and ¢ > 0 any fized real.

This shows that the lower bound is tight for b > 1 and d = 2, and ford > 2ifb>d—1+e.

The small gap of (logn)® for higher dimensions remains an open problem.

2.1.3 Lower bounds for static range counting

Lower bounds for static orthogonal range counting have utilized the arithmetic model of
computation. This results in extremely strong bounds because this model is very general.
Yao [107] looked at a closely related problem called dominance searching. Given a set

of n points P in E? with a weight function w, compute

Y. w(p)

p€EP, p<z

where p < p’ for two points p, p’ € E? if and only if every coordinate of p is less than or equal
to the corresponding coordinate of p’. This is a special case of orthogonal range counting.
The semigroup of values of w must be “sufficiently general”, for instance, it should not

permit a simulation of subtraction by addition. It is unknown exactly the advantage the
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extra structure of a group might bring. Briefly put, we require the semigroup to be faithful,
see Chapter 3.

Yao investigated this problem for E? and showed that for m units of storage the worst
case query time is in (logn/log((mlogn)/m)). The first bound to hold in higher dimen-
sions is due to Vaidya [95]. He showed that the worst case query time in E¢ over n points
is Q((n/m)(logn)?=?), where § = 1 if d = 2 or 3, and § = 2 for d > 3.

Chazelle [21] has given a lower bound which is stronger than both of these. It gives
a space-time trade-off for dominance searching in the arithmetic model which is almost
optimal. His result is that query time for n points in E? given m units of storage will require
time in ©( (logn/ log(2m/n))4=1) for the worst case, and with probability approaching 1 if
a query is chosen uniformly at random, for a random set of points. Hence the lower bound
is true on average as well.

Separately, Yao [106] had shown the one-dimensional, static range counting problem
requires time O( a(m, n) ) given m units of storage, in the worst case, in the arithmetic model
of computation, and that this is optimal. Here a is the functional inverse of Ackermann’s
function. The author and Chazelle [28] [29] have considered a related question: what if the
set of queries is known in advance? That is, if instead of precomputing a data structure
for the point set P and measuring worst case behavior of a query presented on-line, what
if the point set P, of n points, and the query set @, of m intervals, were presented to the
algorithm to be solved off-line. We present in Chapter 3 a proof that @( ma(m,n) + n)
time is necessary and sufficient for this problem.

The upper bound has an easy generalization to d-dimensional arrays: m rectangle
queries in a d-dimensional array, size n along each side, can be answered (summed) in
time O( ma(m,n)? + n). It is an open problem to close this gap of a(m, )" for d > 1.
For this problem, if the semigroup is a group, a O(1) time, linear size solution is possible.
On the line, the preprocessing consists of associating with each p € P the sum of w(p') for
all p’ to the left of p. A query can be answered by a single subtraction of two prestored
sums. Since we are in the arithmetic model, we need not consider the cost of a binary
search to locate the endpoints of the interval with respect to the points of P. In higher

dimensional arrays, the inclusion-exclusion formula will guide the subtraction.
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2.2 Polygon and simplex range searching

The query set of simplez range searching is the collection of all simplices in E?, that is, the

convex hull of any d + 1 affinely independent points,

Q
P

Il

{CH (go;e--582) C B |g; € Ed, affinely independent }
{pi e E*li=1,...,n}.

For reporting, the algorithm returns the set ¢N P for any ¢ € ). For counting, the algorithm
sums w(p) over all p € gN P, where w is any function from P into a commutative semigroup.

Searching for points inside a general polytope reduces to simplex range searching. We
therefore concentrate on the problem of simplex range searching. Any polytope on n vertices
can be triangulated with O(n'-d/ 2J) simplices. More exactly, no more than s simplices are
required,

n—v 14

2 (") for even d = 2v,
8 =
2(”_5_1) for odd d = 2v + 1.

We sketch the proof. We consider first the case that the polytope P is simplicial. Recall
that this means every face of the polytope is a simplex. Pick any vertex » and consider the

collection of simplices,
{CH(v,P)|P are the vertices of a facet not containing v }.

This collection is a triangulation of cardinality bounded by the number of facets. The
Upper Bound Conjecture, which was proven to be true by McMullen, see McMullen and
Shephard [67], states that the number of facets of a polytope is not greater than that of the
cyclic polytope which is given by the above formula, Griinbaum [49, page 63]. If P is not
simplicial, it can be made so by perturbing the vertices slightly. Itach vertex is “pulled”
away from the interior of the polytope resulting in new polytope for which the number of
k-dimensional faces, 0 < k < d — 1, does not decrease and the number of vertices stays the
same, McMullen and Shephard [67, page 116]. A triangulation for the perturbed polytope is
a valid triangulation for P as well. That is, carry this triangulation back to P by “pushing”
vertices in the reverse order and direction as they were pulled. (But the simplices that

become singular, flatten, during the pushing will need to be deleted.)
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2.2.1 Partition trees: classical results

The first algorithm for polygon searching in the plane is due to Willard [100]. He proposed
a partition iree which organized the recursive partitioning of the point set by a pair of lines
and two half-lines such that any line cuts at most four of the six regions. Willard’s result
was a linear space data structure allowing triangle counting in time O(n%7™) or triangle

reporting in time O( n% "™ 47

) for 7 points reported. Edelsbrunner, Kirkpatrick and Maurer
[40] used duality to transform halfplane range searching into point location followed by a
table look-up for prestored answers to all essentially different triples of halfplane queries.
The query time is O(logn + r) for r points reported, but the space is a gruesome O(n").

The idea of partitioning the data set with lines so that queries cannot cut all of the
partitions was extended to three dimensions by F. Yao [109], to four dimensions by R. Cole
[35], and to arbitrary dimension by F. Yao and A. Yao [108]. In dimension d, Yao and Yao
found point set partitions into 2¢ pieces such that any hyperplane is guaranteed to miss one
of the pieces. This results in a linear space, O( nk’gw‘(zd_l)) time algorithm for d-simplex
range reporting or counting.

Although if the dimension d is less than five such partitions are possible using a set of
d hyperplanes, David Avis [5] showed that for dimension five and higher there exist point
sets which cannot be partitioned by d hyperplanes into 2¢ nearly equal sets. The partitions
of Yao and Yao are therefore not induced by d hyperplanes.

Returning to the case of planar search, Edelsbrunner and Welzl [42] improved the ex-
ponent for linear-space solutions by inventing the conjugation tree. It is a two-dimensional
analog of Fibonacci search, an idea originated by Kiefer [53], and further developed by
Avriel and Wilde [6], Oliver and Wilde [75], and Knuth [54, page 414].

By balancing the multiway divide-and-conquer according to a Fibonacci recurrence equa-
tion, the exponent is reduced to log(1 4 1/5) — 1 which equals 0.695. The conjugation tree
is easily described. First we describe a result on cutting point sets with lines in the plane.

Given a point set P in E?, and a line L, we say the L halves P if the two open halfspaces
Ly and L, of L are such that the twosets P, = PNL;and P, = PNL, are of equal size. Given
an L which halves P, called the primary line, it is always possible to find a line L', called
the conjugate line to L, which simultaneously halves both P, = PN L;and P, = PNL,. We
sketch a proof: The dual of P is an arrangement of lines in £?, and the dual of L is a point
in the arrangement which has the same number of lines above it as below it. Color the lines

above the dual of L blue, and those below it red. Looking at the arrangement induced by
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the blue lines only, at each = there is a range of y for which the points (z,y) have equal
number of lines above as below. Choosing the maximum such y for each z, as = sweeps
from negative to positive infinity, these points describe a polygonal line, which we color
blue. Likewise, a polygonal red line is constructed from the arrangement of red lines. If, at
the extreme left of the blue line, a point ¢ on the blue line also halves the set of red lines,
then the dual line of ¢ is a conjugate line. Else, suppose there are too few red lines above
g. Then the red polygonal line is ultimately below the blue polygonal line as one travels
leftwards. However, the red polygonal line is ultimately above the blue polygonal line as
one travels rightwards, because the order in which the lines of the arrangement intersect a
vertical ultimately inverts. Hence the polygonal lines intersect. A similar argument applies
if too many red lines are above the point g. The point of intersection dualizes to a conjugate
line.

At the root of the conjugation tree choose a primary line which halves the point set
P into F; and P,, and compute a conjugate line. The left-son of the root receives P, the
right-son receives P, and each son is given a copy of the conjugate line. Son i considers the
received line to be the primary line / and finds a new conjugate I; such that [ and I; quarter
P;, for i € {I,r}. The procedure then applies itself recursively to each of the sons. A query
investigates at most one child and one grand-child of a node, so the query time follows the
recurrence T'(n) = T(n/2) + T(n/4) + O(1), or T(n) = O(n"%).

Cole and Yap [36] improved the space required for a polylogarithmic search time, their
result is an O(lognloglogn) time, O(n?/logn ) space algorithm. Paterson and Yao [78]
improved the result to O(logn + s) for reporting the s points in the interior of a triangle
with an algorithm requiring O(n?) space and preprocessing time.

The approach of Paterson and Yao is an application of Theorem 1.3.1 applied to the
subproblem of reporting all lines in a given set L which intersect a query segment [p,¢].
The set of n points P is sorted by angle around some far away origin O. A binary tree is
built over the points ordered by the angles, and to each node v is associated P,, the subset
of P which are in the leaves below v. A node, therefore contains the points inside a wedge.
Given any cone C' with vertex at O, there is a set of at most 2logn of these wedges such
that they partition PN C.

A triangle can be decomposed with respect to the set of wedges into two quads. A quad
is the area inside a wedge which is between two lines when the intersection of the lines is

outside the interior of the wedge. Hence the problem is reduced to O(logn) instances of
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the simpler problem: Find the points of a wedge which are inside a quad. The dual of this
problem is: Given lines L, find all lines intersected by the segment [g, ¢']. Specifically, L is
the dual of the set of points inside the wedge, and ¢ and ¢’ are the duals of the two lines
which cut the wedge: they are the other two sides of the quad.

This latter problem was solved by Chazelle [16]. His algorithm uses time O(log n+r) and
space O(n) for r lines reported. Paterson and Yao incorporate this into their algorithm,
but they do not search independently in each of the O(logn) quads. Instead, a similar
coherency as exploited by Willard [99] and Lueker [61] in the range tree (see Section 2.1.1,
page 14) is present here to reduce the total search time to O(logn + r).

2.2.2 Partition trees by e-nets

Construction of better partitions resulted from the introduction by Haussler and Welzl [52]
of e-nets. These objects are generalizations of a lemma of Clarkson [33] concerning the
approximation of geometric arrangements by a random subset of the arrangement.

A range space is a pair (X, Q) where X is a set and @) is a class of subsets of X. For
any N C X let NN@Q be theset {NNgqg|lge@}. Let

wia) = chg.ltaf}fm:n[Nn Ql

be the primal shatter function of the space (X,Q). In Sauer [86] and independently in
Vapnik and Chervonenkis [96] it has been shown that either 7(n) = 2" or there exists an
integer d such that for any n element subset N of X with n > d we have | N N Q| < 2"; and
in this case, 7(n) = O(n?). The smallest such d is called the Vapnik-Chervonenkis dimension
of (X, Q). By convention, we say that the VC-dimension of (X, () is infinite when no such
d exists. Further results concerning the VC-dimension can be found in Assouad [4].

There are two related notions, that of the dual shatter function and the space of corri-
dors. Given two points z,y € X and a range ¢ € (), we say that g separates x and y if it
contains exactly one of these points. Given a subset R C () of ranges, X is partitioned into
cells, a cell being a maximal subset of X for which no two points are separated by a range
in R. That is, the partition is characterized by the following equivalence relation =g on X:
z =g y if and only if for all ¢ € R, either both z and y are in g or neither is. Denote by
¥(R) the number of cells in the partition induced by R. Then,

& = V(R
& (1 Rg@srﬁf‘}fm:m (R)
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is the dual shatter function of (X, Q). There exists a d such that 7*(m) = O(m?) exactly
when (X, Q) has finite VC-dimension, although d and the VC-dimension are not generally

equal. For every range space (X, () one can define its space of corridors (Q,Q°):

o}
Q = Hx,yEXRm'y’

where R, is the collection of ranges from () which separate z and y. So Q° is a set of
subsets of ). The space of corridors is a range space and it has finite VC-dimension exactly
when (X, @) does.

Suppose N is a finite set of X. A subset N, of N is an epsilon-net for N if for any ¢ € @
with |¢gN N | > ¢ | N |, then ¢gN N, # 0. An e-net is a “good” approximation for the finite set
with respect to the queries in the range space. Haussler and Welzl [52] showed that if (X, Q)
has VC-dimension d, then any finite N C X has an e-net of size O( (d/¢)log(d/¢) ). In fact,
a random subset of this size will most probably be an e-net. This bound was improved by
Blumer et al. [14] to O((d/e)log(1/e) ). See Matousek [62] [63] and Chazelle and Friedman
[24] for more on e-nets and their construction.

Epsilon-nets make possible the construction of efficient partition trees. For example, the
following was proposed by Welzl [98]. Suppose (X, Q) is a range space, (@, Q°) its space
of corridors, and that the dual shatter function obeys O(m®). Then the space of corridors
has finite VC-dimension. Let R be a subset of @) of size k. There exists an e-net R, for R
of size O((1/¢)log(1/e)). Setting

e=Cn"Vlogn,

C' an appropriate constant, the e-net has size O(nlfd). Adjusting C', we can have ¥(R.) < n.
So, given any P C X, as long as | P| > n, there exist two points z,y € P in the same cell

with respect to R.. This means that R. N R, = (. Because R, is an ¢-net, then:
| RN Ryy| < ek = kn~Y4logn.

In summary, for any P C X of size n and any R C @ of size k, there exist two points in P
separated by no more than kn='/4logn ranges of R.

We build a partition tree by iteratively finding such a pair of points and connecting
them with an edge. Each time, we discard one of the two points and double the number of
ranges in R which separated these points. In detail: we construct R by taking one ¢ € )
such that P N ¢ = P; for every subset P; C P realizable in the range space. Finding two
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points 2,y € P which are infrequently separated, we remove z from P and for every ¢ € R
which separated 2 and y we find another ¢’ € () such that gN P = ¢’ N P and add that to
R. This prevents us from choosing two points if the ranges which separate them already
separate many other points. In fact, the result is a tree on P such that any range ¢ € )
separates O(RI_I/dlogn) pairs of points which are edges in the tree. That is, any query
can be answered by putting together a sublinear number of (precomputed) pieces. The
remaining details include the locating of the edges which are cut by a query in an efficient
manner and the precomputing of tree pieces.

We have followed the presentation of Welzl [98], but the introduction of the ideas of
VC-dimension and e-nets appears first in Haussler and Welzl [52]. They proposed a linear
space, O(n®) time algorithm for simplex range queries, or O(n® + k) time for simplex range
reporting with & points reported, where « is any real such that,

d(d—1

“= d(d(— 1)q3 1

This result was subsequently improved by Welzl [98] to a linear space, O( nt/ *(logn)?) time
algorithm for simplex searching in the plane, or O(nlf 2(logn)® + k) time for reporting,
where k is the number of points reported. He also gave an O(n2/3(logn)?) time algorithm
for three dimensions, but O(nlogn) space was required. These results were extended by
Chazelle and Welzl [31] to linear space and O(n!'~'/?a(n)) time in dimension d, but only
in the arithmetic model of computation. They also show such a result for spherical range
searching. Subsequently, the result was improved by Chazelle, Sharir and Welzl [30] to
an O(n'te/m!'/?) time family of algorithms using O( m'**) preprocessing where m is the
amount of space allowed. There is a cognate bound for the reporting variant. This has
been surpassed by Matousek [64] who has given a O(n!'~'/4(logn)®(1)) time, linear space

algorithm requiring O(nlogn) preprocessing.

2.2.3 Random sampling in geometric searching

One instance of Clarkson’s lemma [33, Theorem 4.1] involves A(H ), a triangulation of E<
subordinated to the arrangement induced by H, a set of hyperplanes. By subordinate, we
mean that the simplices of the triangulation are restricted to having their vertices on vertices

of the arrangement and their interiors are not cut by the hyperplanes.

Theorem 2.2.1 (Clarkson [33, Theorem 4.1]) Given a set H of n hyperplanes in E,

with probability greater than 1/2 a random subset H' of H of size r has a subordinate
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triangulation A(H') with the property that every simplex in A(H') has its interior cut by

no more than 3d*nlogr/r hyperplanes from H.

In itself, this fact is enough to establish new algorithms for point location, half-space range
searching, Clarkson [33], and simplex range searching, Chazelle, Sharir and Welzl [30].

Our immediate attention is focused on its relation to the notion of e-nets. We indicate
how the random sampling lemma of Clarkson is a special case of this theory. The range
space shall be (H, H*), where H is the set of all hyperplanes in E¢ and the queries H* will
be sets hyperplanes. For any simplex S with a distinguished vertex s, the set of hyperplanes
separating s from the remaining d vertices of S will be a query in H*. By duality, this range
space is isomorphic with (Ed,S ), where & is the set of all simplices in E?. Therefore they
share the same VC-dimension.

We prove that the VC-dimension of (E%,S) is O(d®). The primal shatter function for
halfspaces in E4 is bound by n%: any halfspace which partitions P can be brought into
contact with d points of P without changing the partition, thus establishing a surjection
from d sized subsets of P onto its partitions. Taking d + 1 halfspaces, at most ( d’fl) subsets
can be created. However, 2" subsets exist, so for an appropriate ¢, any n > c¢d® implies the
existence of a subset of P not realized.

We know, then, that any set of n hyperplanes has a e-net of size O( (d/¢)log(1/e)).
Setting ¢ = logr/r, we conclude that for any set S of n hyperplanes there exists a subset
R of size O(r) such that for any simplex, if (d + 1)nlogr/r hyperplanes from § intersect
the simplex, for some vertex s of §, nlogr/r hyperplanes from S lie in the same neigh-
borhood, therefore some hyperplane from R lies in this same neighborhood. Therefore, the
triangulation AR has no simplex cut by more than O(nlogr/r) hyperplanes.

This result can be applied to give a O( (logn)?t!) time, O( n?t*) space algorithm for
simplex range counting, where £ > 0 is any positive real, Chazelle, Sharir and Welzl [30].
The algorithm exploits the random sampling ideas described in the previous paragraph.
Just as an orthogonal query can be decomposed into d intervals, a simplex query can be
decomposed into d+1 half-spaces, and in both cases a range tree can be used to intersect the
component queries. Each half-space query is equivalent to a point location in an arrange-
ment of hyperplanes. Clarkson [33] showed how to do point location by picking a random
sample of r hyperplanes, where r is a large enough constant, naively locating the point
with respect to the arrangement of the » chosen hyperplanes, then apply this construction

recursively in a data structure which processes the O(nlogr/r) hyperplanes crossing the



CHAPTER 2. PRIOR WORK 26

isolated cell. The geometric decrease in the number of hyperplanes with each level of the

recursion assures logarithmic depth to the search tree.

2.2.4 Lower bounds for simplex searching

Fredman [46] [47] gave an Q(n*/3) bound on time for a sequence of n inserts, deletes and
queries for any algorithm solving half-plane range queries. His argument has not been
extended to higher dimensions. It used the arithmetic model of computation. Chazelle
[19] later showed, in this same model of computation but for the static case and for any
dimension d, that Q( (n/logn)/m'/?) time is required, where n is the number of points and
m is the amount of storage available. In the plane, a tighter bound was given: Q(n/\/m).
This can be used to remove the necessity to handle deletes in Fredman’s bound, and in
general give a time bound of Q( (n?/logn)¥(#1)) for a sequence of n insertions followed
by n queries in dimension d, in the worst case. It is seen, then, that the results of the
previous section are close to optimal. In the case of linear storage, only factors of logn
remain to be determined, these results are therefore termed quasi-optimal. The logarithmic
time algorithms are optimal within a space factor of n°. However, the real moral of the
story is that the naive algorithm is the method of choice for these problems.

One contribution of this thesis is to extend the lower bound for logarithmic query time
to the pointer model of computation. We show that for a query time of O( (logn)® + r)
where 7 is the number of points reported, a pointer machine will require space nd_s)
where ¢ is any positive, fixed real. Previously, no nontrivial bounds for this problem were

known.
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2.3 Other geometric searching problems

The geometric searching problems mentioned below are not further investigated in this
thesis. They are, however, very important problems whose lower bounds are more or less
open. In the interest of summarizing the state-of-the-art for lower bounds in geometric

searching, we devote a few paragraphs to these results.

2.3.1 Halfspace range searching

Halfspace range searching is intimately connected with point-location and with k-sets. Point
location is a particularly old problem in computational geometry: Given n hyperplanes in
E®, they form an arrangement of cells, each cell being the set of all points reachable one
to the other by a path which does not cross any hyperplane. Having preprocessed the
hyperplanes, how quickly can we locate the cell in which lies an arbitrary point p € E4?
Using a duality transform, halfspace range counting is reducible to point location. This
was noted by Chazelle, Guibas and Lee [26]; for an enlarged discussion see Stolfi [90] and
Preparata [81].

The problem of k-sets is crucial to examining the complexity of halfspace range reporting.
It is stated simply: Given a set P of n points in E?, consider all subsets P N H of P with
k elements, where H is a halfspace. How many different k-element subsets of P can result
from these intersections? Early results on k-sets in the plane can be found in Erdds, Lovasz,
Simmons and Straus [43]. More on k-sets can be found in Edelsbrunner and Welzl [41], Welzl
[97], and Edelsbrunner [39].

Point location was first considered by Dobkin and Lipton [37]. The particular problem
of halfspace range search in the plane was addressed by Edelsbrunner, Kirkpatrick and
Maurer [40], where range reporting was solved in time O(log n+r) for r points reported and
space O(n?). Chazelle, Guibas and Lee [26] gave an optimal O(logn + r) time, O(n) space
algorithm. In E®, Cole and Yap [36] gave an O(logn + r) time, O(n*) space algorithm,
improved by Chazelle and Preparata [27] to a O(n(logn)®(loglogn)*) space, O(logn +
r) time algorithm for reporting r points. This paper established the connection between
halfspace range reporting and k-sets and gave new bounds for k-sets in E3.

In Clarkson [33] [34] the techniques of random sampling and probabilistic methods of
Erdos and Spencer [44] were used to give vastly improved results for these two problems.

An algorithm for halfspace range reporting over n points in E< is presented which requires
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O(nL”/QJ +¢) space, O(logn + r) time, where r is the number of points reported and ¢ is any
fixed, positive real. It is also established that the maximum value of the sum cardinality of
all k-sets with k = 1,...,7 for n points in E? is ©(nld/2][d/21),

The only lower bounds for halfspace range queries are those already mentioned in the

previous section: the bound of Fredman [46] [47] and its extension by Chazelle [19].

2.3.2 Spherical range searching and assorted others

Spherical range searching in dimension d can be reduced to halfplane range searching in

dimension d + 1 by the coordinate transformation,

(ml,...,md) — (m1,‘--,$d,ziﬂ3)-

This transformation lifts up E¢ onto a surface in E4*! such that the interior of balls in
E? become patches of surface below a hyperplane in E%!, But it is possible to construct
partition trees of spheres. Since the VC-dimension of the dual range space is d, this gives
a more efficient algorithm when space is constrained to be linear. Results along these lines
are found in Chazelle and Welzl [31].

It is worthwhile to point out some range searching problems which closely resemble those
already mentioned but have dissimilar lower bounds. Although orthogonal range queries in
E? require O(nlogn/loglogn) space for logarithmic query time, if one side of the range
lies on a fixed line, then the space is O(n), using the priority queues of McCreight [65]. If
the aspect ratio of the rectangle is fixed, Chazelle and Edelsbrunner [23], or if the query is
a trapezoid with one side against a fixed line, Chazelle and Guibas [25], then the space will
be linear for logarithmic time queries. Also, translates of a fixed convex body in the plane
can be range reported in O(logn + r) time and linear space. Range reporting for a fixed

radius disk, Chazelle and Edelsbrunner [22], is a special case of this proposition.



Chapter 3

The complexity of computing

partial sums off-line

T he one-dimensional off-line partial-sum problem is specified by a set X of n variables

 FAP e SN REN, , Tp—1, @ weight function w from X to an additive commutative semigroup S,

and a set ) of m intervals, @ C {[z;,2;]|0 <4 < j < n}. We must form, for each interval

Z'w(w)

TEQq

¢ in @), the sum,

The set @ is called the task and its elements are called queries.

Intuitively, a fast solution to the problem might begin by computing and placing in
memory useful partial sums, which can be shared by many queries. Then each query is
quickly answered by combining a small number of these partial sums. The lower bound we
prove implies that no allocation of partial sums can give solutions using only a constant
amortized number of arithmetic operations per query. Note that, for a group, a solution
using a constant number of operations per query can be achieved by precomputing all prefix
sums and, for any query, subtracting the appropriate two among them.

Partial-sums are a special case of classical orthogonal range searching. We have further
distinguished two flavors of partial-sums. In query mode, preprocessing is allowed and ¢
is a query to be answered on-line. In off-line mode, we are given the set {z1,...,2,} and
a set of intervals qi,...,¢n, and we must compute the m sums ) ... w(z;), for each .
The query mode situation was studied by Yao [106]. He proved that if only m units of

storage are permitted then there exists a query requiring time O(a(m,n)) to answer. The

29
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function a(m,n) is the functional inverse of Ackermann’s function defined by Tarjan [92].
The function «, seemingly esoteric, arises in a number of computer science contexts. Tarjan
[92] showed it was related to the complexity of union-find, and it bounds the length of
Davenport-Schinzel sequences, Hart and Sharir [51], Agarwal, Sharir and Shor [1]. But our
proof does not involve a reduction from these problems.

Our main result is a nonlinear lower bound for the one-dimensional off-line partial-sums
problem. We show that there exists m partial sums over the n variables which require
Q(n + ma(m,n)) semigroup additions for evaluation. It is a generalization of Yao’s result
to the situation where the queries are known ahead of time. It can also be regarded as
a generalization of a result of Tarjan [92] concerning the off-line evaluation of functions
defined over the paths of a tree. See also Alon and Schieber [3] for related upper and lower
bounds.

A matching upper bound has been given by Yao [106] which works in the off-line case
as well. So the results presented are optimal. In Chazelle and Rosenberg [28] we extend the
upper bound to the case of multi-dimensional arrays: Given a d-dimensional array A and
m rectangles, we compute the sum over every rectangle in time O(n + ma(m,n)?), but we
do not know if this is optimal.

The rest of the chapter is organized as follows: in Section 3.1 we define the model of
computation and discuss some useful reductions. Section 3.2 is devoted to the construction
of hard problem instances, while Section 3.3 gives the proof of the lower bound. We discuss
applications and open problems in Chapter 5. A preliminary version of this chapter has
appeared in Chazelle and Rosenberg [28] and a journal version is published in Chazelle and
Rosenberg [29].

3.1 The arithmetic model of computation

The arithmetic model of computation, Fredman [45], Yao [106] [107], Chazelle [21], charges
one unit of computation for every semigroup operation performed. All other computation
is free. We can store results in memory cells, access the cells by address, using whatever
address arithmetic we desire. In other words, a solution is a straight-line program with
instructions of the form z; = w(z;) or 2; = az + bz, a and b integral, where zp, z1,. .. form
an unbounded set of variables. At the end of the computation we require that the m partial

sums specified by the task should be given by zg,...,2m—1.
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In the arithmetic model of computation the cost of a solution is simply the number of
instructions of the form z; = az; + bz;. This cost is referred to as the time for the solution.
To make our lower bounds more general, we require that a solution should work regardless of
the particular assignment of weights to the z;’s. Also, we must assume that the semigroup is
not trivial, unlike, say, the semigroup ({0}, +). Following Yao [107] we define a semigroup
(S,4) to be faithful if the identity of two linear forms implies the equality of their sets of
variables. That is to say, given two sets of indices I and J, and non-zero integers a;, b;, the
relation,

2wy =) biy;

i€l Jed
cannot be an identity unless / = J. Note that we do not even require that the sets {a; }
and {b; } should be the same. Examples of faithful semigroups are (Z, max), ({0,1},A),
({0,1},Vv) and (Z,+). But note that ({0},+) and Z/2Z are not faithful.

Given a set X, its power set is denoted P(X) — it is the set of all subsets of X. The
algebraic structure (P(X),U) is a commutative semigroup. It has the additional properties
of being idempotent, e U a = a for all @ in P(X), and possessing an identity element,
aU( = afor all a in P(X). As long as X is not itself empty, (P(X),U) is faithful. We are
interested in this semigroup for the following reason. Any solution to a task @ with weight
function w into a faithful semigroup can be interpreted as a solution to the same task @

with weight function into the semigroup (P(X),U) defined by,
w*: X — (P(X),U)
T {z]

simply by replacing w in the solution with w*. We make the following definition:

Definition 3.1.1 A scheme S is a sequence sq,...,8_1 of subsets of X such that for all
1€ [0,r—1], 8; = sU ', where s = s; for some j <iors={z} for somez € X ors=10,

and likewise for s'.

We say that a scheme 5 solves task T if all partial sums in T with weight function w* occur

as elements in S.

Lemma 3.1.1 Lel T be a task over n variables and S a scheme of minimum length solving
it. Then, for any faithful semigroup, a solution to T with weight in the semigroup takes

time at least r — n, where r is the length of the scheme.
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Proof: Recall that in the arithmetic model of computation a solution to 7' is a straight-line
program. FEach line of the program gives rise to a subset of X by replacing w with w*,
and + by U; hence, the entire program gives rise to a sequence of subsets s, s1, ..., which
obviously satisfy the definition of a scheme. Since the program is a solution to T, for every
t € T there is an ¢ such that the i-th line in the program computes the sum,

E w(z).

z€t
By faithfulness, and the fact that the solution works regardless of the weight assignment, s;
is {z € t}. Since this set is w*(¢), we conclude that 5 solves T'. The length of the scheme
is the number of lines in the program. We need no more than n of these to be of the form

z; = w(z;). The result follows. o

We give a few more definitions before beginning the real work. Let [i, j] denote the set
of all integers between ¢ and j inclusive. Let X be a finite set whose n elements are denoted
Zo,T1,...,Zn—1. Any subset of X of the form {zr |k € [i,]} is called an interval and is
(abusively) denoted [z;,z;]. Intervals of the form [z;, z;] are called trivial. The empty set,
by convention, is also a trivial interval.

In the proofs that follow, we will define mappings between schemes. These are often
simply maps between sets f : X — Y extended to maps between powersets f : P(X) —
P(Y) in the usual way: requiring that f(AU B) = f(A)U f(B). Other times, we intend
that the map be between intervals. We denote by Z(X') the set of all intervals in P(X),

I(X) ={[zi,z] C X [1 <5}

Amap f: X - Y extends to f : Z(X) — Z(Y) by f([zi,z;])= [f(=i), f(=;)]. It is often
convenient to define a map by defining its inverse first. A sectionof amap f: X — Y isa
map ¢ : Y — X such that the composition f o g is the identity on 7. For example, a map
from X = {zo,...;Zkn-1} t0 Y = {90,...,Yn-1 } which takes z; t0 Yimodn has k sections
which look like y; — @4, with 7 € [0,k — 1], fixing a different ¢ for each section.

3.2 Constructing hard tasks

We will construct a family 7,,(¢, k) of hard tasks parametrized by two integers ¢ > 1 and
k > 0, respectively called fime and density; the subscript n indicates the number of variables

and is not a parameter. Task 7,(¢,k), defined over { zg,...,2,—1 }, Will contain between
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kn/2 and kn queries, and any scheme solving it must be of length at least tkn/6. That such
a family exists at all puts a lower bound on the cost of computing partial sums. Define the

function R(t, k), for all integers ¢ > 1 and k > 0:

R(1,k) = 2k, k>0,
R(t,0) = 3, 151,
R(t,k) = R(t,k—1R(t—1,R(t,k—1)), k>0,t> 1.

This function gives the n needed to construct the hard task 7,(t, k).

Lemma 3.2.1 For all integerst > 1 and k > 0, there is a task T,(t, k) over the n element

set X = {zo,...,2,-1 } salisfying the three requirements:
1. | Tu(t, k)| > kn/2, where n = R(t,k),
2. | {[zi,2;] € To(t,k)|t=1}| < k for anyl € [0,n — 1].

3. If S ={s0,51,...,8:—1} is a scheme solving T,(t, k),
then r > t| T,(t,k) | /3.

All intervals in T,(t, k) are nontrivial.

The second requirement is called the uniform right-degree condition. Aside from implying
that 7,(t, k) contains no more than kn intervals, it is an induction invariant crucial to the
inner workings of the construction.

The proof of this lemma is split over the remainder of this section and the next. In
this section the construction is delineated and the first two requirements verified. The next
section deals with the last requirement. The lemma easily leads to the lower bound theorem
stated and proved in the final half of the next section.

The construction is by double induction on ¢ and k. We present directly tasks for ¢ = 1
and k£ > 0 and for £ = 0 and ¢ > 1. This is the basis of the induction. The task 7,(t, k) is
constructed from 7,/(t,k — 1) and Z,«(t — 1,n'), for the inductive step. We sketch the idea
behind the double induction.

Suppose we have a hard task and that in this task it often occurs that many intervals
have their left endpoint over the same variable. That is, one large group of intervals ends
over z1, another over z;, and so on. If we replace each z; by a group of variables z;1,...,%imn

and replace each interval [z;,z;] by [;, ;1] where k chosen so that in the left endpoints
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are evenly spread out over all the new variables, it is intuitively plausible that the resulting
task will require more time to solve than did the original task — because it is a stretched out
version of the original task plus new diversity in the left endpoints of intervals. However, the
resulting task will have a density m times smaller than the original. This can be remedied
without making the task easier by placing into each group of variables z;1,..., %, a task
of sufficient density and hardness. We will follow through on this idea in the remainder
of the chapter, repeating the steps precisely and proving correct the intuition about the
hardness of the resulting task.

Let 73(t,0) = @ for all ¢ > 2. Since k = 0, | 73(¢,0) | is large enough; since | 75(¢,0) | = 0,
any scheme solving 73(¢,0) is long enough; and 73(t,0) satisfies the uniform right-degree
condition for k¥ = 0. Now we define 7,(1,k) with £ > 0. Let n = 2k and over variable set

{zo0y...,Zn-1} define:
n—k-1 k

T(LE= U Ul

i=0 j=1

It is easily verified that 7,(1,%) satisfies the uniform right-degree condition and has size
| 7o(1,k) | = kn/2. Since all the queries in 7, (1, k) must appear in any scheme solving it,
the size of 7,,(1,k) is a lower bound for the scheme’s length. Hence 7,(1, k) satisfies the
three requirements of the lemma.

We now assume that £ > 0 and ¢ > 1. By induction hypothesis, we have tasks A =
Ta(t,k—1) and B = T3(t—1,a) where ¢ = R(t,k—1) and b = R(t—1,a). Since R(t,k) = ab,
we intend to construct task @ = 7,(t, k) over n = ab variables. For clarity, we give different
names to all these different variable sets. Name the variables in @ by X = {zo,...,Zn_1 },
thosein Aby Y = {yo,...,Ya—1}, thosein B by Z = {z9,...,25_1 }.

Divide X into b blocks each containing a consecutive variables. Into each block, we

place a copy of the task A. To state this formally, we define the map:

p: P(X) = P(Y)
€T = Yimoda
and take these sections:
¢i: IY) - I(X)
Yi = Tja4d,
where 7 = 0,...,b— 1. Each section gives a copy of A placed in X, it is the image of A
by ¢;. Though ¢ is a map between subsets of sets, it is defined as if it were a map of sets.

Likewise, ¢; is claimed to be a map of intervals, even though we have only given its values
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on elements. It is good to reflect on these distinctions, but burdensome to reflect these
distinctions in the notation. In any case, ¢ o ; is the identity on Y, as it should be for a
section.

To guide what remains to be done for our construction, we mark some of the z;. Let
the leftmost variable in each block be marked, that is, z;, for i = 0,1,...,b— 1. Now alter

the marking by removing the mark on ¢ and placing it on z,_;.
| | i N
0O0000 ®0000 0000 ... 80008

A copy of task B is placed over variables X guided by these marked variables: variable z;
goes to the i-th marked variable in X. The complete map follows from two desires: that
the map be a map of intervals, that no two intervals from B have left ends over the same
variable in X. This second requirement means that we have to stretch leftwards by different
amounts intervals coming from B. This stretching step is very important since it causes
the composite task to be more difficult to solve than the sum difficulty of its components.

If we were to take each interval [y;, y;] in B to an interval [z;, 2] in @ by the rule “z;
is the i-th marked variable in @},” at most @ intervals from B would have their left ends
over a given marked z in (). Further stretch each interval leftward, by a different amount,
so that they end over z;_1,z;_5, etc. We formalize this construction as follows. Partition

B into a subsets By,..., By—1 so that the partition obeys the following restrictions:

1. |{[zj,2x] € Bi|j=c}|<1forallie[0,a—1] and c € [0,b— 1].

2. [2-2,2-1] & Bo.
It is possible to construct this partition thanks to the uniform right-degree condition on B
and the fact that there is only one nontrivial interval ending over z;_s.
For i € [0,a — 1] define the map,
i I(Z) - I(X)
[@(j4+1)a—is T(j4+1)a] Tor j € [0,0—2]
[z;] Sl
[Zap-i] ifj=0b-1.
We must define a map of intervals. To this end we shall ensure that 1;([2;, 2;]) is the
smallest interval containing all of { (2;),%i(zk) }. Each of these is a section of the map,
P P(X) — P(Z)
z; - ifi=a(j+1),
¥ o vmy ifi=abel,

0 otherwise.
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An image of each B; is placed over X using 9;. Remark that any such interval over X spans
blocks. For this to be true, the restriction that [z;_2, z5—1] not be in By is crucial.
The task ) is defined as,

Q= (b:U1 %(A)) U (Dl 1/%‘(31')) :

We investigate the properties of this task.
By construction, () is a collection of nontrivial intervals in X . In fact, each map ¢; and
1b; is one-to-one. The distinct character of each of these maps assures that each component

that went into making @) is disjoint with every other. This implies that

Q1

> oA+ X (B

J€[0,b—1] i€[0,a—1]
b|A|+ |B| = b(k— 1)a/2+ab/2 = kab/?,

and

{[zi, 2] €Q|i=c}]

| {[vi,y;] € Ali=cmoda}]|
* |{[Z,',Zj] € B(—c)modaliz |_(C— 1)/GJ}‘
< (k=-1)+1=k.

for all ¢ € [0,ab— 1]. Therefore @ is a task of the correct density and obeys the uniform

right-degree condition.

3.3 The lower bound

We now derive a lower bound on the cost of any scheme S which solves Q. Each of the s; in
scheme S falls into one of b+ 1 categories. Either, for some ¢ € [0,b— 1], s; lies fully inside
block 4, s; C [Zia, T(i41)a—1], OT 8; combines elements from different blocks. We partition
into b+ 1 sublists according to this categorization. If s; lies inside block 4, place s; in 5%, else
place s; in S°. If s; is the empty set, place it in the subsequence S°. Maintain the original
ordering, but renumber, to obtain sublists { s}, s},...,st._; } where i =0,...,b, each s is
an element of P(X), and the r; are the length of these lists, noting r = ro + -+ 4 7. It
will be shown that each of the subsequences S° for i = 0,...,b— 1 is, essentially, a solution

to A. Immediately, we have lower bounds for all »; with 7 in this range. The subsequence
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S* is essentially a solution to B, but it is a very inefficient solution. We can quantify this

inefficiency and, in doing so, derive a lower bound on 7.

Lemma 3.3.1 For i = 0,...,b— 1, the sequences ¢(S§%), defined by ¢(S5%); = (,o(sj), are

schemes solving A.

Proof: Let s, be any member of ¢(S*). Then s, is the image of some element 8; in S.
Perhaps s; = s U s with k,1 < j. Clearly, s; and s; fall into S* with images s3 and s, in
©(S), where 3,7 < a. But

S = (85) = (s U sp) = @(sk) U p(s) = s U s,.

The other possible precursors of s; are argued similarly, proving that @(S%) is a scheme.
We know that ¢; is a section of ¢ and that S solves @. This implies 5 D ¢;(7.(t, k — 1)),
giving

¢(5%) 2 po pi(Ta(t, kb — 1)) = Tu(t, k — 1).
So ¢(S%) solves 7,(t,k — 1). O

Lemma 3.3.2 The sequence (S®), defined by
1. P(5%)i1 = 9(s}),
2. (50 = [25-2, 2-1),

is a scheme solving B. It is not minimal: there is a subsequence of 1(S°), resulting from

the removal of | B| — | Bo | elements from 1(S8%), which is also a scheme solving B.

Proof: Consider any s, in 1(S?). It is an element of S, say s;. Assume that s; results
from the union of s and s; with k,I < j. If both s and s; span blocks, then they are both
found in S, and their images sg and 5y in (S?) together form s,. Suppose that s; lies
within one block. If that block is not the rightmost, then 1(s) is either the empty interval
or a singleton. So s, = (sg)Up(s;) satisfies the definition of a scheme. If s lies inside the
rightmost block, then it is possible that )(sg) is larger than a singleton, it could be that
Y(sg) = [2b—2,2p—1]. However, then sy = so U 1(s;), and again the definition of a scheme
is satisfied. Arguing the other cases similarly shows 1(.5°) is a scheme. As in the previous
lemma, the facts that .5 solves @} and that 1 o 4; is the identity on Z combine to show that
(S5°) solves B.



CHAPTER 3. THE COMPLEXITY OF COMPUTING PARTIAL SUMS OFF-LINE 38

Let g be an interval in the task @ of the form ;(z), but ¢ # 0. That is, ¢ is in the
image of B, but not of that portion of B placed in the partition By. Let i(g) be the index
of the leftmost ¢; in g. Let W(i) be the index of the first element in S® which contains ¢
but contains no ¢; with j < ¢. Since S solves @, W (i) is defined. We consider the equation
S%V(i) = s'Us". At least one of s’ and s” contains ¢;, let us say s’. By selection of W (), s’
is itself contained in the block containing ¢;. Because i is not divisible by a, the image of
this set under 1 must be the empty set. (It cannot be that this set contains z,-1.) Hence
zb(s‘%’,v(t-)) either appeared before in 1(S?) or, because 9(5°) is a scheme, it is a singleton.
In either case, we can remove this element from the sequence 1(S%) and it still will be a

scheme. After removal, it still will solve B since that set contains no singletons. i

We now derive a lower bound on the length of S. Because ¢(S?) solves A, r; >
t|A]/3,i=0,...,b— 1. Taking the indicated subsequence of 1)(S®), we have a scheme of
size ry+1—| B |+| Bo | solving B. Therefore, that sum is bound below by (t—1)| B| /3. Re-
call that each interval in By ends over one of 2,..., z,_3, and conversely, each zp,...,2_3

has at most one interval in By ending over it. Hence | By | < b—2. Since |Q | =b|A|+| B,

r = Tot-ct -1+
> bt|A|/3+(t=1)|B|/3+|B|-|Bo| -1
> bt|A|/34+(t+2)|B|/3-(b-2)-1

tQ|/3+(2/3)|B|-b+1.
Because B = 7y(t — 1,a) we have | B| > ab/2. Since a > 3,
r>t|Q|/3+ab/3-b+1>1t|Q|/3

We have completed the verification of the three properties of 7,(t,k) enunciated in the
lemma, and the induction step is complete.

Armed with Lemma 3.2.1, we state and prove the lower bound theorem. First we define
a(m,n), the inverse Ackermann function. We follow Tarjan [92] in defining A(%, j) for all

1> 1and 7> 0 as:

A(1,7) 27, i>0
A(E,O) = 2! 1> 1
A3, 7) A(i-1,A(,5-1)), 7>0,i>1.

Il
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The first row grows exponentially. The second row has at index 7 a tower of 2’s j + 1 high.
That is, A(2,0) = 2 and increases by A(2,j+1) = 24(2:7) Bach row is a primitive recursive
function growing faster than the previous one. But the real interest is in the growth of the
columns. Fach column past the first one grows roughly as fast as every other column, and
all grow faster than any row. No column is primitive recursive, it simply grows too fast.

Tarjan defined a functional inverse of A(%,7). For all m > n:
a(m,n) = min{ i | A(z,|m/n]) > logn}.

We need to compare the functions A(%,j) and R(t,7).

Lemma 3.3.3 Foralli,j =1,2,... we have R(i + 1,7) > A(4,7).

We omit the proof which is by double induction. Combined with the following lemma it

shows that A(7,7) and R(i,j) are essentially the same function.
Lemma 3.3.4 Foralli,j=1,2,..., we have A(i +2,7) > R(¢,7).

Proof: We begin by showing that A(i 4+ 1,7+ 1) > R(i,j)+ 2, withi = 1,2...0r j =
0,1,.... Direct calculation shows this for ¢ = 1 and j = 0. The induction step assumes
A +1,5'4+1) > R(¢,j")+2if ¢ <ior i =iand 7’ < j, and concludes with the inequality
for A(¢+4 1,7+ 1). The following series of inequalities:

A+ 1,5+1) = A(,A(i+ 1,7))
> A(i,R(i,j—1)+2)
> A(i,R(i,j—-1)+1)?
> (R(i,j—1)+2)R(i— 1, R(i,7— 1))
> R(:4,j)+2

is justified in the remainder of this paragraph. The first inequality is an application of the
induction hypothesis; the second uses the little result: for ¢ > 2, A(i,7+ 1) > A(z’,j)z. This
can be proven by induction. The next inequality uses the induction hypothesis and the
result, A(¢,7) > j+ 1, this for any 4,5 > 1. An easy induction shows that A(¢ 4 1,7) >
A(t,7 4+ 1), for j > 1, therefore, A(i 4+ 2,7) > A(i+ 1,7+ 1) > R(3,7), and the lemma is

proven. o
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Suppose we are given m and n with m > n. Set k = |m/n| and let ¢ be the least integer
such that R(¢,k) > n. We explain why ¢ > 2. A task cannot repeat a query interval, so
m < n(n —1)/2, and hence,

R(l:k) =2k < 2|m/n] <n=1.
By Lemma 3.2.1, there exists a task T' = T,,/(t — 1, k) with:
1. n' = R(t — 1,k), and it follows by the definition of ¢ that n’ < n.
2. T has size | T | between kn’/2 and kn'.
3. Any solution to T has length at least (¢t — 1) |7T| /3.

Place [n/n’| copies of T side by side. Add extra variables and queries to correct to form of
this resultant task, that is, it will be over n variables and have m queries. The size of any

solution is bounded from below by:
t=DIn/2]T|/3 2 (t=1)[n/n'|[m/n]n[6

m(t—1)/24
> mt/48.

vV

The following chain of inequalities shows that t + 2 > a(m,n),
A(t+2,k) > R(t, k) > n > logn.

Because ¢ > 2, it follows that t > a(m,n)/2. Therefore the cost of solving T' is at least
ma(m,n)/96.

Consider now m and n given, where m < n. The previous paragraphs shows the existence
of a task T over m variables with m queries which takes time at least (ma(m,m))/96 to
solve. If all the variables zg,...,z,,—1 do not appear in T, eliminate the unused variables
and renumber as zg,...,Z,/—1. Add variables z,,/,...,2,_1. Find an interval of the form
[1,m'—1]in T, as z,,:_; is used in T such an interval exists, and replace it with the interval
[i,n — 1]. Any solution to the resulting task can be made to solve the original task T by a
transformation which includes removing the at least n — m computation steps referencing

variables with indices inside the interval [m,n — 1]. So, the time to solve this new task must



CHAPTER 3. THE COMPLEXITY OF COMPUTING PARTIAL SUMS OFF-LINE 41

be,

n—m+ ma(m,m)/96 > (n—m)/192 + ma(m,m)/96

> n/192 4+ m(2a(m,m) - 1)/192
> (n+ ma(m,m))/192.
We have therefore established:
Theorem 3.3.1 Let X be a set of n variables, zg,...,2,_1, and w a weight function from

X to a faithful semigroup. For any m > n, there exists a set T of m intervals in X
rcils.sli8i<i<n),

such that the length of any scheme solving T' is Q(ma(m,n)). For m < n there exists such

a T requiring a scheme of length Q(n + ma(m,m)).

By a result of Yao [107] (see also Alon and Schieber [3] and Chazelle [17]), there exists an

algorithm whose performance matches the lower bound.



Chapter 4

Simplex range reporting on a

pointer machine

\W e give a lower bound on the complexity of the following problem, known as simplez

range reporting: Given a set P of n points in d-space, precompute a data structure capable
of reporting all points of P N ¢ where ¢ is an arbitrary simplex. The counting variant has
also been studied, and near optimal solutions exist. If m storage is available, algorithms
with query time about n/mlf'd have been discovered and discussed in the Chapter 2. For
example, Chazelle, Sharir and Welzl [30] have proposed a O(n?t¢) space, O( (logn)?t! ) time
algorithm, and Matousek [64] has demonstrated an O(n) space, a O(n'~'/4(logn)°1))
time algorithm. These demonstrate the two ends of the space-time tradeoff spectrum. A
near matching lower bound in the arithmetic model of computation, Chazelle [19], shows
these solutions to be quasi-optimal.

Here, the optimality of known algorithms in the reporting case is considered. Because
the report itself takes time, it might be possible to customize the search to the number of
points reported, giving a smaller data structure with no visible loss of query performance.
This concept, called filtering search, Chazelle [15], was reviewed in the Chapter 2. We
present a lower bound asserting that any data structure on a peinter machine exhibiting
query time in O(n? 4 r) will occupy Q(n?1=8~¢) storage, any fixed ¢ > 0. Once again, this
differs from the upper bounds of Chazelle, Sharir and Welzl [30] and Matousek [64] only by
a factor of n°, and both these algorithms can run on a pointer machine, so these results are

nearly tight.

42
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The proof generalizes graph-theoretic arguments used in Chazelle [20] to establish a
lower bound for orthogonal range reporting on a pointer machine. The rest of the chapter
is organized as follows. In Section 4.1 we establish a combinatorial lemma which relates the
size of the data structure to the cardinality of a special family of queries. In Section 4.2 such
a special family is constructed: first, by positioning queries appropriately, then by placing
points so as to satisfy certain properties with respect to the queries. The combinatorial

lemma is applied and the lower bound results.

4.1 The complexity of navigation on a pointer machine

In the pointer machine model of computation, Tarjan [93], each memory cell includes a
single data field and two pointer fields. The pointer fields reference other memory cells.
Extensions to the model to include more data and pointer fields can be easily simulated
within this definition. The computer accesses its memory by following pointers. It may
read and modify the fields of the memory cells it accesses. We may extend the model to
allow for the creation of new memory cells upon request. We give a more precise description
of the machine’s capabilities using a formal notation.

A data structure consists of a finite set V of nodes { vg, v1,... v} and a set F of directed

edges (v,w) € V? such that the set of neighbors of any v,
Nw)={weV|(v,w)€e E},

has no more than two elements. An algorithm has a working set of nodes W C V. Initially
W = {w}. The algorithm interacts with the memory by applying any of the following

instructions:
1. Pick any v € W and add N(v) to W.
2. Pick any v,w € W and, if | N(v)| < 2, add (v, w) to E.
3. Pick any edge (v,w) € E, with v,w € W, and remove it from E.

Each node v is associated with a datum, denoted f(v). The algorithm may read or write
the value of any vertex in its working set.
Let P = {p1,...,ps } be a set of n points in E4. To each node v is attached an integer

f(v). If f(v) =i is not zero, then node v is associated with point p;. A query ¢ is a simplex
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in B4, and the algorithm must report all points in P N ¢g. When presented with ¢, the
algorithm begins with W = { vy } and terminates with a working set W(g) that is required

to contain the answer, namely,

{ilpieq} C{f(v)[veW(q)}

50, a query-answering algorithm must explore at least one node labeled with i for every p;
appearing in ¢. The cost of answering ¢ is then | W(q) |. Note this is an underestimate of the
computational cost, for it charges only one unit for every cell investigated, no matter how
many times the cell was read from or written into or how much intermediate computation
was necessary to decide which cell to visit. The size of the data structure V is the number
of nodes in the graph. The model is easily extended to memory cells with any bounded
number of data and pointer fields. Since the proof argues only about a “snapshot” of the
data structure, extending the model by allowing for the creation or deletion of nodes is also
possible without invalidating the proof.

Given a set P = {py,pa,...,pn} of n points in E¢, a data structure G = (V,E) is
termed (a, §)-effective if for any query ¢, we have |W(q)| < a(| PN ¢q| + n®). A collection
of queries ) = { ¢; } is called (e, k, §)-favorable if for all i, and for all 4; < --- < i,

1. | Png|>n°
2 | PO gy N Ngg| <.

We want to show that if § is small, an (a, §)-effective data structure must be large. Using the

following lemma, we can bound their size by exhibiting a (¢, k, §)-favorable set of queries.

Lemma 4.1.1 For any fized a,§ > 0 and ¢ > 1, if G is (a,6)-effective and Q is (¢, k,§)-
favorable, then

V| >|Q|n®/(4(k — 1)25" (@41,

for n large enough.

Proof: We exploit the fact that the data structure can quickly answer a large number of
very different queries to show that the data structure is itself large. More precisely, we look
at the c-setsof V,

VO ={WCV||W|=c}).
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Recall that a tree is rooted if its edges are directed and the root is the only node with no
incoming edge. Given any subset w C V, the diameter of w in V is the minimum number
of edges in any rooted tree which spans w and is a subgraph of G. It is oo if no such tree
exists. We denote the diameter of w by Ag(w). This definition applies to any directed
graph, in particular to subgraphs of GG. Below we shall need A7, where T is a rooted tree
and a subgraph of G.

The number of c-sets in G of diameter smaller than r is bounded by,

[{w eV Agw)<r}| < [{(zw) eV xVO|Vwew, dzv)<r}]

21"+1_1
Ll g

< | 174 | 2(T-|—1)C,

IA

because of the limitation on the outdegree of (G. Suppose now that query ¢ is presented to
the algorithm. Fix a rooted tree T C (G which contains exactly the vertices W(q). Because
the algorithm reaches all the nodes in W(g), such a tree exists. We can select from W(q) a
subset W such that

1. |W|=|Pngq]|, and
2. for every p; € PN g there is a w € W such that f(w) = i.

Let T' be the Steiner minimal tree for W inside of 7. Note that Ar(w) > Ag(w) for any
w C . The tree T is rooted, therefore A7 satisfies another inequality: for any w,w’ C T,
Ar(wUw’) < Ap(w) + Ap(w').

Embed the tree T' in the plane and number the vertices of W in their natural order
around the border of 7. Then, W = wy,ws,...,ws, where s = | PN ¢|, and

s—-1

3" Ar({wj, wi4a}) < 2|T|.

i=1

Consider the c-sets,
Wi = {0 oaqtbagd By 3ot Ly oy 8 6% 1,

By the inequality discussed in the previous paragraph,

ct+i—2
Ar(W;) < Z Ar({wj, wjt1}).

J=my
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Summing over all %,

s—c+1 s—1

> Ar(W) < (e = 1) 3 Ar( fwj, wjs1} ) < 2(e - 1)|T].

=1 §=1

Since, | T'| < |W(q) |, if we assume that G is (a, §)-effective and @ is (c, k, §)-favorable (thus

|PNg| > nd):
s—c+1

Y. Az(W:) < da(c—1)| Png],

=1

for large enough n. By Markov’s inequality,
{i|Ar(Wi) 2 Ba(c - 1)} <[P Ng]|/2,
and therefore,
{i|Ap(W;) < 8a(e—1)} > |PNgq|/2—c+1.

Because Ap(W;) > Ag(W;), this is also a lower bound on the number of c-sets with small
diameter in .
This argument is valid for any ¢ in Q. Since |PN¢;, N---Ng;, | < ¢, for appropriate

indices %7 < --- < i, a small c-set will be counted at most £ — 1 times. Thus,
[{w e V| Ag(w) < 8a(c— 1)} > QI PN gl /(4(k - 1)) > | Q | n/(4(k - 1))

for large enough n.

In view of the upper bound given at the beginning of this proof, the result follows easily.

4.2 A lower bound for simplex range reporting

According to the discussion of the previous section, any algorithm for solving simplex range
reporting in time O(n® +r) can be modeled as an (a, §)-effective data structure, for suitable
a. The lower bound follows, therefore, from the construction of an set P of n points and a

¢, k, 6)-favorable query set () satisfying,
g
L. ]@|=% pd(1-8)—b6-c ), any fixed € > 0.
2. |Pngq|>ndforall g € Q.

3. For each k distinct members ¢,...,qx of @, |PNgiN---Ng| < ec.
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Let ¢ € E be any non-zero vector in Euclidean d-space. The hyperplane H § T E?is defined
by
Hy={z € E*|(z,9)-|q|*=0}.

For any real u > 0, the slab H, , is the set of all points within distance p from H,,

Hypu={z€ E*|(z,q) - |q|*| < plq|}.

The point g is the defining point of the slab H, ,. Although our final result is stated for
a collection of simplices, the query set we will construct is a collection of slabs. Once a
favorable query set has been constructed, with slabs for queries, we can replace the slabs
with simplices. We need that the points contained in the simplex are exactly those contained
in the slab it replaces. This is easy to arrange by using very flat simplices.

We note a shift in our notation. The set ¢ will be a set of points. The collection of

queries will actually be
{HCI;M | q E Q }‘

The bijective correspondence between slabs and their defining points will render any ambi-
guity harmless.

Let Cy = [0,1]¢ be the unit d-cube in E?. We construct a favorable query set in two
steps. First we position the slabs so that their arrangement has certain geometric properties.
Their intersection with Cy must be large, but their k-wise intersection with each other must
be small. Next, n points are thrown at random into C; and we verify that with high
probability the slabs are favorable for this point set.

Further on we shall demonstrate that a sufficient condition for any & the slabs to intersect
in a small volume is that any & of the defining points have a large convex hull. With this
goal in mind we digress slightly in order to introduce a necessary result.

In about 1950, Heilbronn posed the following problem [71]: What is the largest area,
over all point-sets P = {py,...,pn} C C3, of the smallest triangle with vertices in P?
Heilbronn conjectured that this area is O(1/n%). However, Komlés, Szemerédi and Pintz
[58] have shown the existence of point sets with small triangles of size Q(logn/n?) and
on the other hand they [57] have shown that n points in C3 always form triangles of area
less than 1/ n®/7=7 for any 7 > 0. We shall require that the convex hull of k£ points in d
dimensions contain volume €(1/n). This can be true if £ > logn. We recall the following

result.
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Theorem 4.2.1 (Chazelle[19]) For any d > 1 there exists a constant ¢ > 0 such that a
random set of n points in Cy has, with probability greater than 1 — 1/n, the property that

the convex hull of any k > logn of these points has volume greater than ck/n.

Hence a random point set is likely to be “good” for the construction of a favorable query
set.

Having fixed a real ¥ > 0, let Qo be a random set of 1/9%~! points uniformly distributed
in Cy4_y. Theorem 4.2.1 assures that any k& > log n points will enclose a large volume. Embed

o in Cy via the map:
1
(9}1,...,$d_1) Lo 4 5(2}] + l,...,l‘d_] + 1,1)
Fixing a real u > 0, each image point gives rise to ©(1/x) new points by the maps,
T — 2uze,

where z ranges over all integers such that 1/2 < 2uz < 3/4. To be precise, z € [i,7] with
i = [1/(4p)] and j = |3/(81)]. Let @ be the image of @y under the composition of these

two maps. That is, the image of ()p under the map:
Hzyz)r Cyax[iil = Ca
(5[:1,...,305_1,2) — yz(wl—i—l,...,:nd_l-!-l,i’),
see Figure 1.
Under the assumptions that p and 4 go to zero with increasing n, we show that:
1. @ is a set of size O( 1/(uy®™1)).

2. For all ¢ € @ the slabs H, , have an intersection with Cy of volume O( p ).

3. Any k > logn of these slabs have an intersection of volume O( u¢(logn/y)*~! ) — and

therefore the part of this volume which is inside Cy enjoys the same upper bound.

The first claim is trivial. The second follows from the fact that each coordinate of any
g € @ is in the interval [1/4,3/4]. So a ball of radius 1/4 — p and center ¢ intersects H, in a
hyperdisk D which lies entirely inside Cy. The cylinder of height 2y and cross section D at
its midpoint is inside C;. Here we assume, by increasing n if necessary, that p < 1/4. This

gives the lower bound on the volume of H,, N Cy. The upper bound follows from placing
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Cd-1

Figure 1: Building the query set.

a sufficiently large ball around ¢, say of radius v/d, so as to contain the piece of H, , which
is also in C'y.

The third claim is substantiated as follows. Let Hy, ,,..., Hy, , be the k > logn slabs,
where the ¢; are all distinct. If ¢; and ¢; are colinear with the origin, the intersection
is empty. If they are not colinear, let py,...,pr be the points in Cy_; which gave rise to
01, -+, qr. The convex hull of the p; has volume at least ¢;ky%! for the appropriate constant
c1 given in Theorem 4.2.1. Triangulate the convex hull using O(kd) simplices and choose
one among the simplices of largest area. After renumbering, the vertices of this simplex
are pi,...,pq and it has area at least ex(v/k)?~'. We conclude that |det(q,...,qq) >
Cg(’)//k})d_], where the g; have been renumbered according to the same pattern as the p; and
¢o and c3 are constants depending only on the dimension. The details of the argument are
as follows. The first step in taking p; to ¢; involves compressing Cy_1 by a constant factor
then pasting it to the upper face of Cy. This affects the d — 1-dimensional volume enclosed
by the d points only by a constant factor. The cone on these d points with respect to the
origin gives a simplex of volume equal to the area of the base, and this is a factor of d! from
the determinate of the matrix formed from the d points. The second step in taking p; to
¢; involves scaling each point by some bounded «;, changing the determinate by only the

product of these a;.



CHAPTER 4. SIMPLEX RANGE REPORTING ON A POINTER MACHINE 50

/]

Figure 2: Intersection parallelotope.

Lemma 4.2.1 For any k > logn, every set q1,...,qx C @ contains a subset ¢;,,...,qi,
such that,

Vol(HguN---NHgp) < Vol(qu.l,# fAr#41) qud,u) = O(#d(bg”/‘f)d_l )-

Proof: The first inequality is trivial. In general, let ¢,...,qq be linearly independent
vectors. The polytope Hgy, , N---N Hy, , is a translate of the parallelotope defined by d

vectors w; where,

) 2l ifi=3
( wi, qi) T
0 otherwise.

To be more precise,
HyyN- NHypu={Yti0iw;|0< s <1, i=1,...,d} + 7o,

where z, is the unique point of E? satisfying,

|2

(%0, i) =G| = =p| %]

for all i = 1,...,d, see Figure 2. Denote by [w] the matrix (wq,...,wq), by [¢] the matrix
(¢1,.--,94), and by A the diagonal matrix with A; = | ¢ |. Note that det[w] is the volume
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of the parallelotope. From [w]”[q] = (21)?A we have

det[w] det[q] = (2u)? | g1 |-~ -] qa] -

Recall that from the set ¢i,...,qx C @ we can select d vectors such that |det[q]| >
es(v/k)?1, for some constant cs depending only on the dimension, and Vd/2 < |g| <
3v/d/4. This gives the bound. O

The proof of the lower bound concludes with a probabilistic analysis of the interaction
of n points chosen randomly in the unit cube C; with the query set . For any real
0<d<(d-1)/d,and any & > 0 set,

1 il
B= mii-i 15 SRald-1)—¢/(d-1)°

where 7 depends only on d and whose value will be fixed presently. Note that both p and
v tend to 0 as n tends to infinity. Let k = logn be as before. We introduce the quantity,

e = [d2/e].

We claim that the collection of slabs H = { H, ,| ¢ € Q } is, with overwhelming probability,
(¢, k, 8)-favorable for the point set P.

Lemma 4.2.2 Let the n points P = {p,...,p, } be independently and uniformly dis-
tributed in the unit cube Cy. With probability approaching 1 as n goes to infinily, for all
q€Q,|H,,NP|>n’.

Proof: The points p; € H, ,, for i = 1,...,n, are independent Bernoulli random variables

with common probability,
p= Vol(H,, 1 ) > Kp'*= K [(ral~%),

for an appropriate K which depends only on d. This bound is a consequence of our second
claim on @, and we can adjust 7 so that np > 2n. The expected number of points in
q is therefore E(|H,,N P|) = np > 2n°. The Chernoff bound [32] [44] states that, for
X ={z1,29,...} a Bernoulli random variable where z; = 1 with probability p and z; = 0

with probability 1 — p,

Prob (Zn:m < (1—n)np) hS (%) ’

i=1
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for 0 < & < 1. Therefore, the probability that | H,, N P| < np/2 is less than (2/e)"/2.
Taking the disjunction over all ¢ € Q,

Prob (3ge @s.t. |H,y,NP|<npf2) < |Q|Prob (|H,,NP|<npf2)

1/(py®") (2/ €)™/
nd(l—&)—&—s (2/6)”6 .

A

A

It is not difficult to see that this probability goes to 0 as n goes to infinity. Therefore, with
probability approaching 1, every H, , has more than np/2 > n® points in it. a

Lemma 4.2.3 Let P be a set of n random points chosen uniformly in the unit cube Cj.

With probability approaching 1 as n approaches infinity, for all q,...,q € Q, distinct,
| HyypN---NHy N Pl <.

Proof: The events p; € Hy, , N ---N Hy, ,, for ¢ = 1,...,n, are independent Bernoulli

random variables with common probability,

p = Vol(Hg N---NHg NCq) <Vol(Hyg uN---NHy N Cy)
< Kp'(logn/y)™! = K(logn)*~!/n'*e,

for an appropriate constant K. Recall from Lemma 4.2.1 that this bound is a consequence
of finding d from among the k slabs whose intersection is small. We formalize this choice in
a function w from Q) to Q(@): for T a set of k slabs from Q, w(T) C T is a set of d slabs
whose existence and intersection volume is guaranteed by Lemma 4.2.1. We again refer to

the Chernoff bound: for any positive real &,

n eﬁ np
> g L
Prob (§$1 > (14 n)np) < ((1-}-5)”"‘) ;
thus if np < 1 then for any integer ¢ > 1,

Prob (Zm, > c)

=1

IA

%)

The expected number of points in Hy uN--oN H‘i‘w“ is less than 1 for n sufficiently large,

hence,

Prob (‘Hr)ilapn"-ﬂ Hqid,“npi > c) < (_I(_(l.%g_%)d_l)c
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Noting

Prob (qu,...,qke Q% it | By (o) Hpo(F P ZC)
< Prob (Elql,...,qu’LU(Q(k)) st H g0 Pl NP 20)

(IQI) (K(logn)“Y
d cns

n"(KJc)

we can bound the disjunction over all k-sets of queries in @ by

IA

Prob (Elql,...,qk e@!® et [, T Y B L F P | Zc)

IA

where
r=d(d(1—-06)—6—¢€)+¢c((d—1)(loglogn/logn) — ).

By choice of ¢, r is negative, hence this probability vanishes as n approaches infinity. That

is, with high probability, for all k& distinct slabs, | Hg, , N ---N Hy, , N P| < c. a

What has been shown is the existence of a collection H of of ©( n#(1=9)=5-2) slabs and
a set of n points P such that H is ( [d?/e],logn, § )-favorable with respect to P. We can

now apply Lemma 4.1.1 to give,

Theorem 4.2.2 Simplez reporting on a pointer machine in E? in time O(n’ +r), where

d(1-8)—e¢ )

r is the number of points reported and 0 < § < 1, requires space Q(n for any fized

e > 0.

Proof: A pointer machine algorithm reporting points inside an arbitrary query simplex
in time O(n® + r) would give an (a, 6)-effective data structure with |V | nodes, for an
appropriate a. If § > (d — 1)/d then the space bound is trivial, so assume otherwise.
The randomized construction given above yields a (¢, k, é)-favorable query set H of size
O(nH1-8)==¢) where ¢ is any positive real, ¢ = [d?/¢] and k = logn. Lemma 4.1.1 then

applies:
§ pd(1-8)—¢

n
§ .
|Viz|H] 4(k — 1)28¢*(a+1) 2 K ey logn’

for an appropriate K depending only on the dimension d and assuming n sufficiently large.

O



Chapter 5

Conclusions

n this thesis we studied algorithms and lower bounds for geometric range searching,

particularly for the problems of reporting and counting points inside of axis-parallel rect-
angles and simplices in E?. The literature was carefully reviewed and two new results
were given. Some open problems and new research directions are suggested in these closing
paragraphs.

We would like to have a lower bound for partial-sums in multi-dimensional arrays which
generalizes the one found in Chapter 3. That is, given an d-dimensional array and a col-
lection of m hyper-rectangles, form the sum over all entries inside each rectangle. Chazelle
and the author [28] have given O( a(m,n)*) as an upper bound but improving the lower
bound beyond £( a(m,n)) has not been possible.

With regards to the lower bound of Chapter 4 for simplex range reporting, our bound
implies that if the search time is to be in O( (logn)® + r ), for b arbitrarily large and r the
number of points reported, then the space will be in ( n¢=) for all fixed £ > 0. In practical
terms, this means logarithmic query time is a hopeless dream! Even a modest O(y/n + )
time algorithm in 10-dimensional space would require n° storage! On the theoretical side,
however, we believe that the bound could be improved to Q(n?/polylog(n) ), and leave this
as an open problem. Also, closely matching upper bounds are sought.

On the subject of upper bounds, for orthogonal range reporting on a pointer machine, an
algorithm using O( n(logn/loglogn)?~1) space with query time O( (logn)*~! 47 ) remains
an open problem.

A lower bound on a pointer machine for halfspace range reporting would be very inter-

esting. The methods used in the simplex reporting case should be applicable, but as yet

54
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we have not succeeded at this. Our conjecture is a bound of Q( nld/2]-¢ ) for polylog-time
queries.

Our results hold for weights in a semigroup. For the static problem in higher dimensions
with weights in a group very little is known. This is an important problem with many
applications. Also, our results are for general semigroups. Perhaps the lower bound does not
hold for some important special class of semigroups, for instance, reqular semigroups where
every element a has a “pseudo-inverse”, namely, an element al which satisfies aala = a.
The multiplicative semigroup of matrices is a regular semigroup.

The semigroup (Z,min) has a special structure, in that min(a,bd) is either a or b. This
makes possible the following O(n) space, O(1) time algorithm for one-dimensional range
counting. Build a tree 7 over the weighted points py,...,p, by placing the the point p;
with minimum weight at the root and recursing in the left-son with points p1,...,pi—1 and
in the right-son with points p;41,...,p,. At the bottom of 7, add leaves and put them in
one-to-one correspondence with the intervals between consecutive points. If [a,b] has @ in
the interval corresponding to leaf /,, and b to that of /;, then the sum min, ¢, ;) w(p) is the
value stored in the least common ancestor node of I, and [, in 7. Least common ancestors
are computable in O(1) on a RAM by an algorithm of Harel and Tarjan [50]. This does not
indicate a defect in our lower bound: the data structure is not universal, the tree is not the
same shape for all weight assignments. However, we did want to signal how crucially the

theory depends on its suppositions.
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