IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW

Ravindra K. Ahuja
James B. Orlin
Clifford Stein

Robert E. Tarjan

CS-TR-338-91

May 1991

Improved Algorithms for Bipartite Network Flow

Ravindra K. Ahuja *
James B. Orlin f
Clifford Stein *
Robert E. Tarjan $

May 16, 1991

Abstract

In this paper, we study network flow algorithms for bipartite networks. A network
G = (V, E) is called bipartite if its vertex set V' can be partitioned into two subsets V}
and V- such that all edges have one endpoint in V; and the other in V5. Let n = |V,
ny = |Vi|, n2 = |Va|, m = |E| and assume without loss of generality that n; < nj.
We call a bipartite network unbalanced if ny € ny and balanced otherwise. (This
notion is necessarily imprecise.) We show that several maximum flow algorithms can
be substantially sped up when applied to unbalanced networks. The basic idea in these
improvements is a two-edge push rule that allows us to “charge” most computation to
vertices in V], and hence develop algorithms whose running times depend on n, rather
than n. For example, we show that the two-edge push version of Goldberg and Tarjan’s
FIFO preflow push algorithm runs in O(nym+ n?) time and that the analogous version
of Ahuja and Orlin’s excess scaling algorithm runs in O(nym + n? logU) time, where U
is the largest edge capacity. We also extend our ideas to dynamic tree implementations,
parametric maximum flows, and minimum-cost flows.

Keywords: Network flow, bipartite graphs, maximum flow, minimum-cost flow, para-
metric maximum flow, parallel algorithms.
AMS(MOS) subject classifications: 90B10 , 68Q25 , 68R10.

*Department of Industrial and Management Engineering, Indian Institute of Technology, Kanpur 208016,
India. Research partially supported by Presidential Young Investigator Grant 8451517-ECS of the National
Science Foundation, by Grant AFOSR-88-0088 from the Air Force Office of Scientific Research, and by
grants from Analog Devices, Apple Computers, Inc., and Prime Computer.

tSloan School of Management, M.I.T., Cambridge, MA 02139. Research partially supported by Presiden-
tial Young Investigator Grant 8451517-ECS of the National Science Foundation, by Grant AFOSR-88-0088
from the Air Force Office of Scientific Research, and by grants from Analog Devices, Apple Computers, Inc.,
and Prime Computer.

{Laboratory for Computer Science, M.I.T., Cambridge, MA 02139. Some of the results in this paper
were part of this author’s undergraduate thesis at Princeton University [35]. Research partially supported
by a graduate fellowship from AT&T. Additional support provided by Air Force Contract AFOSR-86-0078
and by an NSF PYI Grant awarded to David Shmoys, with matching funds from IBM, Sun Microsystems,
and UPS.

$Department of Computer Science, Princeton University, Princeton, NJ 08544, and NEC Research Insti-
tute, Princeton, NJ 08540. Research at Princeton University partially supported by the National Science
Foundation, Grant DCR-8605952, and the Office of Naval Research, Contract N00014-87-K-0457.

1 Introduction

In this paper, we study network flow algorithms for bipartite networks. A network G =
(V, E) is called bipartite if its vertex set V' can be partitioned into two subsets V; and V,
such that all edges have one endpoint in V; and the other in V3. Let n = V|, n, = |V}|,
ngy = |Va|, m = |E|, and assume without loss of generality that n; < n,. We call a bipartite
network unbalanced if n; € n, and balanced otherwise. We show that several maximum
flow algorithms can be substantially sped up when applied to ﬁnbalanced networks. At first
glance, it may appear that unbalanced networks are of limited practical utility. This is
not true, however. Gusfield, Martel, and Fernandez-Baca [20] have compiled a list of many
practical applications of unbalanced networks. Further applications of unbalanced networks
appear in [13].

Specialized bipartite flow algorithms for unbalanced networks were first studied by Gus-
field, Martel, and Fernandez-Baca [20]. They developed modifications of the algorithms
of Karzanov [25] and Malhotra, Pramodh Kumar, and Maheshwari (MPM)[27] for the
maximum flow problem that improved their running times from O(n®) to O(nin,). For
the bounded degree case, i.e., when the degree of each vertex in V; is bounded by a
fixed constant, they developed a further modification of the MPM algorithm that runs
in O(nym + n?) time. We suggest several algorithms for the maximum flow problem on
unbalanced networks that improve the running times of Gusfield et al. for all classes of
unbalanced networks.

Gusfield [19] has shown that on a particular bipartite network in which each vertex
in V, has constant degree, an algorithm similar to the FIFO preflow push maximum flow
algorithm of Goldberg and Tarjan [14],[15] runs in O(n;m + n}) time. Further, he observes
that this result extends to parametric maximum flow; he solves a series of n; maximum flow
problems in O(n;m+n?) time. We have similar results, which were obtained independently
and apply to a more general class of networks.

We begin with the observation of Gusfield et al.[20] that the time bounds for several
maximum flow algofithms automatically improve when the algorithms are applied without
modification to unbalanced networks. A careful analysis of the running times of these
algorithms reveals that the worst-case bounds depend on the number of edges in the longest
vertex-simple path in the network. We call this the path length of the network and denote
it by L. For a general network, L may be as large as n — 1; but, for a bipartite network,
L is at most 2n, + 1. Hence for unbalanced networks the path length is much less than n,
and we get an automatic improvement in running times. As an example, consider Dinic’s

algorithm [10] for the maximum flow problem. This algorithm constructs O(L) layered

Algorithm

Running time for
a general network

Running time for
a bipartite network

Running time for the
modified version

Maximum Flows

Dinic[10] O(n?m) O(nim) does not apply
Karzanov[25] O(n?) O(n3n)[20] O(nim +n})

MPM]|[27] O(n®) O(n?n)[20] does not apply

FIFO preflow push[14],[15] Oo(n®) O(nin) O(nim +n3)

Highest label preflow push[7] O(n?y/m) O(niny/m) O(nim + min{n3, n}\/m})
Excess scaling|[2] O(nm + n’log U) O(nim + ninlog U) O(nim +nilog U)

Wave scaling [3] O(nm + n*/Iog U) O(nim + niny/TogU) O(nim + ni+/Tog U)

FIFO w/ dynamic trees(14],[15] | O(nmlog(22)) O(nymlog(22)) O(nym log(ZL +2))
Parallel excess scaling[2] O(n? log U log(2)) O(ninlog Ulog(2)) O(nilog U log(22))

Parametric Max Flows

with [m/n] processors

with [m/n] processors

with [m/n1] processors

GGT[13] O(n?) O(nin?) O(n3n)
GGT w/dynamic trees[13] O(nmlog(Z2)) O(n1mlog(Z2)) O(n1mlog(ZL +2))
Minimum-Cost Flows
Cost scaling [16] O(n® log(nC)) O(ninlog(n1C)) O((n1m + n3)log(n,C))
2
Cost scaling O(nm]og(";a)log(uC)) O(nlmlog("%)log(nlc)) O(nymlog(+ 2)log(n:C))

w/ dynamic trees [16]

Table 1: A summary of the results discussed in this paper. Column 2 contains previously
known results for general graphs. Column 3 gives bounds on bipartite networks based on
the improved bound on L. Column 4 gives our new results based on the two-edge push rule.

networks and finds a blocking flow in each one. Each blocking flow computation performs
O(m) augmentations and each augmentation takes O(L) time. Consequently, the running
time of Dinic’s algorithm is O(L?*m). Thus, when applied to unbalanced networks, the
running time of Dinic’s algorithm improves from O(n?m) to O(n?m). Column 3 of Table 1
summarizes these improvements for several network flow algorithms.

We obtain further running-time improvements by modifying the algorithms. This mod-
ification applies only to preflow push algorithms [2, 3, 13, 14, 15, 16]; we call it the two-edge
push rule. According to this rule, we always push flow from a vertex in V) and push flow on
two edges at a time, in a step called a bipush, so that no excess accumulates at vertices in
V,. This rule allows us to charge all computations to examinations of vertices in V;, though
without this rule they might be charged to vertices in V3. As an outcome of this rule, we
develop algorithms whose running times depend on n; rather than n. We incorporate the
two-edge push rule in several maximum flow algorithms, dynamic tree implementations, a
parametric maximum flow algorithm, and algorithms for the minimum-cost flow problem.
Column 4 of Table 1 summarizes the improvements obtained using this approach.

In the presentation to follow, we assume some familiarity with preflow push algorithms
and we omit many details, since they are straightforward modifications of known results.

The reader interested in further details is urged to consult the appropriate paper or papers

discussing the corresponding result for general networks or one or both of the survey papers
[1],[17].

2 Preliminaries
2.1 Network Definitions

Let G = (V,E) be a directed bipartite network. We associate with each edge (v, w) in
E a finite real-valued capacity u(v,w). Let U = max{u(v,w) : (v,w) € E}. Let source
s and sink t be the two distinguished vertices in the network. We make the assumption
that s € V, and t € V;. We further assume, without loss of generality, that if (v,w) is in
E then so is (w,v), and that the network contains no parallel edges. We define ths

incidence list I(v) of a vertex v € V' to be the set of edges directed out of vertex v, .

I(v) = {(v,w): (v,w) € E}.
2.2 Flow

A flow is a function f: E — R satisfying

flv,w)<u(v,w), V(v,w)€E (1)
f(v,w)==f(w,v), V(v,w)€E (2)
L frw)=0, YweV-{si}. (3)

The value of a flow is the net flow into the sink, i.e.,

|fl = Z f(?%t)'

veV

The mazimum flow problem is to determine a flow f for which |f| is maximum.

2.3 Preflow

A preflow is a function f : E — R that satisfies conditions (1), (2), and the following

relaxation of condition (3):

E f(v,w) >0, Yw e V — {s}. (4)

veV
The maximum flow algorithms described in this paper maintain a preflow during the
computation. For a given preflow f, we define, for each vertex w € V/, the ezcess e(w) =

S f(v,w). A vertex other than ¢ with strictly positive excess is called active.
veV

2.4 Residual Capacity

With respect to a preflow f, we define the residual capacity u;(v, w) of an edge (v, w) to be
uy(v,w) = u(v,w) — f(v,w). The residual network is the network consisting only of edges

that have positive residual capacity.

2.5 Distance Labels

A distance function d : V — Z% U {oo} with respect to the residual capacities u;(v,w)
is a function mapping the vertices to the non-negative integers. We say that a distance
function is valid if d(s) = 2n,, d(t) = 0, and d(v) < d(w) + 1 for every edge (v, w) in the
residual network. We call a residual edge with d(v) = d(w) + 1 eligible. The eligible edges
are exactly the edges on which we push flow.

We refer to d(v) as the distance label of vertex v. It can be shown that if the distance
labels are valid, then each d(v) is a lower bound on the length of the shortest path from v
to ¢ in the residual network. If there is no directed path from v to ¢, however, then d(v) is
a lower bound on 2n, plus the length of the shortest path from v to s. If, for each vertex
v, the distance label d(v) equals the minimum of the length of the shortest path from v to
t and 2n, plus the length of the shortest path from v to s, then we call the distance labels

ezact.

3 The Generic Preflow Push Algorithm on Bipartite Net-
works

All maximum flow algorithms described in this paper are preflow push algorithms, i.e.,
algorithms that maintain a preflow at every stage. They work by examining active vertices
and pushing excess from these vertices to vertices estimated to be closer to ¢. If ¢ is not
reachable, however, an attempt is made to push the excess back to s. Eventually, there will
be no excess on any vertex other than ¢. At this point the preflow is a flow, and moreover
it is a maximum flow[14],[15]. The algorithms use distance labels to measure the closeness
of a vertex to the sink or the source.

The generic preflow push algorithm consists of a preprocessing stage followed by repeated
application of a procedure called push/relabel. These two procedures appear in Figure 1.

Increasing the flow on an edge is called a push through the edge. We say a push of §
units of flow on edge (v, w) is saturating if § = uy(v,w) and nonsaturating otherwise. A
nonsaturating push at vertex v reduces e(v) to zero. We refer to the process of increasing
the distance label of a vertex as a relabel operation. The purpose of the relabel operation

is to create at least one eligible edge on which the algorithm can perform further pushes.

procedure preprocess

begin
f=10;
push u(s,v) units of flow on each edge (s,v) € I(s);
compute the exact distance label function d by
backward breadth-first searches from ¢ and from s
in the residual network;
end

procedure push/relabel(v)

begin
if there is an eligible edge (v, w)
then
begin select an eligible edge (v, w);
push § = min{e(v), us(v, w)} units of flow from v to w
end
else replace d(v) by min{d(w) + 1: (v, w) € I(v) and u;(v,w) > 0}
end

Figure 1: Two procedures for the generic preflow push algorithm

Not specified in Figure 1 is an efficient way to choose edges for pushing steps. We assume
the same mechanism as that proposed by Goldberg and Tarjan [14],[15]. The algorithm
maintains the incidence list I(v) for each vertex v, and a pointer into each such list indicating
a current edge. Initially the current edge of each incidence list is the first edge on the list.
To perform push/relabel(v), the current edge pointer for v is moved through the list I(v)
until it indicates an eligible edge or it reaches the end of the list. In the former case, a push
is done on the current edge. In the latter case, a relabel of v is done and the pointer is
reset to indicate the first edge on I(v). Figure 2 contains the algorithm preflow-push, which

combines the two subroutines of Figure 1. At the termination of the algorithm, each vertex

algorithm preflow-push

begin
preprocess;
while the network contains an active vertex do
begin
select an active vertex v;
push/relabel(v)
end
end

Figure 2: Algorithm preflow-push

in V — {s,1} has zero excess; thus the final preflow is a flow. It is easy to establish that this
flow is maximum. We shall briefly discuss the worst-case time complexity of the algorithm.
(We refer the reader to the paper of Goldberg and Tarjan [15] for a complete discussion of
the algorithm.)

We begin by stating two lemmas from [14],[15].

Lemma 3.1 [14],[15] The generic preflow push algorithm maintains valid distance labels at

each step. Moreover, each relabeling of a vertex v strictly increases d(v).

Lemma 3.2 [14],(15] At any time during the preflow push algorithm, for each vertez v with

positive excess, there is a directed path from verter v to vertez s in the residual network.
Now we can derive the necessary results specific to bipartite networks.
Corollary 3.3 For each active vertez v, d(v) < 4n,.

Proof: When a vertex v is relabeled, it has positive excess, and hence the residual network
contains a path P from v to s. Since the vertices on this path are alternately in V; and
V,, the maximum possible length of the path is 2n,. Since d(s) = 2n, and, for every edge
(w,z) on P, d(w) < d(z)+ 1, it must be the case that d(v) < d(s) + 2n, = 4n,. B

Corollary 3.4 The number of relabel steps is O(nin). Further, the time spent performing
relabels is O(nym). The time spent scanning edges while finding eligible edges on which to
push flow is also O(nym).

Proof: The first statement follows directly from Lemma 3.1 and Corollary 3.3. The second
statement follows from the fact that in order to relabel a vertex v, we must look at all of
the edges in I(v). Hence, the total relabeling time is O((¥ |I(v)])(4n,)) = O(nym). The
same bound holds for the time spent finding edges on whi‘&vto push flow. H

Corollary 3.5 The preflow push algorithm performs O(n,m) saturating pushes.

Proof: Between two consecutive saturating pushes on an edge (v, w), both d(v) and d(w)
must increase by 2. By Lemma 3.1 and Corollary 3.3, only O(n,) saturating pushes can be

done on (v, w). Summing over all edges gives the bound. l

Lemma 3.6 The preflow push algorithm performs O(nim) nonsaturating pushes.

procedure bipush/relabel(v)
begin
if there is an eligible edge (v, w)
then
begin select an eligible edge (v, w);
if there is an eligible edge (w,z)
then
begin select an eligible edge (w, z);
push § = min{e(v),u,(v, w), up(w,)} units of flow
along the path v — w — 2
end
else replace d(w) by min{d(z) +1: (w,z) € I(w) and uy(w,z) > 0}
end
else replace d(v) by min{d(w)+1: (v,w) € I(v) and (v, w) > 0}
end -

Figure 3: The procedure bipush/relabel

Proof: Omitted. (Analogous to the proof of Lemma 3.10 in [15].) m

The results in Column 3 of Table 1 for preflow push algorithms all follow from the known
results by using Corollaries 3.4 and 3.5 to replace certain O(n) bounds in the general case
with O(n,) bounds in the bipartite case. Since all these results are straightforward to obtain
and are dominated by those in Column 4, we omit their derivations and move on to the

more interesting results in Column 4.

4 The Bipartite Preflow Push Algorithm

The basic idea behind the bipartite preflow push algorithm is to perform bipushes from
vertices in Vj. A bipush is a push over two consecutive eligible edges; it moves excess from
a vertex in V; to another vertex in Vi. This approach has all the advantages of the usual
approach, and the additional advantage that it leads to improved running times. This
approach ensures that no vertex in V> ever has any excess. Since all the excess resides at
vertices in V, it suffices to account for the nonsaturating bipushes emanating from vertices
in V;. Since [Vi] < |V4|, the number of nonsaturating bipushes is reduced.

The bipartite preflow push algorithm is a simple generalization of the generic preflow
push algorithm. The bipartite algorithm is the same as the generic algorithm given in Sec-
tion 3 except that the procedure bipush /relabel appearing in Figure 3 replaces the procedure
push/relabel in the original algorithm. The algorithm identifies eligible edges emanating

from a vertex using the current edge data structure described earlier.

We call a push of § units on the path v — w — = a bipush. The bipush is saturating
if 6 = min{u;(v,w),us(w,z)} and nonsaturating otherwise. Observe that a nonsaturating
bipush reduces the excess at vertex v to zero. The following lemma is an easy consequence

of the two-edge push rule implemented in bipush/relabel.

Lemma 4.1 During the ezecution of the bipartite preflow push algorithm, all ezxcess re-

mains on the vertices in V.

Proof: The first thing the algorithm does is to saturate all edges leaving s. Since s € V;,
the claim is true immediately after this step. All the other pushes in the algorithm are done
using the procedure bipush/relabel, which pushes from a vertex in V) through a vertex in
V, to another vertex in V}, never leaving any excess on a vertex in V,. No other operations

create excess at any vertex. l

As in the original pfeﬂow push algorithm, the bipartite preflow push algorithm always
pushes flow on eligible edges and relabels a vertex only when there are no eligible edges
emanating from it. Hence Lemma 3.1 holds for this algorithm too. Lemma 3.2 also holds.
Corollary 3.3 holds for vertices in V;, but a modified version holds for vertices in V5: if
v € V4, then either d(v) < 4n, + 1 or d(v) = co. Corollary 3.4 holds as stated. Corollary 3.5
translates into a bound of O(n,m) saturating bipushes. The Lemma 3.6 bound of O(nim)
on nonsaturating pushes becomes a bound of O(n?m) on nonsaturating bipushes. Thus we

get the following result:
Theorem 4.2 The bipartite preflow push algorithm runs in O(n?m) time.

We now define the concept of a vertez ezamination. In an iteration, the generic bipartite
preflow push algorithm selects an active vertex v and performs a saturating bipush or a
nonsaturating bipush or relabels a vertex. In order to develop more efficient algorithms,
we incorporate the rule that whenever the élgorithm selects an active vertex v € Vi, it
keeps pushing flow from that vertex until either its excess becomes zero or it is relabeled.
Consequently, there may be several saturating bipushes followed either by a nonsaturating
bipush or a relabel operation; there will in general also be relabelings of vertices in V5.
We associate this sequence of operations with a vertex examination. We shall henceforth

assume that the bipartite preflow push algorithm follows this rule.

5 Specific Implementations of the Bipartite Preflow Push
Algorithm

The bottleneck in the bipartite preflow push algorithm is the time spent doing nonsaturating

bipushes. There are two orthogonal approaches to reducing this time. One approach is to

reduce the number of nonsaturating bipushes by selecting the vertices for bipush/relabel
operations cleverly. We shall consider several such selection rules in Sections 5.1-5.4. The
second approach is to reduce the time spent per nonsaturating bipush. The idea is to use
a sophisticated data structure in order to push flow along a whole path in one step, rather
than pushing flow along a single pair of edges. We shall study this approach in Section 5.5.
Finally, in Section 5.6 we study a parallel implementation of one version of the bipartite

preflow push algorithm.

5.1 The First-In First-Out (FIFO) Algorithm

The FIFO preflow push algorithm examines active vertices in first-in, first-out (FIFO) order.
The algorithm maintains a queue of active vertices. It selects a vertex v from the front
of) and performs pushes from v while adding newly active vertices to the rear of Q). The
algorithm examines v until either it becomes inactive or it is relabeled. In the latter case,
v is added to the rear of Q. The algorithm terminates when ¢ is empty. Goldberg and
Tarjan [16] showed that the FIFO algorithm performs O(n®) nonsaturating pushes. We
show, using a similar analysis, that the number of nonsaturating bipushes in the bipartite
case is O(n?).

For the purpose of the analysis, we partition the sequence of vertex examinations into
several passes. The first pass consists of examining the vertices that become active during
the preprocess step. For k > 2, the k** pass consists of examining all vertices that were

added to the queue during the k — 1** pass.
Lemma 5.1 The number of passes over Q is O(n?).

Proof: Let ® = max{d(v)|v is active}. The initial value of ® is at most 4n,. Consider the
effect that a pass over () can have on ®. If, during the pass, no vertex in V; is relabeled,
then the excess at every vertex is pushed to a vertex with a distance label smaller by at least
two, and consequently ® decreases by at least two. If some vertex in V) is relabeled during
the pass, however, then ® can increase or remain the same. In such a case the increase in
® is bounded by the largest increase in any distance label. Hence, by Corollary 3.3, the
total increase in @ over all passes is at most 4n?. Consequently, the total number of passes
is O(n}). W

Now observe that any pass examines each vertex in V; at most once and each vertex
examination performs at most one nonsaturating bipush. Consequently, the algorithm
performs O(n?) nonsaturating bipushes. We noted in the previous section that all other

operations take O(n;m) time. Thus we obtain the following result:

Theorem 5.2 The bipartite FIFO preflow push algorithm runs in O(nym + n?) time.

10

We note that this bound is also achieved by Karzanov’s algorithm [25] if it is implemented
using the two-edge push rule. A modification of Karzanov’s algorithm by Tarjan [36], which
he calls the wave algorithm, also has the same time bound. The analysis of both of these

algorithms is straightforward and hence omitted.

5.2 The Highest-Label Preflow Push Algorithm

The highest-label preflow push algorithm always pushes from an active vertex with highest
distance label. This rule can be implemented using a simple bucketing approach so that
the overhead for vertex selection is O(n?). The nonsaturating bipushes performed by the
algorithm can be divided into passes. A pass consists of all bipushes that occur between
two consecutive relabel steps of vertices in V;. Within a pass, vertices in V; can possibly
be relabeled several times. Notice that in this algorithm, excesses that are most distant
from the sink are pushed down two levels at a time. Consequently, if the algorithm does not
relabel any vertex during n, consecutive vertex examinations, all excess reaches the sink and
the algorithm terminates. Since the algorithm performs O(n?) relabel operations on vertices
in Vi, we immediately obtain a bound of O(n?) on the number of vertex examinations. As
each vertex examination entails at most one nonsaturating bipush, this gives a bound of
O(n?) on the number of nonsaturating bipushes and a bound of O(n;m+n}) on the running
time of the algorithm.

Cheriyan and Maheshwari [7] showed by a clever argument that the highest label pre-
flow push algorithm performs O(n*,/m) nonsaturating pushes for general networks. Mod-
ifying their argument to fit the bipartite case, we obtain a running time of O(nym +
min{n}, n}\/m}). This improves the above bound of O(nym + n3) if /m < n,. We shall
give a potential-based argument that is slightly different from the analysis of Cheriyan and
Maheshwari.

We focus on the set of edges that are both current and eligible; we call these edges live.
Recall that an edge (v, w) is eligible if it has positive residual capacity and d(v) = d(w) + 1;
(v, w) is current if the current edge pointer for vertex v indicates (v, w). Each vertex has at
most one outgoing live edge, and the live edges form no cycles since d(v) > d(w) if (v, w)
is a live edge. Thus the set of live edges defines a forest, which we call the live forest. We
call an active vertex mazimal if it has no active proper descendant in the live forest. For a
vertex v, let desc(v) be the number of descendants of v in the live forest, including v itself,
that are in V. Let p be a positive integer parameter whose value we shall choose later. For
a maximal active vertex v, we define the uncounted cost ¢(v) of v to be min{0, desq(v) — p}.
For any vertex v that is not maximal active, we define ¢(v) = 0. We use the sum }_ ¢(v)

veV;
to help bound the number of nonsaturating bipushes.

11

We wish to count nonsaturating bipushes. Our strategy is to charge nonsaturating
bipushes against changes in current edges, relabelings, increases in the total uncounted
cost, and certain other events. We shall obtain an overall bound of O(n;mp + n3/p) on the
number of nonsaturating bipushes. Choosing p = max{1, [n,/y/m]} then gives a bound of
O(min{n,m + n?,n?,/m}) on the number of nonsaturating bipushes.

Define a pass of the algorithm to be a maximal interval of time during which all vertices
selected for bipush/relabel steps have the same distance label. A pass terminates either when
a relabeling occurs or when all excess at vertices with maximum distance label is moved to

vertices of distance label lower by two.
Lemma 5.3 The total number of nonsaturating bipushes is O(nymp + n?/p).

Proof: An argument like that in Lemma 5.1 shows that the total number of passes is
O(n?). Consider the nonsaturating bipushes that occur during a pass. Every vertex from
which a bipush occurs is maximal active. For a vertex v, call a nonsaturating bipush from
v large if ¢(v) = 0 before the bipush and small otherwise. Two vertices v and w from which
nonsaturating bipushes occur during the pass have disjoint sets of descendants in the live
forest. If a large bipush occurs from a vertex v, v has at least p V;-descendants before the
bipush. Since total number of vertices in V; is n;, there can be at most n, /p large bipushes
during the pass.

The following argument shows that every small nonsaturating bipush causes an increase
of at least one in the total uncounted cost. Consider such a bipush from a vertex v to
a vertex z. The bipush causes vertex v to become inactive and may cause vertex z to
become maximal active; no other vertex can become maximal active. If z becomes maximal
active, the total uncounted cost increases by at least one, because desc(z) > desc(v) and
desc(v) < p. If z does not become maximal active, then the total uncounted cost still
increases by at least one, since the negative term desc(v) — p is removed from the total
uncounted cost.

We conclude that there are O(n?/p) nonsaturating bipushes (the large ones) plus those
accounted for by increases in the total uncounted cost. It remains to bound the sum of
all increases in the total uncounted cost. The total uncounted cost remains between —pn,
and zero. A nonsaturating bipush cannot decrease the total uncounted cost. A saturating
bipush or a relabeling or a change in a current edge can reduce the total uncounted cost
by at most O(p), since any such operation affects only O(1) maximal active vertices. We
conclude that the sum of all decreases in the total uncounted cost is O(n,;mp), and so is

the sum of all increases in the total uncounted cost. The lemma follows. l
Theorem 5.4 The highest label preflow push algorithm runs in

12

O(nym + min{n}, n}\/m}) time.
Proof: Immediate from Lemma 5.3 by choosing p = max{1, [n;//m]}. R

5.3 The Excess Scaling Algorithm

The ezcess scaling algorithm, due to Ahuja and Orlin [2], incorporates scaling of the excesses
into the generic preflow push algorithm, thereby reducing the number of nonsaturating
pushes from O(n’m) to O(n?logU). The basic idea is to push flow from active vertices
with sufficiently large excess to vertices with sufficiently small excess while never letting the
excesses become too large. We shall develop an adaptation of the excess scaling algorithm
for bipartite networks, which we call the bipartite excess scaling algorithm. This algorithm,

in contrast to the algorithms in Sections 5.1 and 5.2, requires that the edge capacities be

integral.

algorithm bipartite excess scaling
begin
preprocess;
A= 2[logU'|;
while A > 1 do
begin
while the network contains a vertex v € V;
with excess greater than A/2 do
begin
among vertices with excess exceeding A/2,
select a vertex v with smallest distance label;
perform bipush/relabel(v)
(modified to ensure that no excess exceeds A) '
end;
S A S
end —
end

Figure 4: bipartite ezcess scaling algorithm

Figure 4 describes the bipartite excess scaling algorithm. The algorithm uses the same
bipush/relabel step as the generic bipartite preflow push algorithm but with one slight differ-
ence. If # t, instead of pushing § = min{e(v), us(v,w), us(w,z)} units of flow, it pushes
é§ = min{e(v), us(v, w),us(w,z), A — e(z)} units, where A is a positive ezcess bound main-
tained by the algorithm. This change ensures that the algorithm permits no excess on an

active vertex to exceed A units. Since A is integral until the algorithm terminates, all

13

excesses remain integral, which implies that on termination only s and ¢ can have non-zero

excess. This implies that the algorithm is correct.

Lemma 5.5 The bipartite excess scaling algorithm maintains the following three invariants:

1. No vertexr in V, ever has positive excess.
2. Any bipush that does not saturate an edge moves at least A/2 units of flow.

3. No verter ever has excess greater than A.

Proof: Invariant 1 is satisfied because the bipartite excess scaling algorithm is a special
case of the generic algorithm and the generic algorithm satisfies it. For Invariants 2 and 3,
see (2, 3]. B

We can use these invariants to establish a bound on the number of nonsaturating bi-
pushes. We define a scaling phase to be a maximal period of time during which A does not

change.

Lemma 5.6 The bipartite excess scaling algorithm performs O(n?logU) nonsaturating

pushes and runs O(n,m + n?logU) time.

Proof: As in [3], we consider the potential function ® = 3 1('1)5@, which by Invariant 1
veV

is the same as 3 waiﬂ. By Invariant 3, at the beginning of a scaling phase, ® < 4n?.
The actions of ;i‘g algorithm consist of bipushes and relabels. We consider the two cases
separately:
Case 1: A relabel occurs. If a vertex in V, was relabeled, ® remains unchanged. If a vertex
in V; was relabeled, ® increases by at least one. By Corollary 3.3, such increases sum to
O(n?). (This bound actually applies to the whole algorithm, not just one scaling phase.)
Case 2: A bipush occurs. This must decrease ®. If the bipush is nonsaturating, then by
Invariant 2, it moves at least % units of flow to a vertex with distance label two units lower,
so ® decreases by at least 1. As the initial value plus the total increase to ® are O(n}), ®
can decrease O(n?) per scaling phase, which means there are O(n}) nonsaturating pushes
per scaling phase.

Observe that originally A < 2U, where U is the maximum capacity in the network,
and that when A decreases below 1, the algorithm terminates. In each scaling phase, A
decreases by a factor of 2, so there are O(log U) scaling phases. Thus the total number of

nonsaturating pushes is O(n3logU).

14

make-tree(v) Make vertex v into a one-vertex dynamic tree.

find-root(v) Return the root of v’s tree.

find-size(v) Return the number of vertices in v’s tree.

find-value(v) Return the value of the tree edge from v to its parent.
Return oo if v is a root.

find-min(v) Return the ancestor w of v with minimum find-value(w).

In case of a tie, choose the w closest to the root.
Choose v if v is the root.
change-value(v,z) Add z to the value of every edge from v to find-root(v).
linkv,w, z) Combine the trees containing v and w by making w the parent
of v and giving edge (v, w) the value z. Do nothing if » and w are
in the same tree or if » is not a root.
cut(v) Break v’s tree into two trees, by deleting the edge joining
v and v’s parent. Do nothing if v is a root.

Figure 5: Dynamic Tree Operations

The running time of the algorithm is O(nym + n}log U) plus the time required to select
smallest-distance vertices for push/relabel steps. The bucket-based data structure described
in [3] makes the total time for vertex selection O(nym + nilogU). ®

5.4 Variants of Excess Scaling

Ahuja, Orlin, and Tarjan [3] have developed two variants of the excess scaling algorithm
that achieve improved time bounds. The faster of these, called the wave scaling algorithm,
runs in O(nm + n?y/log U) time. The idea of bipushes can easily be incorporated into
both of their algorithms, thereby improving the running times for bipartite networks. The

following theorem states the running time of the bipartite wave scaling algorithm.
Theorem 5.7 The bipartite wave scaling algorithm runs in O(nym + n}/logU) time.

The derivation of this time bound is similar to that of the excess scaling algorithm. The
analysis of the original algorithm uses arguments based on potential functions defined over
the vertex set V. For bipartite networks, we define the potential functions over the set V)
and are able to replace n by n, in the running time. The detailed proof of this theorem is
quite lengthy but contains no new ideas; therefore we omit it. A similar improvement can
be obtained in Ahuja, Orlin, and Tarjan’s less efficient algorithm, called the stack scaling

algorithm.

5.5 Dynamic Trees

In the previous four sections, we reduced the time needed to compute a maximum flow by

reducing the number of nonsaturating pushes. In this section, we consider a different ap-

15

proach: we reduce the time spent per nonsaturating push. The idea is to use a sophisticated
data structure in order to push flow along a whole path in one step, rather than pushing
flow along a single edge. The dynamic tree data structure of Sleator and Tarjan [33, 34, 37]
is ideally suited for this purpose.

The dynamic tree data structure allows the maintenance of a collection of vertex-disjoint
rooted trees, each edge of which has an associated real value. We adopt the convention that
tree edges are directed towards the root. We denote the parent of v by p(v) and regard each
vertex as an ancestor and descendent of itself. We call a dynamic tree trivial if it contains
only one V,-vertex and non-trivial otherwise. The data structure supports the operations
in Figure 5. It is shown in [33] that if the maximum number of vertices in any tree is k, we
can perform an arbitrary sequence of / tree operations in O(llog k) time.

In maximum flow algorithms, the dynamic tree edges are a subset of the current edges.
The value of a tree edge is its residual capacity. We maintain the invariant that every active
vertex is a dynamic tree root. For this section, we relax the invariant that all excess is on
vertices in V] and allow excess to accumulate on vertices in V3.

The key to the dynamic tree implementation is the tree-push/relabel operation in Figure
6. The operation is applied to an active vertex ». If there is an eligible edge (v, w) then the
operation adds (v, w) to the forest of dynamic trees, pushes as much flow as possible from
v to the root of the tree containing w, and then deletes from the forest all edges which are
saturated by this push. Otherwise, v is relabeled and its children are cut off. We refer to
the operation of pushing flow from a node of a dynamic tree to the root as a tree-push.

The first dynamic tree algorithm we consider is just the generic preflow-push algorithm
with the push/relabel operation replaced by the tree-push/relabel operation of Figure 6. We
modify the initialization so that each vertex is in its own one-vertex dynamic tree and we
add a post-processing step which extracts the correct flow on each edge that remains in a
dynamic tree. We call this algorithm the generic bipartite dynamic tree algorithm.

The correctness of this algorithm is straightforward to verify (see [14], [15]). We show

that this implementation yields an efficient algorithm.

Lemma 5.8 The number of tree-push/relabel operations done by the generic bipartite dy-

namic tree algorithm is O(n;m).

Proof: Each tree-push/relabel operation either relabels a vertex or pushes flow along a tree
path. If it pushes flow then it must either saturate an edge or decrease the number of tree
roots by one. By Corollaries 3.4 and 3.5 a relabeling or an edge saturation can occur at
most O(n;m) times. Furthermore the total increase in the number of tree roots caused by

such operations is O(nym). Thus a push which decreases the number of tree roots by one

16

procedure iree-push/relabel(v)

begin
if there is an eligible edge (v, w)
then
begin link(v, w, us(v, w))
p(v) — w
6 «— min{e(v), find-value(find-min(v))}
change-value(v, —§)
) while v #find-root(v) and find-value(find-min(v)) = 0 do
begin z «— find-min(v)
A, cul(z)
end
end
else begin replace d(v) by min{d(w) + 1: (v,w) € I(v) and u;(v,w) > 0}
(1) for all children y of v do
9] cui(y)
end
end

Figure 6: The tree-push/relabel operation

can occur at most O(n;m + n) times, which is the sum of the number of times the number

of tree roots can increase by one plus the number of initial tree roots. il

Recalling the assumption about vertex examinations that bounds the time spent deciding

which vertex and edge to process, we get the following theorem:
Theorem 5.9 The generic bipartite dynamic tree algorithm runs in O(n;mlogn) time.

Proof: Each call to tree push/relabel does O(1) dynamic tree operations and then executes
the while loop in line (*) or the for loop in line () a number of times. Each execution
of the while loop takes O(1) dynamic tree operations, and the while loop is executed at
most O(nym) times over the course of the whole algorithm, since each cut in line (**)
corresponds to a saturating push. Similarly the cuts in line (1) correspond to edges looked
at while relabeling and by Corollary 3.4 there are only O(n;m) of these. Thus the algorithm
performs O(ny;m) dynamic tree operations. Since the maximum tree size is n, the algorithm

takes O(nymlogn) time. W

Note that we have used the fact that the number of links, the number of cuts, the number

of saturating pushes, and the relabeling time are all O(nym).

17

procedure bi-cut(v)

begin
ifveW
then cut(p(v))
cut(v)

end

Figure 7: The bi-cut operation

5.5.1 Further Improvements

While for many values of n, n,, m, and U, the bound given by Theorem 5.9 is an improve-
ment over those of the algorithms in the previous four sections, it is possible to use dynamic
trees in a more sophisticated manner to achieve a running time of O(nlmlo_g(%s +2)).In
order to realize this bound, we must overcome a few obstacles. First, as in [3] and [14, 15],
we need to limit the tree size. Moreover, we need to make the tree size bound solely a
function of n, rather than n. Finally, we must deal with the fact that a cut can make a
V,-vertex a tree root. This leaves open the possibility that a V,-vertex will become active,
thus violating one of the invariants we have previously maintained. We see no way to avoid
this — instead we control how this happens and use a fairly complicated analysis to show

that we can achieve the desired time bounds.

To ensure that the tree size is a function of n; and not n, we use the following:

Lemma 5.10 If all the leaves in a non-trivial dynamic tree are V;-vertices, then the number

of vertices in the tree is at most twice the total number of V)-vertices in the tree.

Proof: Since no Vy-vertex is a leaf, all V,-vertices have at least one child. The graph
is bipartite, which means that all these children must be V;-vertices. Therefore, the total
number of V; vertices in the tree must be at least as large as the total number of V,-vertices.

We will use two rules to enforce this invariant. First, if a link operation could make a V-
vertex a leaf, we do not perform that link. This rule will be respected in all the procedures
that follow. Second, if a cut causes a Vi-vertex to become a leaf, we immediately cut
that vertex from the tree. This idea is implemented in procedure bi-cut, which appears
in Figure 7. Procedure bi-cut will be used in place of cut. Observe that procedure bi-cut
performs at most two dynamic tree operations.

We also want to maintain the invariant that no tree have more than k vertices (k will be

chosen later). As in [14, 15] we achieve this by preceding each link operation by a calculation

18

of whether or not the result of the link will be a tree of greater than k vertices. If so, we do
not perform the link. Since trees 6nly grow as the result of link operations, it is clear that
this maintains the desired invariant.

The main problem left to address is the complexity added by allowing excess to remain
on Vi-vertices. In general, this yields slower running times. We maintain the following

invariant, however:
Invariant 5.11 Whenever a V,-vertez is relabeled, it does not have any ezcess on it.

As we shall see, this will allow us to get a good bound on the number of tree operations.
To maintain this invariant we need to ensure that we always have the flexibility to send
all the excess from a V,-vertex out over the current edge. The following lemma gives a

condition sufficient to guarantee this flexibility:

Lemma 5.12 Let out-cap(v) be the residual capacity of the current edge of v. If for all

Va-vertices v that are dynamic tree roots, we maintain that
e(v) < out-cap(v) (5)

and that the current edge of v is eligible, then Invariant 5.11 can be satisfied with O(1)

additional work per tree-push or relabeling operation.

Proof: The left side of (5) can change when we do a push that involves v, and the right side
can change when the current edge of v changes. We deal with these two cases separately.
When doing a tree-push that terminates at a root r that is a V,-vertex we must ensure that
the new excess does not exceed out-cap(r). To do this we simply push less flow. This idea
is captured in a new procedure called bi-send, which appears in Figure 8. This procedure
will be used whenever we want to push flow along a path from a tree vertex to the root.
Next we have to deal with the case when out-cap(v) changes. Let (v, w) be the current
edge of v. The value of out-cap(v) may change in two different ways. One way is that (v, w)
may become saturated. When this happens, invariant (5) implies that the push saturating
(v, w) rids v of all its excess. After the push, we advance the current edge pointer of v to
the next eligible edge, doing a relabeling if necessary. The second case is that w may be
relabeled, thus making (v, w) ineligible. The current edge pointer of v is advanced to the
next eligible edge; for this new edge, (5) may be violated, however. To handle this case,
we always push flow over edge (v, w) before relabeling w. This change is summarized in
procedure bi-relabel(w), which appears in Figure 9. Observe that since all edges incident to
w must be inspected in order to relabel w, procedure bi-relabel runs in the same asymptotic

time as procedure relabel.

19

procedure bi-send(v)

begin
f « find-root(v)
ifr € V1
then
. § — min{e(v), find-value find-min(v))}
else
) § «— min{e(v), find-value(find-min(v)), out-cap(r) — e(r)}

change-value(v, —48)
while v #find-root(v) and find-value(find-min(v)) = 0 do
begin z — find-min(v)
bi-cut(z)
end
end

Figure 8: The bi-send operation

procedure bi-relabelw)

begin
fweVW;
then for all v s.t. the current edge of v is (v, w) do
push e(v) units of flow over edge (v, w)
replace d(v) by min{d(w)+ 1: (v,w) € I(v) and u;(v,w) > 0}
for all children y of v do
bi-cut(y)
end

Figure 9: The bi-relabel operation

What we have shown is that whenever the curren ge pointer of w € V, advances,
there is no excess at w. Since this pointer advances ' the end of the list before a relabel,
it must be true that at the time of a relabel there is no excess on w. Further, the only
algorithmic changes are the change in line (*) of bi-send, which adds O(1) work per free
push, the change in bi-relabel, which adds O(1) work per relabel, and a change in the current
edge advancement procedure, to make sure that current edges from V;-vertices are always
eligible. W

Given these building blocks we can give the procedure bi-tree push/relabel, which incor-
porates all of these ideas. The procedure appears in Figure 10. The basic idea is similar
to that used in [3, 14, 15], in that we do a tree-push, but only perform a link if the size of
the resulting tree is not too large. We also have the additional constraint of not performing

a link that will cause a Vy-vertex to become a leaf. This leads to lines (T1) through (T2)

20

procedure bi-iree-push/relabel(v)
begin
if there is an eligible edge (v, w)
(T1) then begin if v is a trivial V; tree
then begin push flow on edge (v, w)
r « find-root(w)
(TB) bi-send*(w)
if there is an eligible edge (r,¢)
then begin v — r

w e q
end
else bi-relabel(r)
(T2) end
if find-size(v) + find-size(w) < k
€ then begin link(v, w, us(v, w))
p(v) —w
end
£ else begin push flow on edge (v, w)
bi-send(w)
(" Perform the cuts from line (TB) (there may be none)
end
end
else
bi-relabel(v)
end

Figure 10: The bi-tree-push/relabel procedure

of bi-tree push/relabel which handle the case when we are pushing from a trivial dynamic
tree. In this case we first push flow over v’s eligible edge (v, w). Then we do a bi-send(w)
and proceed as if we had started at the root of w’s dynamic tree. We also make one tech-
nical change and use a procedure called bi-send* instead of bi-send in line (TB). Procedure
bi-send* differs from bi-sendin that it defers doing its cuts until line (**) of procedure bi-tree
push/relabel. This is done in order to avoid the case that the link performed in line (f) is
linking a trivial dynamic tree, as this would make a V,-vertex a leaf. (This is done purely
for ease of presentation and is not necessary.)

We now use procedure bi-tree-push/relabel in a FIFO algorithm. We call this the FIFO
bipartite dynamic tree algorithm.

Since, by Invariant 5.11, whenever a V,-vertex is relabeled it has no excess, we can derive
a bound of O(n?) passes over the queue, by a proof similar to that of 5.1. Define a vertez

activation to be the event that either a vertex with zero excess receives positive excess, or

21

a vertex with positive excess is relabeled. This corresponds to a vertex being placed on the
queue. We will need to bound the number of times this occurs.

First, we give a lemma, the proof of which is simliar to that of Lemma 5.8 and The-
orem 5.9, with the additional observations that the time spent in an iteration of bi-tree-

push/relabel is within a constant factor of the amount of work done by tree-push/relabel.

Lemma 5.13 The FIFO bipartite dynamic tree algorithm runs in O(nymlogk) time plus
O(log k) time per verter activation. B

All that remains is to bound the number of vertex activations. First we introduce some
terminology. We denote the tree containing vertex v by T,. We call a tree large if the
number of nodes in the tree is at least k/2. As a consequence of Lemma 5.10, there are
only 2n, vertices in all the non-trivial dynamic trees, hence there are no more than 4n,/k
large trees at any time. In particular we will use the fact that there are O(n,/k) large trees

at the beginning of a pass over the queue.
Lemma 5.14 The number of vertez activations is O(n,m + n}/k).

Proof: By invariant 5.11, all V;-vertices have zero excess when relabeled, thus the only
vertex activations due to relabelings are from Vj-vertices. There are at most O(n}) of
these. There can be only O(ny;m) vertex activations for which the corresponding bi-tree-
push/relabel executions perform a cut or link or a saturating push in line (*). -

It remains to count the vertex activations for which the corresponding invocation of
bi-tree-push/relabel does neither a cut nor a link nor a saturating push. If this occurs then
it must be that find-size(v) + find-size(w) > k, i.e. either T, or T, is large. We consider the
two cases separately.

Suppose T, is large. Vertex v is the root of 7,. Since the push is non-saturating, it must
rid v of all its excess. If T, has changed since the beginning of the current pass, we charge
the activation to the link or cut that most recently changed 7,. This occurs at most once
per cut and twice per link for a total of O(n;m) time overall. If T, has not changed since
the beginning of the pass, we charge the activation to T,. There are at most O(n, /k) large
trees at the start of a pass, hence this case counts for O(n}/k) charges overall.

Suppose T, is large. In this case the root r of T\, may be added to the queue. As before,
if T,, changed during the pass we charge the activation to the link or cut which caused it,
otherwise we charge it to the large tree.

We have ignored so far the possible activations in lines (T1) through (T2). It is easy to

verify that these only add a constant factor to the bounds mentioned above. The reason

22

for adding this case is to ensure that in every iteration either a link, cut, or saturation is
performed, or a large tree is involved. This additional case allows us to ensure this with no
asymptotic loss in the running time of the procedure.

Combining all these cases we get O(nym + n3/k) vertex activations. Ml

Theorem 5.15 The FIFO bipartite dynamic trees algorithm runs in O(nlmlog(%?» + 2))

time.

Proof: Apply Lemmas 5.13 and 5.14 and choose k = %?- +2. 1

5.6 A Parallel Implementation

In this section, we give a parallel implementation of the bipartite excess scaling algorithm.
Our model of computation is an exclusive-read exclusive-write parallel random access ma-
chine (EREW PRAM) [12]. Our algorithm runs in O((242 4 nilogU)logd) time using
d = [2] processors, thus achieving near-optimal speedup for the given number of pro-
cessors. We assume familiarity with parallel prefix operations [21] and refer the reader
to [2, 15, 26, 32] for examples of the use of parallel prefix operations in network flow al-
gorithms. Specifically, we use the fact that using d processors and O(logd) time, we can

execute the following parallel prefix operation:

o Parallel Prefix Operation: Given ! < d numbers f(v,),..., f(w), compute the partial
sums f(v1), f(v1) + f(v2), ..., f(v1) +...+ f(w).

Our algorithm will be the same as the excess-scaling algorithm of Section 5.3 with a
parallel implementation of bipush/relabel and a few additional data structures. The same
approach was taken by Ahuja and Orlin [2] in developing a parallel version of their original
excess scaling algorithm.

The first step in our algorithm is to transform the input graph so that each vertex has
out-degree no greater than d. This transformation yields a graph with O(n,) V}-vertices,
O(ny) Vi-vertices and O(m) edges. We achieve this by repeating the following step until it

is no longer applicable:

o splitting step: Pick a vertex v with out-degree k > d. Create two new vertices v" and
v" and replace edges (v, Vg_441) - - . (v, v) with edges (v,v’),(v',v"), and

(v", Ve—ag1) - - . (V",).

The splitting step creates one new Vj-vertex, one new V,-vertex, and 2 more edges.
Let ® = Y, max{0, [Qi—lllc%g_ﬂﬂu]}. Each splitting step reduces ® by one. Initially

23

® = O(n,) and ® > 0 when the algorithm terminates. Thus, we only need to perform the
splitting step O(n,) times overall, adding O(n,) vertices and O(n,) edges. Similarly, we
can repeat the same step to reduce the in-degree of each vertex.

Further, we can perform this step in O(n,logm) time on d processors. 'We explain
how to reduce the in-degree; the out-degree can be reduced in a similar manner. First, we
lexicographically sort the list of edges by their tails. This can be done on d processors in
O(n, log m) time using Cole’s sorting algorithm [8] and Brent’s Theorem [6]. Next, we assign
one processor to each of the last d edges on the list. In O(logd) time, we can determine if
all these edges have the same tail. If so, we perform the splitting step, which can be done
in O(1) time on d processors. We then delete these edges from the list and continue on
the remainder of the list. If they do not all have the same tail, then the last vertex on the
list must have degree < d. In this case we delete all edges which have the same tail as the
last edge and continue on the remainder of the list. In each iteration we either delete all
the edges incident to a vertex or we process d edges. Hence there are O(n, + %) = O(n,)
iterations, each of which can be performed in O(logm) time on d processors.

For the rest of this section, we will assume, w.l.o.g., that every vertex in our graph has
both in-degree and out-degree < d.

We first address the problem of implementing a bipush in parallel. In the bipush opera-
tion for the maximum flow problem, it is necessary to scan the edge list for vertex v starting
with the current edge for vertex v until either an eligible edge is determined or until the
edge list is exhausted. In the parallel algorithm, we will scan these edges in parallel.

We begin by introducing some terminology. Let I(v) denote the set of vertices w such
that (v, w) is an edge, and let [(v) denote the set of vertices w such that (v, w) is an eligible
edge. Let us assume that the vertices in I(v) are denoted vy, v, ..., v, where k = |I(v)|.
Thus the j-th edge emanating from vertex v is edge (v, v;).

For each vertex v € V3, we let #(v) = 3°, ¢ 1, 7(v, w), and refer to #(v) as the effective
residual capacity of vertex v. Note that we can always push all of the excess out of a vertex
v in V, prior to a relabeling of v so long as the excess does not exceed the effective residual
capacity.

We define the effective residual capacity 7(v,w) of edge (v, w) as

0 if (v, w) is not eligible
f(v,w) =4 r(v,w) if (v, w) is eligible and v € Vy,w € V}
min{r(v,w),w)} if (v,w)is eligible and v € V},w € V5.

In the algorithm, we will be performing pushes from one vertex in V; at a time, and
we will subsequently push from several vertices in V; in parallel. By defining the effective

residual capacity for edges (v,w) as we do, we will ensure that we never push more flow

24

procedure Parallel-push(v, §, S)
begin :
¢ = Current(v). k = NeztCurrent(v,6). s = |S|
(*) For each i from ¢ to min(k — 1,¢ + s — 1) do in parallel
send 7(v,v;) units of flow in edge (v, v;), and update 7.
ifs>k—c+1land k< |I(v)]
then send NeztIncrement(v,§) units of flow in edge (v, vi).
Current(v) = NeztCurrent(v, §).
end

Figure 11: The procedure parallel push

into any vertex v € V, than the effective residual capacity of v. Subsequently, all of the flow
can be pushed out prior to a relabel of v.

In order to achieve the speedup desired, we cannot assign one processor to each edge
of I(v) in a push from vertex v. Thus, we will have to more efficiently allocate processors
to edges on which we wish to push flow. In order to do so, we introduce the following four

procedures. In all these procedures v is a vertex from which we wish to push § units of flow.

1. NeztCurrent(v,§): if pushing & units of flow would saturate all of v’s admissible

edges, then output |I(v)| + 1. Otherwise, output the index of the edge that will be

current after pushing é units of flow from v.

2. NewRelabel(v,§): output true if NextCurrent (v,8) = |[I(v)| + 1 and false otherwise.

3. NeztIncrement(v,§): output the amount of flow to be sent in edge NextCurrent(v,)

when pushing flow from v.

4. Requirement(v,6): output the number of edges scanned in order to send § units of

flow from v without a relabel. It is equal to NeztCurrent(v,8) — Current(v) + 1.

Lemma 5.18 There ezists a data structure that allows us to implement each of these op-

erations in O(logd) time on one processor.

We defer the proof until later. Assume for now that such an implementation exists.

Using these procedures, we can implement the main operation, which we call parallel-
push(v, 8, S). This operation tries to push up to & units of flow from vertex v using the set §

of parallel processors, and so that no relabel occurs. The implementation is straightforward,

and appears in Figure 11.

Lemma 5.17 Parallel-push can be implemented in O(logd) time on d processors.

25

Proof: Step (*) can be implemented by a parallel prefix operation on d processors. By

Lemma 5.16 all the other steps can be implemented on 1 processor in O(logd) time. W

Part of the input to parallel-push is a set of processors. We use a procedure Allocate(v, D)
to implement this.
Allocate(v, D)

input: vertex v, and D, a d-dimensional vector of demands for processors from the
vertices in I(v). D(7) is the number of processors requested by vertex v;.

output: The vector Processors(), where Processors(j) is the set of processors allocated
to vertex v;. |

It is straightforward to implement Allocate with a parallel prefix operation.

Now, we are ready to put all the pieces together to get an implementation of parallel
bipush/relabel. This simply consists of a parallel push from v, followed by a set of parallel
pushes from vertices w € V, with excess, each of which is preceded by processor alloca-
tion. The procedure concludes by relabeling the necessary vertices. The details appear in
Figure 12. One detail deserves explanation. We always try to push exacﬂy A/2 units of
flow from a vertex in Vj. This is necessary to maintain the invariant that no vertex ever

accumulates more than A units of excess.

procedure parallel bipush/relabel(v)
begin
Parallel push(v, A/2, d)
while e(v;) # 0 for some v; € I(v) do
begin
for each j = 1 to d do in parallel
D(v;) = Requirement(vj, e(v;)).
Allocate(v, D, d).
for i = 1 to d do in parallel
begin
%) push(v;, e(v;), processors(i)).
update data structures.
end
end
create a list L of indices j s.t. j € V5 and NewRelabel(v;) = true.
for each i € L do Relabel(v;).
if NewRelabel(v) = true then relabel(v).
end

Figure 12: Procedure parallel bipush/relabel

To begin the analysis, we bound the number of iterations of this procedure.

Lemma 5.18 There are O(n?logU) calls to parallel bipush/relabel over the course of the

whole algorithm.

26

Proof: Each parallel bipush/relabel in the first line either moves A /2 units of flow or results
in a relabeling. By a proof similar to that of Lemma 5.6, there are at most O(n}log U) such

pushes over the whole algorithm. W

Lemma 5.19 Each call to parallel bipush/relabel takes
O(# of iterations of the while loop x log d + time spent relabeling) time on d processors.

Proof: By Lemma 5.16 and the fact that Allocate takes O(logd) time, each step except
for the parallel push in line (*) takes O(logd) time. We know from lemma 5.17 that a push
takes O(logd) time. It is easy to see that a set of pushes which use a total of d edges can
also be completed in O(logd) time; thus each iteration of the while loop takes O(logd) time.

The lemma follows. W

It remains to bound the number of iterations of the while loop.
Lemma 5.20 The while loop is exzecuted O(24™ +n3 log U) times over the whole algorithm.

Proof: First we observe that each vertex in /(v) may have at most one non-saturating
push from it per execution of the while loop. Lemma 5.18 implies that the number of
non-saturating pushes is at most O(nidlogU) overall. Let nsp be the number of non-
saturating pushes that have occurred since the beginning of the algorithm. Consider the
potential function F' = ¥, current(v) 4+ nsp. Initially FF = 0 and at termination F' =
(# of non-saturating pushes) = O(njdlogU). The only way for F to decrease is by a
relabel. Each relabel decreases F' by at most |I(v)|; the total decrease is O(nym). So,
the total increase in F over the algorithm is O((nidlog U + nym). A parallel push with k
processors increases F' by k or results in a relabeling. Each iteration in a while loop except
for the last one allocates d processors; hence it increases F' by d or results in a relabeling,.
Ignoring the last iteration of the while loop in each call to parallel bipush/relabel, we find
that there are at most O((n}dlogU + nym)/d) iterations of the while loop. To count the
last iterations, we observe that there is one last iteration per call for a total of O(n?log U).

Thus, overall there are O(™™ + n}log U) iterations. B

Lemma 5.21 The total time spent relabeling is O((™4™ + n}log U)logd) .

Proof: We spend a total of O(n;m) work relabeling. However, at each relabeling step we
look at d edges at a time, except for the last relabel step in a call to parallel bipush/relabel.
Hence the total time is O(242 + nilog U)W

Now we turn to the proof of Lemma 5.16.

27

Proof: (of Lemma 5.16) Assume for now that £ = |I(v)| is a power = 2 for each vertex.
We create a complete binary tree whose leaves are the indices of the vertices in I(v). The
key of each leaf j in the binary tree is #(v,v;). The key of each internal vertex of the binary
tree is the sum of the keys of its descendent leaves.

Whenever a vertex v is relabeled, each vertex v; of I(v) is assigned a processor, and
its binary tree is updated. The assignment of processors takes O(logd) steps per relabel.
Moreover, each processor updates its binary tree in O(logd) steps.

When a push from vertex v is performed, the binary tree for vertex v must be updated.
If k processors are assigned then Current is increased by < k, and the updating can be
accomplished with k processors in O(log d) time.

In order to compute NeztCurrent(v,é), we start at the root of the binary tree for v,
and we select the right child or the left child dei)endjng on whether 6 is less than or greater
than the key of the right child. We then recurse on the selected child. We also can compute

NextIncrement in this manner. B

Combining all the above results, we have the following theorem:

Theorem 5.22 Algorithm Bipartite Excess Scaling with bipush/relabel replaced by parallel
bipush/relabel runs in O((242 +n}log U)logd) time on d processors on an EREW PRAM.

Plugging in d = [], we can restate the theorem as the following corollary:

Corollary 5.23 Algorithm Bipartite Excess Scaling with bipush/relabel replaced by paral-
lel bipush/relabel runs in O(n}log Ulog) time on [2*] processors on an EREW PRAM.

The work done by this algorithm is within a logarithmic factor of the running time of

the sequential algorithm Bipartite Excess Scaling.

6 Parametric Maximum Flow

A natural generalization of the maximum flow problem is obtained by making the edge
capacities functions of a single parameter A. This problem is known as the parametric
mazimum flow problem. We consider parametric maximum flow problems in which the
capacities of the edges out of the sink are non-decreasing functions of), the capacities of
the edges into the sink are non-increasing functions of A, and the capacities of the remaining
edges are constant. Although this type of parameterization appears to be quite specialized,
Gallo, Grigoriadis, and Tarjan [13] have pointed out that this parametric problem has many
applications, in computing subgraph density and network vulnerability and in solving other

problems, some of which are mentioned at the end of this section.

28

Let u,(v,w) denote the capacity of edge (v, w) as a function of A and suppose that we
wish to solve the maximum flow problem for parameter values A; < Ay < --- < A;. Clearly,
for I different values of A, a solution can be found using / invocations of a maximum flow
algorithm. This approach takes no advantage of the similarity of the successive problems
to be solved, however. Gallo, Grigoriadis, and Tarjan [13] gave an algorithm for finding the
maximum flow for O(n) increasing values of A in the same asymptotic time that it takes
to run the Goldberg-Tarjan maximum flow algorithm once. If the capacities are linear
functions of A, it is easy to show that the value of the maximum flow, when viewed as a
function of A, is a piecewise linear function with no more than n — 2 breakpoints. In this
case, they give an algorithm for finding all of the breakpoints of this function in the same
asymptotic time as it takes to run the Goldberg-Tarjan maximum flow algorithm once.

In this section we give an algorithm which for [increasing values of A finds all / maximum
flows in O(In+Inf+n3 +nym) time. Using the dynamic tree data structure, this algorithm
runs in O(In + nlmlog(’“—‘:ﬁ + 2)) time.

We begin by giving one iteration of the algorithm, i.e., determining the maximum flow for
parameter value J;, if the maximum flow for parameter value A;_, is given. The algorithm
appears in Figure 13. First, we update the capacities. The capacity of an edge leaving the
source may have increased. If so, we saturate the edge, by setting its flow equal to its new
capacity. The capacity of an edge leaving the sink may have decreased. If it has decreased
below the flow on the edge, we decrease the flow so that it is equal to the capacity. Since
t € V; by assumption, this may create excess on vertices in V,. Therefore, we immediately
push any such excess to vertices in Vj, thus re-establishing the invariant that no excess
is on vertices in V5. The second step consists of running the bipartite FIFO algorithm in
the network beginning with the current f and d. This gives us a maximum flow for the

parameter value A;.

Step 1 (Update preflow)
leti=1+1 :
V(s,v) € E with d(v) < 2n,, let f(s,v) = max{u,,(s,v), f(s,v)}.
¥(v,1) € E, let f(v,) = min{u, (v,), f(v,1)}.
Vv € V, while e(v) > 0, do push/relabel(v).

Step 2 (Find maximum flow) Run the bipartite FIFO algorithm on the network with capac-
ities u,,, beginning with flow f and distance labels d.

Figure 13: Algorithm parametric bipartite flow

Remark: In applications of the parametric maximum flow problem, it may happen

that s € V; or t € V,, contrary to our assumption. Such a possibility can be handled by

29

making minor changes to the algorithm, without affecting its running time.

Now we must prove that the algorithm is correct and efficient. We do this by means of

the following lemmas:

Lemma 6.1 At the end of each step in the algorithm, there is no excess on any vertez in
Va.

Proof: It suffices to restrict our attention to Step 1, since Step 2 always maintains this
condition. Since by assumption s € V,, increasing the flow on edges out of s can increase
the excess only on vertices in V. Since t € V;, decreasing the flow on edges into ¢ may
create excesses on vertices in V,. This excess is immediately removed from vertices in V;

by the procedure push/relabel, however. B

Lemma 6.2 Throughout all iterations of the parametric bipartite flow algorithm, distance

labels are non-decreasing.

Proof: We first show that updating the residual capacities and the preflow between itera-
tions maintains the validity of the distance labels. Increasing the flow on an edge (s, v) may
create a new residual edge (v, 8), but since d(v) < 2n,, the labeling is still valid. Decreasing
the flow on edges into ¢ does not create any new residual edges, so the distance labels are
still valid. We noted earlier that procedures push/relabel and bipush/relabel maintain a valid
labeling. The lemma follows. W

A consequence of Lemma 6.2 is that, over all iterations of the algorithm, each vertex
is relabeled O(n,) times, and the total relabeling time is O(n,m). Furthermore, the total
number of saturating pushes over the whole algorithm is O(n;m). We bound the number

of nonsaturating bipushes in the next lemma.

Lemma 6.3 The algorithm performs a total of O(In? + n?) nonsaturating bipushes over all

[iterations.

Proof: As in the bipartite FIFO algorithm, consider the potential function

® = max{d(v)|v is active}. The potential function increases due to relabelings, and this
increase has already been shown to be at most 4n?. The potential function may also increase
in Step 1 when the preflow is updated. But this increase is at most O(n,) per iteration,
and O(n,l) over all iterations. Thus the total number of passes over @ is O(Iny + n) and

the total number of nonsaturating bipushes is O(In? + n?). ®

Theorem 6.4 A total of | iterations of the parametric bipartite flow algorithm take O(In+

nym + In? + n?) time.

30

Proof: Each execution of Step 1 takes O(n) time to update the residual capacities and
flows. Getting rid of the excesses at vertices in V, by performing push/relabel steps takes
O(n) time per iteration plus the time to perform saturating pushes, which is O(n,m) time
overall. Hence ! executions of Step 1 take O(In + nym) time. The [executions of Step 2

take a total of O(n;m + In? 4+ n}) time, as was shown previously. The theorem follows. B

The dynamic tree data structure can be incorporated into the parametric maximum flow
algorithm to improve its computational complexity. Using the ideas described in Section
5.5, it can be shown that the dynamic tree implementation of the parametric maximum
flow problem runs in O (In + nymlog (l—"‘—:{ﬁ + 2)) time.

Often applications of the parametric maximum flow problem require that the minimum
cut be determined for each of the para.meter_va.lues A1, Ay - -+, Al Obviously each such
minimum cut can be determined by a breadth-first search of the network, requiring O(m)
effort per cut. Overall this time would be O(ml) and for larger values of [would be a
bottleneck. In order to achieve a faster time bound we maintain exact distance labels of
vertices as explained in [15]. Maintaining exact distance labels requires some additional
effort but no more than O(n;m) time over all iterations. While using this method, the
minimum cut (X;, X;), at the end of iteration i is defined as X; = {v € V : d(v) > 2n,}
and X; = {v € V : d(v) < 2n;}. It may also be pointed out the minimum cuts in the
parametric maximum flow problem are nested, i.e., for A; < Ay < A3, with corresponding
cuts (X;, X;), (X2, X2), (X3, X3), we have that X; C X, C Xj [24]. This property allows
us to store all / cuts in O(n + !) space, and recreate any one cut in O(n) time.

While we have only given an algorithm for the case where the A’s are given in increas-
ing order, actually we can solve a more general problem. Let x()), the min-cut capacity
function, be the capacity of the minimum cut as a function of A. If the edge capacities are
linear functions of A, then x() is a piecewise-linear concave function with at most n — 2
breakpoints. We can actually compute all of these breakpoints in O(n? + n,m log(22+ +2))
time, and can do even better if we know a priori that [= o(n). This result directly follows
from the results of [13] and the details appear in [35].

We conclude by noting that the bipartite parametric flow problem has many applications
including multiprocessor scheduling with release times and deadlines [20, 23], 0-1 integer
programming problems [29, 30], maximum subgraph density [20], finding a maximum-size
set of edge-disjoint spanning trees in an undirected graph [28, 29, 30], network vulnerability
[9, 18], partitioning a data base between fast and slow memory [11], and the sportswriter’s
end-of-season problem [22, 31]. For all these problems we improve on or match the best

known bounds.

31

7 Minimum-Cost Circulation

In this section we examine the minimum-cost flow problem on bipartite networks. We
consider the recent cost-scaling minimum-cost flow algorithm of Goldberg and Tarjan [16],
and describe the improvement in its running time that can be obtained when it is adapted
for bipartite networks. We shall be very sketchy in our description, since all the results are
analogous to the results in Section 5.

The minimum cost flow problem is a generalization of the maximum flow problem. In
this problem, each edge (v, w) has a cost ¢(v, w). We formulate the problem as a circulation
problem, since it is equivalent to other formulations. (See [1],[17].) We assume that the
costs are antisymmetric, i.e., ¢(v,w) = —c(w, v) for each edge (v, w). Let C = max{c(v,w):

(v,w) € E}. The minimum-cost circulation problem can be formulated as follows:

Minimize Y (v, w)f(v,w)

(v.w)EE
subject to
f(v,w) < u(v,w), V(v,w)€EE (6)
f(v,w) = -f(w,v), Y(v,w)€E (7)
wgv flv,w)=0, VveV (8)

A circulation is a function of satisfying constraints (7), (8), and (9). A pseudoflow is
a function f satisfying only constraints (6) and (7). For any pseudoflow f, we define the

ezxcess of vertex w to be

ew)=) flv,w) (9)

vi(v,w)EE
The excess at a vertex may be positive or negative. A vertex v is called active if
e(v) > 0. The residual network is defined as for the maximum flow problem. We associate
with each vertex v a real-valued price p(v). The prices correspond to linear programming
dual variables. In the analysis, the prices play a role similar to that played by the distance
labels in the maximum flow algorithm. The reduced cost of an edge (v, w) with respect to

the price function p is denoted by ¢,(v, w) and is defined by ¢,(v, w) = (v, w)+p(v)—p(w).

7.1 The Cost-Scaling Algorithm

The cost-scaling algorithm of Goldberg and Tarjan[16], relies on the concept of approzimate

optimality. A circulation f is said to be e-optimal for some € > 0 if f together with some

32

price function p satisfies the following condition:
uy(v,w) > 0 = ¢,(v,w) > —e => (e-optimality). (10)

We refer to this condition as the e-optimality condition. Let [be the number of edges on
the longest simple cycle in the network. It can be shown that any feasible flow is e-optimal
for ¢ > C and any e-optimal feasible flow for € < 1/! is an optimum flow [4]. Since in
a bipartite network every other vertex on a cycle must be a vertex in Vj, any e-optimal
feasible flow for € < 3 is an optimum flow.

The cost-scaling algorithm treats € as a parameter and iteratively obtains e-optimal
flows for successively smaller values of €. Initially, ¢ = C; on termination, € < 5%1' The
algorithm performs repeated cost-scaling phases, each of which consists of applying an
improve-approzimation procedure that transforms a 2e-optimal circulation into an e-optimal
circulation. After 1+ [log(2n,C)] cost scaling phases, € < 37—, and the algorithm terminates
with an optimal circulation. To get the algorithm started, an initial circulation can be found
by using any maximum flow algorithm, such as one of those discussed in Section 5. A more

formal description of this algorithm appears in Figure 14.

algorithm cost scaling
begin
p=0e=Cj
let f be any initial circulation;
while € > ﬁ do
begin ¢ = ¢/2
improve-approzimation(f, p, €);
end
end

Figure 14: Algorithm Cost Scaling

Recall that in the maximum flow algorithm, we maintained the invariant that all excess
was on V;-vertices. This will be our goal in the minimum cost circulation algorithm also. The
procedure improve-approrimation given in Figure 15 first converts the 2¢-optimal circulation
it receives as input into a 0-optimal pseudoflow (lines (*) through (**)). This may leave
positive excess on V,-vertices. So we execute the while loop at line (i), which applies
push/update operations to these vertices until they are rid of all their excess. Now we have
established the invariant that the only vertices with positive excess are V;-vertices. We will
maintain this invariant for the rest of procedure improve-approzimation. The remainder of

the procedure moves flow from vertices with positive excess to vertices with negative excess.

33

procedure improve-approzimation(f,p,€)
begin
(*) ifep(v,w)<0
then begin f(v,w) = u(v,w);
f(w,v) = - f(v, w)
end;
(**) compute vertex imbalances;
(t) while the network contains an active V;-vertex v do

push/update(v)

(1) while the network contains an active vertex v do
bipush/update(v)

end

Figure 15: The procedure improve-approrimation

As vertices in V;, may have negative excess, this will sometimes involve a one-edge push and
sometimes involve a two-edge push.

We call an edge (v, w) in the residual network admissible if c,(v, w) < 0. We define the
subnetwork of G consisting solely of admissible edges to be the admissible network. The
basic operations in the procedure are selecting active vertices, pushing flows on admissible
edges, and updating vertex prices. The details of improve-approzimation, adapted to the
bipartite case, appear in Figures 15 and 16.

To identify admissible edges emanating from a vertex, the algorithm uses the same
current edge data structure used in the preflow push algorithm for the maximum flow
problem.

A movement of flow along a path v—w—z in bipush/update is called a bipush. The bipush
is saturating if § = min{uy(v, w), uy(w,z)} and nonsaturating otherwise. The correctness

and efficiency of the algorithm rest on the following results:

Lemma 7.1

1. The improve-approximation procedure always maintains e-optimality of the pseud-

oflow, and at termination yields an e-optimal circulation.

2. Each vertez price never increases, and it decreases O(n,) times during an ezecution

of the procedure.

3. There are O(nym) saturating pushes and bipushes during an ezecution of the proce-

dure.

4. Immediately before, during, and immediately after the while loop in line (}) of improve-

34

procedure bipush/update(v)
begin
if there exists an admissible edge (v, w)
then if e(w) < 0
then push min{e(w), e(v), u;(v, w)} units of flow on (v, w)
else if there exists an admissible edge (w, z)
then push é§ = min{e(v), us(v, w), us(w,z)} units of flow
along the path v —w — z
else replace p(w) by max(y z)eg, {P(2) — ¢(w,z) — €}
else replace p(v) by max, v)eg, {P(w) — ¢(v, w) — €}
end

procedure push/update(v)
begin
if there exists an admissible edge (v, w)
then push min{e(w), e(v),u;(v,w)} flow on (v, w)
else replace p(v) by max, v)eg, {p(w) — ¢(v, w) — €}
end

Figure 16: The procedures push/update and bi-push/update

approximation, all ezcess is on V)-vertices.

Proof: These results follow directly from the proofs of Goldberg and Tarjan [16] adapted

for bipartite networks. l

As in the preflow push algorithm, it can easily be shown that the time spent updating
prices in an execution of improve-approzimation is O(nym). The bottleneck in the procedure
is the number of nonsaturating pushes and bipushes. Observe that there are three different

types of pushes and bipushes to bound:
1. pushes in the while loop at line (1),
2. bipushes in the while loop at line (1),
3. pushes in the while loop at line (1).

We bound the first type by observing the all the pushes are saturating except for at

most one per Vi-vertex. Therefore, there are at most n nonsaturating pushes.

To bound the second type of bipushes, we need the following lemma from [16]:

Lemma 7.2 ([18]) The admissible network remains acyclic throughout the ezxecution of

the improve-approximation procedure.

35

The number of nonsaturating " ushes performed by the procedure depends upon the
order in which active vertices are examined. Goldberg and Tarjan [16] show that the
generic version of the procedure, in which active vertices are examined in an arbitrary order,
performs O(n?m) pushes for general networks. They show that a specific implementation
of the generic implementation, called the first-active method algorithm, performs O(n?)
nonsaturating pushes, as does a related method, the wave method. (The wave method was
developed independently by Bertsekas and Eckstein[5].) We shall show that an adaptation
of the first-active method for bipartite networks performs O(n?) nonsaturating bipushes.

The first-active method uses the acyclicity of the admissible network. As is well known,
the vertices of an acyclic network can be ordered so that for each edge (v, w), v precedes
w in the ordering. Such an ordering of vertices is called a topological ordering and can be
found in O(m) time. The first-active method maintains a list L of all vertices in V; in
topological order. The algorithm examines each vertex v € L in order. If v is active, it
performs bipush/update operations on vertex v until either it becomes inactive or p(v) is
updated. In the former case, the algorithm examines the next vertex on L. In the latter
case, the algorithm moves v from its current position on L to the front of L, and restarts
the scan of L at the front. Moving v to the front of L preserves the invariant that L is
a topological order of the vertices, because immediately after v is assigned a new prices,
it has no incoming admissible edges. The algorithm terminates when L is scanned in its
entirety. Note that updating the price of a vertex in V; does not affect the topological order
of vertices in V;. On termination, no vertex can be active.

Observe that if within n; consecutive vertex examinations the algorithm performs no
price updates then all active vertices have discharged their excesses and the algorithm
obtains a flow. This follows from the fact that when vertices are examined in the topological
order, active vertices push flow to vertices after them in the topological order. As there are
O(n?) price updates of vertices in V;, we immediately obtain an O(n}) bound on the number
of vertex examinations. Each vertex examination entails at most one nonsaturating bipush.
Consequently, the wave algorithm performs O(n}) nonsaturating bipushes per execution of
improve-approzimation.

Now we bound the third type of push. A push in this case is performed over an edge
(v, w) such that e(w) < 0. There are three cases. Either the value of the push is u;(v, w)
(saturating), e(v) (non-filling), or e(w) (filling). For the first case we have already bounded
the number of saturating pushes. In the second case, we can bound the number of non-
filling pushes by O(n?) by arguments similar to those for non-saturating pushes above.
For filling pushes, observe that each vertex is filled at most once per iteration of improve-

approzimation; thus there are a total of n such pushes overall.

36

Combining the three cases, we find that the number of nonsaturating pushes and bi-
pushes is O(n} + n). As all other steps take O(n;m) time per execution of the improve-
approzimation procedure and the procedure is called O(log(n,C')) times, we get the following
result:

Theorem 7.3 The wave algorithm solves the minimum cost flow problem on a bipartite

network is O((nym + n?)log(n,C)) time. W

8 Summary and Conclusions

We have considered a number of maximum flow algorithms and algorithms for other network
flow problems for bipartite networks in which one side is much smaller than the other. Our
work is motivated by and improves upon the work of Gusfield, Martel, and Fernandez-Baca
[20]. In that paper, the authors demonstrated the importance of bipartite maximum flow
problems in which one side is much smaller than the other. In addition, they showed that
existing algorithms run much faster on these “unbalanced” networks.

We have extended the results of Gusfield et al. in several ways. First of all, we showed
that their analysis applies to other maximum flow algorithms. In addition, we developed
the concept of the bipush for preflow-push algorithms and showed that bipushes lead to
further improvements in several algorithms for the maximum flow problem. We further
generalized the results to algorithms for the parametric maximum flow problem, as well as
the minimum cost flow problem. We also showed that the results apply as well to dynamic

tree implementations if the dynamic tree algorithms are modified appropriately.

Although the theory in this paper has been concerned with bipartite networks, it would
be just as valid for networks in which we allow edges joining two vertices in V;. More
generally, it is valid for networks in which have a small vertez cover. A vertex cover of a
network G = (V, E) is a set S of vertices such that each edge in E is incident to at least one
vertex in S. A minimum vertex cover is one with the smallest number of vertices. Although
it is NP-hard to determine a minimum vertex cover of a graph, it is possible to find a
vertex cover in O(n + m) time whose cardinality is within a factor of 2 of the cardinality of
a minimum vertex cover. (Just find any maximal matching and include each of the matched
vertices).

If the size of the minimum vertex cover of a graph is n,, then all of the time bounds
presented in the previous sections apply. It is easy to show that the length of the longest
path in such a network is at most 2n,. As for bipushes they would have to be replaced as
follows. Suppose G is a network, not necessarily bipartite, in which V; is a vertex cover. As

before we maintain the invariant that each active vertex is in V;. Suppose that v is active,

37

and that (v, w) is eligible. If w is in V; then we perform a normal push. If w is not in V;,
then each edge incident to w is in V; and we perform a bipush. All of the results in this
paper are thus easily generalized to networks with small vertex covers, and the time bounds
stated in Table 1 apply to such networks.

It is likely that improvements could be obtained in the running times of other algorithms
for network flow problems on unbalanced bipartite networks, or on networks in which the
cardinality of a minimum vertex cover is small. For example, one can obtain improved
running times for dynamic programming algorithms for the shortest path problem, and one
can improve the running time for all pairs shortest path algorithms. We conjecture that one
can also ?btain improved time bounds for the b-matching problem on networks with small
vertex covers. We also conjecture that one can obtain improved results for polymatroidal

network flows.

Acknowledgments

We are grateful to David Shmoys for many helpful conversations and suggestions, and for

a careful reading of an earlier draft of this paper.

References

(1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. In G.L. Nemhauser,
A. H. G. Rinnooy Kan, and M. J. Todd, editors, Handbook in operations research
and management science, Volume 1: Optimization, pages 211-360. North-Holland,
Amsterdam, 1990.

[2] R. K. Ahuja and J. B. Orlin. A fast and simple algorithm for the maximum flow
problem. Operations Research, 37:748-759, 1989.

[3] R. K. Ahuja, J. B. Orlin, and R.E. Tarjan. Improved time bounds for the maximum
flow problem. SIAM Journal on Computing, 18:939-954, 1989.

[4] D.P. Bertsekas. Distributed asynchronous relaxation methods for linear network flow
problems. Technical Report LIDS-P-1606, MIT, Laboratory for Information and De-
cision Sciences, Cambridge, MA, 1986.

[5] D.P. Bertsekas and J. Eckstein. Dual coordinate step methods for linear network flow
problems. Mathematical Programming, 42:202-243, 1988.

[6] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the
ACM, 21:201-208, 1974.

38

[7] J. Cheriyan and S. N. Maheshwari. Analysis of preflow push algorithms for maximum
network flow. SIAM Journal on Computing, 18:1057-1086, 1989.

(8] R. Cole. Parallel merge sort. SIAM Journal of Computing, 17:770-785, 1988.

[9] W.H. Cunningham. Optimal attack and reinforcement of a network. Journal of the
ACM, 32:549-561, 1985.

[10] E.A. Dinic. Algorithm for solution of a problem of maximum flow in networks with
power estimation. Soviet Math. Dokl., 11:1277-1280, 1970.

[11] M. J. Eisner and D. G. Severance. Mathematical techniques for efficient record seg-
mentation in large shared databases. Journal of the ACM, 23:619-635, 1976.

[12] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of
the 10th Annual ACM Symposium on Theory of Computing, pages 114-118, 1978.

[13] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM Journal on Computing, 18:30-55, 1989.

[14] A. V. Goldberg. Efficient graph algorithms for sequential and parallel computers. PhD
thesis, MIT, Cambridge, MA, 1987.

[15] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem.
Journal of the ACM, 35:921-940, 1988.

[16] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by successive

approximation. Mathematics of Operations Research, 15:430-466, 1990.

[17] A. V. Goldberg, R. E. Tarjan, and E. Tardos. Network flow algorithms. In
B. Korte, L. Lovasz, H. Promel, and A. Shriver, editors, Paths, Flows, and VLSI-
Layout, pages 101-164. Springer-Verlag, Berlin, 1990.

[18] D. Gusfield. Connectivity and edge disjoint spanning trees. Information Processing
Letters, 16:87-89, 1983.

[19] D. Gusfield. Computing the strength of a graph. Unpublished Manuscript, Computer
Science Division, University of California, Davis, CA, 1989.

[20] D. Gusfield, C. Martel, and D. Fernandez-Baca. Fast algorithms for bipartite network
flow. SIAM Journal on Computing, 16:237-251, 1987.

[21] W.D. Hillis and Jr. G.L. Steele. Data parallel algorithms. Communications of the
ACM, 29:1170-1183, 1986.

39

[22] A.J. Hoffman and T.J. Rivlin. When is a team “mathematically” eliminated? In
Symposium on Mathematical Programming, pages 391-396. Princeton University Press,
Princeton, NJ, 1970.

[23] W. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly,
21:177-185, 1974.

[24] L. R. Ford Jr. and D. R. Fulkerson. Flows in networks. Princeton University Press,
Princeton, NJ, 1962.

[25] A. V. Karzanov. Determining the maximal flow in a network by the method of preflows.
Soviet Math. Dokl., 15:434-437, 1974.

[26] T. Leighton, C.E. Leiserson, B. Maggs, S. Plotkin, and J. Wein. Advanced parallel and
VLSI computation. Research Seminar Series MIT /LCS/RSS 2, MIT, Cambridge, MA,
1988.

[27] V. M. Malhotra and M. Pramodha. An O(|V|*) algorithm for finding maximum flows
in networks. Information Processing Letters, 7:277-278, 1978.

[28] C. St. J. A. Nash-Williams. Edge disjoint spanning trees of finite graphs. Journal of
the London Mathematics Society, 36:445-450, 1961.

[29] J.C. Picard and M. Querayne. A network flow solution to some nonlinear 0-1 program-

ming problems, with applications to graph theory. Networks, 12:141-159, 1982.

[30] J.C. Picard and M. Querayne. Selected applications of minimum cuts in networks.
INFOR., 20:394-422, 1982.

[31] B.L. Schwartz. Possible winners in partially completed tournaments. SIAM Review,
8:302-388, 1966.

[32] Y. Shiloach and U. Vishkin. An O(logn) parallel connectivity algorithm. Journal of
Algorithms, 3:57-67, 1982.

[33] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26:362-391, 1983.

[34] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the
ACM, 32:652-686, 1985.

[35] C. Stein. Efficient algorithms for bipartite network flow. Unpublished Manuscript,

Department of Computer Science, Princeton University, Princeton, NJ, 1987.

40

[36] R. E. Tarjan. A simple version of Karzanov’s blocking flow algorithm. Operations
Research Letters, 2:265-268, 1981.

[37] R. E. Tarjan. Data structures and network algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1983.

41

