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Abstract: We present a deterministic algorithm for computing the convex hull of n points in E¢
in optimal O(nl%/2]) time, for d > 3. This result settles an open question of long standing: optimal
solutions were previously known only in two and three dimensions or alternatively by allowing
randomization. The algorithm involves a fairly elaborate dynamic search process, whose fine points
are clarified by using an analogy with statistical thermodynamics: this allows us to uncover some
unexpected phenomena relating to the convergence of the algorithm. By duality, the algorithm can
be used to construct the full lattice structure of the feasible set of n linear constraints in optimal
O(nlogn + nl/2l) time, for any fixed d. As an immediate corollary, we obtain an algorithm for
computing the Voronoi diagram of n points in d-space in optimal O(nlogn +n[%/?1) time, which is
also a new result.
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1. Introduction

This paper provides a deterministic algorithm for computing the convex hull of n points in d-space
in optimal O(nl%2]) time, for any d > 3. This result settles an open question of long standing.
Since optimal algorithms are known for the two and three-dimensional cases [18], the complexity of
the problem is now completely elucidated when the dimension is fixed. By duality, the algorithm
can be used to construct the full lattice structure of the feasible set of n linear constraints in optimal
O(n logn + nld/ 21) time. As a corollary, we obtain an algorithm for computing the Voronoi diagram
of n points in optimal O(nlogn + nl%?1) time, which is also a new result.

The convex hull problem has had an intriguing history. The cases d = 2,3 have long been
solved, but the problem has been elusive in higher dimensions. Ten years ago, Seidel gave an
optimal algorithm for the case where d is even [20] (incidentally, the parity condition should be a
hint of how “strangely” convex hulls can behave). Later, Seidel showed how to compute a convex
hull incrementally by reporting each face at logarithmic cost (modulo quadratic overhead) [21], thus
providing a quasi-optimal output-sensitive algorithm. (Note that the issue of output-sensitivity is
not addressed by our result.) On the probabilistic front, Clarkson and Shor [6] gave an incremental
randomized method with optimal expected time. An elegant simplification of that algorithm, and
especially of its analysis, was proposed recently by Seidel [22].

But what about the deterministic case? Derandomizing randomized incremental algorithms is
still, by and large, unconquered territory. Interestingly, this comes in sharp constrast with the largely
successful derandomization of geometric algorithms based on random sampling [1,3,4,12,13,14]. The
reader familiar with the recent work on hyperplane cuttings [3,14] or shallow cuttings [15] might
wonder why such powerful divide-and-conquer tools cannot be brought to bear on the convex hull
problem. Without getting too deep into what are fairly technical issues, let us only mention one
major obstacle, which in our opinion, also happens to be the central difficulty in the convex hull
problem; one might call it the “curse of odd dimensionality:” By the upper bound theorem, the
facial complexity of the convex hull of n points is O(nw 2l). Therefore, if the points are in general
position, the total complexity of the faces incident upon a given vertex is on average a fraction
O(1/n) of the total, which gives an upper bound of O(nl¥/ 21-1). This simple fact is the key to the
efficiency of the randomized convex hull algorithms of Clarkson/Shor and Seidel. But what about
the worst-case incidence complexity of a given vertex? It is the same as the maximum complexity
of a convex hull of n — 1 points in (d — 1)-space, which in odd dimension, is still O (nl%/2]). Dually,
this means that in odd dimension a single facet of an n-facet polyhedron might contribute a fixed
fraction of the overall facial complexity of the polyhedron. By contrast, in an arrangement of n
hyperplanes, no hyperplane can contribute more than a fraction O(1/n) of the overall complexity.
This difference between polyhedra and arrangements rules out any naive extension of our recent
cutting construction [3] to the case of shallow cuttings [15] (i.e., cuttings whose action is restricted
to the vicinity of a single cell of an arrangement).

We turn our sights in a different direction. We begin with a simple observation: By making
randomized incremental methods into dynamic versions of random sampling-based algorithms, we
can apply Raghavan and Spencer’s method of conditional probabilities [19,23], and derive a deter-
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ministic convex hull algorithm. The catch is that the algorithm, although polynomial, is hopelessly
slow (much slower than any naive convex hull algorithm). To speed it up, we need to introduce
all kinds of data structuring tricks. But most important, we substitute estimations for exact com-
putations. Specifically, we lump together sequences of computations whenever we can approximate
their outputs cheaply with some reasonable precision. It is important to note that the errors which
we introduce into the computation, although possibly very large, cannot affect the correctness of
the final output, but only the time it takes to produce it. Why is that so? The Raghavan-Spencer
method is used only for sequencing the input, i.e., for determining the order in which the points
should be processed. Errors can only hurt insofar as they might lead to a less effective sequencing
which slows down the algorithm. The probabilistic algorithms of Clarkson/Shor and Seidel guaran-
tee the existence of a sequencing for which the running time of the algorithm is O(nLd/ 21). Whereas
randomization gives us good sequencing for free, we must compute it in the deterministic case, and
that can be very costly. Our idea is to simulate the computation of a good sequencing but allow
errors in order to speed up the process. Of course, this degrades the quality of the sequencing, but
we can calibrate the error tolerance so that the resulting sequencing, although perhaps far from
optimal, still leads to an efficient convex hull algorithm. To control the damage caused by the errors
we use the theory of range spaces of finite VC-dimension, whose power, we should note, rests heavily
on the fact that the dimension of the ambient space is bounded.

After this overview of the philosophy behind the algorithm, let us get down to specifics. We begin
with the method of conditional probabilities. We must introduce a slight twist in its implementation,
which might be interesting in its own right. Let us briefly review the method in its standard form.
Given a (uniformly distributed) random sample of size r among n objects, let A;,..., Am be a set
of “good” events, which might be true or false depending on the sample. If 3, Prob[4;] < 1, then
obviously the probability that all events are good for some sample is nonzero. Now, commit one
object p; into the sample and pick the other 7 — 1 randomly. Given that first pick p;, the sum
of conditional probabilities 7(p;) = Y, Prob[ A; | p1] might or might not be less than 1. But by
definition the average value of m(p;) over all n objects is exactly 3, Prob[A4;] < 1. Therefore, for at
least one of the p;’s, we have m(p;) < 1, and given that pick there is hope of completing the sample
successfully. The standard derandomization strategy is to pick the p;, that minimizes (p;) and
iterate in this fashion. After r picks there’s no randomness left, so 3, Prob[A; | piy,-..,pi,] < 1
means that the sample {p;,,...,p;,} makes all good events true. Of course, we don’t need the
absolute minimum, but any p; such that 7(p;) < 3, Prob[4;] will do. Suppose we can compute
any partial sum )_; 7(p;) at the same cost as a single 7(p;). Then, it is advantageous to home in on
a good p;, by binary search in the following manner. Divide up the set of objects into two groups
of roughly equal size, S; and S;. Clearly, we can eliminate the group that maximizes the quantity
e s; m(pi)/|S;|, for j = 1,2. Iterating on this process allows us to zero in on a good pick in
roughly log n stages.

We will use this variant of the Raghavan-Spencer method in our convex hull algorithm. What
makes our work difficult is that we make errors every step of the way, and we must be careful to
bound the drift away from the average. The algorithm involves a complex dynamic search process,
which it is illuminating to interpret in the language of statistical thermodynamics. This allows us to
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answer the question: How random-looking is the partial sample p1, ..., pr computed at step k7 We
show in that in some cases the partial sample might deviate from a random one in some remarkable
ways, for example, by being much more “favorable” than a random sample could ever be.

A recurring theme of this work is to design a slow, but extremely “fault-tolerant” algorithm,
and then speed it up by trading exact computations for approximations and estimations. We expect
that other applications of this design paradigm will be found. The theory of range spaces of finite
VC-dimension is used for two purposes: one is to set the grounds for divide-and-conquer, and the
other is to build efficient estimators. In particular, we use the fact that e-approximations can be used
to efficiently estimate how many vertices in a hyperplane arrangement lie inside a given simplex. We
recall a useful result established in [3]. Let H be a set of n hyperplanes in E9. Given r > 0, we say
that R C H is a (1/r)-approzimation for H if, for any relatively open line segment e, the densities
in R and H of the hyperplanes crossing e differ by less than 1/r, i.e.,

A B 1
lm_rﬁﬂ(r’

where A (resp. B) is the number of hyperplanes of R (resp. H) meeting e. The subset R is called a
(1/r)-net if any time the segment e intersects more than n/r hyperplanes of H, then at least one of
them belongs to R. (The original definitions of these notions are abstract and nongeometric [10,24]
but for our purposes it is more convenient to specialize them to the case of line segments.) By a
result of Matousek [12] it is possible to compute a (1/r)-approximation of size O(r?logr) in time
O(n(r*logr)??). A (1/r)-net of size O(rlogr) can be obtained within the same time bound.

Lemma 1.1. [3] Let H be a set of n hyperplanes in E? and suppose that we have available a (1/r)-
approzimation for H of size 0(1"2 log r). Then, given any relatively open simplez s of dimension j,
the number of vertices inside s that belong to the j-dimensional arrangement of H defined within
the affine space spanned by s can be estimated in time r©() with an absolute error of at most
2jnd [r.

2. The Convex Hull Algorithm

As is well known, computing the convex hull of n points is equivalent, by duality, to computing the
intersection of n halfspaces [8]. We will work on the intersection problem for convenience. Let H be
a set of n hyperplanes (assumed to be in general position for simplicity), and for each h € H, let h*
denote one of the closed halfspaces bounded by h. Given R C H, we use the notation R* to refer to
the polyhedron [,c g h*. Our goal is to compute an explicit description of the facial structure of
H*. We can check in linear time whether H* is empty, and if not, find a point O inside [3,5,7,16].
Obviously, we can assume that H¥ is not empty and that O does not lie on any hyperplane of H.

Because optimal algorithms already exist in two and three dimensions we can assume that
d > 3. Our basic aim is to derandomize the probabilistic incremental algorithms of [6,22]. These
algorithms insert each hyperplane into the current halfspace intersection (in dual form in the case
of [22]), one at a time, in random order. In the worst case, the m-th hyperplane to be inserted
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may cut the current polyhedron in a cross-section of size O(ml(4=1)/2) If this happens too often
and d is odd, then the resulting algorithm may fall short of optimal. If we randomize the order of
the input, however, the expected size of the cross-section should not exceed the average facet size
(over all facets) of an m-facet polyhedron, which is O(mldl 2-"]). Summing up those sizes over all
insertions gives the optimal bound of O(nl9/2). This is, in essence, why the randomized version of
the naive insertion algorithm works.

To derandomize it is tricky because random permutations are hard to produce deterministically
and thus finding a good sequencing of the input might not be so easy. To begin with, how do we
define a good permutation of the input, anyway? Given an ordering of the hyperplanes, let H; be
the set formed by the first i of them. Using the pseudo-metric induced by O and the arrangement
A(H) formed by H, we define the notion of a “distance” from H} to O. The polyhedron that we
seek, H* = H}, is at distance 0, and in general, the distance of the polyhedron H; to O reflects how
far its vertices are from O in the pseudo-metric of A(H). If the sequencing is truly random then the
(expected) distance of H} to O, for i = 1,2, etc., decreases as a rate fast enough to keep the costs of
computing the H}’s within control. (The relation between the cost of computing the polyhedron H{,
given H;, and its distance to O will become clear later.) A good sequencing is one that keeps the rate
comparable to (or better than) the random case. Simple-minded methods such as the greedy one
(insert the next hyperplane that maximizes the rate of decrease) are too local in nature to hold much
promise. On the other hand, to explore the search space exhaustively is hopelessly expensive. The
method of conditional probabilities offers a compromise between these two approaches by injecting
a small amount of consideration for the future into the selection criterion. The idea is to keep track
at any time of how many ways we have of completing H; into H and produce a good sequencing.
We average out a certain measure of “goodness” over all possible completions, and call the resulting
quantity the energy of the system. Intuitively, the greater the energy the more likely a random
completion will give a good sequencing. Our strategy is thus very natural: we pick as the next
hyperplane the one that maximizes the energy, or at least any one that does not decrease it. (The
latter corresponds to our weakened variant of the method of conditional probabilities.) The energy
can be regarded as a means to “summarize” the future in a concise manner. Unfortunately, to
evaluate it requires computing, among other things, the full arrangement A(H). This is where the
theory of range spaces of finite VC-dimension comes into play by giving us the tools to approximate
the energy both cheaply and accurately.

There are two additional difficulties which we must mention here. The first one is that the
estimation tools we build can work only within a given range of input sizes. Therefore, they must
be recomputed every time the size of H; exceeds a certain range. To deal with this problem in a
clean fashion, we break up the construction of the sequencing into a logarithmic number of separate
phases, each of which can be carried out without having to rebuild the estimators.

The second difficulty is more serious. Suppose that H; has been computed and we want to
find the next hyperplane to be inserted so as to form Hj;;. Let f(n) be the time to check how
good a candidate for insertion a given hyperplane is. Clearly, the whole algorithnf can run in no
better than O(n2f(n)) time. So, in order to achieve optimal complexity in dimensions 4 and 5,
it is imperative that the (amortized) value of f(n) be constant. Intuitively, the candidacy of a
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new hyperplane depends on its “contribution” to the arrangement A(H), which is determined by
O(nd‘l) facial features. Thus, to evaluate the candidacy of a new hyperplane in constant time is
not so easy and requires special data structuring tricks. There are other snags in the way. Without
being too technical, let us mention one of them which, although it surfaces only at the very end of
our description of the algorithm, requires us to prepare for it very early on.

Recall that by analogy with the randomized algorithms we aim to insert hyperplanes one at a
time, making sure that the contribution of any new hyperplane h to the current intersection Hi is
not too big. In this way, we can insert h by tracing explicitly its intersection with HF. Actually,
that any work related to the insertion of h should occur only within its “sphere of influence” is as
crucial to our algorithm as it is to the Clarkson/Shor and Seidel methods. But in our case to abide
by that principle is difficult for the following, rather frustrating, reason. Recall that the algorithm
is driven by a certain energy function, which we must update after each insertion. At stage i, this
function is of the form 3, f(i,v), where the summation extends over all vertices v of A(H). The
parameter f(i,v) depends both on the “geometry” of v within A(H) and H} (e.g., its distance to O,
how many hyperplanes of H; pass through it), but also on the time coordinate i. After an insertion,
as expected, f(i,v) needs to be updated if v lies in the vicinity of the new hyperplane. However,
because f(i,v) also depends on i in a rather complicated manner, technically it must be updated
for all vertices v. Since we cannot afford to do that we must somehow find shortcuts. We explore
this problem further in Section 3. Borrowing elementary ideas from statistical thermodynamics we
interpret the insertion of the various hyperplanes as a cooling process. The increment from i to i +1
corresponds to a drop in temperature which, of course, affects every particle (vertex) in the system.
For an algorithmic standpoint, to deal with the difficulty of global changes we must use persistent
data structures.

2.1. Getting Started. We need to introduce a little notation. Let s be a simplex (closed or not)
of any dimension. Given X C H, let X(s) denote the set of hyperplanes in X that meet the relative
interior of s without enclosing it. Most often, X is H itself and we concern ourselves with the size
of H(s). For this reason, we introduce the shorthand V, = |H(s)|. Another important quantity,
denoted H,, is the number of vertices of A(H) that lie within the relative interior of s.

Given R C H, a standard triangulation, called canonical, of the arrangement A(R) is obtained
by first triangulating recursively the (d — 1)-dimensional cross-section of the arrangement made by
each hyperplane, and then for each cell of the arrangement, lifting all the k-simplices on its boundary
(k=0,...,d—1) toward a chosen vertex (except for the simplices decomposing the faces incident
upon the vertex in question). When it comes to triangulating the polyhedron R*, however, we must
be more specific about the choice of lifting vertices. We define the geode of R as the particular
triangulation of R* obtained in the following recursive manner. For k = 2,3,...,d, in that order,

1 To preserve the flow of the presentation, the proofs of all the lemmas have been moved to an Appendix. Also,
take notice that all logarithms are to the base 2. Finally, to facilitate the calculations, we shall use bo,co, b1,¢1, ...
as an unbounded supply of constants. Typically, the b;’s will be local (and reusable) while the c;’s"will be global: all
will be assumed large enough to satisfy all the inequalities in which they appear (warning: this assumption will not
be restated). Dependencies among these constants will exist and will be mentioned systematically.
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triangulate each k-face f of Ht like this: If k < d, let vy,..., vy be the vertices of f and let v; be
the one that minimizes the quantity V,, where e = Ov; (1 < i < m). Lift toward v; the triangulation
of each j-face (j < k) of R* that lies within f but is not incident upon v;. For k = d, simply lift
toward O the triangulation of Rt just obtained. An easy inductive argument based on the Upper
Bound Theorem shows that the size of the geode is O(|R|\%/?). Our next result motivates our
particular choice of triangulation.

Lemma 2.1. Given the geode of R C H, for any constant c large enough, 3, V£ < ¢, V., where
the first sum is taken over all d-dimensional simplices s of the geode and the second one over all

segments e connecting O to the vertices of the geode.
Our strategy for computing H7 is to take a nested sequence of “pseudo-random” samples
RRCRiCR,C---CH

and compute the geode of each R; in that order, using the geode of R;_; to help us in that endeavor.
Each R] provides a better approximation of H* than the previous one and, more important, its
geode helps to “localize” the computation into pockets where we can concentrate our efforts. We
should point out that although R; contains R;_;, the geode of R} is not a refinement of that of
R} ,. In particular, we do not use geodes to break down the problem into subproblems to be solved
recursively. We always keep all the pieces of the puzzle together: a proper analogy might be to say
that we begin with a fuzzy picture of H*, and that the entire computation is aimed at increasing
the resolution of that picture until all blurness is gone. As the resolution increases it is important
to “localize” the computation so as to limit the number of hyperplanes which need to be compared
against each other. We choose the size r; of each sample R; so that ro,r;,... follow a geometric
progression. Thus, we need roughly log n phases to complete the computation.

For a sample R; to be good, the vertices of its geode should be as “close” to O as possible in
the pseudo-metric defined by the arrangement A(H); this makes sense since, after all, the vertices
of Ht are those at distance zero from O in that metric. To capture this notion of proximity in a
single number, we introduce a penalty function, which leads to the notion of a semicutting. We say
that R C H forms a semicutting (for H) if

Z: Vec1 < CQTLdle (;)q’

e

where r = |R| and the sum ranges over all segments e connecting O to the vertices of R*. Looking
at the distribution of hyperplanes crossing the edges e, it appears that a semicutting expresses an
upper bound on the ¢;-th moment of that distribution. Expectedly, this implies a bound on all lower
moments. Indeed, for any ¢ < ¢,

-

ge: Ve < 2e0rd (2)"
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We shall use this property throughout our discussion without mentioning it again. To see why it
holds, let t. = rV,/n, and observe that

Dote<eprldM 43 0 < (eo+ )rl,
€ e

where c,rl9/2] is an upper bound on the number of vertices in Rt.

Our goal now is to build a semicutting R; and its geode, for each 1 = 0,1, 2, etc. When r; = |R;|
gets to be big enough so as to differ from n by only a constant factor, there will be so few hyperplanes
crossing each simplex of the geode on average that we will be able to complete the computation of H +
directly by using any naive method. To obtain Rg, we could start with any subset of H and adjust
¢o accordingly. But for technical reasons (actually, just in order to simplify further calculations) we

Tves(g)” 1)

We choose Ry as a (1/po)-net for H. The net Ry has size ro = O(po log po) and can be computed in
O(n) time, provided that pg is a constant [12]. By definition,

Z: V:I < borlu_d/ﬂ (;1:_)51 < bl(Po logpn)[dlzj (:—o)q,

wish to ensure that

which satisfies (2.1) for pg = po(c1) large enough. The only implication on ry is that it should exceed
some constant depending on ¢;.

The boundary of H* can be interpreted as the 0-th level of A(H) with respect to O. Predictably,
levels in arrangements will play a great role in our analysis, so we close this subsection with a useful
technical result about them. We say that a point p is at level k if the relative interior of the segment
Op intersects exactly k hyperplanes of H. Let fi(H) denote the number of vertices of A(H) at level
k. Clarkson and Shor [6] have shown that the sum fex(H) = Ygcick fi(H) is in O(nl#/2E14/21).
Using the same proof technique, we extend their result in the fo]]o—wi_ng manner. Let R be a subset
of r hyperplanes in H and, for any j < d, let fi(H, R, j) denote the number of vertices of A(H) at
level k formed by the intersection of a j-face of Rt and j hyperplanes of H\ R. (Note that the level
function remains unchanged.)

Lemma 2.2.

n ) Ld/2]

fgk(H»RJ)=0((T+k+1 (k+1)i).

2.2. Preprocessing the Semicutting. Let us assume that a semicutting R; of size r; has already
been computed, along with its geode and a list of the hyperplanes of H meeting each simplex of the
geode. We will show how to use that information to obtain a semicutting R;41 of*size riy1 > 1.
To avoid overburdening the notation, we set i = 1. The sample R; is computed by forming the
disjoint union of R; with a well-chosen subset Ry C H of size 73 = ro — r;. We can easily verify
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that a random R, works well with high probability, and that the method of conditional probabilities
can be employed to make the construction deterministic. We must now devise an approximation
scheme to speed up the computation. The basic idea is to take each simplex s in the geode of R;
and subdivide the portion of the arrangement of H within s into tiny simplices, which we can then
treat as “fat” vertices. We need to specify how these tiny simplices are chosen and how to estimate
their “fatness” (i.e., how many vertices of A(H) they enclose). We begin by assuming that the size
7, of R, is neither too big nor too small:

cir; <72 < C%Tl < :—1 (22)
Let s be an (open) d-dimensional simplex of the geode of R;. If few hyperplanes cross s, we say that
s is light and we construct the arrangement of H(s) in full. (We can afford to do that.) Otherwise,
we construct a certain net X, for H(s), which we triangulate canonically. The vertices within any
given face of £, are all within roughly the same distance from O. To be able to count how many there
are, we use c-approximations. More precisely, for each simplex o of the portion of the triangulation
of ¥, within s, we build an approximation for H(¢). To specify these constructions, we need two
parameters, p, and v,, which we define below.

= 7o Vs
Ps = C1 P— r

and
vs = c§(ps log ps) V7.

Definition. If V, < p?, then the d-dimensional simplez s is light. Otherwise, il is heavy.

The heavy case: Assume for the time being that the d-dimensional simplex s is heavy. Then,
we compute a (1/p;)-net I, for H(s) of size O(ps log p;), which we can do in time V,p?(l) [12]. Let
B be the set of hyperplanes bounding s and let 7, denote the portion within the closure of s of the
canonical triangulation of A(E, U B). (Note that this includes the boundary of s.) The simplices
of 7, are relatively open and fall into d + 1 categories: 7,(d) consists of all those simplices with no
intersection with hyperplanes of Ry, and for 0 < j < d, 7,(j) includes the simplices that intersect
exactly d — j hyperplanes of R;. Note that the simplices of 7,(j) are of dimension at most, but not
necessarily equal to, j. For a given j > 0, the union | J, 7;(j) might not be disjoint (because we take
the closures of the simplices s), but by making some arbitrary conventions to remove duplicates, we
can easily make it disjoint.

Given a simplex o of T,, let k;(c) (resp. kj(c)) be an upper (resp. lower) bound on the level
of any point in ¢. It is important for the efficiency of the algorithm to limit the number of different
values of k;(¢) to a very small range. (This is to counter the global effect of temperature changes
mentioned earlier.) We achieve this by making k;(o) a power of two. Let k(¢) be the number of
hyperplanes separating O and ¢ without intersecting o: if this number is 0, we set“k;(c) = 0; else
we have (logarithms to the base 2)

k(o) = 2Llos* (@)
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We also set,
kn(e) = k(o) + Vs.
Note that V.
k)<Y, and Vig~ZgiTO (2.3)
Ps r2

For any point v € o, if k(v) denotes the number of hyperplanes in H cutting the relative interior of

Ov, we have

< k(o) < k(v) < k(o) < k(v) + L. (2.4)

T2

k(v) n—m
2 27,

Next, for each simplex ¢ € 7, such that v, < v 3 we compute a (1/v,)-approximation A, for
H(0) of size O(v2logw,) in time V, v (1 [12]. By Lemma 1.1, we know that the number of vertices
formed by the approximation A, within ¢ can be used to approximate the number H, of vertices
of A(H) in o with an absolute error of at most 25’V /v,, where j' < d is the dimension of o. This
means that we can estimate H, from above by H?, where H* < H, + 4dVi Jv,. If ¢ € T,(j), we
have j > j/, therefore from (2.2,2.3),

0<H:—H, < ﬁ(1T—’"‘)". (2.5)
Vs T2

Actually, the lemma says that we can estimate the number of vertices in the j’-dimensional arrange-

ment formed by H within o, which might be greater than the number of vertices of A(H) in o.

To resolve this discrepancy, we simply observe that if ¢ lies within hyperplanes of H then the two

quantities are the same and the estimation is valid. Otherwise, we know by the general position of

H that the number of vertices of A(H) in ¢ must be 0.

If v, > Vs "3, then we compute the portion of A(H(s)) within o, which takes O(V} r) time.

This gives us H, directly, to which we set H}, thus making inequality (2.5) hold vacuously.

The light case: Assume now that s is light. In that case, we compute the arrangement of
H(s) in O(V#) time and keep in storage its portion within s. As a result, we can set I, to be the
full set H(s). For each simplex o € T, we dispense with the (1/v,)-approximation altogether. By
default, we can still write H} = H,, so that (2.5) holds vacuously. (We do this to avoid having to
distinguish between light and heavy simplices all the time.) This concludes the preprocessing.

Now that we have most of the approximation tools needed to get the incremental computation
of Ry started, let us show that the errors introduced by using fat vertices are tolerable. Let Rz be a
random sample of 75 hyperplanes chosen among the n — r; hyperplanes of H \ R;. Given a vertex v
of A(H), let p(v) be the probability that v is a vertex of RY, i.e., that the d hyperplanes defining v
are in Ry and no hyperplane cutting the relative interior of Ov is in Rz. The energy of the system
is defined as the expectation of ), V;**, where the sum extends over all segments e connecting O
to the vertices of RY. It is equal to 3, p(v)k(v)®*, which can be shown to be at most on the order
of rzl,dl 2 (n/rz)°*, where ro = |Ry|. Thus, the method of conditional probabilities could be used to
compute Ry, but this would require evaluating the energy 3, p(v)k(v)* exactly and maintaining
it under dynamic conditionings. As it turns out, this is not a problem for the vertices within light
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simplices, but it is far too expensive for the others. Instead, we compute a coarse approximation of
the energy by regarding the H, vertices within each ¢ € 7, as one single “fat” vertex of weight H
and approximating k(v), where v € ¢, from above and from below by ky(¢) and ki(c), respectively.

Our estimation of the energy will be given by a quantity ®, which is easy to compute. We write
® =), ®(s), where s ranges over all d-dimensional simplices of the geode of R;. If s is light, then
we set ®(s) = >, p(v)k(v)®*, where v runs through all the vertices of A(H) within s (minus the
exclusions meant to avoid double counting mentioned earlier). If s is heavy, on the other hand, we

set ®(s) = Y ocjcq B(s,7), with

2ei)= 3 Herp@)(" MO (r ),

e€T,(j) Ta—=1 T2

Note that because of (2.1,2.2) all the binomial coefficients are well defined. Since we used only one-
sided approximations it is obvious that @ is an upper bound on the actual energy 3, p(v)k(v)".
What is less immediate is that ® is actually a fairly tight upper bound. From (2.1,2.2,2.4) we have
dn n
k(o) <V, <dxmaxV, < — < - —ry, (2.6)
e Cl 2 "

where e runs over all segments Ov, with v a vertex of Rf. With this inequality in hand, we can
prove the following result.

Lemma 2.3. Forcy = co(c1) and c2 = eo(cy) large enough, the energy ® is at most czr%d'mj(n/rg)“.

The lemma shows that the approximation scheme is not too coarse, since ® provides a fairly
tight bound on the worst-case expectation of ), V,°* (where the sum extends over all segments e
connecting O to the vertices of RY). The usefulness of @ is that it can be calculated very efficiently.

2.3. The Error Analysis of the Conditioning Step. We compute Ry deterministically in an
incremental fashion. Suppose that we have already committed the set R C H \ R; to Ry, meaning
that we must only find 75 — r hyperplanes in H to complete the set Ry, where r = |R|. To find the
next element to be added to R, we might try out every candidate hyperplane h € H \ (R, U R), and
choose the one that minimizes a certain function,

Z(RU{h}) = ¢(RU {h}) + ¥(R U {h}),

where ¢ is the normalized (estimated) energy of the system and % is a function used to ensure that
not too many sample hyperplanes meet a given simplex s of the geode of R;. The introduction of
1 is a technicality which is not essential to the intuition behind the algorithm. As we mentioned in
the opening section of this paper, we shall use a variant of this selection criterion. InStead of picking
the one hyperplane h that minimizes Z(R U {h}), we pick any one of them that makes Z(RU {h})
no greater than its average over all candidate hyperplanes.
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We need an additional piece of notation: Given X C H and a simplex o of arbitrary dimension,
the number of hyperplanes of H\ X that meet the relative interior of & without containing it can be
written as |(H \ X)(o)|; for convenience we use the shorthand V,(X). Note that V, = V,(0). Now,
let s be a d-dimensional simplex of the geode of R;. Conditioning upon the inclusion R C Ra, let
¥(R) be the (conditional) expectation of the sum

1 _
a7 Z | Ra(s)|*,
8

CoC3ry

where ¢3 depends only ¢;. We observe that ¢(R) is easy to evaluate since it can be expressed as

W= S S (R@HA)” (RO () (nT) e

CoCaTy s 0<k<V,(R)

where (g) = 0 if b < 0; note that because of (2.1,2.2), b < a.

Lemma 2.4. For an appropriale ¢z = ca(cy), we have (@) < 1/4.

The upper bound of 1/4 gives us a little maneuvering room, within which we can relax the
evaluation of ¥(R) and allow round-off errors. However, the errors involved in evaluating the ex-
pectation of }_, V,** are, as we already saw, of a totally different kind: they stem from clumping
together bunches of vertices. To complete the specification of Z(R) = ¢(R) + ¥(R), we define the
normalized estimated energy ¢(R) by the equation,

®(R) = 8021"'.5&!2J (:—Z)Cltﬁ(R),

where ®(R) is an estimation of the conditional expectation of ), V,°*. It is an approximation of the
energy of the system after insertion of R. Accordingly, we have ®() = ®. The formal definition of
&(R) will be given shortly. If s is light, again all calculations are performed exactly, so let us assume
that s is heavy until indicated otherwise.

Definition. Given o € T, let T,(R) be the portion within o of the canonical triangulation of the
arrangement formed by R(o) and the hyperplanes bounding o (recall that R(c) denotes the set of
hyperplanes in R meeting o without containing it). We define T,(R, j) as consisting of the faces
of T,(R) that intersect ezactly d — j hyperplanes of Ry U R, over all ¢ € T,. By extension, T,(R)
ts the set of faces in the iriangulations T,(R) for all o € T,.

Note that since each ¢ might be triangulated independently, there is no guarantee that 7,(R)
is itself a cell complex. It is, however, a partition of s into simplices of all dimensions. Consistently
with our notation, we have 7,(j) = 7,(0, j) and 7, = T,(#). Any o' € T,(R, ) lies Within a unique
o € T,, so we can extend the definition of k; and k;, with the convention that k;(¢’) = ki(¢) and
kh(O") = kh(a').
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We now introduce the technical concept of a witness set. If k(o) = 0, the witness set is empty.
Otherwise, among the k(o) hyperplanes separating O and o without intersecting o, choose k;(e) of
them arbitrarily once and for all. That choice determines the witness set of ¢. Note that more than
half of the candidates end up in the witness set. We define §( R, o) to be 1 if R does not intersect
the witness set of ¢ and 0 otherwise. Naturally, we set §(R,0’) = §(R, o). Using witness sets is the
price we must pay for replacing k(o) by its approximation ki(¢). The function § is used in defining
the estimated energy ®(R): its role is to ensure that ®(R) can still be regarded as a higher moment

of a random variable.

To define H},, again we distinguish between two cases. If v, > [ / 3 then we compute H;: =

H, directly, otherwise we use the (1/v,)-approximation A, for H(e) previously computed. By
Lemma 1.1, this allows us to estimate the number H,: of vertices of A(H) in ¢’ with an absolute
error of at most QdV;"' /vs, where j' is the dimension of ¢’. (Notice that the subscript of V; is not
primed.) Since j > j/, this means that we can estimate H,s from above by H},, with (o being the

simplex of 7, containing o)
4dvi
Dol % B B iV’ . (2.10)
s

Returning to the general step in the incremental construction of Rj, we consider a random
choice of R, and we denote by R the subset already committed to R at that stage. Given a vertex
v of A(H), let p(R,v) be the conditional probability that v € RY, i.e., the d hyperplanes defining v
are in the disjoint union Ry = R; U Ry and no hyperplane cutting the relative interior of Ov is in
Ry, given that R C R,. We define the estimated energy after insertion of R,

®(R) = ) _®(R,s),

where s ranges over all d-dimensional simplices of the geode of R;. If s is light, then ®(R,s) =
>, P(R,v)k(v)°!, where v runs through all the vertices of A(H) within s (minus the usual exclusions
between simplices to avoid overcounting). If s is heavy, then we break down ®(R, s) along dimensions
0,...,d: ®(R,s) = Zog;‘ga“ﬂR: 5,7), where

s(he= Y amoape)("TN TR (o,

Fo—r—j fo—r
o' €T, (R.j) 2 J 2

The energy of the system after insertion of R is equal to the conditional expectation of -V,
given R C Ry, where the sum extends over all segments e connecting O to the vertices of RI.
This energy is equal to 3, p(R, v)k(v)*!, which is at most ®(R). This follows from the fact that
again only upper bounds are used in the definition of ®(R, s, j). Note also that ®(R) is actually an
upper bound on the conditional expectation of ), V1, where the sum extends over all segments e
connecting O to the vertices of A(R3) in R} whose corresponding witness sets do not intersect Rj;
this includes the vertices of R} but also possibly many others. After insertion of Ry"no randomness
is left, so we have,
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Lemma 2.5. The estimated energy ®(Rz) is an upper bound on Y, V', where the sum extends
over all segments e connecling O to the vertices of R'{.

Let C = H \ (R; U R). Ideally, we would like to prove that

el = 8 (RU{R)) = B(R),

hecC

which is the necessary condition for applying the method of conditional probabilities. Of course,
this does not hold in our case because errors accumulate, and all we can hope for is that the average
value of ®(RU {h}), over all h € C, does not exceed ®(R) by too much. So, our immediate goal is
to prove an upper bound on

AfR) =— i) +——0 Z ®(RU {h}),
hEC

in order to bound the drift away from the average caused by the estimations made at every step of

our incremental selection of Rs.

Lemma 2.6. For co = co(cy) and 7 < 7y,

AR < ——(2)" PILC

Remark: Let us interpret the lemma informally, in a way that is technically incorrect but intuitively
on the mark. On the average, V; should be on the order of n/r; and |R(s)| should be a constant, so
the upper bound might look like (3/60;.2),.1[4/2] (n/r1)"*, where a is a constant dependent only on ¢;.
Since there are 7, steps and ¢y can be made arbitrarily large independently of ¢y, the final error is
bounded by srL 12 J(n/rl)"‘, where ¢ can be chosen arbitrarily small. This makes the relative error
smaller than any fixed positive constant. The presence of strange exponents such as ¢; — /¢y is a
technicality motivated by our later use of Holder’s inequality.

Recall that the algorithm starts off with R empty and fills it in, one element at a time, until
r = |R| = ¥2. To add one new element to R, the rule is that out of all the hyperplanes in C =
H \ (R1 UR) we choose one, hg, such that

E(RU{ho}) < 8] Z (RU{h}).

heC

We will show later how to find hg. Because of our upper bound on A(R) (Lemma 2.6) we can show
that if we abide by our selection rule the upward drift of Z(R) is slow enough. In what might appear
as a slight contradiction to what we said earlier, the proof relies on the fact that R, i§ a semicutting.
This seems to indicate that in order to keep the energy function bounded it is important to have
it bounded at previous steps. Note that this would not be necessary in a perfectly randomized
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algorithm. The subtle point here is that we need the induction not to bound the energy function
per se, but to prove that the error in its estimation is bounded. From Lemma 2.1 and the fact that
R; is a semicutting, we have

TS < Ve <eocprld ()7 (2.18)

s e rl
It is now easy to establish the following inequality.

Lemma 2.7. For any r such that 0 < r < 7y,

fo—1

877

E(R) < %—

The lemma implies that Z(Rz2) < 1/2, which has the double implication:

3 [Ra(s)|* < cocari?/™, (2.19)

R L2} (7
®(R;) < 4eary (r2) ;

From Lemma 2.5, this shows that setting co = co(c1, c2) big enough ensures that Rj is a semicutting,
which achieves our first goal.

2.4. Computing the Next Sample. Now that the error analysis is behind us, we must describe
how to find R; efficiently. One has to be quite careful, lest truly enormous running times befall us.
From now on, to simplify our notation, every step of the complexity analysis will be correct only up
to within constant additive and multiplicative factors. Suppose that R} is given to us, along with
the list of hyperplanes of H \ R, separating each vertex of Ri" from O. With this information, it is
routine to compute the geode and the lists of hyperplanes crossing its faces in time rlw A4 Yo Ve
(Again, recall that we have set i = 1 for notational convenience.) By collecting the various mentions
of running times made in Section 2.2, we easily find that all further preprocessing (computing all
¥,’s and the various (1/v,)-approximations) can be accomplished in time

S Vo) s D1+ ()™, (220)

n

where b; is independent of ¢;. For simplicity, we have overlooked the costs associated with light
simplices and trivial (1/v,)-approximations: these will be accounted for later. Recall that computing
Ry, and hence its geode, takes O(n) time.

Let us now turn to the incremental construction of R and evaluate the cost of adding one more
element to that set. From now on, the symbol R will be used exclusively to denote & member of the
set sequence leading from @ to R». Inductively, we assume that not only the geode of R is available,
but also that for each heavy d-dimensional simplex s the following information has been computed:
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(i) The net £, and all (1/v,)-approximations for s; recall that these structures do not depend on
R but only on R;.

(i) The triangulation 7,(R) of each o € 7,.

(iii) If s is light, the entire portion of the arrangement formed by H within s is available explicitly.

Computing Z( R) involves summing up various quantities associated with each simplex s. For a given
s, one of these quantities, denoted 9(R, s), depends on |R(s)| and V,(R) and is needed only for the
evaluation of ¥(R). The others enter the expression of ®(R, s) = 3, <4 ®(R,s,]). Recall that

ESIED SR LRV 100) (it V] (et |

Fo—1—17] To—7T
o'€T,(R.j) 2 J 2

As it turns out, it is very unfortunate that the binomial coefficients should depend on r. Intuitively,
one would hope that adding a new hyperplane would cause work only in the vicinity of that hyper-
plane. But because r must be increased by one, every binomial coefficient must be updated, and
technically every single feature in |J, 7,(R) must be looked at. This could be a nightmare scenario,
if we didn’t use some special data structuring tricks. To begin with, we break up ®(R, s) into terms
with the same binomial coefficients. We write

Q(R, S) = ZF(R;S;j;k)B(rwj:k)’

3.k
with E
. n—ri—r—k—j n—ry—r
k) =
Bk ( Famr—j )/< P )
and

F(R,s,5,k) =Y _ 6(R,c")H}.k; (o),

where the sum extends over all ¢’ € T,(R,j) such that k;(¢') = k. An entry B(r,j, k) is 0 if its
binomial coefficients are out of range. We can make (j, k) run over the same range for any s by
setting F(s, j, k) = 0 appropriately. It is now clear that

Z(R)=)_Y f(R.s,5,k)B(r,j,k),

ik s

where f(R,s,j, k) is F(R,s,j, k) scaled by a factor independent of r,s, j, k; for convenience, we
extend the sum to (j, k) = (=1,-1), with f(R,s,—1,-1) = ¢(R, s) and B(r,-1,-1) = 1.
Unfortunately, we cannot afford to test Z2(RU {h}) for each h every time we want to add
one more element to R. This is why we modified the Raghavan-Spencer strategy by seeking not the
minimum value of £(RU{h}), but any one that does not exceed the average. The entire construction
of R, revolves around a particular family of matrices { M(R) : |R| = 0,1,...,72 }, each of them
indexed by (h, j, k), where h = 1,...,n — r; designates a hyperplane of H \ R; and; as usual, (4, k)
indexes the B()’s. We look at (j, k) as indexing the elements of a single row by implicitly mapping
all the (4, k)’s injectively to an interval of integers: the maximum number of such indices is denoted
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u; since ki(c') is a power of two, u = O(logn). By abuse of notation, h will be used both as a row
index and as a hyperplane. If h € Ry U R, then M(R)[h, j, k] = 0, otherwise

M(R)[h, j, k) =Y f(RU{h},s, ], k).

Note that Z(R U {h}) is the inner product of the h-th row of M(R) with the row indexed r of the
matrix B. Let us break up the interval 1,...,n— r; into at most 1/n intervals Ay, ..., A, of length
less than /n. We define the row-vector (indexed by (j, k))

MF(R) = ) M(R)[h, j k).
heA;
To find the next h to be included into R, we first compute the index iy that minimizes, over all ¢,
the average value of Z2(RU {h}) over A, i.e.,

ﬁ > M (R, K x B, ).
ik

Next, we check each index in A;, and set the new hyperplane hq to the index i that minimizes
Z(RU{h}) over A;,, i.e.,

> M(R)[i, j,k] x B(r,3,k).

ik
We can easily check that this maneuver is consistent with our selection strategy and homes in on
a good hyperplane. But how costly are the computations? The key to efficiency is to evaluate the
matrices in an incremental fashion and make them into persistent data structures. To do so, we

define the row-vector

M(R)[0,5,k]=Y_ f(R,5,5, k),
and express M(R)[h, j, k] in terms of the operator A, where
AM(R)[h,j, k] = M(R)[h, j, k] — M(R)[0, ], k].

We also define A} M(R) by summing up the rows of AM(R) indexed by A;.

For a given s, let ¢(s) be the maximum time, over each R computed by the incremental algorithm,
spent computing all the values in U_,-’k{f(R, s,7,k)}. For convenience, we also include in t(s) the
cost of computing 7,(R) from scratch (but not the net £, and the (1/v,)-approximations within
s). Two simple observations form the basis of our analysis. One is that for a given pair (R, s), we
can compute the vector f(R,s, j, k), assumed to be initialized to 0, in #(s) time; the initialization
takes p time. The other observation is that if h € H \ (R; U R) does not meet s then the vectors
f(RU{R},s,j, k) and f(R,s,j, k) are identical.

Thus, we can compute the entire row M(R)[0, j, k] in time at most u + 3, t(s). The purpose
of using AM(R) is that any row of the difference matrix can be evaluated by looking only at
the neighborhood of h across the triangulations { 7,(R) : s € J(h)}, where J(h) denotes the
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set of simplices s that h meets. More precisely, it can be evaluated by restricting ourselves to
the symmetric difference between U,¢ j(n) Ts(R) and U, e T,(RU {h}). Of course, this entails
updating U, ¢ y(x) 7s(R) into U, e sn) T (RU{h}). We call the complete set of operations (computing
the new triangulations in the vicinity of h and then evaluating f at the proper places) “tracing the
incidences of h over each s € J(h).” In general, we update the triangulations for the sole purpose
of evaluating a row of AM(R), in which case we immediately “undo” those updates right after the
evaluation is completed, so as not to corrupt the geometric structures. Because of our use of #(s)
in the complexity analysis, every time we update some triangulation within s, we might as well
recompute 7,(R) entirely from scratch. The cost of setting up row h of AM(R) is at most

u+ Z t(s).

s€J(h)

Thus, the time for computing the row M (R)[0, 7, k] and initializing AM(R) and A} M(R) for R =0

is at most
npt+y ts)+ Y, D He),

heH\R; s€J(h)

and hence, no more than

np+ Zt(s)(Va +1).

After precomputing all possible B(r, j, k)’s in O(nrz) time, we apply our selection algorithm
and find the first hyperplane of H \ R, to be included into R. More generally, given AM(R), we
find the next hg € H\ (R; UR) to be added to R in time at most /. Summing up over the entire
growth of R from @ to Rz, we find a total “discovery” cost (excluding updates) of at most

nry + Fop/n.

After adding ho to R, the next step is to update AM(R), meaning to convert it into AM (RU
{ho}). But first we must compute M (RU {ho})[0, j, k]. We observe that the difference

M(R U {hO})[Os J) k] - M(R)[[]:J! k]

can be computed by tracing the incidences of hg, therefore setting up the row M (RU {ho})[0, j, k]
takes time at most u+)_, I(ho) t(s). Since hy is not just a candidate but it is the elected hyperplane,
we do not “undo” the new triangulations created while tracing the incidences of hg but we leave
them in place. -

We now turn to the updating of the matrix AM(R) itself, which is the most subtle part of the
algorithm. First, we mark row ho as a way to indicate that the corresponding row in M(R) is now
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0. From our previous observations, we derive

Z (f(RU {hU:h}sssj)k) - f(RU{ho},s,j, k)) - Z (f(RU {h}lssj: k) - f(R:S)j’k))

5" (F(RU{ho,h},s,5,k) = f(RU{ho},5,5,k) = D (F(RU{h},s,5,k) — f(R,s,4,k))

s@J(ho) 5@ (ho)

+ Z (f(RU{hO)th:j:k)_f(RU{hD}ss:j:k))_ Z (f(RU{h},S,j,k)—f(R,S,j,k))
s€J(ho) s€J(ho)

= E (f(RU{ho,h},s,j,k)—f(RU{hn},s,j,k)+f(R,S,j,k)—f(RU{h},S,j,k)).
s€J(ho)NJ(h)

Let N(ho) be the set of hyperplanes h such that J(h)NJ(ho) # 0. From the identity above, it is clear
that if h is not in N (ho) then the row AM (RU {ho})[h, j, k] is exactly the same as AM(R)[h, j, k].
Otherwise, it must be recomputed by tracing the incidences of h over the simplices s € J(ho)NJ(h).
For any such h, we can find which entries of the row AM (R U {ho})[h, j, k] must be updated in
time y__ t(s), where s runs over J(hg) N J(h). We must be very careful not to scan the entire row
systematically but to visit only those entries that need updating. (As it turns out, failure to do so
would make the algorithm nonoptimal in dimensions 4 and 5.) Counted over all rows, the time for

n—r+ E Z t(s).

h€N(ho) s€J(ho)NJ(h)

these operations is at most

Finally, we must update each A} M(R), which does not take longer than the time to update AM(R),
added to the time px needed to reflect the effect of marking row hg. Over all R’s, this gives a total
update time of at most

To(n —ry +p) + Z E E t(s),

ho he€N(ho) s€J(ho)nJ(h)

where hg ranges over all 75 hyperplanes inserted into R. Once R; is available, we can retrieve R
directly from our various triangulations, along with the lists of hyperplanes crossing the edges joining
O to the vertices of RY. This takes an additional r'ﬁd" 2.4 Y. Ve time, which is at most nr%d’ 24-1
because R, is a semicutting. To summarize, the entire construction of R, takes time at most

ark¥ =1 4oy Zt(s)(% + 1)+ nry+fop/n+Fo(n—r + p) + z z t(s)(V; + 1),
3 ho lEJ(ho)

which, because d > 3, is no more than

un®? 4 nrf¥2170 4 SR (1Ro()] + 1)i(s) (Ve + 1), ’ (2.21)
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If 5 is light, then #(s) < V.4, which is either constant or less than p2?. Suppose that s is heavy.
There are at most on the order of (p, log ps)%(|R2(s)| + 1)¢ simplices ¢’ in 7,(R). For each of them,
estimating the number H}, of vertices inside it takes time at most w2 (1), if v, < 4 / 3, where ¢ is the
simplex of 7, containing o’. Otherwise, it takes time at most V¢ < v34. Note that both k;(¢’) and
kn(c') are available from the preprocessing. Thus, again up to within additive and multiplicative
constant factors,

1‘21/5 ba/er
(%)™

t(s) < |Ra(s)|* + |Ra(s)] + 1), (2.22)

where b is independent of ¢;. From (2.20-2.22) and p = O(logn) we find that the time T'(rz) to
compute RJ is at most

3/2 la/2)-1  (T2\PVo g rbvE
n*/“logn + nr; +(n) X’:Vs

+ Z(lﬁz(s)l + 1)d+1(va 3 1) ] (%)bz\/ﬁ E(|R2(5)l i l)d-HU/:, g 1)1-{-6, Y

]

By Cauchy’s inequality and (2.18,2.19), we have

3 (IRe(s) + 1)¥ (Ve +1) < \/Z(u-"az(sn +1)2042 \/Z(v, +1)2 < banrf?/? !

s

and
S (Ra(s)] + 1)H1(V, + 1) v
3

A 1+ba /T
- \/Z([Rz(s)l H1JE \/Z(V. +1)2420:vE < pypld/2 (%) .

It follows from (2.18) that

o biv/er _ bay/er _
T(re) < n3/2 logn + nr%d"2J i + (?) ' 1mr-lLd‘mJ L (:—2) ’ nr}dlz] !
1 1

Because of (2.2) we finally derive
T(rs) < n®/2logn + nr%dlz]_l.

Because d > 3 and the r;’s follow a geometric progression, summing up over all ry,rs,..., we find a
running time of O (nl%/2]).

Remark: Don’t let the inequality for T fool you: When d = 2, 3, there is an extra term nry, which
implies that the algorithm is quadratic in two and three dimensions.
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2.5. Completing the Construction. Because of condition (2.2) we can apply the general recursive
step only as long as 7; is less than about n/c;. Since on the other hand, r; can grow exponentially
fast, we are not forced to stop until r; differs from n by a constant factor. What remains for us
to do then is to take the last semicutting R; and complete the computation. We just follow our
usual routine of inserting new hyperplanes kg into a set R initially set to §. This time, however,
we operate without following any selection criterion, and without using any data structure, besides
the lists of hyperplanes H(s) associated with the simplices s of the geode of R;. By computing
the full arrangements within each simplex, we trivially complete the computation in time )~ (V; +
1)"l (b; independent of vy), which, because of Lemma 2.1 and the fact that R; is a semicutting,
is v} (n/ri)»r = O(nl¥2)). In conjunction with the two and three-dimensional convex hull
algorithms of Preparata and Hong [18], this completes the proof of our main result.

Theorem 2.8. It is possible to compute the convez hull of n points in d-space deterministically in
O(nlogn + nl?/2l) time, which is optimal.

There are several ways of interpreting a Voronoi diagram of n points in d-space as a convex hull
or an intersection of halfspaces in (d + 1)-space [2,8,9]. We have the immediate corollary:

Theorem 2.9. The Voronoi diagram of n points in d-space can be compuled in time O(nlogn +
nl4/21) which is optimal.

5. Searching as a Process in Statistical Thermodynamics

In order to cope with the various obstacles we encountered along the way, we had to modify the
method of conditional probabilities in several ways: For example, we replaced the greedy selection
criterion by a “kinder and gentler” one. The notion of a witness set was introduced to limit the
number of distinct possible distances, but this seems a rather unnatural artifice. More serious
still, the errors we accumulate at each conditioning step all but destroy the most basic properties
of conditional probabilities. We can make an analogy with statistical thermodynamics to help us
conceptualize and build some intuition for what is happening. This will also give us an opportunity
to quantify more discriminatingly how the search zeroes in on its target. In particular, it will
allow us to answer the natural question: How random-looking are the samples R; computed by our
algorithm? In the Clarkson-Shor algorithm, a sample R; is a prefix of a random permutation and
therefore is itself random. This implies, in particular, that the vertices of R} lie at an average
distance roughly n/|R;| from O. Is that always true of our deterministic samples? The answer is a
resounding no. There can actually be some rather remarkable phenomenon occurring: Measure the
speed V-det at which the deterministic R} shrinks toward O, as 7 increases, and compare it against
the speed V-rand of its random counterpart. Depending on the shape of the arrangement A(R) it
might be that the two speeds follow each other fairly closely. But we can easily construct a case
where V-det exceeds V-rand by a strikingly huge amount to begin with, only to even up much later.
This is quite surprising, especially since our modification of the Raghavan-Spencer method makes
the search mimic its randomized counterpart even more closely: indeed, recall that irour variant the
conditional expectations might remain equal to the initial expectation at all steps of the selection
process. We will explain how such a huge deviation from a random behavior is at all possible.
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But first, we must build our “thermodynamics” model.f For simplicity we will concentrate
on the problem of finding a semicutting R of size r, assuming that we have all the needed &-nets
and e-approximations. Recall that for R to be a semicutting, a certain higher-order moment of the
distance distribution between O and the vertices of Rt must be bounded from above. This moment,
denoted E(R), is the energy of the system. We are faced with an optimization problem, in which a
certain function F(R) must be minimized over all R C H of a given size. Of course, minimization
is not quite the right term, because for our purposes simply reaching as low as roughly the level of
the mean value of E(R) is good enough. Moreover a random sample R works fine with at least a
fixed probability.

A. Three Classical Approaches. The most simplistic attitude toward optimization is greed. In
our context, the greedy strategy would be to add hyperplanes into the initially empty set R, one by
one, always selecting the hyperplane that minimizes the gradient of the energy F(R). This “instant
gratification” strategy is likely to fail because it does not worry about the long-term consequences
of a move: Thus, the search might begin on a promising, steep downhill course, only to later find
itself “stuck” in a plateau for a long time.

Simulated annealing [11,17] attempts to remedy this problem by randomizing the direction of
the next move in the hope that a random walk will guide us more surely toward the global minimum.
It also allows for uphill (i.e., locally bad) moves in order to keep the search from getting stuck at local
minima. The temperature of the system controls how likely we are to accept a bad move as a function
of how uphill it goes. By analogy with the thermal motion of atoms, the probability of acceptance
is chosen so as to make the system evolve into a Boltzmann distribution: in that distribution, the

—AE/kt where k is Bolztmann’s constant

probability of a variation of energy of AE is equal to e
and t is the temperature. Once a temperature is set it is not lowered again until the physical
system reaches equilibrium. (Translation: keep the random walk going until it attains its stationary
distribution.) The soundness of the scheme is predicated on the assumption that deep wells in the
graph of E in configuration space should have wide openings: thus, randomizing the moves at a
given temperature makes it more likely to fall into a wide well (which is true), and hence, one that

contains the global minimum (which is more a matter of faith).

The method of conditional probabilities is both deterministic and greedy. Its range of application
is limited by the fact that it requires the ability to estimate the density of good targets reachable
from any point. It is greedy in the sense that it opts for a move that, roughly speaking, maximizes
the estimated density of good targets over the subspace of configurations reachable from the current
point (without backtracking). In the combinatorial setting in which it is usually defined, the search
can be modeled as the traversal of a “greedy” path in the tree of all possible sample choices: the
nodes are labeled after their associated conditional probabilities.

-

1 The analogy should not be taken too literally. It is used mostly to build up intuition for what is happening. As
such, we believe that it serves a valuable purpose.
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B. A Thermodynamic Process. Think of the vertices of the arrangement A(H) as particles of a
gas in equilibrium in a closed environment. At any given time, imagine that the full set R has been
chosen by Nature, but that our experimental knowledge of R is only partial; therefore, according to
the ensemble method of statistical mechanics, we postulate that any R compatible with our current
knowledge is equally probable. From now on, we will use R to denote the state of our current
knowledge, i.e., the subset of hyperplanes which the search has already committed at a given time.

Each hyperplane in R has a specific physical effect on the whole system, but hyperplanes outside
R have no influence. On a macroscopic level, the system has a well-defined temperature and energy at
any given time. The initial temperature is 7. Once a hyperplane h is added into R, the temperature
t drops by one, and this transition causes changes in the thermodynamical state of the system in
a manner specific to h. Thus, searching for R amounts to cooling down the system until it freezes
(zero temperature), at which point R becomes entirely known to us. Quantifying the uncertainty
in our knowledge of the system in terms of its entropy is unlikely to reveal much about its dynamic
structure. Energy considerations will prove much more useful.

At nonzero temperature, the energy is known only thermodynamically, i.e., statistically by its
mean over all remaining allowable configurations of the system. We can now state the fundamental
link between the method of conditional probabilities and statistical thermodynamics: Selecting one
more hyperplane into R may move the system to a different mean energy level, but the average
over all possible selections is exactly the same as the mean energy before the transition. As often
is the case in physics, however, the reality is a little more complex than in the case of an idealized
environment. In particular, to take into account the error terms of the conditioning step, we must
assume that in in order to be activated a transition requires a small transfer of energy from the
outside. These are minor inputs of external energy, which taken over the entire cooling, do not
amount to more than a fixed fraction of the original mean energy of the system (Lemmas 2.6-2.7).
Notice that energy is a discrete quantity. (That was to be expected, right? Quantum mechanics
tells us, by way of Schrodinger’s equation, that the energy states of a system are the eigenvalues of
its Hamiltonian operator, and hence, are discrete. So, everything fits beautifully, doesn’t it?) f

At the microscopic level, each particle is in one of d+1 phases at any time: initially, all particles
are in phase 0, and any decrease in temperature can only force a particle to move up to a higher
phase or to stay in the same phase. The phase of a particle corresponds to the number of hyperplanes
known to be in R that pass through it. The particles on the boundary of Rt (which includes more
than just the vertices of Rt) form what we call the shrinking shell: it consists of all those particles
in a nonzero phase. The energy of any particle is in one of several quantum states, again known
only by its statistical average. At each temperature transition, the particles incident upon the newly
added hyperplane move up to a phase one higher than the one they are currently in; the others
remain in the same phase. It is now easy to interpret our selection strategy:

Pick any move as long as it does not increase the mean energy of the system beyond
the amount necessary to activate the transition. =

t This is a joke.
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In the worst case, therefore, ignoring the activation energy, the original mean energy is conserved
and simply redistributed among the particles. Observe that the original Raghavan-Spencer selection
criterion is greedy and picks the move that minimizes the mean energy. We now want to look
more closely at how the redistribution of energy takes place. In particular, we are interested in the
energetic contribution of the shell. How does it vary? Is it ever dominant, and if yes, when is it so?

C. The Attila-the-Hun Effect. At temperature ¢, where should we expect the shell to be? Since
r—t hyperplanes have already been selected, by analogy with the random case, we might expect the
average distance of a vertex of the shell to O to be around n/(r — t + 1). This seems a reasonable
rule of thumb, especially if most of the hyperplanes in H are incident upon H*. If the arrangement
makes it impossible to form polyhedra with large numbers of facets, however, then this estimate
might be completely off, as we shall discuss later. This is what we call the jolt effect, which is a
rather interesting phenomenon in itself. But for the time being let us assume that the radius of the
shell is about n/(r —t +1).

In the first few transitions, the shell has too few vertices to contain much energy. As it shrinks
toward the center O, however, the shell accumulates particles and slowly gathers energy as a result.
Without loss of generality, assume that the initial mean energy is conserved throughout the cooling,
which is the worst case scenario. Then, with regard to the system as a whole, the shell appears to
be sucking in energy from the other particles. Let us analyze this intriguing phenomenon in greater
detail. (Warning: all estimates in this section will be given up to within a constant factor.)

The particles enclosed by the shell but not on it form the core of the system: all particles in
the core are in phase 0. Particles outside the shell and the core are devoid of any energy, so the
total mean energy of the system consists of (1) the core energy and (2) the shell energy. A particle
in phase ¢ and at distance k from the center O has mean energy roughly

o (£

If we ignore the fact that the shell acts as a barrier, we find that the core energy is roughly

3 nld/2gld7-14e (i)de_zk/ﬂ’

E>0 B

which is on the order tL4/2) (n/t)c1. Of course, this is not quite correct because particles beyond the
shell are inactive. This means that the summation should not extend past n/(r —t + 1). Therefore,
our previous assessment is correct provided that n/t < n/(r —t + 1), i.e., the temperature exceeds
about r/2. In the worst case, the total mean energy is conserved thoughout the process, and stands
as roughly rl4/2(n/r)c1. Then, prior to the halfway mark, that is, as long as the temperature is as
high as /2 (we use 2 as a generic constant here), the core energy is dominant in the whole system.
Then, around the halfway markpoint, shell and core energies break even, and froni that point on,
the shell becomes dominant and keeps stealing energy from the core until nothing is left and the
core freezes.
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The shell is almost always greatly outpopulated by the core, so how can it manage to steal so
much energy? The answer is to be found in the phase transitions. Particles at higher phases have
exponentially more energy. Specifically, to move up one phase gives the particle a multiplicative
energy boost of n/t. Therefore, although small in size, the shell contains high-energy particles. Recall
that a core particle at distance k stores an amount of energy on the order of E; = k! (t/n)de~t*/n.
As t drops by one, assuming that the particle stays in the same phase, we have (for k not too large),

E,_, ( 14 kE d 1 k?
—_ = 1--—) A O S O(— —)
E-g t * n 4 * t2 + n2
Up to within a constant factor, we see that the energy of the particle increases until the temperature
drops to roughly dn/k, and decreases thereafter. As a whole, the core energy remains about constant
between temperatures r and /2 (remember that we do not care about constant factor variations).
During the second part of the cooling, however, the core energy vanishes to 0 polynomially fast.

We conclude that after the halfway mark, not only the shell collects the energy of the particles
that it sweeps over, but it also steals energy from the core. This is what we might call the “Attila-
the-Hun effect.” As the shell shrinks toward the center, it effectively kills the particles that its
sweeps over and steals their energy for itself; at the same time, it sucks in and absorbs energy from
the core, all the while constantly squeezing the core toward the center (actually toward a ball of
radius n/r).

D. The Jolt. If very few hyperplanes of R are incident upon R*, for any R, then a remarkable
phenomenon occurs: - the shell is given an initial jolt and shrinks extremely fast at the beginning.
Then the shrinking slows down until the “random” shell eventually catches up with it. (This is
the shell that corresponds to the randomized version of the algorithm: its radius is n/(r —t + 1)
at temperature t.) Thus, the shell greatly outperforms its randomized counterpart at the early
stages. How is that possible? The whole algorithm revolves around the notion of e-nets, for which
randomization usually helps. Furthermore, our variant of the Raghavan-Spencer method makes it
mimic the randomized algorithm even more closely, so how can one explain this jolt effect? To
understand this mystery, let us consider a specific example: We set d = 2 and ¢; = 3, meaning that
we are in two dimensions and the energy is defined in terms of the third moment of the distance-
to-center distribution. The set H consists of n lines tangent to the bottom half of a fixed circle
and placed at regular intervals around it. If we choose H* to be the upper envelope of the lines,
then the shell and its random counterpart behave in a similar fashion. The interesting case is to
choose H* to be the lower envelope. Note that H*, or for that matter any R*, is just a simple
wedge. To simplify calculations, we will use a continuous approximation of the energy in terms of
the incomplete gamma function.

There are about z vertices of A(H) at distance z from O, therefore at temperature r, the energy

Ey = /" x(%)ze‘”’/"zs dz.
0

of the system is
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Using integration by parts (or even better, Mathematica), it is easy to find that

24n*  24n* 12nt 4

rs L 2 i r LA r).
At temperature t, the shell is a wedge whose supporting lines pass through, say, the kth leftmost
point and the I-th rightmost point of contact on the half-circle. Without much loss of generality,
assume that we have perfect symmetry, i.e., k = I. If the first » — ¢ lines were picked at random then
we should have k = | = k; on average, where k; = n/(r —t + 1). But a calculation shows that if it
were the case the mean energy would have to rise to a level much higher than Ej, which is ruled out

o= 24(2)’ - S+

by our energy conservation policy. So, what is k;7 If we were trying to minimize the energy of the
system at every step, as in the original Raghavan-Spencer method, then we might expect a much
smaller value of k;, on the grounds that we would thus be trying to be more clever than a random
pick. But recall that by staying at the same energy level we are actually trying to keep conditional
expectations equal to the original expectation. This can be interpreted as an attempt to mimic the
randomized algorithm as closely as possible. So, how much lower than n/(r —t+1) should we expect
to find k;? Probably not much, right? Wrong. We can actually show that
3
ko= log (=),

which means that as soon as the temperature drops, k; immediately plummets to about a multi-
plicative factor of logr off its final value of n/r, while in the random case, k; barely begins to drop.
Here is the detailed calculation:

E =B + B + E{,

where Egi) is the mean energy of the particles in phase i. We have

kq 2 2k4 2
(0) _ i —tzfn 3 _ i —tz/n 3
E; _-/0 :c( ) e z°dz + . (2k, :)(n) e z° dz

n

3 3
=24(3) +2e7> (3) (12+180 + 120 + 4a® — ¢ (24+ 18a + 6a” + o”)),

where a = tk;/n. We also have

(1) ks 9 ny\3
EM = j Zemteing® dz = 272 (?) (e%(6 + 6o + 302 + a®) — 6 — 12 — 1207 — 8a)
ke

and
3

(2) _ g,3,~2a(M
E;” = 8a”e “(t).
It follows that 3 3
E,=24(-11) +6e"2"(;) (2 + 20 — e%(6 + 4a + a?)).

By conservation of energy, we have E; = Ej. It is not possible to obtain a closed form for this

-

equation, but we can approximate its solution by writing it as

(F)=0-2E)"
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which gives the approximate value

To appreciate the magnitude of the jolt at the very beginning of the cooling, assume that r —t is a
small constant. Then, as claimed earlier, k; is about (n/r)logr, while in the randomized case, k; is
still about n.

Here is a probabilistic game which illustrates, in simpler form, what the jolt effect is really all
about. A lottery produces a sequence of 10 random reals between 0 and 100: the maximum value
is your gain. That is, if the numbers are, say, 20, 34,12,89, 45,62, 49, 32, 38, 72, then you go home
with 89 dollars. It is easy to see that your expected gain is $90.9. Suppose now that someone offers
you an alternative option: you are guaranteed a minimum gain of 70 dollars, no matter what, but
as a penalty, you can play with only 9 random numbers, as opposed to 10. If the maximum of these
9 numbers exceeds 70, you walk home with that amount, otherwise you pocket $70. Which game
should you play? Your intuition might tell you that in game I, the first number will average to
$50, and hence, should play basically no role in determining your final gain (since it is to be around
$90.9, anyway). So, switching to game II might seem advantageous. This reasoning is false. As it
turns out, the safety net value at which you should switch to game II is not $70 but $78.68 or above.
The reason the break-even point is so far above 50 is that we must compensate for the fact that
derandomizing the first pick reduces its variance to 0. Clearly, the high expected gain is due to the
large (upper part of the) variance of the uniform distribution. Another way to see the relationship
with the higher moments of the distribution is to recall that the L. metric (the “moment” metric)
converges toward the L., metric (the “max” metric), as ¢ goes to infinity.

6. Concluding Remarks

We are hopeful that this work will open a new opportunity for the powerful theory of ¢-nets by
providing the tools for speeding up algorithms via approximate computations. The moral of this
story is that e-nets and e-approximations are not to be used solely for divide-and-conquer purposes.
Specifically, we suspect that the techniques in this paper can improve the deterministic computation
of shallow cuttings, k-levels, k-th order Voronoi diagrams, etc. More generally, it will be interesting to
find out whether the same techniques can be used to derandomize the other probabilistic incremental
algorithms used in computational geometry. Many examples seem to fall squarely in the framework
we build in this paper, but some others seem more challenging: the latter category includes, for
example, Clarkson and Shor’s algorithm for computing the diameter of a set of points in 3-space [6].

Acknowledgments: I wish to thank L. Lovasz, J. Matousek, and P. Raghavan for several helpful
discussions. ’
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Appendix

Lemma 2.1. Given the geode of R C H, for any constant c large enough, 3,V < ¢y, V.5, where
the first sum is taken over all d-dimensional simplices s of the geode and the second one over all

segments e connectling O to the vertices of the geode.

Proof: Because it cannot pass through O, any hyperplane of H meeting a relatively open simplex s
of nonzero dimension without containing it must intersect (without containing) the relative interior
of at least one of the segments connecting its vertices to O. Thus, it suffices to prove the inequality
obtained by substituting W, for V,, where W, is the number of hyperplanes crossing at least one of
those segments outside its endpoints. We will show by induction on k that, for any k-face f of R,
the sum }_, W¢, denoted Ay, where s ranges over the faces of the geode lying within the closure of

&2 + 1) Y7,
eeE
where E is the set of edges joining O to the vertices of f. The case k = 0 is obvious, so let assume
that k£ > 0.

We observe that by our choice of the lifting vertex, we have Ay < (2°+ 1)), Ay, where g
ranges over all the (k — 1)-faces of R incident upon f. The term 1 comes from the contribution
of the faces incident upon f, while the term 2° accounts (conservatively) for the effect of the lifting
vertex to the contribution of the geode faces within f. By induction, we have

YAy <pd @2+ )T YV
9

eeE

f, is at most

where i represents the maximum multiplicity of a segment e in the counting. But the general position
of H, and hence of R, ensures that a segment e is incident upon d hyperplanes, and therefore, k
(k — 1)-faces incident upon f. It follows that u < d, which completes the inductive proof. The case
k = d, where f is the interior of R, gives the lemma. g

Lemma 2.2.

n ) Ld/2]

IR G (("+ 1) G 1)1‘) ,

Proof: Let s = |n/(2k + 2)]; the lemma is trivial if k is on the order of n, so we can assume
that s is large enough. Let S be a random sample of H \ R obtained by picking each hyperplane
independently with probability s/n, and let V be the number of vertices of the polyhedron R* NS+
that are formed by the intersection of a j-face of Rt with j hyperplanes of H \ R. Using elementary
tail estimates for the binomial distribution, we find that the expected value of V' is O((r + 5)L4/2).
It is also equal to

> 5l R, 5)(

E>0

N (1-2)" 2 ratm, R () el 2 e (2) sentH R,

n

from which the lemma follows. g
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Lemma 2.3. Forco = co(c1) and ¢ = cz(cy) large enough, the energy ® is at most cor; L4/ J(n/r )o.

Proof: Let us first concentrate on the case where s is heavy.
J k;(a’) 2
®(s,7) < E Hok (o) —————) (1-——=) .
o€T.(5) ( k’(”)) ( "_"1)
From (2.5,2.6) we derive that

®(s,5) < ) bl( ( - )j+Ha)k;‘(a)(%)je’k'(")ﬁ/(“"").

a€T,(j)

The r.h.s. consists of two parts: one, A(s, j), depends on H, and the other, B(s, j), is the additive
error term arising from approximating H, as H*. From (2.4) it follows that

ZS:A(s,j):E Z blHakf.l(U)(%)je‘k'(")ﬁ/(""'!)

s 0eT,(j)

<b ("2) > Y (ko+ ”"’1) e~ $k()Fa/(n=rs).

s veT,(j)

where by abuse of notation, “v € 7,(j)” means that v is a vertex of A(H) that lies in some o € 7,(j).
Expanding the sum along levels of A(H), we have

. f-' -7 n-—-n c1 Eou " B
;A(S:J)Sblﬁ(f) kZZD(H ) oy eI,

Splitting the sum at k = kg, where kg is on the order of (n — »;)/7», we easily find from Lemma 2.2
that, up to within a constant factor (dependent on c;), the first part is dominated by

(2) (522" (e 2 (252

To handle the second part, we use Lemma 2.2 but now we apply summation by parts beforehand.

In other words, using the identity

k n
Z U Vg = E(uk - 'Hk+1) Z'Ui + Un4i Zvi,
ko ka

ko

we derive a similar upper bound. It follows that

A 3 <ba(2) (B) " (a4 )

for by = bz(cl). From (2.2) we find that, for b3 = ba((.‘l), =
; la/2) [ P \®
;A(S,J) <br(2)7 @2.7)
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It follows from (2.2,2.3) that the error term B(s, j) satisfies the inequality

B(s,5)= Y. i_l(" e ’1)jk;n (o) (i_z)je-h(a)"z!("—rl)

dny > B
b1 1 1 d by a\VE oyt
21 a2 ¢1 U4gf 1 et 1
< " ag:(-)v, = (V,)blcl(p‘ IOgPa) V: < 03(1"1) V, )
7

for by = bs(cy). Since R, is a semicutting it follows from Lemma 2.1 and (2.2) that

3 BGs,d) < 2 (2)" < (2)7, 29)

L]

for bs = bs(c1) and co = co(e1) big enough. We have assumed so far that s is heavy. If it is light, then
the bounds (2.7-2.8) hold by default since no approximations are introduced in the specification of
®(s, 7). The lemma follows. §

Lemma 2.4. For an appropriate cs = cs(c1), we have ¥(0) < 1/4.

Proof: Let ko > 0 be a parameter to be set later. The expectation of |Ra(s)|* is at most kg + A4,

where V v
n—ry.— ¥ s n—nrn
A= k& _ ;
,g,;n ( f2—k )(k)/( 2 )
We find that

A< Y () (- ) T () e s T () e

k>kop E>ko

Setting ko = 2b,7,V; /n implies that

A<D 2Rk = by(en).
k>0

Thus, the expectation of 3, |R2(s)|* is at most ), bs [72V;/n] | with b3 = bz(c1). From Lemma
2.1 and the fact that R; is a semicutting, we have

¢ ¢ ¢ dfz] { P\
szlscl ;nlscﬂcilr}/-}(;) i
The lemma now follows trivially from (2.2) and the Upper Bound Theorem. g

Lemma 2.6. For co = co(c1) and r < 7,

AR) < —(2) T IR :

CoTg \ T
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Proof: Proving the lemma is not so easy because the faces of neighboring dimensions interact together
in the counting argument, and we must deal with all of them at once. Let s be a d-dimensional
simplex of the geode of R;, and assume for the time being that s is heavy. Given ¢ € 7, and h € C,
let V be the set of vertices of A(H) that lie in ¢ and in the intersection of exactly j hyperplanes of
C. We define H, ;j_1(h) (resp. Ho j(h)) as the number of vertices of V' that lie in h (resp. not in k).
As usual, we use the star superscript to refer to approximations, so H; ;_;(h) and H7 ;(h) denote
the estimated values of these quantities, as they are appear in ®(R,s). Specifically, H; ;_;(h) =0
if j = 0; otherwise

Bi,ii= 3, H (2.11)

a'€51(j-1,0)

where S1(j — 1,0) is the set of all simplices of T,(RU {h}, j — 1) that lie in o N h. Note that these
simplices are at most (j — 1)-dimensional: they lie in the intersection of h with d — j hyperplanes of
R; U R. From (2.10) we derive

4d

0<Hyy(h) = Hoym(W) S = 3 ViT'< 2RIV,
' ' s - Vs
g'€5,(j-1,0)
therefore from (2.3),
. _H,,; R ik

0 H3joa(h) = Hoja (W) < R (F57) - (2.12)

Similarly, we have
Hy(h= > H, (2.13)

O{ESQ(J’)U)

where Sa(j, o) is the set of all simplices of T,(RU {h}, j) lying in o \ h. The same derivations show
that

* _ . C_l afmn—mn i
0. Hyj() = Hos(h) < SHR)] (——F2 ) (2.14)
We also define
Hy(R)= Y. H;, (2.15)
a'€S5(j,0)

where S3(j, o) is the set of all simplices of 7;(R, j) lying in ¢. Note that for any h € C that does
not meet o, we have H; ;(R) = H; ;(h). The following quantity,

N _[(n-r1i—-r—k(o)-j-1 n—r—r—1
Aa(])—( Fg—r"'j—l )/( 1—,2_’,_1 )}

defined for r < 75, is useful to express some of the terms involved in the expression for ®(R,s, j).
If any term in the binomial coefficient is negative then we set A,(j) = 0. Note that because of
(2.1,2.2) the coefficients cannot be of the form (}), where a < b. Next, we introduce some additional
intermediate quantities based on A,(j) and A,(j — 1): -

Toj (h) = A,(j - I)Ha,j—l(h) + Aa(j)HU,i (R),
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T3 ;(h) = Ao (j — 1)Hg ;1 (h) + A; (§)H, ; (h).

Obviously, T ;(h) is an estimation of T, ;(h) from above. If s is light, then all calculations are
performed exactly, and for this reason, we define all starred quantities to be equal to their non-
starred counterparts. In view of the following inequalities,

Z Ha,j-l(h) SjH:r,j(R):
heCnH(o)

S (Hoj(h)+ Hoj-1(h)) < |CNH(0)|H; ;(R) = Vo(R)H ;(R),
heCnH(o)

the elementary algebraic manipulations below lead to (2.16):

S Toi(h) S AG)WVe(RHL;(R) + Y. (Ao(G— 1) = Ao(4) Ho-a(h),
heCnH(o) heCnH(o)

therefore

(n—r —r—k(0) = Vo(R) A G)H:;(R) + D Toj(h)
heCnH(eo)

is at most

(n=r1—r=ki(0))Ac(J)H; ;(R) + (Ao (5 — 1) — A,(4))iH; ;(R),

and hence,

(n=r—r—ko) - VU(R))Ag(j)H;,j(R) + Z To,i(h) < (F2 — r)As(j — 1)H; ;(R). (2.16)
heCnH (o)

Note that if the simplex s is light then (2.16) still holds. To derive an upper bound on A(R) we
break it down into simpler components. To do so, we define

1
' N : ' :
A(R,s,])— Q(R’S’J)_’rn—rl—ré@(RU{h}’S’J)’

where

®'(RU{h},s,5) = ) 6(RU{h},0)T;;(R)k}} ().
ceT,
Note that although ® and @& are different, they are related in the following way: Because of
(2.11,2.13) and the fact that Si(d,e) = 0 and

d

T.(RU{h},§) = | (51(,0) U Sa(4, 0)),
c€eT,
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we derive

> ¥(Ru{h)si)= 30 3 D §(RU{RLE)AN( - DHIK ()

0<j<d 1<j<d 0€T, o'€S5i(j—1,0)

+ Y Y Y (RUBL)ALDHER ()

0<j<d o€T, o'€S5;(j,0)

3 Y Y 6(RU{R},o)An()HS k()

0<j<d c€7, o’'€S5:1(j,0)

+ 3 Y X §(RUR)Y)AG)H k(o)

0<j<d o€T, o'€Sa(j,0)

> > §(RU{h},0") A (§)H} k5 (o)

0<j<d o'€T,(RuU{h},j)

Y @(RU{h},s,5).

0<j<d

I

It follows that
A(R)=)_ A'(R,s,j),

where the sum extends over all d-dimensional simplices s of the geode of R; and all j between 0 and
d. We have

. & * pe1ft
AR5 )= Y SR )An(i - DHE (),
o'€T.(R,j) &=
and therefore
®(R,s,j)= 3 8(R, o ( _T)A,(j—l)H;.j(R)k;‘(af). (2.17)

o€T,

From (2.15) the contribution within o to ), ¢ @' (RU{h}, s, j) of each of the n—ry—r—ki(o)= Vo (R)
hyperplanes of C that avoid both ¢ and its witness set is (R, 0) A, (j)H ;(R)k;' (o), therefore we
find that ), .- ®'(RU {h},s,]) is equal to

b0 ((n —r —r—ki(o) = Va(R) A (HL;(R) + Y T:,,-(h))é(R: o)k (o).

€T, heCnH(o)

Thus, in light of (2.16-2.17), we derive

MR < Y MBI S gy -1 ).

n—ry—
o€T, . heCnH(o)

From (2.2) we easily derive ) '
Aq(i) < (—_;_-—)
and from (2.3), .
A'(Rs;)( ZrﬁRa’) E M(a, h),

T seT, heCnH(o)
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Br Y Gy ) (s

M(o,h) = (H;,J’—l(h) — Hyj-1(h)) (n -

If s is light, M(o,h) = 0. Otherwise, from (2.2,2.12,2.14) we derive M(o,h) < ¢12%|R(0)|%/vs,

where

therefore from (2.3),

6(R,o)|R(0)|?
3 (R,0)|R(0)]

Vs

dyre _
Y Al(R,s,d) < GV (non)
0<j<d B —E T2 7 geT,
b1|R(s)|%(ps log ps )V
cia(ps log ps)4+Ver
/o _
< 2L (Z) R v,

- 6(2352

T2
for by = by(c1), which proves the lemma. §

Lemma 2.7. For any r such that 0 < r <75,
1 I—'z -Tr
E(R)< = — .
( ) 2 872

Proof: We proceed by induction on r. Note that the lemma is true initially (r = 0) by virtue of
Lemmas 2.3 and 2.4. Assuming that it is true at step r < 72, we know that ¢(R) < 1/2, and

therefore,
Y IR(E)NT <E Y |Ra(s)| < coesri?.
L] s
By (2.18) and Hélder’s inequality, this implies that
01—\/'6_1

S e s (Simrm) T (Sve) T omrt (7)

for some constant by = b1(c;). From Lemma 2.6, it then follows that
1 = By =3 n Ve dyséi—ve
¢RUh SH—T—T¢R+ — _ |R(3)'V
2 4RO < (r == B+ s (=) E) X
1
<(n=r=n)(¢(B) +5-),

for ¢2 = ca(eq) large enough. Since, trivially, EhEC ¢1(RU {h}) = (n —r1 — r)¥(R), the new pick
1

ho € C satisfies
E(RU{ho}) < n—_—;llj }; =(RU{h)) SE(R) + g
This implies that ) )
Z(RU {ho}) < % - '2—_8(1"”;“_1_)

which completes the proof. g
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