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Abstract: Given n hyperplanes in E4, a (1/r)-cutting is a collection of simplices which together
cover E4 and such that the interior of each simplex intersects at most n/r hyperplanes. We present
an algorithm for computing a (1/r)-cutting of (asymptotically) minimum size in O(nr4-1) time.
If, as is the case in practice, the lists of cutting hyperplanes must be explicitly provided, then the
algorithm is optimal. Our result bridges a gap in a recent algorithm of Matousek by extending
its performance to all values of r; the previous bound was restricted to r < n'=¢ for any fixed
§ > 0. To attain our goal, we show that optimal cuttings can be refined by composition. This is
interesting in its own right, because it leads to the improvement and the simplification of a number
of geometric algorithms, e.g., point location among hyperplanes, counting segment intersections,
Hoperoft’s line/point incidence problem, linear programming in fixed dimension. One of the main
tools used in the cutting construction is a proof that e-approximations can be used to estimate how
many vertices of a hyperplane arrangement fall inside a given simplex. In a different development,
to be reported elsewhere, we have used this lemma to derive an optimal deterministic algorithm
for computing convex hulls in higher dimensions. Thus, we suspect that the lemma will have other
useful applications in computational geometry.

The author wishes to acknowledge the National Science Foundation for supporting this research in part under
Grant CCR-9002352.
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1. Introduction

Let H be a set of n hyperplanes in E4: A (1/r)-cutting for H is any collection of (possibly
unbounded) d-dimensional closed simplices which together cover E? and such that the interior
of each simplex intersects at most n/r hyperplanes [22]. Spurred by the works of Clarkson [8,9]
and Haussler and Welzl [18], cuttings have proven enormously successful for solving all kinds of
geometric problems; see, e.g., [4,8,9,11,12,15,26]. The reason for this success is that cuttings play
a role analogous to separators in graph algorithms: they set the grounds for efficient divide-and-
conquer schemes. Of course, the size of a cutting (i.e., its cardinality) is always a critical parameter.
A size of O(rd log? r) is achievable by a straightforward probabilistic algorithm. Actually, with a
little more effort, the size can be reduced to O(rd), which is optimal [5]. If, for each simplex, the
collection of intersecting hyperplanes is to be explicitly computed, then trivially Q(nr9=1) is a lower
bound on the complexity of computing a (1/r)-cutting. While this bound can be easily attained
using randomization [5] the search for an optimal deterministic algorithm has been more difficult. An
efficient algorithm for computing optimal cuttings in two dimensions was given by Matousek [19] and
then improved by Agarwal [1]. Chazelle and Friedman showed that optimal cuttings are computable
in polynomial time in any dimension [5]. Recently, Matousek [20,21,22] came close to putting the
whole question to rest by exhibiting several optimal algorithms for computing a minimum-size (1/7)-
cutting, provided that » < n!=% for any fixed § > 0. (The term minimum is to be understood in
the asymptotic sense.) We bridge this gap by relaxing the restriction on r. Specifically, we show
how to compute a (1/r)-cutting of size O(r?) in O(nr?~1) time, for any value of r < n.

Perhaps more interesting than the result itself is the method used to achieve it. The reason why
Matousek’s bound does not extend to large values of » is that standard cuttings do not “compose”
very well. Indeed, suppose that we attempt to refine a cutting by taking each simplex in turn and
applying Matousek’s algorithm to the set of hyperplanes intersecting its interior. This produces a
(1/r%)-cutting for H of size O(r??). But the big-oh notation conceals the fact that the constant in
the original O(rd) space bound gets squared in the process. Because it is greater than one, further
iteration of this composition process might end up causing big trouble. Composing cuttings is a
very popular and useful algorithmic paradigm, however, so it is regrettable that it should suffer from
such a serious flaw. If r is a constant, for example, composing cuttings (as in [8,9]) adds undesirable
multiplicative factors of the form n® to the running times.

One possible interpretation of this problem is that composing cuttings is a “nonstable” comput-
ing process. If the size of a cutting is cr?, then ¢ can be regarded as a multiplicative error term. The
nonstable part of the composition process is that it amplifies the error and does not keep it bounded.
The remedy is to have the algorithm rely not so closely on the cutting of the previous generation
but on some global quantity independent of the composition process itself, such as the number of
vertices inside each simplex. Computing such quantities efficiently is hopeless, so one must devise a
scheme for estimating them. Of course, this still means having to deal with errors, but those errors
can be made to be additive and not multiplicative, which is good enough for our purposes. We are
thus led to develop a new kind of cuttings, which enjoy all the properties of the old ones, and in
addition, allow themselves to be refined by composition. Besides leading to an optimal construction
algorithm this ability to be refined gives our cuttings greater versatility. We use them to derive:
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1. A very simple optimal algorithm for locating a point in a collection of n hyperplanes. The
algorithm has O(logn) query time and requires O(nd) preprocessing time and space. This
improves the preprocessing time of Chazelle and Friedman’s solution [6]. (In fairness the solution
in [6] also supports unidirectional ray-shooting, which this one does not.) If the query asks
only whether a point lies on one of the hyperplanes, then the preprocessing can be reduced to
O(n?/(logn)4-1).

2. A solution to Hopcroft’s problem (i.e., detecting any incidence between n lines and n points) in
O(n‘l/ 3(logn)'/ 3) time and linear space, which slightly improves on the complexity of a solution
by Agarwal [2]. Also, the algorithm generalizes immediately to higher dimensions.

3. An algorithm for counting the number of intersections among n segments in O (n*/3(logn)'/?)
time and linear space, which improves on the solutions of Guibas et al. [17] and Agarwal [2].

4. A straightforward linear-time algorithm for linear programming with a fixed number of variables,
which greatly simplifies the methods of [7,13,24]. This result, which was obtained independently
by Matousek [23], is derived by direct derandomization of a probabilistic algorithm of Clarkson
[10].

The theory of s-nets is used for two purposes in the cutting construction: one is to provide
separation properties, and the other is to build efficient estimators. In particular, we prove a
lemma which roughly says that e-approximations can be used to efficiently estimate how many
vertices in a hyperplane arrangement lie inside a given simplex. Interestingly, e-nets are too weak
to provide any kind of meaningful approximation for that quantity. (As an exercise, the reader
should try to illustrate this on an example in two dimensions.) In a different development, to be
reported elsewhere, we have used the same lemma to derive an optimal deterministic algorithm for
computing convex hulls in higher dimensions [3]. Thus, we suspect that the lemma will have other

useful applications in computational geometry.

2. Refining Cuttings by Composition

The main idea here is to use a finer measure of the effectiveness of a cutting. The intuition is
that in the composition process second-generation cuttings are only useful within the confines of the
(first-generation) simplices for which they are defined. Thus, similarly to what Agarwal did in his
construction of two-dimensional cuttings [1], we wish to keep their sizes in line with the complexity of
the (partial) arrangements inside the first-generation simplices. What makes our task harder is that
in higher dimensions none of the clever geometric tricks used in [1] work any more, and completely
general techniques must be developed. The key tool we shall use is that, given an arrangement of
hyperplanes, an e-approximation can be used to estimate the number of vertices inside any query
simplex. Interestingly, this not possible using e-nets. This is a consequence of the fact that unlike
e-nets, e-approximations provide estimations from below as well as above.

For simplicity, we shall assume that the set H of n hyperplanes in E4 is in general position. This
can be relaxed without any difficulty by using the perturbation techniques of [16,30]. We begin with
two definitions adapted from [29]. Let R C H be a subset of p hyperplanes; given a line segment e
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in B4, let R, (resp. H,) denote the number of hyperplanes of R (resp. H) that intersect the relative
interior of e. Given a (closed) simplex s, we also use the notation R, (resp. H,) to refer to the
number of arrangement vertices created by H (resp. R) in the relative interior of s. We say that R
is a (1/r)-approzimation for H if, for any e, the densities in R and H of the hyperplanes crossing e

differ by less than 1/, i.e.,
1

r

R. H,

p n
Whereas a (1/r)-approximation acts as an estimator, a (1/r)-net acts as a threshold function: R is

a (1/r)-net if, for any segment e, the inequality H, > n/r implies that R, > 0. A beautiful result

of Matousek [20] says that, if r is a constant, then it is possible to compute a (1/7)-approximation

as well as a (1/r)-net in linear time. We need to strengthen the notion of a (1/r)-net a little by

requiring that the facial complexity of the portion of the arrangement that it forms within a given

simplex is not more than expected. We say that a subset R C H is a strong (1/r)-net for (H, s) if:
(i) For any segment e, H, > n/r implies R, > 0;

(i) R, < 4(p/n)H,.

Lemma 2.1 (Matousek, [20]). Given a collection H of n hyperplanes in E?, it is possible to compute

a (1/r)-approzimation for H of size O(r®logr) in time nro(),

Lemma 2.2. Given a collection H of n hyperplanes in E* and a simplez s, 1t 1s possible to compule
a strong (1/r)-net for (H,s) of size O(rlogn) in time polynomial in n.

Proof: The lemma is not as strong as it could be, but it is easier to prove that way and still

powerful enough for our purposes. To begin with, we show that a random sample R of size p =

min{ [(2d + 1)rlogn],n } constitutes a strong (1/r)-net for (H,s) with nonzero probability. { We

can obviously assume that p < n. The expected value E of R, is

(z:j)H’/(Z) < (p/n)*H,,

.- S
4(p/n)*H,
Next, pick a point inside each cell of the arrangement formed by H and let S be the set of all

therefore by Markov’s inequality,

Prob [R, > 4(p/n)*H,] < < 1/4.

segments connecting pairs of these points. It suffices to ensure that for each e € S, H, > n/r implies
R. > 0. The probability p. of e failing that test is

() <(1=3f <o

Since the number of segments in S is O(n”) for n large enough, we have

)dH +Epe _7

4(p/n
and therefore a random R is a strong (1/r)-net for (H ,8) with probability greater than 1/2.

1 All logarithms are to the base 2.
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To convert this existence proof into a polynomial-time algorithm, we use Raghavan and Spencer’s
method of conditional probabilities [25,28] (see also [5,20] for previous applications of the method
to cuttings). We pick sample elements one at a time, always making sure that the sample can be
completed into a strong (1/r)-net. Let R’ be a partial pick; the next sample element h is chosen in
H \ R' so as to minimize the value of

E(R'U{h})

2o/, + 2 v (R VR

e€sS

where the argument R’ U {h} indicates that the corresponding expectation or probability is condi-
tioned upon having picked R’ U {h} as part of the sample.

Each p.() can be expressed by means of binomial coefficients and thus can be computed ef-
fectively. Note that as in [5,20] we can limit the size of the arithmetic operations by rounding
off the calculations appropriately, as long as the final absolute error is less than 1/2. Because the
conditional probability that a given vertex is to be eventually created by R depends solely on how
many of its defining hyperplanes have already been selected, it is equally easy to evaluate E() in
polynomial time. When R’ reaches size p, all the conditions for a strong (1/r)-net are met and we
can set R= R'. g

We use the two previous lemmas to compute an optimal (1/r)-cutting for H. Let 7o < r be a
constant large enough; the implication on r of this assumption is justifiable in light of Matousek’s
optimal results for small 7. For k = 1,...,[log,, r], we compute a (1/rf)-cutting C¢ for H by
successive refinement. The last Cy is a (1/r)-cutting for H.

For k = 1, we simply apply Matousek’s algorithm, which produces a (1/ro)-cutting of size O(r§)
in O(n) time. For subsequent values of k, we refine Ci_; into Cy by cutting up its simplices into
small pieces one-by-one. Let s be a simplex of Cr_; and let H(s) be the set of hyperplanes of H
intersecting its interior. We assume by induction that H(s) is explicitly available for each s. If
|H(s)| < n/rf, then s stands as such. Otherwise, calling on Lemmas 2.1 and 2.2, we first compute
a (1/2dpo)-approximation A for H(s) and then a strong (1/2dpg)-net R for (A, s), where

po = r5|H(s)|/n.

Finally, we compute the arrangement formed by R and the d+1 hyperplanes bounding s and form its
canonical triangulation [9]: this is obtained by first triangulating recursively the (d — 1)-dimensional
cross-section of the arrangement made by each hyperplane, and then for each cell of the arrangement,
lifting all the k-simplices on its boundary (k = 0,...,d — 1) toward a chosen vertex (except for the
simplices decomposing the faces incident upon the vertex in question). The set of d-dimensional
simplices inside s constitutes the contribution of that simplex to C). We repeat the procedure for
each s in Cj_;.

To see that Cj is, indeed, a (1/r%)-cutting is immediate. It suffices to show that the interior of
none of the new simplices so created within s intersects more than n/rf = |H(s)|/po hyperplanes
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of H(s). First, observe that no segment e in the interior of sy can intersect more than |H(s)|/(dpo)
hyperplanes. Indeed, if that were to be the case, then e would intersect more than

(IH(s)l/dpo)lAl _ 1A] _ 14|
|H (s)| 2dpo — 2dpo

hyperplanes of A, and hence, at least one hyperplane of R, which is impossible. Now, any vertex
of sq is defined by d hyperplanes of H (not necessarily bounding sg) that avoid the interior of sq.
Therefore, by general position, any hyperplane of H meeting the interior of so must avoid its vertices,
and hence, must meet one of d line segments in the interior of sy infinitesimally close to, say, the d
edges incident upon a given vertex of so. This implies that at most d x |H(s)|/(dpo) hyperplanes
can meet the interior of sy and therefore that Cy is a (1/ rg)—cutting.

To estimate the size of C}, is more delicate. We can check that pg < rg, and therefore, |Cy| =
O(|Cx—1|(rologr)?), but this upper bound is too crude to do us any good. We must show that
using the strong net R helps keep C} small when H,, the number of vertices formed by H in the
interior of s, is small. To compute H, can be very expensive, however, but it can be approximated
fairly accurately on the basis A, alone. This yields an upper bound on R;, and hence, |Cy|. For
convenience, we shall use the notation |H(s)| = v, |A| = a, and |R| = p. Note that v < n/rk=1

a = O(p3log po), and p = O(po log po)-

Lemma 2.3. |H, - (v/a)dA, <vilpy and R, <A4(p/v)iH,+ 4p%/pq.

Proof: Let F be a k-flat equal to E4 if k = d, or else formed as a (d — k)-wise intersection of
hyperplanes in A, and assume that F intersects the interior of s. Let H(F) (resp. A(F)) denote the
number of vertices of the k-dimensional arrangement induced in F' by H (resp. A) that lie in the
relative interior of s N F. Note that H, = H(E?) and A, = A(E4). We prove by induction that for
b=y oy,

AN vE
- (= o .
|(r) - (£) ap)| < = (2.1)
The case k = 1 is easy. The set s N F is a line segment. We have

P

therefore |vA(F)/a — H(F)| < v/(2dpo) < v/po.

Assume now that k > 1. Let F; (1 <i < a—d+ k) be the intersection of F' with a hyperplane

of A (not used by F), and let L; (1<j < (”;f*l'k)) be the line obtained by intersecting F' with a

(k — 1)-wise intersection of hyperplanes in H(s) (not used by F). Since ) ; H(L;) = kH(F) and
>; A(Lj) = 3-; H(F;), summing together the inequalities

14

| (L) - (2) Awy)| < s

yields
o) ) S g 147%)
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By induction, we know from (2.1) that

yk-—l

Po

[y - (2) A

8

<

]

and therefore

vk vi(a—d+k) v (v—d+k
kH(F)— (— Dl < :
| (F) (a) Z.A(F)i_ app +2dp0( k-1 )
Since ), A(F;) = kA(F), we finally derive

ey (2) ] <

)

a—d+k) v (v—d+k)<yk

kapq 2kdpo \ k—1 Po

which establishes (2.1) and the first part of the lemma. Because R is a strong (1/2dpg)-net for A,
we have R, < 4(p/a)?A,, and the second part of the lemma follows.

The first part of the lemma is a very useful tool, and it is worthwhile to restate it in a slightly
more general form. Note that the fact that all the v hyperplanes happen to meet the interior of s is
never used in the proof. Therefore, the lemma still holds for any simplex s. We can also generalize

the result to a simplex of arbitrary dimension within the ambient space.

Lemma 2.4. Let H be a set of n hyperplanes in E? and let A be an (already computed) (1/7)-
approzimation for H. Given any relatively open simplez s of dimension j, the number of vertices
of the arrangement of H that fall within s can be estimated in time rO) with an absolute error
of at most 2jnt /r.

Proof: The case j = d is a mere restatement of Lemma 2.3. If j < d, the key observation is that the
cross-section of A by the j-flat F spanned by s is a (1/r)-approximation for the arrangement in F
induced by H. g

We are now in a position to show that the size of the last Cy is O(r?) and that it can be
found in O(nr®"!) time. We need to derive an upper bound on the number of simplices that
s € C—1 can contribute to Ci. The facial complexity of the portion of the arrangement of R within
s is O(p"_l - Rs). To see this, observe that up to within a constant factor every feature can be
accounted for by the facial structure along the boundary of s, which is of size O(pd‘l), and by the
R, vertices created by R inside s. (To see this, consider the argument prior to triangulation, and
then observe that triangulating does not multiply the facial complexity by more than a constant
factor.) It follows from Lemma 2.3 that the triangulation of s consists of a number of simplices at
most proportional to

. lo . L
(potog oyt~ + (PFER ), 4 4 tog o)’
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Since py < ro we have po(logpo)/|H(s)| < rf(logro)/n. Now, because ) o, Hs < (%) and
|C1| = O(rd), we find that for some constant ¢ > 0 (independent of rq), we have |C1| < erf, and for
k>1,

rk log o\
|Cxl <e (ngO) n? + erd=1(log ro)?|Cr_1l.

We easily prove by induction that if ry is a large enough constant, |C| < rgk"'l)d. This implies that
the last C} is of size O(rd), as desired.

What is the time needed to compute all the Cy’s? To obtain C; takes O(n) time. Regarding
C, by virtue of Lemmas 2.1 and 2.2, for each s it takes O(v) time to compute A and constant time
to get R and triangulate its clipped arrangement. The set of crossing hyperplanes is also obtained
within the same amount of time, since R has constant size. Consequently, every time a simplex
is created it incurs a cost proportional to the number of hyperplanes intersecting its interior. The
running time is therefore on the order of

N

1<k<log, r] * 0

which completes the proof. We have thus achieved our goal.

Note that the proof would not work if the size of the strong net was a little bigger, e.g., p?, or
if the facial structure of the boundary of s was, say, of complexity Q(pd).

Theorem 2.5. Given a collection H of n hyperplanes in E®, for any v < n it is possible to compute
a (1/r)-cutting for H of size O(r?) in time O(nri=1).

3. Applications of the Cutting Construction

One of the most interesting features of Theorem 2.5 is that it is achieved by refining cuttings of
constant size. This allows us to simplify many of the applications for which cuttings have been
used, and also improve their space and time complexity. All these applications are very similar in
gpirit. We use cuttings to break up a problem into a well-balanced set of subproblems, which we
solve recursively by divide-and-conquer. Since the cuttings have constant size, the divide part is
particularly simple. Moreover, by evaluating the recursion tree in a depth-first search manner, we
can keep the storage linear. Also, by stopping the recursion shortly before it bottoms out, and then
finishing the work naively, we can produce small additional savings. Many applications of cuttings
have been given in the literature. Because most of them bear a certain family resemblance, we will
discuss only three fairly representative cases and briefly sketch their solutions.
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3.1. Point Location. This is not an application per se. It is the mere observation that the
hierarchical sequence of cuttings Cjp is a data structure for point location. The problem is to
preprocess a collection H of n hyperplanes in E¢ so that given a query point the face of H that
encloses it can be determined very fast. Set » = n in the construction. By tracing the query point
from cell to cell across C,Chs, etc., we eventually land in a simplex entirely contained in a cell,
at which point we can easily find the desired answer. Adding the necessary pointers to turn this
nested hierarchy of cuttings into a point location structure is routine. We outline the procedure:
First, compute the full arrangement in O(n®) time [14]; then at stage k, keep the clipped portions
of the arrangement within each simplex s of Cj. To process stage k, we need not look at the whole
arrangement within s but only at the vicinity of the boundaries of the simplices. Recalling that
|Cr] < rgk“)d, with a bit of care we can ensure that the total preprocessing time is on the order of

E,,(kmd( )‘H — 0(nd).

This improves the preprocessing time of Chazelle and Friedman’s solution [6]. (In fairness the
solution in [6] also supports undirectional ray-shooting, which this one does not.) The storage
requirement is O(n?) and the query time is O(logn).

Theorem 3.1. Given a collection H of n hyperplanes in E?, we can preprocess it for point location
in O(n?) time and space, so that given a query point, the face of the arrangement enclosing the
point can be found in O(logn) time.

Note that by setting » = n/logn and pursuing the search naively at the bottom of the hierarchy,
we can detect whether the query point lies on any of the input hyperplanes in O(logn) time. This
reduces the preprocessing to O(n?/(logn)4~1).

Theorem 3.2. Given a collection H of n hyperplanes in B, we can preprocess it in O(n?/(logn)?~1)
time and space, so that given a query point, whether the point lies on at least one of the hyperplanes
can be checked in O(logn) time.

3.2. Hopcroft’s Problem. The problem is to decide whether, among n lines and n points in the
plane, at least one of the lines passes through at least one point. An earlier randomized expected
complexity bound for this problem given by Edelsbrunner et al. [15] was later improved and made
deterministic by Agarwal [2]. His solution requires O(n*/3(logn)!"®) time. Our algorithm is also
deterministic and improves the time to O(n%3(logn)!/%). It also generalizes to any dimension d,
where the problem is to detect incidence between n hyperplanes and n points. (One can also tailor
the solution to the case of n hyperplanes and m # n points, and to allow the explicit reporting of all
incidences.) Our improvement is due to a combination of two factors: using optimal cuttings and
replacing standard point location by the improved incidence detection method of Theorem 3.2.

Theorem 3.3. Detecting any incidence belween n hyperplanes and n points in d-space can be done
deterministically in O(nzd“d"‘l)(log 'n)ll(d"'l)) time and linear space.
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Proof: In O(nr?~! + nlogn) time, we compute a (1/r)-cutting for the hyperplanes (for some well
chosen r) by applying the cutting refinement method, and we use the associated point location
structure to locate all the n points in their enclosing simplices. If any incidence can be discovered
at this time, we stop. Else, we break up the subset of points within each simplex into groups of
size roughly n/r? or less. Next, we apply the dual version of Theorem 3.2 to each group and we
query each group with respect to each hyperplane cutting its enclosing simplex. The total number
of queries is O(nr1). Setting r@=1 = nd-1/(logn)4 gives a running time of O(nr¢=1logn +
ndrd=2 /(logn)?~1), which is O (n?¥(#+1)(log n)!/(¢+1)). To make the storage requirement linear,
we refine cuttings in a depth-first search fashion. The storage will be dominated by the space needed
to store a single point location structure, which is easily seen to be O(n). g

3.3. Counting Segment Intersections. Given n line segments in the plane, we wish to count
how many pairwise intersections they form. A randomized algorithm by Guibas et al. [17] solves
the problem in O(n%/3+¢) expected time, for any ¢ > 0, and linear space. Agarwal [2] found
a deterministic solution requiring O(n*/log" ™ n) time and using O(n*/3/log?* n) space. We
slightly improve upon it.

Theorem 3.4. The number of intersections among n segments in the plane can be determined in
O(n*/3(logn)'/3) time and linear space.

Proof: The algorithm is similar to Agarwal’s. We begin with a special case of the problem, where
n segments intersect a triangle A and m of them have at least one endpoint in A: how many
intersections fall inside A? The intersections among long segments, i.e., those crossing A through
and through, can be counted in O(nlogn) time [2]. The number of intersections between long
segments and short (i.e., non-long) ones can be found by dualizing the problem and counting the
number of point/double wedge inclusions. More precisely, we are given a line arrangement formed by
m double wedges, and for each point obtained as the dual of the line supporting a long segment, we
must count how many double wedges enclose it. By going back to the same idea used in the proof of
Theorem 3.2, we construct a cutting of O(m2 / log2 m) triangles, each of which is crossed by at most
log m lines bounding double wedges. In O(m?/log m) time, we can find all these triangles, and for
each of them, (i) set up a list of the double wedges partially overlapping it, and (ii) count how many
double wedges completely enclose the triangles. In this way, we can compute the short-long count in
O(nlogm) time. To count short-short intersections we apply, say, Agarwal’s method, which takes
O (n*/3(logn)™™) = O(m!"/7) time (to use a more convenient bound). To summarize, the entire
computation takes O (n log n+m?/log m) time and space. We can improve on it by partitioning the
short segments into groups of at most \/nlogn and breaking up the short-long counts accordingly.
This gives a solution requiring O (nlogn + my/n + m'%/7) time and O(nlogn) space.

To solve our original problem, we specialize the setting used in the proof of Theorem 3.3 to
the case d = 2. In O(nr + nlogn) time, we compute a (1/r)-cutting for the lines supporting the
segments (for some well chosen r) and we use its associated point location structure to locate all the
2n segment endpoints in their enclosing triangles. Next, we compute the intersection counts within
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each of the O(r?) triangles, which requires a total of

O(nﬂ+ nrlogn + ngﬂﬁ)

time, where the m;’s sum up to 2n and none of them exceeds n/r. Setting r = n'/3/(logn)*/? gives
a running time of O (n*/3(logn)'/). Again, we can use depth-first search to keep the storage linear.
Not too surprisingly, this is the same complexity as for our solution to Hopcroft’s problem in two
dimensions. g

3.4. Linear Programming. We look at the problem of optimizing a linear function over a set of n
linear constraints in d-space. A remarkable result of Megiddo [24] states that if d is a constant, then
the problem can be solved in linear time. The dependency on d is rather steep, however. From doubly
exponential, Clarkson [7] and Dyer [13] independently reduced this dependency to a multiplicative
factor of roughly 39% Still smaller dependencies can be achieved by allowing randomization: d?
plus additive term (Clarkson [10]) and d! (Seidel [27]). Unlike its deterministic counterparts, the
probabilistic algorithm of Clarkson [10] is extremely simple. As it turns out, a straightforward variant
of it can be immediately derandomized by using Matousek’s algorithm for computing constant-
size e-nets. (Note that we do not even need to use cuttings here.) This leads to a remarkably
simple linear-time algorithm for linear programming when the dimension is fixed. Matousek [23] has
derived a similar linear programming algorithm independently, and has communicated to us that the
dependency of its running time on d is about d!, which is comparable to that of Seidel’s algorithm
[27].

We assume that the reader is familiar with Clarkson’s algorithm. Our variant is only a very
slight modification of it, so we only give a rough sketch. Clarkson’s idea is to take a random sample
R of the constraints and solve the problem recursively. If the answer satisfies all the constraints,
then we are done. Else, we can easily argue that the set V) of non-satisfied constraints contains at
least one of the constraints defining the desired answer z*. At this point, Clarkson resamples, but
we don’t really need to do that in our case. We simply solve the problem recursively on R U Vj.
Again, if no constraints get in the way of the answer, we are done. Otherwise, we argue that the
new set V5 of non-satisfied constraints must now contain another constraint defining z* (different
from the previous one). So, again we solve the problem recursively on RU V; U V3, and we iterate in
this fashion. After d stages the set of non-satisfied constraints V3, if nonempty, must be such that
RUV;U---UV;y contains all the constraints defining x*, so one final recursive call will produce the

solution.

The two differences from Clarkson’s algorithm are: (i) we begin with a sample of constant size,
and (ii) we do not resample at every stage. If, instead of a random sample, we use a constant-size
e-net for the range space induced by the action of line segments on hyperplanes, we will have the
property that no subproblem solved recursively exceeds size n/c, for some arbitrarily large constant
¢. Thus, the running time 7'(n) follows a recurrence of the form T'(n) = O(1), for n = O(1), and
T(n) = (d 4+ 1)T(n/c) + O(n), for larger n. Setting c large enough gives T'(n) = O(n).
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It remains a very interesting open problem whether the quadratic dependency on d of Clarkson’s
probabilistic algorithm can be achieved deterministically. Note that this precludes computing e-nets
or cuttings, since these bring along exponential dependency on d.

Acknowledgments: I wish to thank Pankaj K. Agarwal and Jirka Matousek for several helpful
discussions.
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