COMPUTING A FACE IN AN ARRANGEMENT OF
LINE SEGMENTS AND RELATED PROBLEMS

Bernard Chazelle
Herbert Edelsbrunner
Leonidas Guibas
Micha Sharir
Jack Snoeyink

CS-TR-334-91

June 1991

Computing a Face in an Arrangement of Line
Segments and Related Problems*

Bernard Chazellef Herbert Edelsbrunner? Leonidas Guibas®
Micha Sharir’ Jack Snoeyinkl!

June 27, 1991

Abstract

We present a randomized incremental algorithm for computing a single face
in an arrangement of n line segments in the plane that is fairly simple to im-
plement. The expected running time of the algorithm is O(na(n)logn). The
analysis of the algorithm uses a novel approach that generalizes and extends the
Clarkson-Shor analysis technique [4]. We also present a few extensions of the
technique, obtaining efficient randomized incremental algorithms for construct-
ing the entire arrangement of a collection of line segments, and for computing
a single face in an arrangement of Jordan arcs.

1 Introduction

In this paper we consider the following problem. Let S = {sq,$s,...,,} be a col-
lection of n line segments in the plane, and let p be a point not lying on any of the

*Work by Bernard Chazelle has been supported by NSF Grant CCR-87-00917. Work by Herbert
Edelsbrunner has been supported by NSF Grant CCR-89-21421. Work by Micha Sharir has been
supported by ONR, Grant N00014-90-J-1284, by NSF Grant CCR-89-01484, and by grants from the
U.S.-Israeli Binational Science Foundation, the Fund for Basic Research administered by the Israeli
Academy of Sciences, and the G.L.F., the German-Israeli Foundation for Scientific Research and
Development.

tComputer Science Department, Princeton University

{Computer Science Department, University of Illinois at Urbana-Champaign

$DEC Systems Research Center, Laboratory for Computer Science, M.IT., and Computer Science
Department, Stanford University

fSchool of Mathematical Sciences, Tel Aviv University and Courant Institute of Mathematical
Sciences, New York University

lComputer Science Department, Stanford University

segments. We wish to compute the face that contains p in the arrangement A of S.
This problem arises in many applications, such as in motion planning [8]. It has been
shown in [8, 14] that the combinatorial complexity of such a single face is O(na(n)),
where a(n) is the inverse Ackermann function. This bound was shown in [19] to be
tight in the worst case; as a matter of fact, the construction in [19] gives a set S of n
line segments whose lower envelope has complexity Q(na(n)).

The problem of computing a single face has been studied by Edelsbrunner, Guibas,
and Sharir [5]; they have given a deterministic algorithm that takes time O(na(n)log® n)
in the worst case. This is less efficient than the best known algorithm for computing
the envelope of n segments, due to Hershberger [9], which runs in optimal O(nlogn)
time. This discrepancy between the two algorithms is intriguing, because the max-
imum combinatorial complexity of a single face and of the lower envelope in an ar-
rangement of n segments is asymptotically the same. We remark that in the special
case where S is a collection of lines, computing a single face can be trivially done
in time O(nlogn). Another special case is when S is a collection of rays. A recent
paper [1] shows that the complexity of a single face in this case is O(n) and that the
face can be constructed in time O(nlogn). Both these algorithms are deterministic.

In this paper we (almost) close the above gap by providing a simple randomized
incremental algorithm for computing a single face in an arrangement of general seg-
ments, whose expected running time is O(na(n)logn). (The expectation is taken
over the randomizations used by the algorithm, and the bound holds for any input
data.) Recently we have learned that Clarkson has obtained a similar result in an
unpublished work, using a different approach. The algorithm is similar in some fea-
tures to the trapezoidal decomposition algorithm of [17], the intersection algorithms
of [13] and [2], and the Delaunay triangulation algorithm of [7]. Like the latter, it is a
purely “on-line” algorithm that needs no prior information about the as yet uninserted
segments. We also mention that recently Mitchell [12] has obtained a deterministic
algorithm for constructing a single face, whose running time is O(n log® n).

A main novel feature of our algorithm is its analysis, which provides a useful
extension of the probabilistic technique of Clarkson and Shor [4] to a domain where
the “interesting events” that need to be counted are more difficult to specify. The
reason is that the decision of what features of the arrangement of the segments in
S appear on the desired face is global, and cannot be determined from the local
structure of the features. Such a “locality” is required in Clarkson and Shor’s analysis,
or, for that matter, in all the randomized algorithms mentioned above. Our analysis
finesses this issue by applying a more general framework, which, as a consequence,
also leads to simplified proofs. We expect that there will be additional applications of
our technique to other contexts, thus extending the usefulness of the Clarkson-Shor
method.

Our technique also can be generalized to other contexts, as discussed in Section 4.
These problems include the construction of the entire arragement of a given collec-
tion of line segments (Section 4.1), and computing a single face in an arrangenment
of curved segments (Section 4.2). In these extensions, our technique yields algorithms

with optimal or close-to-optimal expected time and storage complexities, matching
or improving previously known algorithms. Section 2 presents the incremental algo-
rithm, developing it to a level of detail that shows that it is indeed easy to implement.
Section 3 gives the analysis of the algorithm. We conclude the paper in Section 5
with a discussion of our results and some open problems.

2 The Algorithm

As mentioned in the introduction, the algorithm to be described in this section is
incremental, that is, it computes the desired face by adding the segments one at
a time. The next section will show that if the segments are inserted in a random
order, then the expected behavior of the algorithm is very good. Let s1,82,...,5,
be the insertion sequence, so that at the i-th step the algorithm adds s; to the data
structure built for s; through s;_;. For convenience we start with a rectangular frame
big enough to enclose all line segments in S, as well as the the special point p defining
the face f that we want to compute. We will only be interested (without loss of
generality) in the portion of f within the frame. For 0 < ¢ < n, let f; denote the
face in the arrangement defined by sy, s2, . . ., s; that contains p, clipped to within the
frame (fo is just the frame). We also assume that there are no degenerate cases to be
handled, such as three segments meeting at a point, an endpoint of one segment lying
on another segment, or two intersections with the same = coordinate; this assumption
is justified by the algorithmic method of [6].

Although the face f; is uniquely determined by the first ¢ line segments, the data
structure that we use to represent it is not — it also depends on the sequence in
which the line segments are added. This is very much like in the case of a binary
search tree constructed by repeated insertions, but without a balancing operation:
the sorted sequence of the input is unique, but the tree that represents it depends on
the sequence of insertions.

The main idea that leads to the data structure and algorithm of this paper is that
while the central aim is to construct the face marked by p, we keep around everything
ever built (typically portions of the earlier versions of the same face) as an aid in the
search operations. An important rule is that these older parts of the structure are
not further refined during the insertion process — this helps keep the size of the extra
structure within limits.

2.1 The conceptual level

The data structure that represents f;, the face after adding the first ¢ line segments,
consists of three sorts of geometric information. These three parts should be consid-
ered as fundamentally different at a conceptual level, although we will represent them
in a uniform way at a lower level. The three parts are the city (the face), the suburbs
(the complement of the face), and the history.

Figure 1: The input consists of a set of line segments and a point inside a frame. It
defines a face, which we call the city.

Figure 2: The city is decomposed into trapezoids by drawing vertical sides through
endpoints and intersection points.

The city. After adding 7 line segments, the face f; is the city. It is a (not necessarily
simply connected) polygonal region, as shown in Figure 1.

Its boundary consists of a finite number of contour cycles; one is the outer cycle
(which, in case f; is unbounded, coincides with the frame boundary) and all others
define holes in the city. We represent the city by a collection of trapezoids generated
by drawing a vertical line up and down from each vertex until it hits the boundary
of the city again. These vertical edges, called sides, are drawn only inside the city
— see Figure 2. Two trapezoids are said to be adjacent if they (partially) share a
vertical side.

There is a small number of different types of trapezoids, each defined by at most
four line segments. A unique line segment contributes the floor (the bottom edge) of
a trapezoid A, and similarly a unique line segment contributes the ceiling (the top
edge). The left and right sides are each defined either

a) by an endpoint of another line segment,

(a)

(b) by another line segment intersecting the floor line segment,

(c) by another line segment intersecting the ceiling line segment, or
(

d) as the intersection of the floor with the ceiling.

4

(a) and (b) (b) and (b) (c) and (b) (d) and (a)

Figure 3: Four possible types of trapezoids.

This makes sixteen types of trapezoids altogether. One of the types is impossible,
namely where both the left and the right side are case (d). Four of the fifteen remain-
ing types are shown in Figure 3.

A trapezoid thus defined has one, two, three, or four adjacent trapezoids; four
only if both the left and the right sides are case (a). Notice that the trapezoids that
compose the city at stage ¢ depend only on the set of segments s, s,...5s; and not
on the particular order in which these segments were inserted.

The suburbs. As new line segments are added the city gets smaller. Each new line
segment may chop off parts of the city by separating them from the point p. When
a portion of the city is thus disconnected from p, it is properly decomposed into
trapezoids and these trapezoids are added to the representation of the complement
of the city, the so-called suburbs. It is thus natural to represent the suburbs in the
same way as the city, namely as a collection of trapezoids with adjacency relations.

At any point in time the trapezoids of the city and the suburbs define a de-
composition (a tiling) of the entire frame. It should be noted, however, that this
decomposition is not edge-to-edge, in the sense that a vertex of some trapezoid may
lie in the middle of an edge of another trapezoid. We view each edge of our diagram
as two sided, so that the above vertex is not part of the description of the second
trapezoid — each trapezoid is bounded by one-sided edges. The same distinction was
necessary in the analysis of [13]. There is, however, an important difference between
vertical and non-vertical edges. At most one point of a left or right side can also be
a corner of (two) other trapezoids (in case (a)), but arbitrarily many such points can
lie on the floor or ceiling. For this reason we define and store adjacencies only across
vertical sides.

An important difference between city and suburbs is that the former gets further
refined as new line segments are added, while the latter only expands by the addition
of new trapezoids chopped off from the city. A trapezoid of the suburbs, once created,
remains part of the suburbs forever.

The history. There is a third type of trapezoid in our structure. These are trapezoids
that belonged to earlier versions of the city and had to be removed because they were
cut by a new line segment. Such a trapezoid A is not deleted from the structure.

two three four three four

Figure 4: The different ways in which a trapezoid can be split by a new line segment.

Instead, it remains as part of the history. The new trapezoids generated by the
addition of the new line segment that overlap A are added to the structure as children
of A. Depending on how the new line segment cuts A, it can have two, three, or four
children (see Figure 4). In effect, A is removed from the representation of the city and
is now part of a hierarchical structure of trapezoids built on top of the decomposition
described as city plus suburbs. As will be detailed below, certain children trapezoids
are merged with adjacent children trapezoids of neighbor trapezoids.

The collection (hierarchy) of such trapezoids that once belonged to the city but
were later destroyed, is called the history. The history trapezoids, together with those
defining the city and suburbs, are all connected together via the children pointers in
a directed acyclic graph.

Adding a line segment. To understand exactly how our data structure looks at
any stage of the incremental process, we need to understand how a line segment, say
Sit1, is added. As mentioned earlier, already existing trapezoids of the suburbs and
the history are unaffected by this insertion.

Here is how the city trapezoids are updated. First we compute and draw f; N s;41,
which is a collection of portions (edges) of s;;;. These new edges make it necessary to
update the decomposition of f;: the trapezoids of f; that intersect s;1; become part
of the history and the new trapezoids generated are included in the structure as their
children. To understand this process, let us define the transient city g; as f; after s;44
has been added and the decomposition of f; into trapezoids has been updated. Of
course, g; may contain several trapezoids, some newly created and some pre-existing
as part of the city at stage 7, that are no longer accessible from p and thus not part
of fi;1. To obtain f;;; we must thus remove all these trapezoids from g; and place
them in the suburbs. Figure 5 shows the development of the suburbs when the line
segments are added in the indicated sequence.

To help us reflect on the process of adding line segments and updating the struc-

Figure 5: The subdivision is constructed by inserting the line segments in the indi-
cated sequence. Line segment 11 is not drawn at all, because it lies completely outside
the city at the time it is added. Only portions of line segments 8, 10, 13, and 14 are
drawn. The boundary of the final city consists of two contour cycles.

ture, let us look at what distinguishes suburb trapezoids from history trapezoids. For
a trapezoid A defined by line segments s,, s, s. and s4 to be part of the suburbs or
the history after adding the first 2 + 1 line segments, it must have occurred as part of
at least one of the cities f; or g; for 1 < 7 <.

1. If there is a j, 7 <1, so that A is part of f; but not part of g;, then A is now
part of the history as it was cut by s;4; while being a city trapezoid.

2. If there is a j, j <1, so that A is part of g; but not part of f;;4, then it is now
part of the suburbs, as it was cut off from the city by s;41.

There is a subtlety in condition 2 which we take the time to discuss now. The
trapezoid A can be of the type that belongs to f; and to g; but not to f;14, or it can
be of the type that belongs to g;, but neither to f; nor to f;i;. In the latter case we
call A a transient trapezoid, as it lives a particularly short life. It will be important
later to remember that transient trapezoids can only be part of the suburbs, not of
the history.

2.2 The data structure

We will now be more specific about the data structure that is incrementally con-
structed by the algorithm. It consists of a directed acyclic graph (a dag) that stores
the city, the suburbs, and the history, all at once, a linear array for the line segments,
and a union-find structure for the line segments. We discuss the easy structures first.

The linear array. By keeping the line segments in a linear array we can use a single
index rather than four real numbers wherever a line segment is to be stored. We
assume that the segments are stored in the array in their insertion order.

The union-find structure. This structure allows us to keep track of topological
changes that happen to the boundary of the city as line segments are added. Each

i

set in the structure represents a connected component of the union of line segments
and portions of line segments as drawn by the algorithm. Although a single line seg-
ment can have several disjoint portions drawn, they all belong to the same connected
component. We can thus represent such a component by the set of line segments
that contribute edges to it. Note that each contour cycle is part of a possibly bigger
connected component. However, we will need the union-find structure only to the
extent that it represents contour cycles. We will use a simple union-find structure, in
which every element (segment) has a pointer to its current subset (contour cycle), so
each find operation takes O(1) time. To form the union of two subsets we change the
pointers of all the elements in the smaller set to be the same as those of the elements
in the larger set. The overall cost of all unions is thus O(nlogn).

The dag. Each node of the dag stores a unique trapezoid (city, suburbs, or history),
represented by four indices (line segments) and a few bits to indicate the type. The
dag has a unique root that stores the frame as a single trapezoid. Each interior node
stores a history trapezoid and contains pointers to its (at most) four children. The
city and suburb trapezoids are stored in the leaves of the dag, and each leaf has
pointers to the at most four leaves storing adjacent trapezoids. To distinguish the
three types of nodes we mark history and suburb trapezoid as such and leave city
trapezoids unmarked.

2.3 How it really works

Recall the basic steps that have to be performed when a line segment, s;,1, is added.

1. We compute all portions of s;41 N f;.

2. Using these portions we update the trapezoidal decomposition of f; to get g;.
Destroyed trapezoids become history.

3. The new city, fiy1, is the component of g; that contains p. All other trapezoids
in g; need to be labeled as suburbs.

The portions of s;11 N f; are computed by propagating s;;; from the root of the
dag down to the leaves. Each trapezoid of f; intersected by s;41 is updated and the
new city and suburbs are differentiated with the help of the union-find structure.
Here are the details of how steps 1 through 3 are implemented.

Intersecting the new line segment with the city. Starting at the root of the dag
the line segment s;,, is propagated downward to all leaves whose trapezoid meets s;41.
When we are at an internal node v we know that s;;; meets the history trapezoid of
v and we mark v as already visited. Next we recursively visit the children of » whose
trapezoids meet s;;; and which are not yet marked. The order in which we visit them
is so that they meet s;;; in sequence from left to right. Because of this ordering, the
leaves are also visited in the sequence in which their trapezoids meet s;;; from left
to right.

ANEENRIHIVII

Casel Casel Case2 Case3d Case4 Cased Caseb Case6 Case6 Case6 Caseb

Figure 6: Updating the trapezoidal decomposition.

Updating the trapezoidal decomposition. When a leaf storing a suburb trape-
zoid is reached we do nothing. When a city trapezoid is reached we do all the work.
We distinguish six cases as illustrated in Figure 6. We denote the leaf by A.

In every case we construct the appropriate number of children, change A from city
to history, and use \’s former adjacency pointers to connect it to its children. In case 1,
depending on whether the endpoint or intersection point that defines the right side of
the old trapezoid is above or below s;;;, one of the two children trapezoids is not a
properly defined trapezoid yet. This trapezoid will be merged with the adjacent child
trapezoid of the next leaf. The same is true in case 2. The only difference between
the two cases is that in case 1 we remember the line segment s, that contains the left
endpoint of the currently processed portion of s;41 N f; (s, contains the top or bottom
edge of \), and the two children of A that lie above and below the current portion of
8i41 N fi. In case 3, one of the child trapezoids is merged with a child trapezoid of the
preceding leaf, and the same happens in cases 4 and 5. In case 4 we also take note of
the line segment s, that contains the right endpoint of the current portion of s;41 N f;.
The pair (s4, s3) delimits this portion. The pair will be processed as described below.
Finally, case 6 is in a way the easiest, because it only requires the construction of the
four children for A and no merging of trapezoids (nodes) is necessary.

Let us say a few more words about the merging of children trapezoids. As we
follow s;4; from left to right, we maintain the current two children trapezoids that
lie above and below s;;;. One of these children may be ‘open-ended’ on the right.
When we reach a trapezoid A and we are in case 3, 4 or 5, we extend the open-ended
trapezoid (if any) and merge it with the appropriate child of A. In case 3 we exit
A on the right with one of the children trapezoid ‘closed’ and one ‘open-ended’, as
appropriate; in cases 4 and 5 both are closed. In cases 1 and 2 we create two new
children ‘accompanying’ s;;; and leave one of them closed and one open-ended, as
above. In case 6, as mentioned above, no merging of children is necessary.

Maintaining the topology. After all portions of s;1q N f; are added to the city
decomposition as described, we have effectively obtained the trapezoidal decomposi-
tion of the transient city ¢;. As a by-product, for each portion of s;41 N fi, we also
get a pair (s,) of line segments that delimit the portion, and two trapezoids, one
that lies immediately above it and one immediately below it. This extra information

is not properly defined, but is not needed anyway, if the portion contains one of the
endpoints of s;,;.

For each such pair (s,,s;) we do the following. First we compute ¢, and ¢, the
names of the connected components containing s, and s; respectively, by doing two
find operations. If the two components are different, then we just have to union the
two components to reflect the fact that the new segment s;1; has merged the two
contours into one; in this case the current portion of s;11 N f; does not disconnect
any portion of f; from p. If ¢, = ¢, i.e., the two contours are the same, then we
have to work harder, because the old city area on one side of the current portion
of s;11 now becomes suburb. It is not possible to decide locally which side this is.
We thus perform two graph traversals in lock-step, starting at the two trapezoids
(nodes) provided with s,, which are trapezoids that lie on the two sides of the current
portion of s;;1. These traversals use the adjacency pointers and advance in a strictly
alternating fashion, one trapezoid at a time. The traversals stop when one region
is exhausted without finding the trapezoid that contains p (the exhausted region is
now suburb and its trapezoids must therefore be relabelled), or when the trapezoid
containing p is found (in this case the other region becomes suburb and its trapezoids
must be relabelled). In either case, the amount of time spent is proportional to the
number of city trapezoids that became suburb.

Up to minor details, such as the fact that s;;; should be added to the proper
contour cycle or start a new one of its own, this concludes the description of the
algorithm.

Remark. After completing the above algorithm we notice that suburb trapezoids
are fairly useless when we add line segments. We could prune the dag by removing
all leaves that store suburb trapezoids and, recursively, all nodes storing history
trapezoids that thus end up without children. However, the analysis in the next
section will reveal that the savings possible by this optimization are not substantial
(at least asymptotically).

3 The Analysis

The algorithm presented in the previous section is a purely on-line algorithm for the
single face problem. In this section we show that if the segments are inserted according
to a random permutation, then the expected behavior of our algorithm is very good
in terms of both time and storage. We remark that without the randomization there
can be situations where the space and time performance of our algorithm become
quadratric in n. Such a situation is shown in Figure 7.

Recall that the main data structures used in our algorithm are a linear array, a
union-find structure, and a dag. The sizes of the first two structures are proportional
to n, the number of line segments. The size of the dag is proportional to the number
of trapezoids constructed during the course of the algorithm. We will show in Section
3.1 that the expected number of trapezoids is O(na(n)).

10

Figure 7: An example where our algorithm will require quadratic time if all the
vertical line segments are inserted before the horizontal ones, which are then added
from bottom to top.

The time spent by the algorithm is split among union-find operations, constructing
trapezoids, searching for and labelling suburban trapezoids, and propagating the line
segments down the dag. The cost of the union-find operations is at most O(nlogn),
even with a simple structure that supports n — 1 unions in amortized O(logn) time
per operation, and each find operation in constant time. By the results of Section 3.1,
the expected number of find operations is O(na(n)), which thus takes expected time
no more than O(na(n)). The same is true for constructing and labelling trapezoids,
because our lock-step search strategy ensures that the cost of these steps is propor-
tional to the number of constructed trapezoids. Indeed, the cost of the lock-step
search is easily seen to be proportional to the number of trapezoids in the smaller of
the two face portions traversed, and thus proportional to the number of trapezoids
that have been now disconnected from the city. Since a trapezoid can leave the city
at most once, the claim follows. To understand the cost of propagating the line seg-
ments down the dag, let us define the weight of a trapezoid A, denoted w(A), as the
number of line segments that intersect A. The cost is then proportional to Y w(A),
where the sum is taken over all trapezoids A constructed by the algorithm. We will
show in Section 3.2 that the expectation of this sum is O(na(n)logn).

Hence, anticipating these results, we obtain the main result of the paper.
Theorem 3.1 Given a set of n line segments and a point in the plane, the algorithm

of the previous section constructs the face in the arrangement of the line segments
that contains the point in expected time O(na(n)logn) and expected space O(na(n)).

3.1 The expected number of trapezoids
Before starting the probabilistic analysis, recall that the number of transient trape-
zoids (that is, trapezoids that are constructed but are never part of the city proper,

see Section 2.1) cannot exceed the number of other trapezoids by more than a factor
of 4. This is because all transient trapezoids belong to the suburbs and are therefore

11

stored on the leaf level of the dag, and because each inner node of the dag has at most
four children. This observation allows us to consider only trapezoids that belonged
to the city at the time they were created.

Lemma 3.2 The expected number of trapezoids constructed by the algorithm is O(na(n)).
Proof. Fix a trapezoid A and define the following two events:

Xra : Ais a trapezoid in f,, which is the city as defined after adding the first r
segments.

Z.a ¢ Ais a trapezoid in some f;, for 0 <z < 7.

Clearly Z, Ao = Ul X; A, and 3 P[Z, a] is the expected number of non-transient
trapezoids constructed by the algorithm, where the sum is taken over all trapezoids
A defined by at most four line segments each, as detailed in Section 2.1. By the
remark before the lemma, 53 o P[Z, a] is an upper bound on the expected number
of constructed trapezoids, whether transient or not.

Notice that a trapezoid A can be constructed only once, thus X,_; AN X, A is non-
empty for at most one r, namely if A is constructed at the time the r-th segment is
added. Therefore, Z,, a is the disjoint union of the events YT_I,A NX,a,forl <r <n.
This is true for all trapezoids A, except for the frame, which is the only trapezoid of
fo, by definition. It follows that

S PZ xl=Lt i PX,_1aNX,al.

A r=1

By the definition of conditional probability, we have
P{YT—].,A n XT,A] = P[YT—I,AlXT,A] ¥ P[X-r,/_\] .

To estimate the conditional probability, we note that A is defined by at most four
line segments and, assuming that A is in f,, then it was also in f,_; if and only if the
r-th segment to be added was not one of these at most four segments. This implies

— 4
P[XT—I,A|XT,A] S ; .
The above equations thus imply
=4 " 4
SP[Z,aAl S1+Y) -PX,al =14 -> P[X,a]. (1)
A A r=1T r=1" A

However, - P[X, a] is the expected number of trapezoids in the city f,, after
r line segments have been added. By the results of [8, 14, 19], f, can have at most
O(ra(r)) edges, and therefore at most O(ra(r)) trapezoids. This finally gives

12

;P[ZR,A] = é O(a(r)) = O(na(n)) .
O

Remark. The analysis just presented is fairly general, so we would like to restate it
in more abstract terms, which will be exploited in Section 4. In general, we have a set
of n objects (line segments in our case) which we add incrementally in random order
to form some structure (a single face in our case). This structure is represented as a
collection of regions (trapezoids in our case), each defined by at most some constant
number b of objects (4 in our case). Let M(r) denote the expected number of regions
composing the structure after r objects have been added. Then the expected number
of regions ever constructed during the randomized incremental process is at most
Yy 2M(r), provided that if a region is present in the structure after r steps and the
r-th object to be added is not one of the b objects defining the region, then the region
was also present in the structure after the first r — 1 objects had been added. (If each
region is defined by exactly b objects, then the above sum is an exact expression for
the expected number of regions.) As an example, we apply this observation to the
case in which the objects are n points in the plane, the structure is their Delaunay
triangulation, and the regions are Delaunay triangles. This fits well into the setup
just discussed. Moreover, we know that M(r) is 2r — h, — 2, where h, is the expected
number of vertices appearing on the convex hull of a random sample of r points
of the given n. We thus conclude that the expected number of Delaunay triangles
constructed during a randomized incremental algorithm is 3-7_3 2(2r — h, — 2). The
same expression was recently derived in [18], using a more involved analysis. This
general framework has also been observed by Seidel [15, 17, 16] and by Mehlhorn [10],
and is referred to as “backwards analysis”.

3.2 The expectation of the sum of weights

Recall that the weight of a trapezoid A, w(A), is defined as the number of line
segments that intersect A. As in Section 3.1, we argue that for the purpose of
proving an upper bound on the expectation of the sum of weights of all constructed
trapezoids, it suffices to consider only non-transient trapezoids. To see this, let A be a
transient trapezoid. Distribute its weight among all its parents in the dag so that the
share of each parent does not exceed its original weight. This is possible because the
union of the trapezoids of all parents of A contains A and therefore intersects at least
as many segments as A does. Since any node in the dag has at most four children,
its weight can thus go up by at most a factor of 5. Thus, 5 times the expected sum of
weights of all non-transient trapezoids is an upper bound on the expectation of the
sum over all trapezoids.

Lemma 3.3 The expected sum of weights of all trapezoids constructed by the algo-
rithm is O(na(n)logn).

13

Proof. The expected sum of weights over all non-transient trapezoids constructed by
the algorithm is equal to 35 w(A)P[Z, s], where the sum is taken over all trapezoids
A defined by at most 4 segments each, and Z, 5 is the event that, in the course of
adding all line segments, A was constructed as a non-transient trapezoid, the same
event as in Lemma 3.2. In addition to the events Z, o and X, o we define

Y;.a : Ais a trapezoid of f, and s,41, the line segment added next, is one of the
w(A) segments that intersect A.

Note that if A is a trapezoid of f, then none of the segments intersecting A was
chosen in the first r steps. So for ¥, o to occur, given that X, 5 has occured, we have
to choose at the (r+1)-th step one of these w(A) segments out of the remaining n —r
segments. Hence
w(A
P[Y, o] = P[X,a] - 28]

Observe also that
Yoa S XoaNXotaa,

and in general we may have proper inclusion, because A can be removed from the
city also by a line segment that does not intersect A. Independent of whether proper
or improper inclusion, this implies that

ZZP[YA]<ZZP[X=AﬂXz+ml<ZP[Zm O(ra(r)) . (2)

A i=1 A i=1

In other words, the expected number of trapezoids that become history during
the first r + 1 insertions is O(ra(r)), which is clear because these trapezoids have to
be constructed first, and the expected number of such trapezoids, over the course of
the first r insertions, is O(ra(r)), as shown in Section 3.1.

Now fix A and recall from the proof of Lemma 3.2 that

T

= Y P[XosalXa] P[Xoa] < 3 PIX).

r=1 r=1

This implies that

()H%M<4Z LBy, = "B{¥,.] .

=1 n— r r=1

To simplify the notation we set D, = 3 A P[Y;], and can now write

Zw P ’:4§(n:T r+1)ED')

=1
However, we have shown that

T

§&=ZZPMM=WMML

A =1

14

Hence we finally obtain

;w(A)P[Zn,A] < 42 r(rn—_i_l)O(ra(r)) = O(na(n)logn) (4)

as claimed. O

Remark. As in the remark at the end of Section 3.1, these calculations can also
be extended to the more general setup discussed there. Specifically, if we denote by
S(r) the expected number of regions (trapezoids in our case) formed during the first
r steps of the randomized process. Then (1) implies that

S(T)SiEM(j), P 22 T s gl (5)

i=1J

where b, M are as defined in the previous remark. The analysis leading to equations
(2,3,4) can then be generalized to yield a bound on T'(n) = expectation of the sum of
“weights” of the regions ever formed by the algorithm, where the weight of a region
is the number of objects that intersect it. That is, we obtain

= = by b,
0= L0 = L 50
B n—-lé) n—1 bn B n—1 bz?’LM(j) l_ l
;jM(j)ng(T-l-l); ; (J. n)
709 < 3))

4 Extensions

The technique presented in this paper is sufficiently general to be applicable to a
variety of other related problems. In this section we present a few such applications.
In Section 4.1 we extend the previous algorithm to compute the entire arrangement
of n line segments, and in Section 4.2 we describe an algorithm for computing a
single face in an arrangement of Jordan arcs. The overall strategy is similar to that
described above, but there are certain additional technical details that are particular
to the specific application. In each case we discuss in some detail these difficulties,
the modifications to the algorithm that they require, and the analysis of the resulting
modified algorithm.

4.1 Computing the entire arrangement of n line segments

We first consider a simple extension of our technique to the problem of calculating
the entire arrangement of a collection of n line segments in the plane. This can be

15

achieved by applying a simplified version of the technique of Section 2. In this case
there is no need to distinguish between city and suburbs, since every face of the
arrangement needs to be constructed. Consequently, when a segment is added to
the arrangement, all its portions are drawn, and there is no need to maintain any
face topology via a union-find structure. We leave it to the reader to work out the
details of this modified and simplified algorithm. The analysis is also easy, using
the general method described at the end of Section 3. In this case we have b = 4
(the maximum number of segments defining a trapezoid), and M(r), the ezpected
number of trapezoids forming the vertical decomposition of the arrangement of the
first r segments that were inserted, is bounded by O(r + K - {;22-), where K is the total
number of intersections between the given segments (see [4] for the simple proof of
this bound). Hence, the expected storage of the algorithm is

) < 3 200) = 0 (30 + £ = 0 + 10,

r=1

and the expected running time is

r? r n

T(n) Si 16(n — r)M(r) —0 (i(nur " K(nz—r))) — O(nlogn + K) .

r=1 r=1

We thus obtain an algorithm with optimal (expected) running time and storage. The
same performance is achieved by the deterministic (but complicated) algorithm of [3],
and by the alternative randomized algorithms of [4, 13] (a variant of the algorithm of
[4] also achieves O(n) working storage).

4.2 Computing a face in an arrangement of arcs

Let T' be a collection of n Jordan arcs 7,...,7,. We assume that the arcs have a
simple shape, which means that any pair of them intersect in at most some fixed
number s of points, that each arc consists of a small fixed number of z-monotone
pieces, and that it takes constant time to perform any of the following primitive
operations — finding the intersection points between a pair of arcs, decomposing an
arc into its z-monotone pieces, intersecting an arc with a vertical line, and testing
whether a given point lies above or below a given (z-monotone piece of an) arc.
To simplify the description of the algorithm, we assume that each arc is already z-
monotone; otherwise we first decompose the arcs into z-monotone pieces and then
apply the algorithm. We also assume that the arcs are in general position, in the
spirit of the similar assumption we have made above for line segments.

As above, let p be a given point not lying on any arc. Our goal is to compute the
face in the arrangement of I' that contains p. To compute the desired face, we apply
the same scheme of Section 2, except that there are several new technical difficulties
that need to be addressed. The face (city) and its complement (suburbs) are repre-
sented by their vertical decomposition into pseudo-trapezoids, obtained, as above, by
drawing vertical segments up and down from every endpoint and intersection point

16

till they hit another arc. Assuming general position, each pseudo-trapezoid is defined
by at most four arcs, two containing its top and bottom edges, and two defining its
left and right sides.

The data structures that we use are the same as in Section 2 — the dag, the linear
array, and the union-find structure. Searching in the dag for the pseudo-trapezoids
that intersect a newly inserted arc « is trickier in this case, because the intersection
of v with a pseudo-trapezoid A can consist of several connected components (at most
s + 1 components, as is easily checked). In this case we expect the search through
the dag to yield a partition of v into a (sorted) list of subarcs, each of which is
either contained in the suburbs (and is therefore not drawn at all) or intersects a
single pseudo-trapezoid of the current city. This list is initialized to consist only
of ~ itself, and is refined during the search, as follows. Any recursive step involves
the processing of some history pseudo-trapezoid A and some subarc 4 which is a
connected component of y N A. We go over the (constant number of) children of A,
and for each child A’ compute 4’ N A’. The constant number of resulting subarcs
of 4" are sorted by z coordinate and replace 4’ in the output list. The search now
continues recursively at each of the new subarcs and at the pseudo-trapezoid that
contains it. Note that a node A of the dag may be visited several times during the
search, each time with a different subarc 4’. However, it is easy to show that the cost
of searching with in the dag is proportional to the number of pseudo-trapezoids
ever formed that are crossed by 7. At the end of the search we almost obtain the
desired sorted partition of 4; since children pseudo-trapezoids are merged, the final
list of subarcs may contain pairs of adjacent subarcs that share an endpoint and are
contained in the same pseudo-trapezoid. An additional pass through the final list is
needed to merge such pairs.

The remaining steps of the algorithm are the same (with certain trivial modifica-
tions) as those of the algorithm of Section 2. We leave it to the reader to fill in the
details.

The analysis is also similar to that in Section 3. Using the general notations at the
end of that section, we observe that in our case we have b = 4 (maximum number of
arcs defining a pseudo-trapezoid), and M(r) = O(A;42(r)) (bound on the complexity
of a single face in an arrangement of r arcs as above; see [8]). Then the expected
storage of the algorithm is

(1) < 35 M (r) = O0hsa(m).

and the expected running time, again dominated by the cost of the searches through
the dag, 1s

() = 0 (£ “57M()) = O(har) o).

r=1

Hence we have

Theorem 4.1 Given a collection T' of n arcs in the plane with the above properties,

17

and a point p not lying on any arc, the face of A(T) that contains p can be computed
in randomized ezpected time O(A;42(n)logn) and expected storage O(As12(n)).

Remark: This result is an improvement of the previous (deterministic) algorithm of
Guibas et al. [8], whose running time is O(),42(n) log? n).

5 Discussion

In this paper we have presented a randomized incremental technique for computing a
single face in an arrangement of line segments, and for several related problems. The
technique is a variant of several related recent randomized algorithms. It improves
the running time of the previously best algorithms for these problems, and it is fairly
simple to implement. The main characteristic of the technique is maintaining the
history of the random process as a dag of trapezoids, which facilitates efficient location
of the new segment to be inserted relative to the current version of the computed face.
The analysis of the algorithm is also novel, in the sense that it extends the previous
analysis technique of Clarkson and Shor, resulting in a simpler and more general
approach.

The problems studied in this paper are only a sample of problems that can be
solved efficiently using our technique. In addition to the earlier algorithm of Guibas
et al. [7] for computing Delaunay triangulations in the plane, there appeared, after
the original preparation of this paper, a few related works that also apply this or
closely-related techniques. Among those we mention Seidel’s work [17] for construct-
ing trapezoidal decompositions of arrangements of non-intersecting line segments and
applying them for efficient point location and triangulation of simple polygons, and
work by Miller and Sharir [11] for computing the union of “fat” triangles or of pseu-
dodiscs.

There are several other problems that are likely to be amenable to the technique
presented here. Among those we mention the problems of computing many faces in
an arrangement of lines or of line segments, computing a single cell in an arrangement
of triangles in 3-space, computing the zone of a plane in an arrangement of planes
in 3-space, and computing many cells in such an arrangement of planes. In all these
cases it is straightforward to design the general structure of an appropriate algorithm,
along the lines of the algorithms described above. It is also fairly easy to extend the
analysis to obtain sharp bounds on the expected number of regions constructed by
the algorithm and on the expected sum of their “weights”, appropriately defined. The
difficulty in completing the algorithm usually lies in the subproblem of maintaining
the topology of the constructed structure. For example, in computing a single cell
in an arrangement of triangles in space, when we add a new triangle ¢ we need to
determine the way in which it modifies the current cell, which seems to be considerably
more difficult than the similar problem in two dimensions.

To conclude, we mention one final open problem, namely to close the still re-

18

maining gap between the expected running time of our main algorithm, namely
O(na(n)logn), and the lower bound of Q(nlogn).

Acknowledgements

The authors wish to express their gratitude for the generous support and hospitality
of the DEC Palo Alto Systems Research Center.

References

[1] P. Alevizos, J.D. Boissonnat and F. Preparata, An optimal algorithm for the
boundary of a cell in a union of rays, in Geometry and Robotics (J.D. Boisson-
nat and J.P. Laumond, eds.), Lecture Notes in Computer Science 391, Springer
Verlag, 1989, pp. 247-274.

[2] J.D. Boissonnat, O. Devillers, R. Schott, M. Teillaud and M. Yvinec, On-line geo-
metric algorithms with good expected behaviours, Proc. Journées Géometriques
Algorithmiques, Sophia-Antipolis, June 1990, pp. 7-13.

[3] B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line
segments in the plane, Proc. 29th IEEE Symp. on Foundations of Computer
Science, 1988, pp. 590-600.

[4] K. Clarkson and P. Shor, Applications of random sampling in computational
geometry II, Discrete Comput. Geom. 4 (1989), pp. 387-421.

[5] H. Edelsbrunner, L. Guibas and M. Sharir, The complexity and construction of
many faces in arrangements of lines and of segments, Discrete Comput. Geom. 5
(1990), pp. 161-196.

[6] H. Edelsbrunner and E. Miicke, Simulation of simplicity: A technique to cope
with degenerate cases in geometric algorithms, ACM Trans. Graphics9(1) (1990)
pp- 66-104.

[7] L. Guibas, D. Knuth and M. Sharir, Randomized incremental construction of
Voronoi and Delaunay diagrams, Proc. 17th Int. Collog. on Automata, Languages
and Programming, 1990, pp. 414-431.

[8] L. Guibas, M. Sharir and S. Sifrony, On the general motion planning problem
with two degrees of freedom, Discrete Comput. Geom. 4 (1989), pp. 491-521.

[9] J. Hershberger, Finding the upper envelope of n line segments in O(n log n) time,
Infor. Proc. Letters 33 (1989), pp. 169-174.

[10] K. Mehlhorn, unpublished manuscript, 1990.

19

[11] N. Miller and M. Sharir, Efficient randomized algorithms for constructing the
union of fat triangles and of pseudodiscs, manuscript, 1991.

[12] J.S.B. Mitchell, On computing a single face in an arrangement of line segments,
manuscript, School of Operations Research and Industrial Engineering, Cornell
University, July, 1990.

[13] K. Mulmuley, A fast planar partition algorithm I, Proc. 29th IEEE Symp. on
Foundations of Computer Science, 1989, pp. 580-589.

[14] R. Pollack, M. Sharir and S. Sifrony, Separating two simple polygons by a se-
quence of translations, Discrete Comput. Geom. 3 (1988), pp. 123-136.

[15] R. Seidel, Linear programming and convex hulls made easy, Proc. 6th ACM
Symp. on Computational Geometry, 1990, pp. 211-215.

[16] R. Seidel, Backwards analysis of randomized geometric algorithms, manuscript,
1991.

[17] R. Seidel, A simple and fast incremental randomized algorithm for computing

trapezoidal decompositions and for triangulating polygons, Comp. Geom. Theory
and Appls. 1 (1991), 777

[18] M. Sharir and E. Yaniv, Randomized incremental construction of Delaunay tri-
angulations: Theory and practice, manuscript, 1990.

[19] A. Wiernik and M. Sharir, Planar realization of nonlinear Davenport Schinzel
sequences by segments, Discrete Comput. Geom. 3 (1988), pp. 15-47.

20

