AN EUCLIDEAN METRIC FOR
GENETIC SEQUENCE COMPARISON

K. Balasubramanian
(Thesis)

CS-TR-332-91

October 1991

An Euclidean Metric for
Genetic Sequence Comparison

K. Balasubramanian

A Dissertation
Presented to the Faculty of
Princeton University
in Candidacy for the Degree of
Doctor of Philosophy

Recommended for Acceptence
by the Department of

Computer Science

October 1991

© Copyright 1991 by K. Balasubramanian

Acknowledgements’

I would like to express my gratitude to my advisor, Prof. Richard Lip-
ton, for his ideas and encouragement teaching me the importance of taking
the broad view, to Prof. Douglas Welsh for providing a molecular biolo-
gists perspective and to Prof. Ken Steiglitz for reading this thesis and his
helpful comments on improving its clarity.

I would also like to express my appreciation the technical and office
staff, and Sharon Rodgers in particular, for all their support and help dur-
ing my stay at Princeton.

My thanks too to all my collegues and friends at Princeton, for mak-
ing my time there the memorable and broadening experience that it turned
out to be. It would be impossible to acknowledge all the wonderful friends
I made .but I must at least try.

My thanks to Arvin Park for a fruitful partnership, for his advice and

encouragement, for golf lessons but most of all for being a friend.

To S. V. Krishnan, Mohanram Sivaraja, A. Hariharan, Ehtesham
Hyder, for making a house a home.

To A. Narayanan and Jyoti Shukla, for so many reasons.

To Chris Clifton, Alvaro Campos, Burt Rosenberg, Mark Greenstreet,
Matt Blumrich, Jim Plank, Karin Petersen, Csaba Gabor, Bill Lin, Mike
Laszlo, Luen Heng, E. S. Panduranga and Rob Abbott, my officemates

over the years who made coming to work a distinct pleasure.

This work was partially supported by NSF Grant #COOP AGMT DCR 8420948 and DARPA Grant #N00014 - 85 - C -
456 PO000S.

To the Cache Hitters.

My apologies to anyone whose names I may have omitted. While they

may be absent from this page, they will remain in my memory.

My affectionate gratitude to my family both here in the United States
and back home in India for their love and understanding. Most of all to
my parents for always encouraging me to think for myself and to my sis-

ter. It is to them I dedicate this work.

Abstract

This thesis introduces a new representation for genetic sequences in
the form of geometric points or vectors. It is based on the relative frequen-
cies of the various (small) fixed length substrings or k-tuples of the DNA
or protein sequences. This effectively transforms the
sequence from a variable sized string to fixed size vector. We show that
this transformation preserves, under certain circumstances, the edit dis-
tance between sequences, a widely used measure for comparing genetic
sequences. This fact is used to develop a linear time heuristic for
sequence comparison, an improvement over the quadratic time dynamic

programming based algorithms currently in widespread use.

The transformation from a variable sized sequence to a fixed size vec-
tor representation allows computational geometric techniques to be applied
to the study of genetic sequences. In particular, we develop a method of
comparing several sequences simultaneously without having to compare
each pair of sequences separately. This results in a substantial reduction in
the complexity of the problem of multiple sequence comparison and clus-
tering. This can be applied as a filter to extract interesting sets of
sequences from a large database for more thorough study as well as an
indexing method, to locate the database sequences most likely to be related

to a query sequence.

Table of Contents

[. Introductionc......
Sequence as Data Object ...
A note on TerMINOLOZY ...cccceveereermsssrismsirsrrrsersesesitstesss st sasan s esss s st shsabsssa s s s en s sssens
Organisation Of TRESIScccvcvveeeereiereinsninmsisssssssrssn st ssstusssssas s sassa e s sss e sesses
I1. GENELC SCQUETICES 1uvvvercsrursesesesmsisismsisismssssssssssssssesssssssasssssssassssst st st asbntsestsssessasassesesassasasasassssssnsses

The Nature of the Genetic MAteTialcccoosviiiiciiimismenmess s sssesss s ssssssssssessssssens
GeNBHC MIUBALOI iiuvvmisissmsssissisasssssssisssrssiiansassossssnnsssias susssessossadonsmansssusavaries
Computational Problems in Molecular BiOlOZYcecvirresrsesessnnisciisiciisnisiisssinissnsnsnnsnee
I11. Sequence HOMOIOZYccccsmssiinmsnsmssssnnnsssssnsnnsnsnsssnsssssssosassssssssssnsnearassessssnsases
Similarity of Genetic SEQUENCESciiierirscserersrsnsasassasansssscnssssssssssasnnass

Edit Distance .. i
Variations on the Dynamlc Program

IV. Abstractions for Mutations in Genetic Sequences
The TETD MIOARE 8 o oot diviusiubicsssvisvaiss svonsnsessinnisvunsisavistaviong
The: Mutation:-BPattern Model - ... vimimimisssisismssissssmms s
The Middle "TIrd LEMMIR ... ciidiorammiiogemmsrmsbosssassisssnmsamsesssbonssaptonsessansss

V. The Euclidean Vector Distance Metric .
The k-tuple Frequency Vector ..

Correspondence between Edit and Vector DISIANCE wooimcvmm s s e e e
Experimental VErificAHONcccuuimnsmmmisisisisssiisinsmsmsasssssnsssasasasasssasios
CONCISIONS yiiviyiisssss s e TS G ss s sesssovsverses
VI. Linear Projections of Sequence VECIOISciciicmmmssmsssmssssmssssssssssssesss
Projection Preserves CIOSENESSc.iismsisscusssoressnsisssasassssnsnsaseasesessananss
Clustering Based on ProjeCtionsecccusisisnssssnssssssessssssssscusssasnsnssens
Indexing Based 0N PrOJECHONScccoriiernirmnimsinnisisnsnsssssessssss st ssass s sssassassssass
VIL. CONCIUSIONS ..vevuerensansesarssssanrresnsssesassnensonssssnsssessonsssssassnsasssess sonssnsnsass iansessns sasasasesasshens spssnsss sassassases
ADPPENAIX L ottt ettt sb b st st s e s sr s a e s s s r e e 4RSS s
RETETEINCES ceviriesesssassasuonssersnssavasnsaanss soessnsssniesessssssssasssasssssssinss svasssssadasasianaiosavisashinss

..........................

O NN B

10
12
13
14
17
21
22
23
23
32
32
36
41
43
63
63
68
74
94
97

L. Introduction

This thesis deals with certain computational problems arising in the
context of Molecular Biology. The field of molecular biology has seen an
increasing number of computer applications in recent years. Most such
applications center around the Genetic Sequence data object. Genetic
sequences refer to sequences of Nucleic Acids, which form the genetic
material and are responsible for transmitting information from generation
to generation, or to sequences of Amino Acids, which are the building
blocks of proteins and which are responsible for Gene Expression. In par-
ticular the type of problems we shall be particularly be concerned with in
this thesis involve comparison of genetic sequences - locating sequences

which are similar or quantifying the similarity between two sequences.

This thesis introduces a new representation for genetic sequences in
the form of geometric points or vectors. This representation results in a
linear (in sequence length) time heuristic for sequence comparison, an
improvement over the quadratic time dynamic programming algorithms
currently in widespread use. It is based on the relative frequencies of the
various (small) fixed length substrings or k-tuples of the DNA or protein
sequences. Moving away from a variable sized sequence to a fixed size
vector representation allows computational geometric techniques to be
applied to the study of genetic sequences. In particular, we develop a
method of comparing several sequences simultaneously without having to
compare each pair of sequences separately. This results in a substantial

reduction in the complexity of the problem of multiple sequence

comparison and clustering.

Sequence as Data Object

Handling of sequences or strings is a very wide ranging problem
occurring in many diverse areas of computer applications. This is because
in a large number of computational activities the data objects in question
cannot be represented as simple numerical values or structures but only as
strings or variable length linear sequences of characters from a given
alphabet. This is obvious when dealing with actual English (or natural
language) text, as in the case of text editing or word processing, but may
also be implicitly true in many other cases as well. The computational
problems, and the type of queries involved with respect to sequences are
many and varied. The simplest string related activity involves only storage
and retrieval. We wish to be able to store a string and retrieve it on
demand without regard to its content. An example of this would be a
"synopsis" or "abstract" field in a bibliographic database. The system need
only be able to associate a particular string (the text of the abstract) with a

particular record (the book): the actual contents are of no consequence.

A common type of computational operation with respect to sequences
involves checking for identicality of two strings, ie., whether they match
character for character. Often we are interested in comparing one string
with a substring of another as opposed to the entire string. This would
include text indexing or searching, where we are interested in locating
where a particular "target" string may be found in a body of "source” text.
This is widely used in text editors, word processors, searching for entries
in a dictionary, searching for quotations in text, looking up telephone or

other directory entries etc., and is often an integral part of many database

applications. The type of queries involved may also be distinguished
according to whether the source is fixed (as in a telephone directory), or
varied (as in different pieces of text) and whether the target we are search-

ing for is a fixed string or one of a set of possible strings.

Numerous algorithms exist for this type of search ranging from the
brute force method wherein the target is slid along the source string one
character at a time and tested for match at each position, to more refined
methods. For the case where the target is a fixed string Knuth, Morris and
Pratt [8] proposed a refinement, involving preprocessing the target string,
allowing the target to be moved several positions along the source at once
when a mismatch occurs. This is based on determining the minimum pos-
sible number of moves during which there can be no match, knowing how
how much of target string matched the source at the current position and
what the character that caused the mismatch was. This was further
extended by Boyer and Moore [1]. Rabin and Karp proposed an algorithm
based on hashing the target sequence as well as all possible substrings of
the source of the same length as the target. For the case where the target
is a set of strings represented by a regular expression Thompson [23]
developed a method based on converting the regular expression to a deter-
ministic finite automaton. Another algorithm, due to Morrison [17] is
based on constructing a modified B-tree, known as a "patricia” tree and is
useful in the case where the source text is fixed. This has been applied to
create an index for the entire Oxford English Dictionary to search for
words or word entries in the dictionary. Inverted indices [12] are also used

in a variety of bibliographic systems such as refer.

Another type of sequence related problem is finding out how closely
two sequences resemble one another, without insisting on syntactic equal-
ity. In this case we need to be able to define closeness of sequences in
order to be able to make meaningful comparisons such as "which of these
two sequences is a given sequence closer to". This is obviously more
difficult than searching for identical (sub)sequences, wherein we are essen-
tially dividing up the set of (sub)sequences into a set of equivalence
classes. These types of problems are very important in the context of
Molecular Biology and we shall examine them in greater detail in chapter
3.

A note on terminology

It must be noted that for the most part the terms sequence and string
are used interchangeably. However, in places where the distinction is
important, the term substring will always refer to characters that are con-
tiguous in the original string, whereas the term subsequence refers to a
sequence of characters that appear in the same order as in the original
sequence, although not necessarily contiguously. Thus for example the text
strings "wert" and "quip" are both subsequences of the string “gwertyuiop"
whereas only the former is a substring. Also a substring that begins at the
first position of the parent string shall be referred to as a prefix of the
string. Thus "g", "gwert" and "qwertyuiop" would all be prefixes of the
above string. A prefix that is shorter than the parent string is a proper

prefix.

Organization of Thesis

The next chapter looks at some background information concerning
the nature of genetic sequences and familiarizes the reader with the
domain which we shall be considering. Chapter III looks at the existing
concepts of sequence homology and various existing algorithms. Chapter
IV presents a brief theoretical overview of the concept of sequence muta-
tion and presents a mathematical model of the process which will be
necessary to justify future computer simulation experiments. Chapter V
introduces the vector distance metric of sequence similarity, establishes its
validity, and demonstrates its applicability to speeding up the process of
sequence comparison. Chapter VI presents extensions arising from the
notion of sequence vectors that lead to fast indexing algorithms for genetic

sequences. Chapter VII presents the conclusions of this thesis.

II. Genetic Sequences

The Nature of the Genetic Material

Genes are the units of inheritance by which a living organism passes

on its characteristics to the next generation. While this genetic theory of

inheritance has its origins in the experiments of Mendel in the 19" cen-
tury, the physical and biochemical nature of the gene was not understood
till this century, with the discovery of chromosomes in the nucleus of the
cell and the realization that genes reside on these chromosomes. Chromo-
somes are composed of twin complementary strands of Deoxyribo Nucleic
Acid or DNA. This DNA is the genetic material which is the physical car-
rier of information from generation to generation as well as from cell to

cell.

DNA is a polymer consisting of a chain of nucleotides connected
together by sugar-phosphate links which form a backbone. There are four
possible nucleotides, Adenine (A) and Guanine (G), together known as the
purines, and Cytosine (C) and Thiamine (T), together known as the
pyrimidines. These nucleotides are also sometimes referred to as bases’.
Adenine and Thiamine are complementary bases as are Cytosine and
Guanine. Complementary refers to the fact that they are capable of bond-
ing with each other by means of hydrogen bonds. In some cases the base
Uracil occurs in place of Thiamine but the number of bases and the com-

plementarity is preserved. The duplex, or double helix structure of DNA

tThe terms nucleotide, base and nucleic acid will be understood to be identical in this work. Although there is a chemical

consists of two complementary strands, ie., each base in one strand is
attached to its complementary base in the other. This implies that the
sequence of bases in one strand fully determines the sequence in the other.
This is what allows DNA to self replicate, since during the cell division
process, the two strands separate and a mating strand is created for each
from a pool of loose bases, thus resulting in two copies of the original

DNA duplex.

The genetic information contained in the DNA is encoded in the
actual order or sequence of bases that comprise it. In other words, from
the point of view of the information it carries, a gene is no more than a
sequence or word in a four character alphabet. This hints at the possibility
that at least certain aspects of genetics may be studied purely as a textual
problem, divorced from the physical and chemical properties of the sub-

stances involved.

Gene expression, the process whereby the information carried in the
DNA is translated into the appropriate physical or chemical effect, is
accomplished by translating the DNA sequences into proteins or polypep-
tides. These macromolecules are essentially responsible for controlling all
the chemical activity in the cell either as reagents or, more importantly, as
catalysts. This translation, as well as certain other cellular processes are
mediated by Ribonucleic Acid or RNA, which is a single stranded nucleic
acid chain with almost the same base alphabet as DNA. Proteins are
comprised of long chains of amino acids. There are twenty different amino
acids and as with DNA the structure and activity of proteins is fully deter-

mined by the actual sequence of amino acids that comprise it. Also a

difference between them, the difference does not affect the computational problems which we shall be considering.

fixed DNA sequence gives rise to a fixed amino acid sequence, or, in
other words, one gene - one protein. The translation between DNA and
protein was found to be by means of a fixed triplet code. Each sequence
of three adjacent bases (a codon) codes for a specific amino acid. This
genetic code is not only fixed for the entire genetic material in an organ-
ism but is in fact common to all life on earth. Thus the process of tran-
scription of genes to proteins consists of reading the sequence of bases
three at a time and adding the appropriate amino acid to the protein
molecule being constructed. All codons represent an amino acid (there are
no nonsense triplets) except some kﬁown as TERM codons which indicate

where the transcription is to start and end.

Thus, in the case of both DNA and protein their effect is determined
completely by the sequence of their constituent bases or amino acids. In
the case of proteins, as well as RNA, much of their function comes from
the shape in which the molecule folds about itself, known as its secondary
structure or 3-D conformation but these higher order structures are them-
selves completely determined by the primary structure - the sequence
itself. Similar sequences will therefore, in some sense, have similar
effects or properties. The notion of similarity is yet to be defined, but it
should be intuitive at this point that if there is very little difference
between two gene sequences, then it may be expected that there will be
very little difference in the proteins that they code for and in the activity
of those proteins. This further shows the important role that sequence

related problems play in the study of genetics.

Genetic Mutation

The ability of DNA to act as a carrier of genetic information arises
from the ability of the cell to copy it exactly thus passing on the identical
genetic information to successive generations. This process is known as
transcription. However due to errors in this transcription process the copy
is not always identical to the parent and this change is further passed on to
future generations by transcription. This process, whereby a DNA
sequence differs from its parent is known as mutation. Genetic mutation
is a very important phenomenon since it is responsible for genetic diver-
sity as well as evolution. Thus the similarity of genetic sequences between
two species can offer a clue to their common ancestry on the evolutionary
tree. This too motivates interest in finding similarities between genetic

sequences.

The effect of mutations may also be varied. Some may cause no
difference in the gene expression, while others may block the gene expres-
sion altogether. We will look at the process of mutation further in chapter

IV in trying to establish a mathematical model for the process.

This thesis focuses on sequence similarity and mutation related prob-
lems. Essentially we are interested in efficient techniques for quantifying
the similarity of sequences or finding similar sequences from among a
large set. However many other types of problems, of interest from a com-
puter science point of view, also arise in the context of molecular biology.

Some of these are outlined below.

Computational Problems in Molecular Biology

Improving techniques for determining the actual sequence of bases
comprising a DNA sequence have led to a rapid increase in the amount of
sequence information available. This large and rapidly increasing volume
of DNA and Protein sequence information leads to obvious problems
involving their storage and retrieval and essentially constitutes a database

problem.

Another problem arises in the context of “sequencing” or determining
the actual nucleic acid sequence in a given strand of DNA. Due to the
physical limitations of the process used to determine the base structure - a
process known as gel electrophoresis - it becomes difficult to read
extremely large fragments with any accuracy. Hence the methods com-
monly used involve "digesting” or breaking up the DNA with restriction
enzymes and sequencing the smaller fragments. This is done with various
restriction enzymes that break the DNA at different points thus resulting in
various overlapping fragments of DNA. The problem then is to determine
exactly where each fragment fits into the overall sequence (the Restriction
map) by looking at the various fragments and determining exactly where
the overlaps should lie. This is further complicated by having to account

for errors in the sequencing process.

The RNA secondary structure problem deals with trying to predict the
shape of a given segment of RNA given that it tends to fold back on itself
and form bonds between bases at different positions along the RNA
strand based on various thermodynamic considerations. It is important to
know this Secondary Structure (as opposed to the primary structure which

is the sequence itself) since that is what determines what portion of the

10

RNA sequence is exposed, which in turn determines its activity since
many biochemical processes take place by means of a lock and key

mechanism, ie., one macromolecule "fitting" into another.

11

III. Sequence Homology

What is understood by the statement that two sequences are similar
depends largely on what meaning or interpretation is given to the
sequences. In this they differ from numerical data in the sense that the set
of integers or real numbers and the operations possible on them are well
defined and are not subject to change, although, when representing any
data as a number or set of numbers we are free to choose the manner of
that transformation. For example we may chose to represent the heights of
a set of people by a set of numbers using any of several different units but

a person whose height is greatest will remain the same regardless.

This need not be necessarily be true in the case of sequence objects.
Take for example the case where our objects are English words. If we are
interested in identifying misspelled words we may wish to define the dis-
tance between two words as the number of single character changes (ie.,
deleting or inserting a single character) which are required to change one
into the other. We may even go to the extent of weighting the changes
based on the distance between the characters on a standard typewriter key-
board. However this notion of similarity would be useless if we are
interested in knowing how similar in meaning or ideas conveyed two
words are. In the latter case we could perhaps define distance between two
words as the number of "links" needed to find one starting from the other
in a thesaurus. The important point to be noted here is that in cases where
the data objects cannot be easily expressed as numbers by a representation

that is physically simple (ie., corresponds well with the real world

12

interpretation) any method used to study them must depend ultimately on
interpretation by a knowledgeable human being. This will become impor-

tant as we look at Genetic Sequences.

Similarity of Genetic Sequences

In the context of genetic sequences, similarity is referred to by the
term homology. Two sequences which are similar or have similar regions
would be described as having significant homology or homologous regions
or simply as being homologies. As discussed in the previous section, the
meaning we give to the term similarity depends on the context of the
sequences or what they represent. In the case of genetic sequences, we
are interested in their effects in biological systems. Thus the phrase "simi-
lar sequences" would, in the case of DNA, refer to sequences that code for
similar proteins or polypeptides and, in the case of proteins, it would refer

to proteins with similar function/structure.

Another reason for studying sequence similarity is to see how
sequences evolve, especially since the evolution of the genetic material is
inexorably linked with the evolution of the species. Looking at the
mechanism of sequence mutation, outlined in the previous chapter, sug-
gests a way of measuring sequence similarity based on quantifying the
amount of mutation it would have taken to create one from the other. This
leads to the concept of edit distance as a metric for the comparison of

genetic sequences.

13

Edit Distance

One of the earliest general notions of "distance" as applied to charac-
ter strings was the edit distance, proposed by Wagner and Fischer [25].
The idea of edit distance is based on three basic sequence editing opera-
tions, which are operations that can be performed on a given sequence to
transform it into another. These operations are insertions, deletions and
substitutions. Insertion refers to inserting a character at a given position in
the string, increasing the length of the string by one, ie.,

off — (insert A) — 0APB
Deletion refers to removing the character at a given position, thus decreas-
ing the length of the string by one, ie.,
0AB — (delete A) — aff
Substitution refers to replacing one character with another, not affecting
the length of the string, ie.,
0AB — (substitute A by B) — oBf

In the above A and B refer to arbitrary (but different) characters and o and
B refer to arbitrary strings from the sequence alphabet. (If we so choose
we may think of a substitution as an insertion followed by a deletion.)
Further, a weight or cost is assigned to each operation. The edit distance
between two strings then refers to the minimum weighted number of edit
operations required to transform one string into the other or, alternately, to
transform both strings into a third, arbitrary, string. The reason for the
alternative definition is to ensure that the distance measure is symmerric,
ie., given two strings §; and S, the minimum weight sequence of edit
operations which transform §; into §, and the minimum weight sequence

of edit operations which transform §, into §;, must have the same

14

weight. These edit operations are sufficient to transform any string to any

other and thus the edit distance between two strings is always defined.

It should be noted that a sequence of edit operations which transform

S, into S5, can be converted into one that transforms S, into §; by
changing inserts to deletes and vice versa and by reversing any substitu-
tions ie.,

substitute A by B
will be replaced by

substitute B by A
Thus, since insertions in one sequence are mirrored by deletions in the

other, both insertions and deletions must have the same weight, else the

S{[1--+-m]and §,[1 - - - n], input strings.
d = weight of insert or delete.
s < 2d = weight of substitution.

D[i,0] =di
D[0,jl=dj
Viinl---mand jinl---n
if §1i1=8,0/1
Dli,j-11+d
D[i,jl=min <D[i-1,j]+d
D[i-1,j-1]
else
Di,j-11+d
Dli,jl=min {D[i-1,j1+d
DI[i-1,j—1]+s
\

edit distance = D[m,n]

Algorithm 3.1
Calculation of Edit Distance

15

costlier operation will never be used. Also, the weight of the substitution
cannot be more than twice that of an insertion or deletion since we may
choose to perform an insert followed by a delete instead of the substitu-
tion. In particular, we shall refer to the edit distance obtained by defining
the weight of an insertion or a deletion as being 1 and the weight of a
substitution as being 2, as the Unit Weight Edit Distance. This will

become important later on.

The definition of edit distance leads almost immediately to the simple
dynamic programming algorithm for its calculation as outlined in Algo-
rithm 3.1 [25]. This algorithm is based on calculating the edit distance
between all possible prefixes of the two sequences and the dynamic pro-
gramming step is based on the observation that when calculating the edit
distance between a prefix of length i of sequence §; and a prefix of length
j of sequence §,, we must perform one of following actions:

Delete the i" character of §; : The edit distance is then that
between the current prefix of S, and the previous prefix (of length
i—1) of §; + 1 (or other cost)

to account for the last deletion.

Delete the j™ character of S, : Symmetrical to the above

Substitute the last character of one by the last character of the other:
The edit distance is then the the distance between the previous
prefixes of both sequences + 2 (or other substitution cost) to
account for the substitution.

match the last two characters (if they are identical): The edit dis-
tance is then the same as that between the previous prefixes of both

sequences.

16

The calculation of edit distance by this dynamic program requires
three comparisons for every pair of prefixes, one from each sequence.
Thus the running time of the algorithm is quadratic in the sequence length,

taking O(nm) steps where n and m are the lengths of the sequences.

The unit weight edit distance is also related to the concept of longest
common subsequence of two sequences, which is simply the longest
subsequence (not substring) common to both sequences, which is another

method of describing the amount of similarity between two sequences.

Variations on the Dynamic Program

Needleman and Wuncsh [18] first applied such a dynamic program-
ming approach to determining homologies between protein sequences, and
since then the notion of edit distance has been widely accepted as a meas-
ure of homology among genetic sequences by the molecular biology com-
munity. Their technique differs from that of Wagner and Fischer in that
they calculate a measure of closeness rather than a measure of distance
and that they use a non uniform weighting for substitutions based on the
number of matching bases (nucleic acids) in the triplets coding for each

amino acid pair. However the technique is essentially similar.

Other variations include techniques that incorporate different weight-
ing schemes for gaps or consecutive inserts/deletes, for example the
weight or cost for a string of consecutive deletes (a "gap") may be con-
cave [26], ie., the weight of each successive delete costs less than the pre-
vious one. The scoring scheme proposed by Wilbur and Lipman [27], for
example, assigns a uniform constant score to each gap irrespective of their

length. Further, their algorithm calculates the alignment between a pair of

17

sequences, rather than just a number that is indicative of their similarity.
The alignment is a map showing identical bases of both sequences that
correspond to each other, and is meant to indicate that in the optimum
(least weight) series of edit operations transforming one sequence to
another, these positions remain unaffected. This information is often of
much more importance to biologists than just the distance alone, for it is
the actual bases in alignment that determine whether the homology

observed between two sequences has any real significance or not.

The essential limitation of this family of techniques is the quadratic
time complexity of the dynamic program. This can be especially crucial in
light of the fact that, as sequencing techniques improve, biologists are able
to sequence longer and longer strings of genetic material. It therefore
becomes imperative to search for faster comparison techniques, perhaps
even at the expense of resolution. Also, often the problem is to be able to
compare a set of sequences rather than a pair. In such a situation, the abil-
ity to do only pairwise comparisons may be too time consuming and may

not even be meaningful.

Various heuristic approaches have been proposed to lower the qua-
dratic time limitation of the dynamic program and many techniques origi-
nally developed for general string matching and string comparison have

been applied to the comparison of genetic sequences.

Landau Vishkin and Nussinov [10] have described a heuristic algo-
rithm that is linear in the sequence lengths provided that the sequences
have no more than k differences between them for a fixed k. The running

time does depend on k. This class of heuristic, that performs well for

18

close sequences but may not be accurate for very dissimilar sequences, is
very important in the context of genetic sequences since the distance that
is calculated is only meant to draw attention to close sequences and may
not be significant in itself. Hence, for dissimilar sequences, it is sufficient
if the algorithm pronounces them to be dissimilar without being accurate

about the actual distance.

Perhaps the most widely used programs for biological sequence com-
parison are the FASTA and FASTP family of programs developed by Lip-
man and Pearson [14][19]. These use a modification of the algorithm of
[27] and speed up the dynamic program by first looking for regions of
exact matches of small lengths using a lookup table and then concentrating
the dynamic program around these regions of similarity, thus reducing the
number of comparison and minimization steps the dynamic program must
perform. However this method can, in the worst case, have the same qua-

dratic time complexity.

Various hardware approaches have also been proposed for speeding
up the dynamic programming computation of sequence homology. The
Princeton Nucleic Acid Comparator of Lopresti and Lipton [15] uses a
systolic array implementation of dynamic programming to produce a
linear-time implementation of the edit distance computation, using a linear
number of processors. Lander and Mesirov describe a parallel algorithm

for protein sequence comparison.

Concerning the problem of comparing or analyzing more than two
sequences at a time Queen, Wegman and Korn [20] have developed an
algorithm which can deal with multiple sequences by searching for partial

homologies common to all or some minimum sized subset of the

19

sequences. This is achieved by finding all possible substrings of a given
length in each sequence, as well as noting their position and then compar-
ing the substring composition of all the sequences to see which ones share
common substrings or similar substrings, where "similar" is defined as

substrings not differing in more than a certain number of positions.

20

IV. Abstractions for Mutations in Genetic Sequences

This chapter will introduce certain mathematical models for the
sequence mutation process. This is important in terms of developing a
framework within which to pose and answer questions about sequence
mutation related problems, as well as to make any kind of analysis of the

algorithms we encounter.

In biological terms, a mutation is the chemical process that causes a
DNA sequence to be different from its parent, of which it is normally
expected to be an identical copy. It can also refer to the result of such a
process. This can happen in a variety of ways: as the result of errors dur-
ing transcription, causing single bases to be changed into others, or blocks
of one or more bases to omitted altogether from the copy. This process is
naturally occurring and for the most part can occur anywhere in the
sequence but mutations have been known to concentrate sometimes at
specific locations in a sequence known as hot spots. Certain chemicals and

radiation may also increase the incidence of these errors.

For our purposes however, we may think of mutation as simply the
process by which two genetic sequences differ. These sequences may be
parent and child in which case this would correspond to the biological
notion above, or they may be two arbitrary sequences between which we
are trying to establish a possible ancestor-descendent relationship or a pos-
sible common ancestor, or even a sequence and its "image" ie., what the
sequencing process tells us that the sequence is. In the latter case the

difference is between the physical reality and our observation of it. This

21

difference can occur due to possible errors in the process of "reading” a

sequence.

We present below two models for mutations. The idea behind any
model should be to mirror what is known about the process it is modeling
and yet be simple enough to work with. Thus, for example, if we were
interested in comparing typewritten samples of text we may wish our
model to incorporate the concept of transposition - two consecutive char-
acters being exchanged - since that is a kind of error we would expect to
happen during typing but we would not expect such an error mechanism
in the context of DNA sequence mutation and hence our model would

probably not incorporate such a mechanism.

The P-I-D Model

In this model we view a mutation as a black box or a machine that
reads in a sequence one character at a time and writes out the other one

character at a time.

original sequence — |mutation| — mutated sequence

At any given time the machine can perform one of three actions:
PASS copy a character from the input to the output.

INSERT put a character on the output without consuming any input.
DELETE consume an input character without producing any output.

This model is universal in the sense that for any two sequences we
can find a sequence of moves that will take us from one to the other.
Also, under the assumption that transcription or replication errors can only

occur at that point where a sequence has been opened up for reading, this

22

linear view is quite appealing. These sorts of errors occurring at the point
of transcription - so called Point Mutations - form an important class of
mutation events and are known to be widely occurring in biological sys-

fems.

The machine itself can be viewed as a finite automaton or Markov
process. This gives the advantage of being easy to simulate, a facility
which can be useful when empirically trying to study the performance of
any heuristic algorithms when theoretical predictions are difficult to make.
Also the ability to change the probability of occurrence of mutation events,
for example, to make certain types of substitution more common than oth-

ers gives this some flexibility.

As can be seen, this model mirrors the dynamic program for the edit
distance calculation. This then is one of the advantages of the edit distance
as a measure of sequence similarity, since it lends itself to an elegant and
simple mathematical representation which allows many theoretical obser-
vations to be made about the edit distance between two sequences as well
as about the algorithm itself. Chvatal and Sankoff [3], for example, have
proven bounds on the largest common subsequence of two random
sequences. This is of importance since it provides a background against
which to determine if any perceived similarity is significant or merely the

result of chance.

The Mutation Pattern Model

We may look at a mutation as a sort of mask laid over the sequence
with positions marked as "insert particular character here" or "delete here".

This view is of use when we are interested in counting possible mutations

23

and seeing if different mutations can lead to the same result (ie., can a
particular mutation acting on a particular sequence be replaced by another
that will have the same effect and is smaller (fewer edits)). These sorts of
problems are important in the biological context because it is sometimes of
interest to actually reconstruct the mutation events that occurred to cause
one sequence to change into another and in such cases it may be important
to be able to establish good bounds on the probability that an observed
difference between two sequences may be caused by mutations different
from the ones predicted by the edit distance algorithm or other means.
Another related problem is that of establishing the probability that a region
that appears identical in two sequences is in fact conserved, ie., unaffected
by any mutations, as opposed to the possibility that it was subjected to a
series of mutations whose net result was to cause the regions to be identi-
cal in the two sequences. We shall address this question in the next sec-

tion.

Define a mutation of size k to be a list of k¥ commands, to be executed

in order, of the form

INSERT (character,position):
INSERT character into the position place in the sequence.
(1 < position < 1+ length of sequencel)

DELETE (position):
DELETE the character in the position place.

Obviously a mutation is only well defined for sufficiently long
sequences (i.e., the sequence is long enough for position to fall within the
sequence). Therefore we will insist that the size of sequence on which the

mutation is to act be explicitly stated. It is obvious that we can have the

24

same mutation act on longer sequences too but for clarity we shall call
that a different mutation. It is also obvious that the size of the mutation is

an upper bound on the edit distance.

Note that position in the above definition refers to position in the ori-
ginal sequence. We could have defined it as the position in the sequence
as it looks after the last edit operation but this could lead to redundancies
such as inserting a character and then deleting it. A consequence of this is
that all the delete operations can be permuted among themselves as well as
among the insert operations so we need only think of the combination of
such operations rather than the actual order. Similarly insert operations can
be permuted with the important exception of two or more inserts occurring
at the same position, in which case their relative order must be maintained,

since they represent a string of characters being inserted at that position.

It may be useful at times to look at a modified version of the above
formalism in which we split the pattern into two parts: an insert pattern
consisting only of insert operations and a delete pattern consisting of only
deletes. We apply one, generating a new sequence and then apply the
other to the resulting sequence. Thus if the parts are of size i and d
respectively (i + d = k, the size of the whole mutation), and we apply the
insert part first on a sequence of length N, then the delete part must be

defined on a sequence of length N+i.

The Middle Third Lemma

One reason for studying the similarity or homology between genetic
sequences is to trace the evolutionary history of the sequences - to be able

to say that one evolved from the other or that two sequences share a

25

common ancestor. To do this it is important to be able to determine what
were the mutations that actually occurred. The edit distance metric how-
ever, can only suggest what and how many the smallest number of muta-
tions should be. Thus if we perform an extremely large number of muta-
tions on a sequence and compare it with the result we may get an edit dis-
tance actually smaller than the number of mutations we performed and
possibly a quite different set of mutations. Therefore we may be interested
in knowing what the probability is that the mutations suggested by the edit
distance algorithm are in fact the ones that occurred, or, alternately, what
is the probability that a substring that seems to be identical between two
sequences is in fact identical; that is, there were no mutations at all in that
region. We address this problem briefly in this section for the case where
the number of mutations are not too large. We need to assume a small
number of mutations in order to be able to make some statement about
whether the subsequence is conserved or not. For large numbers of muta-
tions it becomes difficult to identify the conserved regions. We therefore
assume that the number of mutations k is less than N/logN which is not
much worse than assuming the number of mutations to be a constant frac-

tion of N.

Given a Sequence S of length N, which undergoes k<N/logN muta-
tions to become S , we wish to know if we can find of subsequence of
length L which is conserved from S to S ". We may understand the idea of
conservation as saying that if we remove this subsequence from both §
and S then the edit distance between the right halves of the two
sequences and that between their left halves add up to at most the edit dis-

tance between the two sequences themselves. This does not guarantee that

26

the two subsequences are unmutated copies of each other but only that

they have identical base sequences.

We further assume that the k& mutations are uniform and i.i.d. over the

entire sequence, ie. the mutation rate is m=r-

To assure a decent chance of finding such a sequence, let
L(N) =N/k(N) = logN. This assures us at least one and expected O (k)
such sequences. (From the coupon collector problem we can see that as
Lk exceeds NlogN the probabilty of our being able to find such a
sequence dimnishes rapidly).

Now having found a subsequence common to both S and §~ we must
assure that it is indeed "valid" for the criteria above; that is, it shouldn’t be
a stochastic aberration caused because we have chosen an L so small that

we find many subsequences of that length identical to each other.

Now obviously the (starting) positions of the subsequences § and § ’
can differ by no more than k, since we know that there were only £ muta-
tions and therefore that is the maximum distance they could have been
moved apart.

Now we have to assure that any matching subsequences we find
represent the same "position” in both § and § ', that is, we have to ensure
that we don’t get any false matches. We may get a false match if in S we
already have two subsequences of length L which are identical (to within

k/N-L=1 mutations) and are within a distance of k positions of each other.

Prob{ two sequences of length L are identical to within 1 mutation }

7 S,) :)
:4—L Since a mutation could be either a delete or an insert of one of four

bases and this could happen at any one of L locations, thus there are SL

27

possible DNA sequences within a distance of one mutation from a given
sequence of length L and there are 4% total possible sequences of that
length. This then is the probability that an arbitrary substring of length L
in " is a "false match" with given substring of length L in S. The proba-
bilty that the two do not constitute a false match is therefore 1 minus the
above. We wish to ensure that for a given substring in S, no substring of
S” which is within & positions is a false match. This would ensure that the
match we have found is in fact a conserved region. For this to be true all
L length substrings S " within k positions of the one in S must not be

false matches. The probability of this is therefore:

SL

k
Prob { No false matches } 3{1—-4—4

We want this to increase to 1. Therefore, obviously L must grow faster
than any constant; that is, L>€(1).

But this is not quite enough. we require

N/L

d SL

s | Jre i >0

dN | 4f
(since k<N/L).

L=logN satisfies this.

Thus if two sequences of length N differ by fewer than k=N/logN
mutations then, with high probability, identical substrings of length logN

within £ positions of each other represent conserved regions.

Now it is possible that even though we may have obtained such a
"valid" match, there could have been some mutations within this subse-

quence itself, especially near the ends. How could this occur?

28

Now if there was only one mutation then it is obvious that from the
point of deletion towards one of the two ends the sequence must consist
entirely of one single character repeated over and over — since we are in
effect sliding that portion over by one position and finding that it matches
with itself! Therefore a prefix (or suffix) of length 1 is repeated. Similarly
if there are two deletes one would have a two-base pair repeated and so
on. (If there was an insert and a delete then there would be a single char-
acter repeated in the interval between the two.) Thus it is evident that we

are unlikely to find any mutations toward the center of the sequence.

Now let P[il¢] be the probability that the innermost mutation is at a

distance at least i characters from either edge given that r mutations do

14
occur. We can bound P[il¢] < % ie., a fragment of length t is repeated

over and over from position i to the edge. We can use this to place an
upper bound on the probability of a mutation affecting the central portion

of a matching region.
Taking L=logN, K = N/logN we get mutation rate m = 1/logN so
P[i] = probability that innermost mutation is at least i characters from the

edge

i
= ¥ P[il¢] Prob[z mutations]

-~
—

29

‘ 1_(4/L)L/3
1-4/L

41-—L/3
1-4/L

L.41—L/3
o A 4.1)

L-4
But P[L/3] is in fact the probability that the middle third of the
sequence was affected by any mutations at all. Plugging in some actual

values for L we get:

L P[L/3]
10 0.0656
15 0.0053
20 0.0005

Thus we see that when we find even relatively small matching sub-
strings between two sequences we may state with a good measure of cer-
tainity that at least the middle third of the matching area was unaffected

by (point) mutations.

30

Hence,
Lemma 4.1 : If a substring of length L is observed to be identical between
two DNA sequences, we may state that with probability 1 — P[L/3] —
where P[L/3] is given by equation 4.1 above — that the middle third of
that substring was conserved from one to the other (or to both from a

common ancestor) without being affected by any mutations.

31

V. The Euclidean Vector-Distance Metric

This chapter introduces a different measure of sequence similarity,
which we shall refer to as the Euclidean or Vector-Distance metric. This
metric is based on representing sequences as points by means of the tuple
frequency vector. Its validity is established in the comparison of genetic
sequences by showing the correspondence between this metric and the
edit distance metric discussed previously. We shall also see how this

method can be applied to speeding up sequence comparison.

The k-Tuple Frequency Vector

Consider sequences from a given alphabet £. The k-tuple frequency
vector represents the relative frequency of various strings of length &
(including overlaps) in a given sequence. We use the term k-tuple to
refer to a string of length &k, aja, « - - a;. where each @; € X and £ is the
tuple size. For a given alphabet X and tuple size k there exist exactly

d = | 1% possible distinct k-tuples.

A sequence § of length N has N—k+1 substrings of length k. The rela-
tive frequency of a particular k-tuple is therefore the number of times it
appears in § divided by N-k+1. By ordering all the d k-tuples in some
fixed order (perhaps lexical order) and listing their relative frequencies in
S in that same order we have a vector V of relative k-tuple frequencies in
the sequence S. It follows that S uniquely determines V. We shall refer to

V as the k-tuple frequency vector associated with S or simply say that Vis

32

the vector of § and we may represent this by writing V(S). Example 5.1

shows this conversion for an alphabet of size | =4 and k=2.

We may think of vector as a function that takes a sequence S to a
unique point V(S) in the unit cube in d dimensions. All the points fall in
the unit cube because V is a vector of relative frequencies hence each
component must be non-negative and all the d components are bounded by
one. Further the sum of all the components must be one. It follows that
one dimension is, in fact, redundant but we shall continue to consider

|ZI* dimensions for symmetry. It should be noted that this

2={ACG,T) k=2

S = ACTGATACGATTAGCAGTGACAGATAGACCAGTAACCGGTTACCCGATTTT

base num, of N
pair occurrences V(§)

AA 1 0.02
AC 6 0.12
AG 5 0.10
AT 4 0.08
CA 3 0.06
cC 4 0.08
CG 3 0.06
CT 1 0.02
GA 6 0.12
GC 1 0.02
GG 1 0.02
GT 3 0.06
TA 5 0.10
TC 0 0.00
TG 2 0.04
I7 S 0.10
total 50 1.00
Example 5.1

Conversion of Sequence to Vector

33

transformation is undefined for sequences shorter than &k (unless we were
to add a ‘blank’ or ‘padding’ character to the alphabet which does no
occur in any sequence and use it to pad out short sequences). However, as
we shall see, we will not be dealing with very large £ and hence all

sequences of any interest at all will be long enough.

Given a set of sequences we may therefore convert them into what is
essentially a set of points. The advantage of this is that the concepts of
distances between points or groups of points are fairly widely studied and
perhaps easier to understand and deal with than the corresponding con-

cepts for sequences of text.

Given two sequences §; and S, we shall refer to the 2-norm of

V, =V(§;) and V5 = V(S,)
d ; . s
Vi -V =[§1(V1 % sz)z] (5.1)

where Vj'- is the ith component of vector V;, as the euclidean distance or

Vector distance between the sequences §; and §5.

The calculation of I7(S) takes time linear in the length of sequence §
as can be seen from algorithm 5.1. Further, the calculation of vector dis-
tance is linear in d as is obvious from the definition in (5.1). Also the cal-
culation of the vector need be done only once per sequence. The upshot of
this is that we now have a metric whereby the distance between two
sequences can be calculated in time essentially linear in sequence length,

far faster than the quadratic time needed to calculate edit distance.

However the conversion from sequences to vectors is not one-to-one

but rather many-to-one, since different sequences may have identical

34

x=0,1, - -+ ,s—1 : input alphabet of size s.
k : tuple size

S[1++°n]: igput string

V = (V% ...,V 1) : output vector

initially : V = (0,0,...,0)

k-1)
b= Y S[i]st1

i=1

for i from kto n
b = (bs + S[i]) mod s*
increment V® by 1/(n—k+1)

Algorithm 5.1
Calculation of V(S§)

vectors (Example 5.2), and it is therefore not possible to reconstruct
sequences from their vectors. In essence we have given up some informa-
tion about the sequences in the interests of speed. We must therefore

ensure that we have retained enough information to make worthwhile

observations.

The idea of looking at short strings of some fixed or maximum length
is not a new one and has been used in an implicit manner in several
heuristic algorithms for finding the edit distance of sequences, such as the
multiple sequence alignment program of Queen et al. [20]. The b e
measure of Torney et. al. [24], also uses a similar technique to compare
sequences. However, these techniques continue to treat the DNA or Pro-
tein sequence as the basic data object and are therefore bound by the limi-

tations of that representation.

35

£={A,CG,T) k=2

S = TAGTACTTGTCCATTGTACAT
S, = TGTACATTAGTACTTGTCCATAGTACTTGTACATTGTCCAT

base num. of occurrences in V(S1)
pair S S2 =V(S,)
AA 0 0 0.00
AC 2 4 0.10
AG 1 2 0.05
AT 2 4 0.10
CA 2 4 0.10
cc 1 2 0.05
CG 0 0 0.00
CT 1 2 0.05
GA 0 0 0.00
GC 0 0 0.00
GG 0 0 0.00
GT 3 6 0.15
TA 3 6 0.15
TC 1 2 0.05
TG 2 4 0.10
TT 2 4 0.10
total 20 40 1.00
Example 5.2

Two Sequences Mapping to Identical Vectors

Correspondence Between Edit Distance and Vector Distance

We make a case for the usefulness of the vector distance metric as
defined above by showing that it is related to the widely used edit distance
measure, thus giving it some legitimacy. It is possible to understand intui-
tively how there could be a relationship between this euclidean distance
and the edit distance by imagining how the vector of a sequence § is
affected as we edit it to create another sequence § " Let us assume that the
size of the tuples k is small compared to the length of the sequences, that

we do not perform too many edits and that the edits are spaced more or

36

less evenly. Now a single substring of length & will contribute to its posi-
tion in the vector an amount inversely proportional to the length of the
sequence. This is evident from the fact that the number of such substrings
is approximately the length of the sequence (for small k), and the sum of
all the vector components is one. Further, a single edit operation can only
cause a small (inversely proportional to sequence length) change in at
most a few (2k) positions in the vector. Also the number of such changes,
which in turn affects the distance between the resulting vectors, generally
increases with the number of edits, which is the edit distance! (This is in
general not true for very large numbers of edits in which case the edit dis-
tance may in fact turn out to be smaller than the number of edits per-

formed.)

Let us start with a source sequence § and perform edit operations on

it one by one and try to estimate the effect on the resulting vector.

let

% = sequence alphabet

v = vector distance (to be estimated)

e = edit distance (number of edits performed)
N = length of sequence §

k = size of k-tuples

d = |ZI* (number of dimensions)

a, ay betc,--- € X

*
a, o, B,etc, - € X

37

For each edit of the form :

aaiay *cc agaper ©c c ag-1P — delete gy — 0ajayz * - k1G4 A2%-1P

There is a change of approximately —% in the vector positions

corresponding to the k-tuples
Ay "t Qpy, A "7 " Ayl e G 77 7 Q2k-1

and approximately +% in the vector positions corresponding to the k-

tuples

G1 ' " G510kl 82 ° 7 " OR1% 4198425 5 Bk-1%%k+1 ° T T B2k~

The case of insertion is symmetrical. Thus a total of 2k — 1 positions are
affected by one edit. An example may serve to illustrate this point. Exam-
ple 5.3 shows the effect of a single deletion in a DNA sequence on its
corresponding vector. For the sake of example we assume a vector size of
k = 2. In the case where a; - -+ ay-; contains a substring of length
greater than & which consists of a repeated single character, there are in
fact fewer positions affected. Substitutions may be thought of as an insert
followed by a delete but there are only 2k positions affected by the two
operations put together. Further if two edits fall within a distance of &
characters of each other, they will together affect perhaps fewer but not
more positions than each one separately. Thus the number of changes is
bounded by 2ke.

Assuming that these changes are distributed evenly among the d com-
ponents of the vector, we can estimate the resulting vector distance v :

i 2ke >}

we have d changes of approximately % each and hence :

38

2={ACG,T) k=2

§; = ACTGATACGATTAGCAGTGACAGATA.G.ACCAGTAACCGGTTACCCGATTTT
deleting G gives :
5§, = ACTGATACGATTAGCAGTGACAGATA.ACCAGTAACCGGTTACCCGATTTT

base num. of occurrences in 3 B
pair S S» V(fatS,y V(fatS; change
AA 1 2 1/50 2/49 =+1/50
AC 6 6 6/50 6/49
AG 5 4 5/50 4/49 =1/50
AT 4 4 4/50 4/49
CA 3 3 3/50 3/49
cC 4 4 4/50 4/49
CG 3 3 3/50 3/49
CT 1 1 1/50 1/49
GA 6 5 6/50 5/49 =1/50
GC 1 1 1/50 1/49
GG 1 1 1/50 . 1/49
GT 3 3 3/50 3/49
TA 5 5 5/50 5/49
TC 0 0 0/50 0/49
TG 2 2 2/50 2/49
TT 5 5 5/50 5/49
total 50 49 1 1
Hence
. N %
[V(S1H-V(Sy| = [3 ' {%]]
3
50
Example 5.3

Effect of Single Edit on Sequence Vector

s | 4k2-e?
o2 | BKTTE
d-N?

however, if 2ke < d :

we have approximately 2k-e changes of]—b- each and hence :

39

2k-e
2

Due to the nature of our assumptions, these can only be looked upon
as upper bounds on the actual euclidean distance and these arguments may
not be valid for large numbers of edits. However they do indicate that a
relationship exists between the euclidean distance and the number of edit
operations performed, that this relationship is quadratic, and that it is

stronger for smaller numbers of edits. Hence,

For small numbers of edits on the order of | Z| %
&

v=0 N

(5.2)
We may also arrive at this conclusion by approximating the effect of
each single mutation on the sequence vector as a step or rather a small

number of steps in a random walk in d dimensions. Since each step 1is

0 % in length and there are O (e) such steps we may expect to arrive

at the same conclusion as above.

Essentially, we may conclude that two sequences that are close in
terms of edit distance will have close vectors. Thus comparison of
sequences by means of this vector distance may be of some use after all
and definitely merits further investigation, which is described in the next

section.

The above discussion shows that, in general, a larger value of £ is

beneficial in that we get better resolution. In other words, a larger &,

40

which results in a larger (higher dimensional) vector, will result in a
greater correlation between the edit distance and the vector distance.
However the time complexity of the distance calculation is exponential in
k. Therefore we must tradeoff between time and resolution and find a
compromise that is not too time consuming, yet allows for meaningful

comparisons.

Experimental Verification

The above discussion suggests the possibility that the concept of vec-
tor distance may be a useful tool in the comparison of genetic sequences.
To further establish its usefulness we perform a series of computational
experiments to compare it to the edit distance between actual sequences,
the hope being that we will observe a strong correlation between edit dis-
tance and vector distance and that this in turn will provide a measure of
confidence in the vector distance metrics. These experiments will also
compare their relative running time performance in order to determine
what computational advantages if any, may be obtained by using one

metric instead of the other.

These tests were performed by generating pairs of sequences, in the
manner described below and computing, for each such pair, both the unit
weight edit distance, and the vector distance between the two sequences
for a particular choice of tuple size k. The sequence pairs were generated
as follows. In the case of DNA sequences, a sequence of the given length
was chosen at random from a databank of known DNA sequences. This
was then "mutated" by a simulation of the P-I-D machine described in the

previous chapter to create the other sequence of the pair. Differing

41

mutation rates were used to provide a wide spectrum of edit distances. In
the case of protein sequences, the pairs were generated by taking a random
DNA sequence from the Genbank database, of thrice the required length,
and translating it into a protein sequence by the known triplet coding of
the genetic code. The other sequence of the pair was created by mutating

the first one in the same manner as above.

The first series of experiments was run using a tuple size of 2. The
results are presented visually in figures 5.1 - 5.10. The upper plot in each
figure is a scatter plot showing the edit distance versus the vector distance.
For the protein sequences, the lower plot shows the mean vector distance
for a given edit distance (solid line) as well as the 1- and 2- standard devi-
ation (dashed and dotted respectively) intervals of the vector distances for
a given edit distance. The coefficient of the best fit quadratic curve relating
the edit and vector distances is also indicated for the protein sequences.
The obvious conclusion which can be drawn from observing these plots is
that there is a very evident correlation between edit distance and vector
distance in the case of protein sequences; a correlation that is markedly
absent from our observations of DNA sequences. We may attribute this to
our choice of tuple size k, since a tuple size of two in the case of DNA
sequences will result in a vector of only 42 = 16 dimensions, which may
not be a large enough space to handle the sequence lengths being con-
sidered.

To test this hypothesis the experiments with DNA sequences were run
again this time with k = 4 giving a vector space of 4* = 256 dimensions.
The results of these trials are displayed in figures 5.11 -5.14. This time

the correlation between the vector and edit distances 1s well marked.

42

It may be observed that for larger edit distances the curves appear to
flatten upwards. This may be due to the fact that as we perform a large

number of edits, some may in effect, cancel each other out.

Figure 5.15 show the coefficient of correlation between the edit dis-
tance and (the square of) vector distance for protein sequences using tuple
sizes of two and three. Similarly figure 5.16 shows the same information
for DNA sequences. In both cases it may be observed that the coefficient
of correlation does, in fact, increase with the tuple size, but not by much.

The down side of increasing the tuple size is increased computation time.

The difference in computation time for the edit and vector distances
using two different tuple sizes is shown graphically in figures 5.17 - 5.18.
These clearly indicate the savings in time to be obtained by using the vec-
tor distance as a metric of sequence comparison as opposed to the edit dis-
tance. The results of increasing the tuple size are also immediately obvi-
ous. WE may therefore argue that the loss of correlation in using a vector
of size two as opposed to size three (in the case of protein sequences) or
of size four as opposed to size five (in the case of DNA sequences) is
more than compensated for by the savings in time. Thus, for practical
applications, it appears we may use a tuple size of two in dealing with

protein sequences and four in dealing with DNA.

Conclusions
In this chapter we have introduced the concepts of the sequence vector
and the euclidean vector distance as a measure of sequence homology and

described their construction and calculation. We have also shown that this

measure corresponds well with the more widely used edit distance measure

43

while offering distinct computational advantages in terms of time.

Some of the plots show a slight upward flattening as the edit distance
increases. It is possible that this is due to the fact that as we perform more
and more edits on the sequence the effect of some of them may tend to
cancel out, in the sense that the edit distance between the original and
mutated sequence may turn out to be noticeably smaller than the number

of edits actually performed to transform one into the other.

In trying to establish the correspondence between the edit distance
and the vector distance we have chosen to ignore the fact the edit distance
metric is parametrizeable, by weights assigned to the different edit opera-
tions, and indeed this is one of the valued features of the edit distance.
The correspondence between the edit and vector distance may not hold as
strongly for all weighting schemes. However the vector distance is also
parametrizeable in its own way. Thus, for example, we may choose to
count the fact that two sequences match closely in some set of k-tuples to
be more or less biologically significant than close counts in others. (For
example, in the case of English language text, we may decide that know-
ing two texts have the same number of "qu" pairs conveys no further
information than the fact that they have the same number of "q"’s and we
may therefore choose to treat the "qu" dimension as less significant than
the others). This sort of weighting can be easily accomplished in the vec-
tor distance case by stretching or compressing the space of the sequence

vectors along those dimensions.

Another aspect to the vector distance metric, which is not developed
in this thesis, is the fact that it very easily lends itself to implementation

on parallel (vector) machines.

44

pair-frequency
" vector
distance

pair frequency
vector
distance

Protein Bequenee Pairs

0.15 —

0.1 -

0.05 —

- e, o
o sewe o

o @& N0 O
© @SN o
coondiiso ©
0 OB CEONERET
@ SEOOMINEE
Lx-. - X
© 000 CHONIDCOWm O
0O COBGRCOOND O ©
© ORCESEO COB
00 WOoE B0 ®
o 00 ONED WO
®0 000

oe® @ O

-]
6 000

0 o0

0.15 —

0.1 —

T [[|
b 10 15 20
edit distance

sequence length = 50
best fit e = 1085+v*

Figure 6.1

45

scatter
plot

mean and
1 and 2 s.d.
intervals

pair-frequency

distance

pair frequency
vector

distance

Protein SBequence Pairs

0.1 .
oc
° o © agaae‘g
ORI TH ML
per
. §88 5§§!E3°
il
og L] as o
o?® II o®
0.05 — "I" o3°
c'lll-o
°;l=o°
o..i
see
[]
[]
(-]
L]
0 -~
0.1 -
0.05 —
0 —
T | |
10 20 30
edit distance

sequence length =100
best fit e = 4051x¢*

Figure 5.2

46

scatter
plot

mean and
1 and 2 s.d.
intervals

pair-frequency
vector
distance

pair frequency
vector
distance

0.08

Protein Sequence Pairs

0.06 —

0.04 —

0.02 —

0.08

0.06 —

0.04 —

0.02 —

I |
20 40

edit distance

sequence length =200
best fit ¢ = 14966+v"

Figure 5.8

47

. scatter

plot

mean and
1 and 2 s.d.
intervals

pair-frequency
vector
distance

pair frequency
vector
distance

Protein Bequence Pairs

0.05 —

0.04 —

0.03 —

0.02 —

|
50

edit distance

sequence length =400
best fit e = 50586+v"

Figure 5.4

scatter
plot

mean and
1 and 2 s.d.
intervals

pair-frequency
vector
distance

pair frequency
vector
distance

Protein Bequenee Pairs

0.04 —

0.03 —

0.02 —

0.01 —

0.04 —

0.03 —

0.02 —

0.01 —

| I |
0 50 100

edit distance

sequence length =800
best fit ¢ = 15785%*

Figure 6.5

49

150

scatter
plot

mean and
1 and 2 s.d.
intervals

pair-frequency
vector
distance

pair frequency
vector
distance

Protein Bequence Pairs

0.03 —

0.02 —

0.01 —

0.03 —

0.02 —

0.01 —

edit distance

sequence length =1600
best fit e = 44771 1xv*

Figure 6.8

300

scatter
plot

mean and
1 and 2 s.d.
intervals

DNA Bequence Pairs

0.03 — e °

0.02 — oo gl P e, . 3
air-frequenc . 8’y o
P m::r 7 s g e 88 8°8°8,8°°_ scatter

g°° B8 88828, o >
sisanee g o

0.01 —

0 10 20 30 40 50
edit distance

sequence length = 500

Figure 5.7

61

DNA Beqmmu Pairs .

0.02 o

0.015 —
pair-frequency pa—
vector lot
distance 0.01 — P
0.005 —

edit distance

sequence length =1000

Figure 5.8

62

DNA Sequence Pailrs

0.015 —

pair-frequency 0.01 —
vector
distance

0.005 —

edit distance

sequence length =2000

Figure 5.9

scatter
plot

DNA Bequence Pairs

0.015

0.01 — 7N

[-] o
Pair-f::t.q:lency) ° °so % e
v T

° scatter
° .8 °:|° IOt
distance "

0.005 —

! T
50 100 150 200 250 300

edit distance

sequence length =4000

Figure 5.10

b4

DNA Bequenee Pairs

0.04 —
quad-fre;uency scatter
Btaace plt
0.02 —
04 o
quad frequency mean and
vector 1 and 2 s.d.
distance intervals

| I
0 50 100

edit distance

sequence length = 500
best fit ¢ = 48942+v*

Figure 5.11

bb

quad-frequency
vector
distance

quad frequency
vector
distance

DNA Bequence Pairs

sequence length =1000
best fit ¢ = 173854++"

Figure 5.12

0.04 —
0.03 —
scatter
0.02 — plot
0.01
0 —
0.04 —
0.03 —
mean and
1 and 2 s.d.
0.02 - intervals
0.01 -
0 -
[T | T |
0 50 100 150 200
edit distance

quad-frequency
vector
distance

quad frequency
vector
distance

DNA Sequenee Pairs

0.03 —

0.02 —

0.01 —

0.03 —

0.02 —

0.01 —

| | I |
0 100 200 300

edit distance

sequence length =2000
best fit ¢ = 559264xv*

Figure 5.13

87

scatter
plot

mean and
1 and 2 s.d.
intervals

quad-frequency
vector
distance

quad frequency
vector
distance

DNA SBeguence Pairs

0.025 —

0.02 —

0.015 —

0.01 —

0.005 —

0.02 —

0.015 —

0.01 —

0.005 —

| | | |
0 200 400 600

edit distance

sequence length =4000
best fit e = 1645557v"

Figure 65.14

scatter
plot

mean and
1 and 2 s.d.
intervals

Protein SBegquence Palrs

1~ By Povnevesi ' =:::ﬂ:::::::::::::E::.'IZIZZZZZI:E::::::::::::E
0.8 —
0.6 —
coeff. of
correlation
0.4 —
0.2 —
0
[| [[]
50 100 200 500 1000
sequence length

A : pair frequency vector distance
O : triad frequency vector distance

Coefficient of correlation between edit distance and vector distance
for pair- and triad- frequency vectors.

Figure 5.16

59

DNA Bequenee Pairs

1 -
L ol g
i
0.8 —
0.6 —
coeff. of
correlation
0.4 —
0.2
0
| | |
500 1000 2000
sequence length
A : quad frequency vector distance
O : pentad frequency vector distance

Coefficient of correlation between edit distance and vector distance for
for quad- and pentad- frequency vectors.

Figure 5.18

Protein Bequence Pairs

1000 — .-X..
.X..
time -
(mSecs) =
X
Becosannasasss B scimeiing st s e - casmssaanns - R AP Dl R
-X. .
10 - ‘
LA
% LA
........ A
Avissaesns AT
| T l : : |
N 1 200 500 1000 2000
sequence length
A : pair frequency vector distance
O : triad frequency vector distance

X : edit distance

Times to compute edit distance as well as
pair- and triad- frequency vector distances
for one pair of sequences of a given length.

Figure 5.17

61

DNA Sequenee Palrs

10000 —
T
x
1000 —|
time x‘-
(msecs)
100 —
S m ----
e s SR e @
.......... A
A.
I | |
°0 1000
sequence length

A : quad frequency vector distance
O : pentad frequency wvector distance
X ¢+ edit distance

Times to compute edit distance as well as
quad- and pentad- frequency vector distances

for one pair of sequences of a given length.

Figure 5.18

V1. Linear Projections of Sequence Vectors

In this chapter we shall examine the problem of dealing with more
than two sequences For large groups of sequences the task of finding the
edit distances between all pairs can prove to be infeasible, and even after
converting the sequences to points by the pair or quad fréquency vectors
(for Protein and DNA sequences respectively), clustering them may still

involve a quadratic number of distance calculations.

Projection preserves closeness

We observe that clustering a set of points on a line (a one-dimensional
space) is fairly easy since it involves simply sorting the points along the
line resulting in an effective ordering of the data with which we can
answer many clustering-type questions by linearly scanning the sorted
points. Queries such as finding all pairs of points that are within a given
distance of each other, and so on, can thus be answered easily. Further,
projecting a set of N points in d-space to a set of points on a line can be
easily achieved by considering the projection to be a linear combination of
the d vector components determining the point. Thus we have a technique
which takes O (NlogN+N-d) time to convert a set of points into a simpler
representation for handling clustering-type queries. We shall see that this
leads to an effective technique for handling large sets of genetic

sequences.

It is intuitively obvious that the closer two points are the closer their

projections are likely to be. We may even think of a projection as a sort

63

of hashing done on the vectors - reducing them to a more easily handle-
able representation. Consider a series of linear combinations with ran-
domly chosen coefficients. We may then contend that if two points are
"close" their projections will almost always be "close" whereas if they are
not, then their projections will be "close" only a small number of times.

To develop this idea let us first look at two points.

Let X=[x; x5 - - - ,x4]"

Y=[y1,y2, =" »yal’
be two points in (the unit cube in) R%,

and

4 %A
Let V:{ z(xf—y,-)zJ

i=1

be the distance between them in the Euclidean norm.

Consider a random linear combination

S d »
P(X)Z Z O "X

i=1
where the ¢; are independent, identically distributed, normal random

variables with mean [= 0 and variance o>

Let
D =P(X) - P(Y)

le.,

64

ba

d ~
Z o (c—y;)

Since the &; are normal’ and mutually independent, D is also normal
with

mean [p = 0 and

variance GD 2 o (xi—y,-)2 = o2V?2,

The density function of D is :

1 e /202V2
fpla) s ———e™
oVV2rn
The distance between the projected points is

IDI = 1P(X) - P(D)

The distribution of the projected lengths is therefore

2 2.,2
fip1(x) = — g e for x>0

oV N2r

The mean projected length is then

oo

E[I 5 I] = L_ {!; X e..lezozvzdx
oV\2r

tNote that even if the ©&; were nof normal, D would still approach a normal random variable by the central limit theorem.

65

oo

2
et Gszt[ye_y 12 gy Substituting y = x/cV

- oVV2n

_ 20V n|
\2r 0

=2/t oV (6.1)

Let us now consider, rather than the actual distance between the pro-
jected points 13()?) and i’(?), the probability that they fall within some
threshold distance T of each other. Naturally we expect that this probabil-
ity will increase with T and decrease with V. Our aim is to use the value
of T, which we are free to chose, and the observed number of times that
the two points, Xand Y project to within T of each other, as an estimate of

their actual distance V.

Knowing that

2 _ Z/ZGZVZ
o) = e for x>0
/ oV\N2n
The probability that the projected distance is within the threshold is:
~ 4 2 il
Prob [| DI<T] = — ge'x 126°V" gy
oVV2n
T /oV
2 st 2/2 N "
= e '(E e™ “dy Substituting y = x/cV
T

66

N2TU T 7 oV
+T [oV -T |/ oV
1 -2/ 1 %2
e — gy = = e “dy
\N2m _J;, \2n _:[o

= ®T/oV)-(1-P(T/oV))

=2 ® (T/oV)-1 (6.2)

Where

2
O(x) = 12 gy

X
L J' e—y
WL oo
is the cumulative distribution function of the standard, or unit, normal ran-

dom variable.

This quantifies the intuitive idea that as we increase the threshold of
closeness T, the probability of two sequence-vectors projecting together
increases regardless of their distance. Also, as we consider increasingly
distant pairs (increasing V) the probability of their projecting together
within a given threshold decreases. Note however that in practice the ¢;
may not be normal but perhaps uniformly distributed in some given range.
In such a case the above expression is merely an approximation to the
actual probability based on the law of large numbers. In particular, for the
case of uniform random variables, the actual probability will be higher
than that indicated above as T approaches the range of the uniform distri-

bution. Also V cannot exceed a specific value since all the sequence-

67

vectors are normalised and hence constrained to be within a unit cube in
R,

However, while this is of significance when considering just two
sequences or even a small number, it is not immediately applicable to
large sets of sequences. This is due to the fact that we may have to per-
form many linear combinations and score each pair by the number of
times they project together and this scoring process itself can be quadratic
in the size of the database. This may be unacceptable for large databases.

We present a method to overcome this in the next section.

Clustering Based on Projections

Given a vector X = [x;x2 - ,xd]T, we defined a random linear

combination P acting on X as
R d
PX)=3Y a;x
i=1
where the ¢; are independent, identically distributed, random variables.

Thus, an instance of P is an instance of each of the «;.

Let us now perform k random linear combinations i’l, 1‘32, o f'k
on the entire set of sequence vectors, resulting in k£ sets of points on the
line (R")

Given a window size, A, we can divide the line into adjacent non-
overlapping widows of size A:

[-A,0), [0,A), [A,2A), - --
Thus it is reasonable to talk about the window into which vector X

projects under linear combination P, which we shall define as :

68

PX)
A

-~ o

P(X)
A

A —

WP.X) =

.

Thus for each of the projections f’,— we may define an equivalence

where [a,b)={x | a<x<b}

relation ~; as:
X = Y iff WP.X)= W,Y)
Thus we have k equivalence relations.

It is intuitively obvious that the closer two vectors X and Y are, the
greater the number of relations in which they will be in the same
equivalence class. It is also obvious that finding all the equivalence
classes in a given relation can be done easily by simply sorting the pro-
jected points. Let us now attempt to quantify the probability that two vec-

tors X and Y "match" (fall in the same equivalence class).

Letv =] X — Y| be the euclidean distance between X and Y.
Letpi:Prob{J?—-i Y }

clearly py =pa= -+ =p

Let ¢ = 1-p = Prob{no match}

Let D =| P(X) — P(Y) | and let Pp(x) be its probability density function.
X .
=il € N
x I x

Prob{no Match | D =x} = Lifx>2

Therefore,

69

[s<]

q =I%Pp(x)dx + [Po@) ds

_ 2/ ov
A
where o is the standard deviation of the coefficients ;.

Hence,

2/ ov
PE[“T]

We may therefore look upon the number of projections in which X
and Y match as a binomial random variable (series of Bernoulli trials) with
parameter (k,p). For large k we will approximate this with a normal ran-

dom variable with mean kp and variance kpgq.

So, Prob{ >/ matches out of k}
~ L[) 2kpg g,
\fznkpq i
- 2 -
- L__ e 12 ay where y = %
2 ik Vkpgq
kpq

70

-k
=1-0 _p] (6.3)

Vipg

Similarly Prob{ <i matches out of & }
= |
Vkpq

Thus, for example, if we chose k=100 and p=0.8 then solving for i
such that Prob{ =i matches } = 0.9 gives us i<75. Then solving for p such
that Prob{< 75 matches } 2> 0.9 gives p<0.65. What this means is that if

we define two “threshold" values &; and &, such that

"/5/?061 J%GSZ
p=|1- i W > 0.8 and 1——T < 0.65, then we may

state with probability 90% that if two sequence vectors X and Y are such
that |1X—Y11<8, then X and Y will match at least 75 times, and if
| 1X-Y||>8, then X and Y will match at most 75 times.

In other words, by counting only those pairs that match at least 75
times we can obtain almost all "close" or "good" (closer than &;) pairs
while eliminating almost all "far" or "bad" pairs (farther than &,), although

we are unsure of intermediate pairs.

Now while it is very easy to locate pairs that match in all projections,
it is not so easy to locate those that match in some fraction. To find all the
vectors that match in all the projections we create for each vector X, an
1.

k .
"identifier", = Y n;w'"". Where each n; is the number of the window

i=1

into which vector X falls under projection P;, and w is the maximum

71

number of possible windows." Then sorting the entire set of identifiers will
bring together all vectors that match in all projections. Thus we can find
vectors that match in all projections in O(DlogD) time where D is the

number of sequences.

However, it is reasonable to expect that if two vectors match in many,
but not all, projections, then, if we take a small subset of the projections
they are likely to match in all projections in that subset. This, coupled
with our previous observation suggests a fast method for finding close

pairs of vectors.

Let us consider ¢ randomly chosen linear combinations. What is the
probability of two vectors X and Y matching in all of them? (We shall
refer to such an event as a "c—match"). Obviously

Prob{ c-match } = p¢

V2/mov | ©

LE

Performing a c-match instead of just one projection has the advantage
of reducing the number of pairs we must deal with, and also reduces the
likelihood of matching vectors that are far apart. However, to ensure that
we do not lose too many close pairs, it may be necessary to perform
several c-matches and consider pairs that match in at least one or some
fraction of them. This may not be as expensive as doing the same for
several ordinary projections ("l-matches") since by our choice of ¢ we

can significantly reduce the number of false matches. Thus we may

For example, we could call [0, A) window #1, [, 0) window #2 ewc* -+ . If we chose the coefficients &; to be in a
given range then we are guaranteed to have a finite range for the projected points, and hence a fixed number of windows (depend-
ing only on A). Thus the value of w is defined.

72

reasonably expect that most of the computation time is spent on pairs that
will turn out to be interesting. It must also be noted that the risk of finding
false matches is very real, since, of all the possible pairs of sequence vec-
tors from a large database (approaching the millions) an overwhelming
number of them will be far apart. Thus even if only a few of these distant
pairs are maatched tghis can still be a large number of false matches. Our
aim therefore is to reduce, as much as possible, the number of false
matches, while at the same time, losing as few as possible of the good
pairs. There is obviously a tradeoff involved, which is why this method
can at best be a filter, reducing the number of pairs to be considered
perhaps by hand or by slower but more exhaustive algorithm.

For example:

If we select p=0.8 as our upper threshold (pairs that have a
greater than 80% chance of matching are considered definitely
interesting); and a lower threshold of p=0.2 (sequences with a
less than 20% chance of matching are considered definitely
uninteresting), then, taking c¢=3 we will still retain
(0.8)> = 51% of the "good" pairs while retaining only
(0.2 = 1% of the "bad" pairs.

If we now perform say N=3 such c-matches and retain pairs
that match in at least one of them then we will obtain
1 - (1-0.8%)3=89% of the good pairs while getting only
1-(1 - 0.23)3=2.5% of the bad ones.

73

Thus, while decreasing ¢ or increasing N will increase the number of
good pairs located, it will also result in an increase in the number of bad
matches, and vice versa, so we need to choose ¢ and N appropriately to

balance these two effects .

Figures 6.1-6.4 show, for N=1, how the number of pairs which we
find varies with ¢ as well as with A, for DNA and for Protein sequences.
Also, as an upper bound, we can assume that the number of pairs to be
considered will increase at most linearly with N. Thus we see that by our
choice of parameters we can, in almost linear time (O(DlogD)) reduce
the number of pairs to be considered from O (D?) to a more manageable
size. The figures also show the average size of the clusters (equivalence
classes) found. We are able to talk of equivalence classes in this case
because N=1 and c—match is an equivalence relation, whereas one c-
match out of N>1 is not an equivalence relation and it is therefore more
difficult to define a concept of clusters on them — the best we may be
able to do may be perhaps to find all the pairwise distances and apply
weighted graph clustering techniques.

Figures 6.5-6.7 shows the relation between the probability of two vec-
tors projecting together, p, which, as we have seen, depends on their
Euclidean distance, and the expected percentage of pairs within that dis-
tance of each other that we actually locate (= probability of at least one c-

match out of N for various ¢ and N.

Indexing based on projections

The ease of handling large numbers of sequences by the linear projec-

tion technique can be applied to indexing-type queries too. Typically the

74

type of question asked would be of the form: given a database of known
sequences, how many of them are related to a particular query sequence,
which is perhaps not in the database. This sort of search is very important,
for example, when a new piece of DNA is sequenced and one wishes to
compare it with the known sequences. This section describes a technique,
based on the process of projecting sequence vectors described above, to
handle such queries. This technique has also been used to write a sequence

indexing system. A description of this system appears in Appendix L.

As established in the previous section, if we were to take the set of
sequence vectors and apply a linear combination with random coefficients
to the components of each vector then we would expect that close
sequence vectors would project closely together. In particular, if we were
to look at a particular sequence and see where it projects, then we would
expect that its neighbors along the projected line would be closely related
sequences.

Given a non-negative real valued parameter w and two sequence vec-
tors X and Y we say that X and Y (or their respective sequences) w-match
under an arbitrary linear combination P, or that Y is in the w-

neighborhood of X under P if
|P(X) - P()|l < W
where P, X and Y are defined as before.

Once again let us consider k random linear combinations
Py P, -+, P, on the entire set of sequence vectors, plus another
sequence vector X corresponding to the sequence we are interested in (the

query sequence). Thus we have k subsets of the original set of sequences,

75

corresponding to the k w-neighborhoods of X, one for each projection.
Once again it should be evident that a sequence that appears in many of
these sets is more likely to be closely related to the query sequence than

ones that appear only in a few of these sets or not at all.

Let v =| . | be the Euclidean distance between X and Y, a
sequence vector from the original data set.
Let p;(w) = Prob { Y is in the w-neighborhood of X under projection i }.
Clearly pi(w) =pa(w)= - -+ =p(w). Now p(w) = 2 ® (w/ov)-1 by
equation 6.2
Thus if we were to look at all sequence vectors which project into at least

m of the k w-neighborhoods above, the probability of Y being in this set is

_(D[m—kp(w)]
Vkp(w)-q(w)

This can be derived using much the same reasoning used to derive

where g(w) =1 — p(w)

equation 6.3. This probability can be seen to increase with w and k and

decrease with m and v

This suggests the idea that if we were to take a set of sequence vec-
tors and another arbitrary sequence vector, we could project all of them
together and count the number of sequences that fall within some distance
of the query sequence in some minimum number of projections in order to
determine a "cluster" around the query sequence. Further we note that if
we are dealing with a fixed database of sequences, then we need not per-
form the projections over and over again. We need only choose the & ran-

dom linear combinations in advance and do the projections of the entire

76

set of sequences in advances. Each projection is then sorted according to
numeric (scalar) value of the projected point. Then when given a query
sequence we can project it into each of these existing projections. To find
its neighborhood set, first perform a binary search among the sorted pro-
jected points from the original set to find the closest one. Then, search the
sorted list in both directions from this position to find all the points that lie

within the neighborhood, and so on for each projection.

This observation leads to a simple implementation of a sequence
indexing system, described in Appendix I. Some pre-processing time is
necessary, proportional to the size of the database, D, and the number of
projections k. But processing the query sequence is then very fast, since
the number of operations performed i1s O (k logD) to perform the binary
search in each projection plus an amount of time depending on the "win-
dow" size w, which affects the number of sequences ultimately found or
the "cluster” size. Also the parameters w and m can be used to tune the
search and discard as much or as little of the original sequence databank

as desired.

Figures 6.8 - 6.15 show the results obtained by querying a database of
known sequences (the GenBank Database) with a series of randomly gen-
erated query sequences, for various choices of window size w. In this
implementation the number of projections k£ was chosen to be 100. In the
case of DNA sequences (figures 6.8 -6.11) the database consisted of
approximately 5000 sequences and in the case of protein sequences it con-
sisted of approximately 13000 sequences. Each plot represents one choice
of w ranging from 50 to 200. Each plot shows, for each of the query

sequences, the number of sequences out of the total database of sequences

77

that were found to be in the neighborhood of the query sequence at least
m times for m ranging from 0 to 100. As can be seen, in general raising
the value of w causes a greater number of sequences to be found and rais-
ing the value of m causes this number to decrease. However the plots
show a "waterfall" shape suggesting that for any query sequence there is a
small range of values of m within which there is a great change in the pro-
portion of database sequences found and thus manipulating the value of m
in this range can give a method to tune the set of sequences found to

whatever is considered a desirable size.

78

mean size of
equivalence
classes

__A
A
70 — !
’/ — 200000
S/ &
r
60 — R
A R
S . — 100000
/
60 - /,
e P total number
/. — 50000 .
% L of pairs
ot
s
. / B see
S s
A . i _-
30 - 4 _a®
4 '
I 'l
t‘ -~
20 - T . ool
g /’ ,” ’¢”
.' ”~ - '-
o /’ »7 -
L e L — 10000
10 — s _,-" e
& Bl o e
5—‘ D,:.:__—--"
"'~
0 " r | 5000
20 60 100
\ = window size
DNA Bequences
Aic=3
O:e=4

Qse=8

Fig. 6.1

7

mean size of
equivalence
classes

R) L 1e-+06
’f
70 — ;
i | 500000
IA.'. H
e s
60 — /f ..
s
4
Vs
50 — o 1,
P I’
g total number
; i g
_ & o p f pai
0= gt 100000 of pairs
.‘.. ’, e
" s
P -
30 — e o
- . |-50000
20—‘ H‘- /” pe
- ””
’? ”
10_' ‘ —'(”
O
-
0 .I T T 10000
20 50 100

X\ = window size
Protein Sequences
A:e=3
O:c=4

Q:e=§

Fig. 6.2

mean sise of
equivalence
classes

BO 400000
md \
_‘\ - 200000
\‘ A
60 R
\\
\ A — 100000
60 — ey
e,
X Pug total number
\ B — 60000 .
- \ of pairs
\\
AY ass
A !
30 - T
20 — i A
Rl L 10000
10 — i, B _
- --%
R e .
0 T i 5000
4]
¢ = number of projections in c-match
DNA Sequences
A:N=100
O:X= 50
O: A= 20
Fig. 6.3

81

mean sise of
equivalence
classes

e

— 1e+086
N
&
\
70 — N ‘
¥ — 500000
N
\\
60 — % A
A
A
..
N
50 — N
\
\ total number
A
-~ "._. 3
40 — RN - 100000 ©f pairs
\\\ ede
\\\
30 — S SR ®
% : ~
~. S — 50000
~ .
A :
~ :
\\ -
20 — g
~ .
~ e
s_ .
10 — _— L Teeg
5 -“‘v- ___________
Sy
0 T I 10000
4 b

¢ = number of projections in c-match
Protein Sequences
A:x=100
O: M= 60
O:x=20

Fig. 6.4

percentage
of pairs
located

100 —

50 —

T |

0 0.5
p = probability of 1-match
N=1
O:c=3
A:c=4
O:ec==58
Xie=8

(dotted line represents ¢ =1, N =1)
Fig. 6.5

percentage
of pairs 50 —
located

0
T I
0 0.5
p = probability of 1-match

N=3
Q:c=38
A:c=4
O:c=5§
X:e=6

(dotted line represents ¢ =1, N =1
Fig. 6.6

84

percentage
of pairs
located

100

| [
0 0.5
p = probability of 1-match

N=5§

o
Il

Xx o b O
= = m'a
]

@ O o

(¢]
Il

(dotted line represents ¢ = 1, N =1)
Fig. 6.7

60 query seguenees sgainst DNA databank

5000 —

4000 —

3000 —

segs.

found 2000 —

1000 —

60 query seguenees against DNA databank

5000 —
4000 —
3000 —
no. of
8egs.
found 2000 —
1000 —|
Uy

[1 |
0 50 100

min no. of matches (m)

window sise w = 100

Fig 6.9

87

60 query sequences against DNA databank

5000 —

4000 —

3000 —
no. of

seqs.

found 2000

1000 —

I
0 50

min no. of matches (m)

window sise w = 150

Fig 6.10

60 query seguences against DNA databank

4000 —

3000 —

no. of

segs.

found

1000 —

| |
0 50 100

min no. of matches (m)

-t

window sise w = 200

Fig 6.11

25 query seguences against Protein databank

10000 —

no. of

seqs.

found
5000 —

min no. of matches (m)

window size w = 50

Fig 6.12

256 query sequences against Protein databank

10000 —

no. of

segs.

found
5000 —

T
50

min no. of matches (m)

window size w = 100

Fig 6.13

o1

25 query sequenees sgainst Protein databank

10000 —
no. of
seqs.
found
5000 —
00—
| I |
0 60 100

min no. of matches (m)

window size w = 150

Fig 6.14

25 query sequences against Protein databank

10000 —

no. of

segs.

found
5000 —

|
0 50 100

min no. of matches (m)

window gize w = 200

Fig 6.16

VII. Conclusions

This thesis has presented a new representation for genetic sequences
as geometric points or vectors and shown that the concepts of closeness
and distance as applied to ordinary points are also meaningful when
applied to these "sequence points". This representation offers significant
reduction in the time taken to compute the distance between any pair of

sequences.

The conversion of the basic data objects from sequences to points also
offers additional advantages in terms of allowing geometric techniques to
be applied to the study of genetic sequences, including or perhaps espe-
cially, techniques that were not specifically designed to handle sequence
objects. This is of importance since it opens up the study of computational
problems in molecular biology to a wider variety of computing techniques,
a result that cannot but be advantageous to the researcher in biology con-
fronted by a problem that is computational in nature. This effect is borne
out by the techniques described in the previous chapter, which are a direct
consequence of the ability to think of genetic material as geometric objects
rather than string objects.

Popular sequence comparison methods currently in use, most notably
the FASTA and FASTP family of programs [14][19][28], rely on heuristic
speedup of the dynamic program approach [27], by using local exact
matches to narrow the region within which the innermost optimization step
of the dynamic program must be performed. However they retain some of

the disadvantages associated with the dynamic program in that the entire

94

array or a large fraction must be scanned in the worst case to determine
the significant regions. Our approach obviates this problem since the only
step which is dependent on sequence length is the initial generation of the
vectors themselves, which takes time linear in the sequence lengths. Sub-
sequent stages are independent of sequence length. Further the existing
methods are applicable to only one pair of sequences at a time. Thus com-
paring a database of N sequences against itself would require on the order
of N? steps, each of which is dependent on the sequence lengths. Our
representation, on the other hand, leads to a much faster method of com-
paring a whole database against itself requiring only on the order of NlogN
pairwise comparisons each of which is a constant time comparison of two

vectors.

This work also raises some questions and opens up several avenues to
be explored. In particular, one important aspect which could be fruitfully
exploited is the inherent parallelism in most vector computations. Thus
most of the techniques described here can be very easily adapted to run
on vector machines, which are becoming more and more widely available

to the biology community, relatively easily.

We have also seen that while closely related sequences will have close
sequence points, it is also conceivable that two unrelated sequences may
by some chance have identical tuple compositions, an event which would
lead to spurious indications of closeness between sequences which may
then have to be weeded out by other means. It would be of great interest
to see how often this sort of event does in fact occur. Another factor that
deserves further consideration is the idea of weighting different tuples

differently or, in other words, changing the scale on some of the co-

95

ordinate axes. This could perhaps be used to highlight the prescence of
certain important or rare substrings or downplay the prescence of more

comunoInn ones.

In conclusion, perhaps the most important understanding resulting
from this thesis is the need for computer scientists to gain a greater under-
standing of the biological aspects of the problems involved as well as the
computational aspects - a feeling that is becoming widespread in the
among computer scientists working in this area - for only so can the field
of computational biology continue to effectively the needs of biological

research.

96

Appendix I : Implementation of a Sequence Indexing System

The techniques described in chapter 6 have been used to implement a
sequence indexing system, written in C and currently running under the
MACH operating system version 2.5 on a VAX 11/785 with 98MB avail-
able memory.

This system processes a database of genetic sequences, either DNA or
Protein. After some initial processing of the sequences the system can
handle queries in the form of being given a query sequence, all sequences
from the database that are close to this query sequence within certain
parameters. It has been designed to run in three phases, the first two con-
stituting the preprocessing stages and the last being the actual query pro-

cessor. A phase by phase description follows.

Phase 1 - Conversion to Sequence vectors

This phase handles the conversion of the database sequences to their
vector representation. The input to this phase consists of a single file con-
taining only the sequences themselves with no other information. It will
then generate the vector representation as an array of floating point
numbers (of size 4* = 256 corresponding to a tuple size of 4 for DNA
sequences and of size 20 = 400 corresponding to a tuple size of 20 for
Protein sequences) and store them in the same order in which they were
generated. Hereafter any reference to the ordinal number or just the

number of a sequence from the original database will refer only to the

97

order in which the sequences were input to this phase.

Phase 2 - Generation of projections

In this phase the system will generate a series of random linear com-
binations, the number of which (k) is settable by the user. The coefficients
of these are generated as uniform random variables in a range, of size
definable by the user, symmetric around zero. It will then apply each
linear combination to the entire set of sequence vectors generated in the
previous phase. Each projection of a sequence vector is represented as a
structure with two fields, one for the projected value and the other for the
ordinal number of the sequence. Prior to this phase the size of the entire
database (number of sequences) and the number of projections desired
must be set in the global parameters file. each set of projections is then
sorted according to the projected value and store in this sorted order. The

coefficients of the each linear combination are also saved.

phase 3 - Searching

This is the repeatedly executable search program itself. When exe-
cuted it will first initialize the system by reading in the file of sorted pro-
jections as well as the file of linear combinations. It then executes a com-
mand interpreter which allows the user to give a query sequence to the
system, control output of information regarding the sequences found or

change the parameters of the search.

Input to the system is achieved by supplying the name of a file con-

taining the sequence(s) to be search for. Input files can be changed.

98

Processing of one sequence in the input file terminates and processing the

next one begins only under explicit command.

The sequence information output consists of short one or two line
descriptions of the database sequences that were found to match the query
sequence within the existing parameters. These descriptions are taken from
a file, supplied by the user, which contains this mformation in the same
order as the sequences themselves. Since listing this information can be
time consuming it is only done under explicit command and thus allows
the user to adjust the parameters to obtain a reasonable number of match-

ing sequences before requesting a listing.

The searching parameters are the size of the "window" w and the
minimum number of times m that a database sequence must fall in the
search window before it can be considered. Initially these are set to be 0

and k respectively. They can be adjusted at any time.

When a new query sequence is encountered it is first converted to a
vector. Then each of the linear combinations are applied to it in turn gen-
erating its projected value in each of the k projections. Then by performing
a binary search on each of the projections we find that entry which is
closest to but not greater than the projected value of the new sequence.
From this central position we then scan linearly in both directions till we
find all the sequences that are within the window size w of the projected
value of the query sequence. Also a match count table is maintained of the
number of times each sequence matches the query sequence and since this
number must be between 0 and £ we also maintain, for each number from
0 to k£ the number of sequences that match exactly that many times, in a

frequency count table. Raising or lowering the the w value is easily

99

accomplished by saving the end points of the search window in each pro-
jection, thus the expansion or contraction of the window begins from
known points and involves no searching. When the window is being
expanded (or contracted), as new sequences fall in (or out) of the windows
the match count and frequency count tables are updated accordingly. Find-
ing the number of sequences from the database that match the query
sequence under the given parameters is then accomplished by summing the

values in the frequency count table from m to k.

Any time a new query sequence is encountered or one of the two
parameters are changed the system will compute and display the total
number of sequences from the database which have been found. The user
can then decide whether this is a manageable size, too little or too much
and adjust the parameters accordingly, before requiring the sequence infor-

mation itself to be output/displayed.

When actual sequence information is required the system will scan the
entire match count table to determine all those sequences that have
matched the query sequence at least m times. The sequence information
file entries corresponding these sequence numbers is then written. This is
the only step that requires scanning the entire database, but as this is
expected to occur less frequently than requests for changing parameters, it
was felt that it would be more worthwhile to design the table structures to

speed up the latter at the expense of time consumed in output.

100

[1]

(2]

(4]

[5]

References

R. S. Boyer, J. S. Moore, "A fast string searching algorithm" Comm
ACM, Vol 20, No 10, Oct 1977. pp 262-272

Clift, B. et al, "Sequence landscapes" The applications of computers
to research on nucleic acids III D. Soll & R. J. Roberts eds., IRL
Press 1986. pp 141- 158

V. Chvatal, D. Sankoff, "Longest common subsequences of two ran-
dom sequences" J. Appl. Prob. Vol 12, 1975. pp 306-315

D. Dobkin, R. J. Lipton, "Multidimensional Searching Problems"
SIAM J. Comput Vol 5, No 2, June 1976. pp 181-186

J. A. Hartigan, "Clustering algorithms" John Wiley and Sons, 1975

X. Huang, "A lower bound for the edit distance problem under an

arbitrary cost function" Information Processing Letters, vol 27, no 6,
May 1988. pp 319-322

D. Knuth, "The art of Computer Programming, vol. 3, Sorting and
Searching" Addison-Wesley, 1973.

D. Knuth, J. Morris, V. Pratt, "Fast Pattern Matching in Strings"
SIAM J. Comput., vol 6, no 2, June 1977. pp 323-350

G. M. Landau, U. Vishkin, "Introducing Efficient Parallelism into

Approximate String Matching and a new Serial Algorithm" Proc. 18"
ACM Symposium on Theory of Computing., 1986. pp 220-230

101

[10]G. M. Landau, U. Vishkin, R. Nussinov, "An efficient string matching
algorithms with k differences for nucleotide and amino acid
sequences" The applications of computers to research on nucleic

acids III D. Soll & R.J. Roberts eds., IRL Press 1986. pp 31-46

[11]A. Lempel, J. Ziv, "On the complexity of finite sequences” /EEE
Trans. on Information Theory, vol IT-22, Jan 1976. pp 75-81

[12]M. E. Lesk "Some Applications of Inverted Indices on the UNIX Sys-
tem" Bell Laboratories, Murray Hill, NJ.

[13]B. Lewin, "Genes III" John Wiley & Sons, 1987.

[14]D. J. Lipman, W.R. Pearson, "Rapid and Sensitive Protein Similarity
Searches" Science, vol 227 (1985) pp. 1435-1441

[15]D. Lopresti, "Discounts for Dynamic Programming with Applications
in VLSI Processor Arrays" Ph.D. Thesis, Princeton University, 1985.

[16]J. V. Maziel Jr., "Supercomputing in Biomedical Research” Cray
Channels, Fall 1988. pp 2-5

[17]1D. R. Morrison, "PATRICIA - Practical algorithm to retrieve informa-
tion coded in alphanumeric" JACM, vol 15, no 4, 1968. pp 514-534

[18]S. B. Needleman, C. D. Wuncsh, "A general Method Applicable to
the search for Similaities in the Amino Acid Sequence of Two Pro-

teins" Journal of Molecular Biology vol 48, 1970. pp 443-453

[19]W.R. Pearson, D. J. Lipman, "Improved Tools for Biological
Sequence Comparison” Proc. Natl. Acad. Sci. USA, vol 85 (1988) pp.
2444-2448

[20]C. Queen, M. N. Wegman, L. J. Korn, "Improvements to a program

for DNA analysis: a procedure to find homologies among many

102

sequences" Nucleic Acids Research, vol 10, no 1, 1982. pp 449-456

[21]R. Schabak, "On the expected Sublinearity of the Boyer-Moore
Algoprithm" SIAM J. Comput., vol 17, no 4 Aug 1988. pp 648-658

[22]R. Sedgewick, "Algorithms" Addison-Wesley, 1984

[23]K. Thompson, "Regular Expression Search Algorithm" Comm. ACM,
vol 11, no 6, June 1968.

[24]1D. C. Torney et al., "Computation of d-squared : a measure of
Sequence Dissimilarity." Computers and DNA, SFI studies in the Sci-
ences of Complexity, vol VII, G. Bell, T. Marr Eds. Addison Wesley
1990. pp 109-125

[25]R. A. Wagner, M. J. Fischer, "The string to String Correction Prob-
lem" J. ACM, vol 21, no 1, Jan 1974. pp 168-173

[26]R. Wilber, "The conca've least-weight sub-sequence problem revisited”

Jornal of Algorithms, vol 9, no 3, Sept. 1988. pp 418-425

[27]W. J. Wilbur, D. J. Lipman, "Rapid Similaity Searches of Nucleic
Acids and Protein Data Banks" Proc. of the National Academy of Sci-
ences, vol 80, Feb. 1983. pp 726-730

[28]W. J. Wilbur, D. J. Lipman, "The Context Dependent Comparison of
Biological Sequences" SIAM J. Appl. Math. vol 44, no. 3 (1984) pp
557-567

103

