PROBABILISTIC DIAGNOSIS OF HOT SPOTS

Kenneth Salem
Daniel Barbara
Richard J. Lipton

CS-TR-328-91

June 1991

Probabilistic Diagnosis of Hot Spots '

Kenneth Salem Daniel Barbard
Richard J. Lipton
Computer Science Department ~ Computer Science Department

University of Maryland Princeton University
College Park 35 Olden Street
Maryland 20742-3255 Princeton, NJ 08544-2087
Abstract

Commonly, a few objects in a database account for a large share of all database accesses.
These objects are called hot spots. The ability to determine which objects are hot spots opens the
door to a variety of performance improvements. Data reorganization, migration, and replication
techniques can take advantage of knowledge of hot spots o improve performance at low cost. In
this paper we present some techniques that can be used to identify those objects in the database
that account for more than a specified percentage of database accesses. Identification 1s accom-
plished by analyzing a string of database references and collecting statistics. Depending on the
length of the reference string and the amount of space available for the analysis, each technique
will have a non-zero probability of false diagnosis, i.e., mistaking “‘cold” ivems for hot spots and
vice versa. We compare the techniques analytically and show the tradeoffs among time, space and

the probability of false diagnoses.

This researct was supported by the Defense Advancec Research Projects Agency of the Depariment of Defense and
by the Office of Naval Research under Contracts Nos. N0OO014-85-C-0456 anc NO0014-85-K-0463, anc by the
Nationz! Science Foundation under Cooperative Agreement Nos. DCR-8420948 and CCR-8908898. The views and
conclusions comizine¢ in Uhis cocument zre those of the authors ané shoulc noi be interpretec as necessariiy
representing the officiz! policies. either expressec or implied. of tne Defense Acdvancec Research Projects Agency or
the U.S. Governmer:t.

1. Introduction

Access 1o items in a database is generally not random. Most commonly, a small set of data
items absorbs a disproportionate share of all data accesses. These ilems are commonly called hot

spots.

The ability to identify hot spots opens the door to a variety of performance improvements.
Caching, data migration, prefetching, and replication are examples of performance improvement
techniques that can take advantage of hot spot information. For instance, replicating data is a
well-known technique for reducing access times in a distributed system. The entire database
could be replicated, but replication is costly. Clearly, most of the benefits of replication could be

had for a fraction of the cost if only hot spots were replicated.

As another example [Sa91], consider prefetching and other types of anticipatory data move-
ment. If it is known that two files (or other data), F} and F), tend to be used together, then it
may be beneficial to move F, near F; when F) is requested and used. How can we determine
which files tend to be used together? Determining these relationships can be thought of as looking
for hot spots in the set of all patrs of files. Thus, when Fj is used shortly after F}, we can treat
this as a "reference® to item (F},F,) in the *database” of pairs of files. After some time, the set
of file pairs can be examined (perhaps using one of the techniques presented in this paper) to

determine which pairs of files are related.

When the subject of hot spots comes up, buffer management techniques such as least-
recently-used (LRU) and working sets come to mind immediately. These techniques are well-
known, and many have been in wide use for years. For this reason, it is important to distinguish
between them and the technigues presented in this paper. To facilitate comparison, we have

included an LRU-like algorithm (Algorithm D) among those studied in this paper.

Most buffer management techniques select data based on recency of use. In contrast, the
algorithms presented here make selections based on frequency of use. Although these concepts are
reiated. thev are cleariv not the same. For example. consider z database such that 80% of all
references are made to 2057 of the data. and suppose that z bufier with & capacity of 100 biocks
of data is used. Under reasonable conditions, we would expect that roughly 20 of the 100 blocks
in the cache would be occupied by datz from the "cool" (less {requently referenced) potion of the

database. Such data are poor choices if frequency of use is the selection criterion.

A second difference is that the algorithms presented in this paper atiempt 1o detect absolule

hotspots. For example, the goal may be to determine which blocks (if any) receive at least 25%

of all requests. The absolute threshold, in this case 250, is a parameter of the algorithm. Tech-
niques such as LRU do not use such a parameter. For example. suppose that there are 1000
blocks of data, each equally likely to be requested. The LRU buffer manager described carlier
will select one hundred of these blocks (and place them in the buffer). However, using a 25%

threshold, the techniques presented here should report that no hot spot exists.

These comparisons are not to suggest that the hotspot algorithms presented here are
wbetter” that LRU or other buffer management techniques. Clearly, a buffer manager should
keep its buffer filled, even if there are no apparent hotspots. Furthermore, frequency of reference
alone is not always the best criterion for data selection. (The existence of temporal locality in
data references has been well-documented.) Often, however, algorithms like those presented in
this paper will be well-suited to 2 particular task. One situation in which this is true is when hot
spots can be taken advantage of only at a cost. For example, replicating a frequently referenced
file consumes storage space, processing time, and bandwidth. The file should only be replicated if
the potential gains more than offset these costs. Thus, only files that are referenced {requently
enough should be replicated. Because they detect data whose “temperature" is above a given
threshold, the techniques presented here would be useful for detecting files that are hot enough so

that replication will be beneficial.

A number of studies have pointed out the existence of hot spots of various durations in file
systems and databases [Ou83), [St88], [Wi89). Some other attempts to deal with hot spots to
increase concurrency and improve the performance of database sysiems can be found in iGa85],
[GaKi85), [On86] and [Re82). In [Ba87), a stochastic model of data access is developed under the
basic assumption that there exists a fraction of the items that receive most of the accesses, and

that the distribution of accesses both within and outside of this set of items is skewed.

In this paper we present several techniques to identify. or diagnose. hot spots in a database.
All of them are probabilistic in the sense that they will classify the items as hot or cold and exhi-
bit 2 non-zero probability of false diagnoses. We analyze each technigue to identify the tradeoffs
of time and space involved in maintaining 2 iow probability of faise diagnosis. In Section T we
present each of the technigues. In Section & presents analyses of the techniques o determine how
likely thev are to diagnose without error. In Sections 4 and 5 we compare the techniques, includ-

Ing a numerica; comparison based on analyses.

2. The Problem and Some Solutions

In this section, we formulate the hot spot diagnosis problem mathematically and describe
several algorithms to solve it. We assume that the datebase consists of a set of N\ items.
Requests for database objects (references) are modeled as an independent random process. We
assume that these references are arbitrarily but identically distributed, as will as independent.
The probability that a reference will be to item ¢ will be denoted p;. Often, we call this probabil-

ity the weight of the item.

Given 2 threshold 0 < T'< 1, and a positive constant ¢ (where 0 < T—¢ and T+¢ < 1),

we classify each item into one of three sets:
C = {isuch that p; < T— ¢}

is the set of “cold’ items, i.e., those which should be appear with a frequency less than the thres-

hold minus a small €. Conversely, the set of ‘‘hot” items is denoted by
H = {isuchthat p; > T+ ¢}
A third set of items, called U, is composed of those items with weight between T — ¢ and T + .

The hot spot problem can be stated as follows: given a reference string of length S, gen-
erated as described above, the threshold T, and the constant ¢, report a subset of the database
that includes the set H but does not intersect the set C. In other words, a hot spot algorithm
should report all of the hot items and none of the cold ones. Items "near" the threshold may be

reported or not.

We have investigated four classes of algorithms for solving this problem. All of the solu-
tions make use of counters, i.e., variables initialized to zero which can be incremented. In each of
the algorithms. one or more database items are assigned to one or more counters. A counter is
used 10 keep track of the number of times that items assigned to it appear (are referenced) in a
certain portion of the reference string. We will often refer to the weight of a counter. meaning

the sum of the weights of the items assigned to it.

The zigorithms have z common component. which we term "processing the reference
string". A string of size ¢ is processed as follows. For each reference in the string, counter(s) to
which the referenced iter has been assigned are incremented. If a referencec item is not assigned

1o any counter. that reference is ignored.

After processing. an aigorithm’s counters can be classified as either "hot" or "cold". Le: i

be the value of the coun: - after a reference string of length ¢ has been processed. The counter 1s

considered to be hot if

> T

n | =

otherwise it is cold. Each of the algorithms, except the last, use this notion of hot and cold

counters.

In the following sections, we describe the four algorithms we have considered.

2.1. Algorithm A

This simple algorithm iteratively tests M items at a time until all N items in the database
have been tested. During each iteration, M previously unassigned database items are assigned,
one to each of M counters. A portion of the reference string is then processed. If any of the
counters are hot after processing, the items assigned to those counters are included in the solu-
tion. The counters are then reset (cleared) and the process is repeated using the next portion of

the reference string, with new items assigned to the counters.

Iteration continues until each database item has had the opportunity to be assigned to a
counter and tested. Since M items are tested during each iteration, M/N iterations are required.

If the reference string S references long, SM/N references will be used during each iteration.

2.2. Algorithm B

Algorithm B makes use of L groups of counters, with M counters in each group. For each
group of counters, the database is randomly partioned into M sets of (approximately) equal size.
The items in each set are zl] assigned to one of the M counters in the group. The random parui-

tioning of database items is done independently for each group of counters.

After the assignments have been made, the reference string is processed. Each reference in
the string will cause L counters to be incremented, since each database item is assigned to a
counter ir. each of the L counter groups.

Foliowing processing. L solution sets are formec. one for each of the counter groups. The

final solution consists of the intersection of these solution sets. i.e., if ap item is reported in the
finz] solution. it must have been in the solution set of each of the L groups. The solution set for
each group consists of all items assigned to hot counters in that group. Thus. items reporied in

the final solution are those that were assigned 1o hot counters in all of the groups.

2.3. Algorithm C

This algorithm makes use of 2 single group of M counters. As in algorithm B, the database
jtems are partitioned into A groups of approximately the same size, and cach group is associated
with one of the counters. In this case, however, any assignment will work. (Random assignment

is not necessary). For example, the first N/ M items can be associated with the first counter, etc.

A portion (in Section 3 we determine the size of this portion) of the reference string is pro-
cessed. Afterwards, items are classified into two groups depending on whether their assigned
counters were hot or cold. The group of items that were assigned to cold counters is discarded.
The remaining (hot) items are then re-partitioned M ways. Ivems are reassigned to the M
counters based on the new partition. The next portion of the reference string is then processed to
determine a new hot group. This iteration continues until no hot counter has more than one item
assigned 1o it (or until there are no hot counters). The solution reported by the algorithm con-

sists of the items assigned (individually) to hot counters at the end of the final iteration.

Clearly, if this algorithm is to terminate, the number of items in the hot group should be
reduced after each iteration. The number of counters that can be hot after any iteration is no
more than 1/T. For example, if T= 0.6, no more than one counter can have received more than
sixty percent of the references. This means that the number of cold counters may be as small 2
M = 1/T. Termination can be guaranteed if there is at least one cold counter after every itera-
tion, so that the number of items in the hot group will be reduced. Thus, we will assume that

M-1/T>1,ie,that M > (T+1)/T.

2.4. Algorithm D

This algorithm uses a set of counters. each with an associated strength. In this algorithm,
the number of counters in the set varies as the reference string is processed. Initially, the set is

empty.

For each reference in the reference siring. the following actions are taken. Suppose that the
reference under consideration is to item :. 17 ¢ is assigned to z counter. that counter’s value is
incremented (as usual) and the strength of the counter it is set 1o a constant value G. Otherwise,
2 new counter is created, and 7 is assigned to it. The value of the new counter is one and its
weight is set to G. In addition. after each reference the strengths of all of the other counters in
the set are decremented. If & counter’s strengil: reaches zero, the counter is eliminated from the

setl.

This procedure ensures that an item remains assigned to o counter 1 the counter set unjess
G consecutive references occur without a reference to that item. If this occurs, the strength of the
item’s assigned counter will have decayed 1o zero. and the counter will have been deleted from the

set. Thus, the algorithm “forgets" about items that are not referenced regularly enough.

After processing is completed, the solution consists of all items 1 that are assigned to a
counter whose value (count) is at least C. The purpose of the constant C, known as the counter
threshold, is to ensure that only items that remain assigned to a counter consistently are reported
in the solution. The counter threshold and the initial strength, G, are parameters of the algo-

rithm.

This algorithm is similar to a several common cache management techniques. It is closest
to the working set technique. In fact, if C = 1, the solution reported by the algorithm is the
working set (as of the end of the reference string) of the process(es) generating the references. It
is also similar to LRU cache management, except that under LRU, items are never eliminated

{from the set until their "slot" is needed for a new item.

3. Analysis

In this section we present an analysis of the algorithms given in Section 2. Our goal is to
develop expressions for the probability that an algorithm will not perform correctly, 1.e., that a
hot or cold item will be misclassified. In several cases we are able 1o develop exact expressions or
good approximations to these probabilities. In other cases we have developed upper bounds on

the probability of an incorrect result.

Let us denote the set of items reported by a hot spot diagnosis algorithm by K. An item
with 2 larger weight is at least as likely to be reported (included in R) as one with 2 smaller
weight. (This property is shared by all of the algorithms we have considered.) Thus. a cold item ¢

with p; = T — ¢ is at least as likely 1o be mistakenly reported in the solution as any other cold

item. Insteac of determining Frob’ : € R| 1 € C for any cold item. our analyses find

This number is an upper bound on the probability of any particular other cold item being

misclassified by the aigorithm. Similarly, we determine
Problig R p;=T= ¢

as an upper bound on the probability of any particular hot item being misclassified.

In our analvses. we will make use of the notation shown in Table 1. In addivon, there are
several aigorithm-specific constants described 1n the previous section. We will introduce them as

necessary in each analysis.

symbol meaning
N database size (number of items)
T reference probability threshold
5 sample size (size of the reference siring)
g% mean weight of database items
ok variance of weight of database items
P; weight (reference probability) if item
€ resolution of the diagnosis

Table 1 - Common Notation

Before we begin, we present 2 result that we will use frequently in our analyses. Each of
the algorithms associate items with counters and then sample the reference stream. Frequently,
we will be interested in the probability that a particular counter is “hot” after the sample is com-
pleted. We define P,ym,(w,s) 1o be the probability that a counter with weight w is hot after a

sample of size s. In Appendix A, we show that this probability can be approximated by

Ts—ws
Pcmp R I S 4 e v .
m06) = 1= 0Lt o)

where ¢ is the cumulative distribution of a standard normal random variable. The approxima-

tion improves as the sample size, &, Increases.

3.1. Algorithm A

-t

r. aigorithm A. items are assignec individually 1o counters. A cold item with reference pro-
bability T—e¢ will be selected if its assigned counter is hot after sampling. If A counters are
avallable, & total of N/ M iterations will have 1o be performec 1o check all N items in the date-
base. since onlv Af can be checked during each sample. Since the total sample size is £, each

iteration used by Algorithm A can use only 5, references. where

Using equation 3.1, we can determine the probability that a cold item with reference probability
T—¢ will be selected when it is tested by the algorithm:

TS,—(T—¢)S,
(SoT—e—(T—€)*))*

Prob|i € Rl pi= T=¢| = PumplT=¢,5,) = 1 — &) (3.2)

Similarly,

TS,—(T—{- €)Sc
(Sa(T+ e—(T+€)*)"

Frobi g Rlpi= T+] = 1 = Pram(T# €,5) = &) (33)

3.2. Algorithm B*

Recall that algorithm B makes use of L groups of counters with M counters in each group.
We will begin by finding 2 bound on P,,,,(2), the probability that an item with weight z i1s dever-
mined to be hot in 2 particular group. For a cold item to be selected, it must be selected in all L

groups. So,

Adlic Rl ps Fled= [P,,,,,,,(T—e)]L (3.4)

Items are assigned randomly to the counters in each group. Define P,.(w,z) vo be the proba-
bility that a counter’s weight is w, given that it has had an item with weight z assigned to it.

Since we are particularly interested in items of weight 7—¢, we can write

proup(T_e) = E Pl'ﬂ(er_f)Pmmp(wts)

w

In other words, if an item with weight 7—¢ is 1o be selected, it must be assigned to a counter
with some weight w. and that counter must be hot after sampling is completed. Of course, the
counter’s weight must be at least T—e¢. since an item of that weight is associated with the

counter. Sc. we have

L - » '
J'—f=3-_<~£:< <~D',‘:_1<g =]

We can then use these points to brezk up the summation above as jollows:

,,.,u,.,(T Og=3 Y FPiui- € JF qmpt5)

Taking advantage of the fact that Pmmp(u,,S) < Pgmpluig S} if wy < wa. We can bound F,,,, as

follows:
k-1 w<h oy,
P,,.wp(T-i) S 2 Pump(ﬁi+]’s) Zﬂ P,-,,(‘J.L‘,T—f) (35)
=] w=f

The more points f; we choose, the tighter our upper bound will be. For the numerical calcula-

tions in the next section, we have used:
Bo=T—(¢/2),Bs=T,By=T+(c/2), 8= T+e
The points are clustered around T since the function P,4p, changes most rapidly near T.

Consider the probability Pi,(w,z). We assume that an item of weight z has been selected
from the database and associated with the counter. Each counter is assigned N/ M items total.
So, P.,(w,z) is the probability that N/ M — 1 items chosen from the rest of the database have
weight w— z. In Appendix B we derive an approximate expression for Y{w,nu ,0). This
describes that probability that n items selected from a database of items whose weights have a
mean of ¢ and a variance of ¢ will have a total weight of no more than w. Then,

¢ .

Y Pa(w.z) = Y(b=z,~—]\ Lu o) — }’(a—-:c—’}—-—l,u o)

w=a \J

In this expression, x4~ and ¢ are the mean and standard deviation of the database after an ele-

ment of weight = has been removed. (We are assuming that such an item has already been

assigned to the counter.) In Appendix C we show that these values can be written in terms of g

and ¢ » (the mean and variance of the database weights) as follows:

. -

o= Nt KN —]

anc
e w ol 2g—\Nz°
R _—.’\’:

We can now write = complete expression for F,,,..

F=1 (

% .)
Pﬂouj‘-(T.‘-e) < T\ Pmmrl“‘:-‘l's) }(51'—1 - {T—E)%{ - 1# £ - } {T'_'f bt = 11# -0 'J

=]

This upper bound on F,,,, gives us an upper bound on Frob 1+ € Rip, = 1= ¢ . as desired

when it 1s substituted 1nto equation 3.4.

Using a similar argument, we can derive an expression for the probability that an item with

weight T+ ¢ is not reported in the solution. This occurs if the item is not selected in any group.

Bobig Rlpi= T+ €)= 1— P (T+e) (3.6)
As before, we can write
we=]
Pﬂcup(T+ ‘) - E Ps'u(er+ E)Pump(w!s)
we T4 s

As before, we could break this summation into an arbitrary number of shorter summations to
improve our accuracy. However, this is probably unnecessary (unless ¢ is very small). Since the
lowest value of P,,, occurs when w = T+¢, we can place a simple lower bound on F,,,(T+ ¢)
using

we=]

Pgrnup(T+ C) 2 P-nmp(T+ 5:5} 2 Piﬂ(wsT+ ()

w=T+¢

Since the summation in this expression evaluates to one, our final expression becomes
Pyraup(T+ ‘) 2 Poamp(T"' E,S] (37)

When substituted into equation 3.6, this lower bound on F,,,,, gives the desired upper bound on

Frobli¢ Rlp;= T+ €.

3.3. Algorithm C

After each iteration in algorithm C, only items associated with hot counters need be con-
sidered during subsequent iterations. Thus, the number of items under consideration is reduced,
after each iteration. by the the ratio of hot counters 1o M. This ratic. which we will term 1/¢,

1s 21 most

) |.._
FaN
|31
I

P
=y

T™
Thus. the total number cf iterations required is no more than log,.\.

Now we can consider the probabilities of false diagnoses of cold and hot items. Consider a
colc item with weight 7—¢ that is accidentaliy selected. To be selected. the 1tem spends at least

one iteration as the only item assigned to a particular counter. The probability that it will be

selected during this iteration 1s no more than

S
FromplT=¢.7=55)

log,

since the total sample size of S must be distributed over all of the iterations. The probability
that the item is actually selected is no more than this, since it must be associated with a hot

counter during all iterations. Therefore, we have the upper bound on Prob| ¢ € Rl pi= T—¢ 1

ey, S ,
Probi i€ Rlpi=T-¢)< P,,,,,,,,(T—c,log N) (3.8)

Furthermore, unless we are willing 1o make additional assumptions about the manner in which
items are assigned to counters, or about the distribution of the weights of items, this bound is
tight. For example, it may happen that the item of weight T—¢ is assigned to the same counter
as an item of weight 1—(7—¢) during all but the last iteration. In this case, the cold item is

selected with probability one on all iterations except the last.

To misclassify 2 hot item as cold, that item must not be assigned to a hot counter during at
least one iteration. Since a counter with a hot item assigned to it has a weight of at least T—¢,

the probability that that counter is hot during a single iteration is at least

S
Foam(Tt € 70g,)

Thus we have

£ : " L log, N
.P?‘Obi 7 E R P = T+ ¢ } S 1= pump(T'!‘E’logu‘N) L

3.4. Algorithm D

For an item 1o be reported. it must be assigned to z counter with a count of at least C.
This will happen if and only if the 1tem has been assigned continuously to the counter since its

Cth most recent rejerence. The probazbility that this will occur can be conditioned on the event

that tne (in mos: recent reference occurred K

references pack in the reference stream. \We will

[&)

let P(R,i) represent the probabiiity that the Cth most recent reference to an item ¢ occurred R
references ago. Alsc. we will let B{R) be the probability that the item has remazined on the list

since its Cth most recent reference. given that that occurred R references ago. We can then write:

Fun

Frobii is chosen! =), PB(R)F,(R.1) (.10

e
F=C

The lower limit on the sum 1s C because P,(R.1) 1s zero for i < C. The upper limit is because at

most S references from the reference stream are considered.

Once assigned 10 a counter, an item remains assigned unless therc are G consecutive refer-
ences in the stream without a reference to the item. The conditional probability P(R) can be
computed using the analogy to the well-known problem of distributing indistinguishable balls
into distinguishable urns. More precisely, this probability is the probability of having no urn with
G or more balls when R — C balls are randomly distributed over C urns. This gives (Appendix

D):

N,
P(R) = ——2— (3.11)
Bl
B
where
R-1 c CW-C-46 (24 k=1)(R=-kG—-z—-k—1
7 k
Ne= |p_¢ +§1(‘1) [krgn z][R—C—kG—-m]

The probability P,(R,i) is the probability that one reference to i occurred R references ago,
and C — 1 references to it occurred among the subsequent R — 1 references. This Jatter probabil-

ity has 2 binomial distribution, so we can express F,(R.1) as:

P(Ri) = p; [?: i]pf’"{l -p) = [i: 1 }pF(l - p)f (3.12)
To compute the desired probabilities, we can now use:
FProbi€ Rlpj=T—¢l = RécP,(R)P,(R,T—c) (3.13)
and
Frob ig Rlpp=T+ ¢ =1- Picﬂ(R)P,(R.T—c) (3.14)

4. Discussion of the Analysis

The meaning of the expressions developed in the previous sectior can be difficult to discern.
In this section. we wil} attempt to shed some light on the differences among the algorithms by

plotting and comparing some of the results of our analyses.

A large number of variables are involved. To keep the presentation as simple as possible.
while still pointing out some of the key characteristics of the algorithms. we will focus on the casc
where the database contains one million items, the reference threshold, T, is 25%. In other
words, each algorithm is being asked not to fail to report items which receive more than

(25+ €)% of the references, and never to report items receiving less than (25—¢)% of the refer-

ences.

For each algorithm, we have considered the probabilities of false diagnoses (for which we
developed equations in the previous section) as a function of the length of the reference string and
the number of counters used. The string length is a measure of the speed with which an algo-
rithm arrives at z solution. The number of counters used is a measure of the space overhead of
the algorithm. Although the counters are likely to be small relative to the blocks of data, the
space overhead is important if the counters are to be maintained in main memory, as may be

desirable in some applications.

4.1. Algorithm A

Figures 1 and 2 show the probabilities of false diagnoses for Algorithm A (equations 3.2 and
3.3), as functions of the number of counters used (M) and of the desired resolution (¢). For
example, the height of the surface at the point (0.05,2000) in Figure 1 gives the probability that
2n item with weight T—¢ = 0.20—0.05 = 0.2 will be reported in the solution, given that the algo-
rithm is able to employ 2000 counters simultaneously. The size of the reference string, S, was

fixed at ten thousand references.

Clearly, it is possible to achieve very low error rates with Algorithm A. The drawbacks are
the large number of counters and the length of the reference string that were used to achieve
these low error rates. Indeed, we will see that Algorithms B and C are able to achieve compar-

able error rates with only a few hundred counters and a much shorter reference string.

Since Algorithm A iterates N/ M times. the length of the reference string used should be
N/ M at the very least. so that at least one reference {rom the string is available at each itera-
tion. Thus. we should maintain SM > N. This is unfortunate. since it implies that S and M

cannot be varied independently.
Different zpplications will be interested in different types of hot spots. either longer-term or
shorter-term. Longer—term hot spots can be studied by using longer reference sirings, i.e., larger

values of S. A desirable characteristic of 2 hot spot algorithm is that for any fixed S, it should be

possible 1o tradeoff additional space (more counters) for reductions i the probabilities of false
diagnoses, and vice versa. If thisis the case, then the aigorithm will be useful for diagnosing any

kind of hot spots, whether long-term or short-term.

Unfortunately, this is clearly not the case for Algorithm A. For example, if only a small
about of space is available, the algorithm can not be used o detect short-term hot spots. Since
SM > N must be maintained, a large value of S will be required. For our example, with
S = 10000 and a database size of one million, only 20 references are processed during each itera-
tion when the number of counters used is 2000. (One work-around of this problem is for the
algorithm to process the entire reference string during each iteration, rather than breaking the
string into substrings. In an on-line situation, this would require additional space for storing the

reference string.)

4.2. Algorithm B

Algorithm B includes two parameters, L and M, which describe the number and size of the
counter groups used by the algorithm. The total number of counters used is LM. Figure 3 shows
the probability that a cold item will be reported (equation 3.4) as a function of L and M. (The
probability of not reporting a hot item is not shown, as it is near zero throughout this range of L

and M.) The length of the reference string was fixed at five hundred.

Figure 3 suggests that maintaining L = M is a good idea, at least for small values of L and
M. To see this, imagine lines representing constant values of LM (otal space) drawn on this sur-

face. The low points of these lines will occur near the main diagonal of the L, M plane.

Figures 4 and 5 are analogous to Figures 2 and 3, and show the probabilities of false diag-
noses (equations 3.4 and 3.6) as functions of the resolution (¢) and the total number of counters

used (LM). assuming L = M. A reference string of length 200 was used to create these figures.

The figures indicate that Algorithm B nearly eliminates the probability of false diagnoses
wher LM > 200 and ¢ > 0.05. Thus. the algorithm diagnoses hot spots about as accurately as
Algorithm A. but does so using only z fraction of the memory space and reference string size.
The reductions in memory space and reference siring size (iime) are by an order of magnitude. at

least for this particular example.
Another advantage of Algorithm B is that any combination of values for £ and LM can be
chosen. In fact, any two of ¢, LA, and S can be fixed. and the third can be varied 1o bring the

probabilities of false diagnoses within desired limite. Thus. this algorithm is very flexible when

diagnosing hoi spots of any duration. Longer term hot spots can be studied by processing longer

reference strings.

4.3. Algorithm C

Figures 6 and 7 show the probabilities of false diagnosis under Algorithm C (equations 3.8
and 3.9), with the length of the reference string fixed at 200. The performance of this algorithm
is similar 1o that of Algorithm B. (Compare Figures 6 and 7 to Figures 4 and 5). Both algo-
rithms make false diagnoses very unlikely (given the default parameters) using about 200

counters.

Algorithm C is iterative, like Algorithm A. Thus, 2 constraint exists among S, M, and N,
requiring 2 minimum amount of space (M) for any particular value of 5. In this case, however,
the relationship is logarithmic rather than linear, and thus does not represent a major difficulty.
For small values of 5, the minimum space required for this algorithm is much less than that for

Algorithm A.

4.4. Algorithm D

Algorithm D incorporates two parameters, strength (G) and count threshold (C). which con-
trol its behavior. Figures 8 and 9 show the probabilities of false diagnoses (equations 3.13 and
3.14) as functions of G and C. Increasing G increases the probability of a false hot diagnosis
(reporting a cold item as hot) but decreases the probability of false cold diagnosis. Decreasing C

has 2 similar, though less dramatic, effect.

It seems clear that the best that can be done in this case is select values of C and G that
result in z reasonable compromise between the two types of errors. If we are equally concerned
with both tvpes of false diagnosis, the best values of C and G can be obtained by finding the low
point of the line formed by the intersection of the surfaces in the two figures. Clearly. the result-
ing error probabilities will be much higher than those that can be obtained with the other algo-

rithms. Unfortunately. there is no simple way 1o reduce these probabilities.

Figure 10 iliustrates why this situation occurs. The graph plots the probability that an
item with 2 given reference probability (weight) will be reported by the aigorithm (equation 3.10].
Curves zre plotted for three values of C. The strength, G. is constant ait G=23. Consider a cold
item with weight T—¢ ané =z hot item with weight T=¢. Cleariy. if the probability of selecuing

the hot item is too low. it can be increased by reducing C'. Unfortunately. this zlso increases the

probability of selecting the cold item! Simiiar behavior i observed when C is held constant and
G is increased. Thus, the algorithms parameters do not provide a mechanism for improving the
»resolution” of the algorithm. Improved resolution would correspond to a steeper rise of the

curves in Figure 9.

Algorithm D will have difficulty distinguishing among items with similar weights, regardless
of the values of C and G. However, it can be useful as a "coarse” filter, for distinguishing
between very cold and very hot items. This corresponds to large values of €. To illustrate, Fig-
ures 11 and 12 show the probabilities of false diagnosis for two values of G, for the case when
T= 0.5 and ¢ = 0.25. (These figures represent slices through surfaces such as those in Figures 8
and 9.) In other words, the algorithm is being requested not to fail to report any item with a
reference probability greater than 0.75, and never to report any item with reference probability
less than 0.25. In for this case, the probabilities of false diagnosis can be reduced to less than
10% (e.g., when G = 3 and C = 5). Unfortunately, if this level of error is not satisfactory, the

only recourse is to increase €.

The first three algorithms exhibited clear relationships among time (the length of the refer-
ence siring), space, and probabilities of error. This relationship is not 2s clear for Algorithm D.
The number of counters simultaneously in use by the algorithm is never more than G. (G
counters will be in use if the most recent G references in the reference string have been unique.)
The other important characteristic of the algorithm is that only the last CG references (at most)
from the reference string determine which items are reported as hot or cold. Recall from the
analysis that an item is selected if and only if it is assigned to a counter continuously from the
time of its Cth most recent reference. If the Cth most recent reference is more than CG refer-
ences old, then the item cannot have remained assigned to a counter, since there would have 1o

have been a gap of at least G between references to the item during that period.

Unfortunately, this implies that the only way to detect long-term hot spots using Algorithm
D is 1o make G large. This can adversely zffect the probabilities of false diagnosis, as we have
seen. and increases the amount ¢f space used by the technique. Algorithm D is therefore best

suitec to coarse dizgnosis ¢f shori—term hot spots.

5. Further Discussion

Several aspects of the hot spot algorithms warrant further discussion. The first concerns
the iverative techniques, Algorithms A and C. Lach algorithm analvzes a reference string of
length S o arrive at its conclusions. The iterative algorithms break the reference string down

into several pieces, and then use a different piece during each iteration.

One difficulty with these techniques is that an item that appears hot over the entire refer-
ence string may not appear hot during every substring, i.e., it may not appear hot during every
iteration. References to it may be clustered in 2 few of the substrings. Our choice (for reasons of

tractability) of an independent reference model "plays down" this possibility in our analyses.

For example, if an item is to be reported as hot by Algorithm C, it must be assigned to a
hot counter during all iterations. So, a clustering of references may increase the probability that
a truly hot item will fail to be diagnosed. In Algorithm A, a properly diagnosed hot item must
have appeared hot during the one iteration that it is assigned to a counter. Since data references
in real reference streams are likely to exhibit dependencies, this issue must be considered as z

potential strike against iterative algorithms.

A second aspect of these algorithms that should be addressed is their ease of implementa-
tion. As might be expected, Algorithms A and D, which exhibit the least desirable properties, are
quite simple to implement. Algorithm C is not oo much worse, with a small amount of addi-
tional complexity due to the reassignment of items to counters at the end of each iteration. Algo-
rithm D complicated somewhat by the need to randomly paruition the database among the
counters in each counter group. (This must be done independently for each counter group.) The
time required for this partition may become an issue for on-line applications of hot spot diag-

DOSIS.

8. Summary and Conclusions

We have presented and analvzed four classes of algorithme for the diagnosis of hot spots.
Each aigorithm attempts to guess. by examining & siring of database references. which items from

the database are hot, and which are not. The strengihs and weaknesses of these techniques can

be summarized as foliows.

. Algorithm A can diagnose hot spots accurately. but may reguire much more space and

time than the other techniques. It is very simple 1o implement.

. Algorithm B uses random collections of database items. Hot spots can be diagnosed accu-
rately, quickly, and without using a great deal of space.

o Algorithm C successively refines its diagnosis after each iteration. Like Algorithm B, it is
quick, accurate, and uses little space.

. Algorithm D is simple to implement but difficult to control. It is best suited to the diag-
nosis of short-term, very hot hot spots.

We have begun to test these ideas in several applications. One involves devecting correla-
tions between items in reference strings. Specifically, we might like to determine which items are
frequently referenced after item ¢, for all . A second application involves automatically selecting

disk blocks for replication, so that access times can be reduced.

References
[Ba87] Baclawski, K. “A Stochastic Model of Data Access and Communication,” Technical
Report NU-CCS-87-8, Northeastern University.
[G285] Gawlick, D. “Processing of "hot spots" in high performance svstems,” Proceedings
of COMPCON'85 1985
[GaKi85] Gawlick, D., and D. Kinkade. “Varieties of concurrency control in IMS/VS Fast
Path,” JEEE Bulletin on Data Engineering, 8(2) pp. 3-10. June, 1985.
|On86] O’Neil, P. “The escrow transactional method,” ACM Transecitons on Database Sys-
tems, 11(4) pp. 405—430. December 1986.
[Ou835] Ousterhout, J., et al, “A Trace-Driven Analysis of the UNIX 4.2 BSD File System”,
Proc. 10th Symposium on Operating Systems Principles, ACM, pp. 15-24, 1985.
Re82! Reuter. A. “Concurrency on high-traffic data elements.” Proceedings of the first
ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pp. 83-92, March 1982.
'Sagl’ Salem. K.. “Adaptive Prefetching for Disk Buffers.”” TR-81-46. CESDIS. Goddard
Space Fiight Center. Code §30.5. Greenbelt. MD. January, 1981.
:St88 Staeiin, C., “Fiie Access Patverns,” CS-TR-176-8%. Dept. of Computer Science,
Princeton University. Princeton. NJ, Sept. 1988,
‘'Wig9" Wilmo:. R.. “File Usage Pattersn from SMF Data: Highly Skewed Usage.” Proc.

CMG ’86. Renc. NV, December, 1989.

Appendix A

We will show here how o approximate P, mp(w,s), the probability that a counter with
weight w is hot after a sample of length ¢. Let us define a random variable A as follows:
1 with probability w
0 with probability 1 — w
whose variance is denoted ¢ § = w—w®. Here, X represents the result of an experiment determin-
ing whether the counter is incremented because of an arbitrary reference in the reference string.

Let Z, be sX, the value of the counter after a sample of size s (assuming an initial value of zero).

Define

L Zy—sw
Z= lim %
E—00 5§05

By the central limit theorem, Z has the standard normal distribution. So, for large &, we can
approximate P,omo(w,s) = Prob|Z, > sT) by Probls*(w—v?)Z + sw > T}, giving

sT—sw)

Pmmp(w:‘s) =1- ¢’(m

where @ is the cumulative standard normal distribution.

Appendix B

We are interested in an experiment in which n weighted items are chosen from a set of (at
least n) items whose weights have 2 mean of p and variance c*. In particular, we would like to
find an expression for Y{w,n,u,0), the probability that the sum of the weights of the chosen items

1s w or less.

Since the items are selected without replacement, an exact determination of 1 is very
difficult. However, if the database is large (relative to n), then selection with replacement will
approximate selection without. Intuitively, when the database is large, the probability that an
item will be selected more than once {when selection is made with repiacement) becomes very
smzl. In the foliowing. we will assume seiection with replacement.

Let X represent the weight of 2 single element selected from the database, and X, the sum
of the weights of n selections. Since the selections are made independentiy and with replacement.
X, is the sum of n independent random variables each with mean g and variance ¢=. The cen-

tral limit theorem indicates that the distribution of X approaches normal as n tends to infinity.

Procecding as in Appendix A, we can approximate Yw.nu.0) by Probn*e Z + np < w,. where
7 has the standard normal distribution. So, under the assumption that n is large, vet small rela-

tive to the database size, we have

w-n,u)

Ywn,pu,o)= ¢ ncr
"

which can be determined numerically or from a tabulation of the standard normal distribution.

Appendix C

We are given a set of N weighted items. The sum of the weights is W), and their variance
is 0. Item i, with weight p;, is selected from the set. We wish to determine g and 0, the

mean and variance of the weights of the remaining N—1 items in the set.
Clearly, py = Wi/ Nand p” = (Wy,—p;)/ N—1, so we have:

b . N " Pi
B Nl TR)

The variance is a little trickier. By definition, we have:

2 1 2 2
0} L < B
N=1 3 3

Expanding gives:

W '1.:1:— 2Wppi= P:?
(N=1)

1 0 Wio—pi E o
ot = T [1\-’—1]' ;

J=i

Since

our expression becomes

H.ta:2 p;\ H"w::_?u.ulpi"' (P:’}:
N=1'"7 0 NF N (N=1¥

For N> 1 and W,,. = 1. the expression simplifies to

2p;—Npf

R

Appendix D
We want to compute the probability of having no urn with w or more balls when distribut-
ing B balls over U urns. Let N, be the total number of wavs of distributing B balls into U urns.

Then

*Nlo: = 1B

B+U—1]

Now, let N,(k) be the number of ways of distributing B balls into U urns in such a way that k
urns end up with w or more balls. Let N, = N,(0), i.e., the number of ways of distributing the
balls so that no urn ends up with w or more balls. According to the principle of inclusion-

exclusion, we have:

3
Ny = N+ 25 (=1)F No(k)
k=1

where

Furthermore, N, (k) can be expressed as:

) U)g=be [z 4+ k=1 B-lhuw—-—z<0U-k=-1
Nul(k) = k| |2 B-iw-r=

In the last equation, z represents the number of balls above kw that are placed in the
selected urns. The first term in the sum represents the number of ways of placing these z balls
in the k selected urns, while the second term represents the number of ways of placing the

remaining balls in the remaining urns. The desired probability is then given by N,/ Nt

Figure ! - Algorithm A

Froparility of Not Reporiing & Ke: ltem

iler

Reperiing o Loic

10

Figure 3 - Algoritho B

Probability of Reporting & Cold ltem

Figure 5 - Algorithm B

probability ef Reporting 2 Cold Item

Figpure € - Aigorithm C

Frobaz...iy ! Kot medizi.ns & rFii lte-

Figure 7 - Algorithm C

Probability c¢f Reporting a Cold Item

Figure & - Algorithz T

Propapiiity cf Not keporting a ho: lItem

Figure 9 - Algorithz D

Frobabil:ztv an ltex is Reported

reo|reported)
e

o
m

-
-
———

S
L]

Prob{error)

Prob
Prob|cold item reported)]
0.4
0_3--
Prob|hot item not reported)
c.2+
<+ s = 100
uad G =2
T= 0.5
2 4 6 B 16
Figure 11 = Algorithm D
;:f: Froblerres
|
. ‘i Probicolc iter reportec)
]
i
|
b=
|

TIEUTE .l = ALpETIIRZ

