Callee-save Registers
in Continuation-passing Style

Andrew W. Appel*and Zhong Shao'
CS-TR-326-91

Department of Computer Science
Princeton University

August 1991

Abstract

Continuation-passing style (CPS) is a good abstract representation to use for compilation and opti-
mization: it has a clean semantics and is easily manipulated. We examine how CPS expresses the saving
and restoring of registers in source-language procedure calls. As CPS-conversion is usually written, the
context of the calling procedure is saved in a “continuation closure”—a single variable that is passed as an
argument to the function being called. This closure is a record containing bindings of all the free variables
of the continuation: that is, registers that hold values needed by the caller “after the call” are written to
memory in the closure, and fetched back after the call.

Consider the procedure-call mechanisms used by conventional compilers. In particular, registers holding
values needed after the call must be saved and later restored. The responsibility for saving registers can
lie with the caller (a “caller-saves” convention) or with the called function (“callee-saves”). In practice, to
optimize memory traffic compilers find it useful to have some caller-saves registers and some callee-saves.

Clearly the usual translation into CPS is a caller-saves convention. We explain how to express callee-
save registers in Continuation-Passing Style, and give measurements showing the resulting improvement in
execution time.

*Supported in part by NSF Grant CCR-9002786.
TSupported in part by NSF Grant CCR-8914570.

1 Introduction

A compiler that uses a good abstract representation
(like A-calculus) as a basis for compilation can per-
form program transformations and optimizations
with a free hand; the clean semantics of the ab-
stract representation free the optimizer from too
much worry about the technical details of storage
allocation, etc. On the other hand, real compilers
must deal with all the nitty-gritty of modern ma-
chines: a fixed number of fast registers instead of an
unbounded name space; the necessity to save reg-
isters when changing environments at a procedure
call, and so on. It is not always easy to reconcile
these different aspects of compilation.

What can easily happen is that the “abstract” op-
timizer will be unaware of low-level representation
decisions, so that it loses the chance to optimize
them; but the “concrete” optimizer that decides
register-allocation issues will be bound by rigid con-
ventions and bad decisions of the abstract opti-
mizer.

A good example of a semantically clean ab-
stract language that makes many kinds of high-level
optimizations easy is Continuation-Passing Style
(CPS). As first used in compiling by Steele[17], CPS
was largely divorced from low-level representations:
its target machine was a Lisp compiler. The OR-
BIT compiler of Kranz et al[13] is organized so that
the variables of the CPS language correspond di-
rectly to registers or to memory locations (fields of
closures), and the optimizer can tell which is which,
enabling more intelligent decisions about program
transformations. The transformational compiler of
Kelsey and Hudak[12], and the Standard ML of New
Jersey compiler[4, 3], refine this notion further so
that the “abstract” optimizer can control represen-
tation decisions while still staying within the orig-
inal, semantically clean and powerful Continuation
Passing Style.

Our claim is that the functional style of CPS
can simply and powerfully express the low-level de-
tails of register allocation, saving and restoring of
registers at procedure calls, and parameter-passing
conventions. Optimizations and conventions used
by “conventional” compilers should also be usable
by “continuation-passing” compilers without mak-
ing the CPS language ugly or more complex.

In this paper we demonstrate that optimization
of register saving and restoring at procedure calls
can be expressed within Steele’s original CPS lan-
guage; this improves the already-efficient code gen-
erated by the Standard ML of New Jersey compiler

by about 7% on a MIPS and 18% on a SPARC.

2 Callee-save registers

A conventional compiler on a conventional ma-
chine will often use registers to hold local variables
and temporaries (e.g. internal nodes of expression
trees). When one procedure calls another, both
procedures may use the same registers for differ-
ent purposes, and there must be some convention
for saving the registers and restoring them. For
example, it could be that the calling procedure
(the “caller”) must assume that the procedure it
calls (the “callee”) may put any values in registers
without preserving the original values; therefore the
caller must save registers (copy them into memory)
before the call, and restore them (copy them from
memory) after the call. This is a “caller-save” con-
vention. On the other hand, it could be that the
callee is responsible for leaving registers exactly as
it found them; therefore, if the callee wants to use
some registers for temporary values, it must save
them prior to use and restore them before return-
ing. This is a “callee-save” convention.

Which approach is preferable? Consider tempo-
raries that hold the internal nodes of expression-
tree evaluation. Since most procedure calls occur
outside of expression trees, the registers that hold
these temporaries are “idle” at the time of a proce-
dure call—the caller does not care if their contents
are lost. Therefore, a caller-save convention is best
for such registers.

On the other hand, consider a small “leaf”
procedure—one that does not call other procedures,
and which uses very few registers before returning.
If the caller wanted to preserve several local (reg-
ister) variables across the call, then under a caller-
save convention they would have to be written to
memory before the call and read from memory af-
terwards, even though the leaf procedure does not
modify them. In this case, a callee-save convention
seems best.

In practice, compiler-writers have opted to have
some of each. The Berkeley C compiler for the
VAX, for example, uses 6 caller-save and 6 callee-
save registers (in addition to 4 special-purpose reg-
isters like the stack pointer, frame pointer, etc.).
With a mixed caller/callee-save convention like this,
variables not needed after the call can be put in
caller-save registers and not saved at all; leaf pro-
cedures can use caller-save registers to the extent
possible. Though the use of caller- and callee-save

registers seems to be a very old part of lore of com-
pilers, it appears that only recently have compilers
attempted to optimize the placement of variables
into caller- and callee-save registers|8].

3 Continuation-passing style

Continuation-passing style (CPS) is a language sim-
ilar to A-calculus, but which closely reflects the
control-flow and data-flow operations of a von Neu-
mann machine. As in M-calculus, functions are
nested and variables have lexical scope; but as on a
von Neumann program, order of evaluation is pre-
determined—there is no useful distinction between
normal-order and call-by-value, for example.

V. — wvariable

I — inleger constant

P — arithmetic operator

A — V

A — T

F - V(V,V,...,V) = FE

F'— Fand F

E — letvalV = (A A ...,A) in E end
E — 1letvalV = select{l,A)in E end
E — letvalV = offset(/,A)in E end
E — letvallV = P(A,....4)in E end
E — let fun F in E end

E — A(4,4,...,4)

Figure 1: Abstract syntax of CPS

For the purposes of this paper, we will ex-
press CPS using ML notation, albeit severely
constrained—see figure 1. An atom A can be a
variable or a constant; a record can be constructed
out of a sequence (A4, A,...;A) of atoms. If an
n-element record is bound to a variable v using
let val v = (Ag,...,As-1) in E end, then any-
where in the subexpression E the i*" field may
be fetched using select(i,v); but (as the syntax
shows) the result must be bound to a variable, not
used as an arbitrary subexpression. The syntax for
building records, selecting fields, applying primitive
arithmetic operators, and defining mutually recur-

sive functions (fun) must specify a continuation ex-
pression £ that will use the result.

On the other hand, function application (shown
in the last line of figure 1) does not specify a con-
tinuation expression—functions never return in the
conventional sense. Instead. it is expected that
many functions will pass a continuation function
as one of their arguments. This function can be de-
fined in the ordinary way (by fun), and will presum-
ably be invoked by the callee in order to continue
the computation.

Variables in ML (and in this continuation-passing
style) are pure values; they cannot be updated by
side-effect operations. Side effects in ML (and in
this CPS) are possible on the mutable store, which
we will not discuss here.

The offset operator performs simple pointer
arithmetic (for use with shared closures, as will be
explained below): val w = offset(i.v) binds w
to a record similar to the record value v, except that
the j* field of w is the same as the (i + j)™ field of
v.

Continuation-passing style has several advan-
tages as an intermediate representation for an op-
timizing compiler [17, 14, 4]. Because it has sim-
ple static scope, in-line expansion of functions (f-
reduction) is very simple to express as are constant-
folding and other partial evaluations, common-
subexpression-elimination, dead variable elimina-
tion, loop optimizations, and function calling-
sequence tuning.

An example

fﬁ'hix) =X * W
fun f(g,y) = gly) + h(z)
val i = (£,1)

let fun m(n) = n+t

val p = f(m,1)
in ...p+m(e)...
end

Figure 2: An example : ML source code

Consider the program fragments in figure 2. After
translation into continuation-passing style, we have
the code in figure 3 (the detailed translation rules
are described in [17, 14]).

fun h(x,d) =

let val t1 = x *x w
in d(t1)

end

fun f(arg,c) =
let val g = select(arg,0)
val y = select(arg,1)
fun j(a) =
let fun k(b) =
let val t2 = a+b

in gl(t2)
end
in h(z,k)
end
in g(y,j)

end
val i = (f,1)

let fun m(n,r) =
let val q = n+t
in r(q)
end
fun s(p) = ...p...m...e...
val u = (m,1)
in f(u,s)
end

Figure 3: An example: CPS code

There are two kinds of functions in our CPS code.
One is continuation function which is introduced in
the CPS conversion phase, e.g. j, k, s. We call
all non-continuation functions user functions. Con-
tinuation variables are all those formal parameters
introduced in CPS-conversion to hold continuation
functions: d, ¢, j, k, r and s. Functions such as
f,j,k and m are called escaping functions if they are
passed as arguments or stored in data structures so
that the compiler can’t identify all the places where
they are called. All functions that do not escape are
called known functions, e.g. h. We can do extensive
optimizations on known functions since we know all
their call sites at compile time.

The CPS code always satisfies the following prop-
erties:

o All escaping user functions have two argu-
ments, one is the standard argument (note that
an n~tuple is considered to be one argument, as

in) and the another is the continuation argu-
ment.

e All escaping continuation functions have one
argument.

e Known functions may have an arbitrary num-
ber of arguments after extensive continuation-
based optimizations[4, 3].

4 Closure representations

Continuation-passing style is meant to approximate
the operation of a von Neumann computer; each
operator of the former corresponds to one (or at
most a few) instructions of the latter. Selecting the
i*® field of a record in the CPS is like a fetch with
constant offset on a computer.

A “function” in machine language is just an
address in the executable program, perhaps with
some convention about which registers hold the
parameters—very much like a “jump with argu-
ments.” The notion of function in the CPS is almost
the same: the structure of CPS expressions is that
a function application is the last thing a function
does; the result of a function application is always
the result of its parent expression. Thus the func-
tion application is also a “jump with arguments.” If
a “return” from a procedure (in the usual sense) is
desired, then a continuation function must be made:
one of the arguments to the called function will it-
self be a function ¢; the called function is expected
to call ¢ with its result.

However, the function definitions of continuation-
passing style are a bit more powerful than those
of conventional computers. Function definitions in
CPS have nested static scope; if the function f is
statically nested inside the function g, then f can
refer to the variables of g. We say that these are
free variables of f. The notion of a function as
a machine-code address does not provide for free
variables.

The usual solution to this problem is to repre-
sent functions as closures [15]. A function with free
variables is said to be open; a closure is a data struc-
ture containing both the machine code address of an
open function, and bindings for all the free variables
of that function. The machine-code implementation
of the function knows to find the values of free vari-
ables in the closure data structure.

Let’s return to the example in figure 3. Now,
the function m is passed as an argument to f; the
function k is passed to h, and so on. Each of these

functions has free variables (1 is a free variable of m,
a and c are free variables of k). The implementation
must represent k using some data structure that
contains the machine code for computing a + b and
also contains the values for a and c.

When g is called from within f, the machine-code
pointer must be extracted from the closure, argu-
ments ¥ and j must be put in registers. and the
jump (to m) must be made. But m must also be
able to access its closure; so it is important that the
closure-pointer g (which is really m) be placed in
a standard register before the jump—in effect, the
closure-pointer is an extra argument to the func-
tion. Then m can extract free variables through
this pointer. The format of the free variables in the
closure need not be standardized: the creator of
the closure (at fun m(n,r)...) and the code that
extracts free variables (at n+t) need to know the
format, but the caller (at g(y,3)) need not know
where they are. or indeed how many there are. How-
ever, the location of the code-pointer within the clo-
sure must be standardized so that the caller can find
it and jump to it. A typical representation puts the
code-pointer at field 0 of the closure-record, and
the free variables at other offsets from the closure
pointer, perhaps in a linked list of closures.

One interesting trick [13, 5] is to let several func-
tions share a single closure. The functions m and s
might ordinarily be represented like this:

m —— o&———» machine code for m
t

S —» P—— machine code for s
—
e

The closure for m has the value for the free vari-
able ¢; the closure for s has free variables m and
e.

Now consider this data structure:

e————>» machine code for m

e——1—»machine code for s

t

The value s is really a pointer to the middle of
the closure record! The caller of s does not know
this, however, and when it extracts what it thinks
is field 0, it gets (correctly) the code-pointer for
5. Of course, the machine code functions m and
s must know the closure format; in particular, s
derives the closure-value m by subtracting from its
own closure-pointer, without a fetch! (This is the
use of the mysterious offset primitive of the CPS.)
Since there is some overhead for record creation—
creating a record of size n costs Bn -+ C operations,
for some B and C—the closure-sharing trick is quite
useful; in this case there is a savings of B + C per
instance of m/s.

Notice that h is never passed as an argument; it
appears in the expression hi{z.k) in function posi-
tion. Since we know all the call sites, we can choose
the representation of A more freely; for example, we
could require all the callers to pass the free variable
w as an extra argument, so that no closure at all is
required.

In general, escaping functions must be com-
piled using a standard closure mechanism: known
functions can use cheaper, more specialized
representations[17].

5 Closure-passing style

Some compilers[17, 7, 13] perform these closure
analysis as part of their translation from lambda
calculus or continuation-passing style into machine
code. But it is useful to separate the closure-
introduction from machine-code generation so that
the compiler is more modular[12, 4]. Thus, we
will represent closure creation and use in the
continuation-passing style itself; each closure will
be an explicit record of the CPS. Qur example—as
transformed into closure-passing style—is shown in
figure 4

After closure-conversion, the function k is now a
closure-record; k' is a function without free vari-
ables, which can thus be represented as just a
machine-code pointer; the formal parameter k' will
be bound to k by any caller.

The function h is known, so does not need a clo-

fun h(x,d,w’) = let val t1 = be -4
val d’ = select(d,0)
in:d*(d.t1)
end

fun £°(f°’,arg,c) =
let val g = select(arg,0)
val y = select (arg,1)

f'l.lI] j:(j:a,a)=
let fun k’(k’?,b)=

let val a = select(k’’,1)

val v = a+b

val ¢’’ = select(k’?,2)
val ¢’= select(c’’,0)

in c¢’(c’’,¥v)
end

val ¢’’’= select(j’?,1)
val k = (k’,a,c???)
val z’ = select(j’’,2)
val w’’ = select(j’’,3)
in h(z’,k,w’?)
end

val v = select(f’’,2)
val z = select(f’’,1)
val j = (j’,c,z,w)
val g’ = select(g,0)
in g’ (g,y,3)
end

val f = (f’,z,w)
val i = (f,1)

let fun m’(m’?,n,r) =
let val t = select(m’’,2)
val q = n+t
val r’ = select(r,0)
in r’(r,q)
end
fun =°(s’?,p) =
let val e = select(s’?,2)
val m = offset(s’’,-1)
b5 AR 1 S SR
end
val m = (m’,s’,t,e)
val s = offset(m,1)
val u = (m,1)
in F2(E,n,8)
end

Figure 4: Closure-passing style

sure; however, its free variable w must be passed as
an extra argument w'; this in turn means that w
is a free variable of f. If f were known, w would
become an extra argument; but since f escapes, w
goes into its closure. ;

The original function J made two subroutine
calls, to g and h. Neither of these was a tail-call,
so each call requires a continuation to be made, re-
spectively j and k. Each continuation requires a
closure. Thus the execution of f requires the con-
struction of two closures of size 3 and 4, for a total
cost of 7B + 2C. It would be nice if J and k could
use the closure-sharing trick, but they cannot: the
variable a is free in k but bound by 4, so it cannot
yet exist when the closure for J is made but must
exist when k is created.

6 Callee-save registers in
CPS '

In a sense, when f calls g it saves all the registers
it might need after the call in the closure Jj. This
is clearly like a caller-save convention. It might be
nice to have some callee-save registers where values
could be kept; the trick is to express this kind of
convention in continuation-passing style.

6.1 Basic ideas

What we will do is to give every function n extra
arguments. We will require that each “user” (non-
continuation) function f must pass these arguments
to its continuation ¢, when f (or some function that
[calls) eventually calls c. Thus, these extra argu-
ments will behave like callee-save registers.

Another way to look at our new callee-save con-
vention is that each user function will be passed a
continuation, as before, but now a continuation is
represented using n + 1 actual parameters. One of
these parameters will be the code pointer; the oth-
ers will be free variables of the continuation. Let us
consider the function f from our previous example,
letting n = 3:

fun £°(f’’,arg,c0,c1,c2,c3) =
let . . .
c0(v,c1,c2,c3)
end

Instead of a single continuation-argument ¢, now
f gets four arguments Co, €1, C2, ¢3, of which ¢p is the
machine-code pointer. When f eventually returns
(actually, it is k that calls the continuation-function

c), the variables ¢;, ¢a. c3 are passed as extra argu-
ments to ¢g, along with the “result” ¢» of the com-
putation. Thus, the caller of f can put values into
the arguments ¢, ca, ¢z that it will need after f re-
turns; it need not put those values into a closure-
record in memory, with the expense of feteh and
store instructions.

This is the entire essence of our callee-save rep-
resentation. What remains is our method for orga-
nizing the closure-conversion algorithm to make use
of this convention to best advantage. The main ad-
vantage is enhanced closure-sharing; figure 5 shows
our new representation of the function f and h.

fun h(x,d0,w’,d1,d2,d3) =

let t1 = x*w’
in d0(t1,d1,d2,d3)
end

fun £’(f’’,arg,c0,c1,c2,c3) =
let val g = select(arg,0)
val y = select(arg,1)

fun jo(a,ji1,j2,3j3) =
let val z’ = select(j1,3)
in h(z’,k0,j2,j1,2,3j3)
end
and k0(b,k1,k2,k3) =
let val v = k2+b
val c0’ = select(k1,0)
val ¢1’ = select(k1,1)
val c2’ = select(k1,2)
in ¢0’(v,c1’,¢27,k3)
end

n

val w = select(f’?,2)
val z = select(f’’,1)
val u = (c0,c1,c2,2)
val g’ = select(g,0)
in g’(g,y,j0,u,w,c3)
end

Figure 5: Using 3 callee-save registers

Now the value w—needed by h—is passed as
an argument (in a register) to g, from there to jg
(where it’s called js), then to h, without ever being
stored into a closure. The variable a is passed from
Jo to h and then to kg in a register. so that now k
and j can share a closure u. Note that some of the
variables passed as callee-save arguments are ordi-
nary variables (like w and a), and some are closure-
records (like u): the compiler has great flexibility in

|

using one or more of the callee-save registers to pass
closure-records if necessary.

What we have achieved is that the functions j
and & now share a closure, for a cost of 4B + C
instead of 7B + 2C'. The fact that a is free in k and
bound in j is no longer a problem, since a is passed
from j to k in a callee-save argument (k»).

Actually we can do even better than this. Since
z and w are also free variables of function f, con-
tinuations j and k can directly grab the closure £
so that we only need build a closure with ¢0, el and
¢2. Thus our cost is only 38 + C:
fun £’ (f’’,arg,c0,c1,c2,c3)

let
val u = (c0,c1,c2)
val g’= select(g,0)

in g’(g,y,j0,u,f’’,c3)

end

In general, the new representation for continua-
tions will save time and space when one function
makes two or more non-tail calls. In the CPS rep-
resentation, the continuations for these calls will be
nested. The callee-save convention allows the con-
tinuation functions to be un-nested and to share a
closure. Since all continuation functions are nested
in some other user functions. the new representation
for continuations can take advantage of the closure
of the enclosing user functions if they happen to
have some free variables in common, thus decreas-
ing the cost of closure record constructions.

6.2 Strange continuation variables

As careful readers may have noticed, our mechanism
will not work in the presence of first class continua-
tions such as those introduced by call/cc and ML ex-
ceptions. A continuation may be put into a record,
registered as an exception handler, stored into some
reference cell, or passed as a “non-continuation” ar-
gument of an escaping user function. In the CPS
code before closure conversion, we say a continua-
tion variable is well-behaved if all of its occurrences
appear at the following positions:

o the second argument of escaping user functions;
e any argument of known functions;
e in function position, like g in g(y).

All continuation variables that are not well-behaved
are called sirange continuation variables. In the ex-
ample in figure 3, all continuation variables are well
behaved.

To make our new schemes work correctly, we’ll
eliminate all strange continuation variables by
transforming them into well-behaved continuation
variables. First by using classical dataflow algo-
rithm we can easily identify all continuation vari-
ables. Then for every strange occurrence v as in

l.val r = (...,v,...) where v is put in a

record;

2. k(v) where an escaping continuation function
k is applied to v;

3. £(v,k) where an escaping user function f is
applied to (v,k);

4. sethdlr(v) where sethdlrisa primitive op-
erator that registers v as an exception handler;

we define a new function u as fun u(x,c) = v(x)
and substitute u for v:

1. let fun u(x,c) = v(x)
inval r= (...,u,...)

2. let fun u(x,c) = v(x) in k(u)
3. let fun u(x,c) = v(x) in f(u,k)
4. let fun u(x,c) = v(x) in sethdlr (u)

so v is now well-behaved and w is just treated as an
escaping user function.
For every strange occurrence v in

A. val v = select(r,i);

B. fun k(v) = ...
tinuation function;

where k is an escaping con-

C. fun f(v,k) = ...
user function;

where f is an escaping

D. val v = gethdlr() where gethdlr is a
primitive operator that grabs the current ex-
ception handler;

we substitute u for v and redefine v as a
well-behaved continuation function by fun v(x) =
u(x,0), ie.,

A val u = select(r,i); fun v(x) = u(x,0)
B. fun k(u) = let fun v(x) = u(x,0) in
C. fun f(u,k) = let fun v(x) = u(x,0) in

D. val u = gethdlr(); fun v(x) = u(x,0)

Here since the 2nd argument of u will never be used,
we simply supply a 0. So v is well-behaved at these
occurrences.

We can use similar methods to make every known
function have at most one continuation argument.
Thus we obtain well-formed CPS expressions that
satisfy the following conventions:

» All escaping user functions will have two ar-
guments, the first one is the standard non-
continuation argument and the second is al-
ways a well-behaved continuation variable.

» All escaping continuation functions have only
one, non-continuation, argument.

® Each known function has an arbitrary number
of arguments but at most one of them is a con-
tinuation variable.

The well-formed CPS expression will be fed into the
closure-conversion phase.

Now that we know a continuation variable can
only appear at certain places, we can simply use
K actual parameters to represent each one as long
as this number is consistent throughout the whole
program.

6.3 Closure conversion strategies

To call a function, the actual parameters of the call
must be put in registers first. Certainly if we have
more actual parameters, more will be put in reg-
isters. Free variables of a known function can all
be treated as extra actual parameters; unless the
number of free variables is larger than the number
of registers available on the target machine, so that
we have to spill some of them into a closure. We
can do such transformations at compile time.

The behavior of an escaping user function is not
known at compile time. Because it might be put
into and extracted from records etc., we can only
use one single variable (i.e. the closure) to repre-
sent both the code pointer of the function and all its
free variables. For escaping continuation functions,
their call sites are not all known but they must be
well-behaved in the sense defined in the previous sec-
tion.

We can now add a fixed number of parameters
to each continuation function definition. The con-
tinuation function closure now is represented by
one code pointer plus n extra variables (n must be
same throughout the program but could be arbi-
trary from 1 to the maximum number of registers

available in the target machine). These n extra vari-
ables behave just like callee-save registers. We de-
note them as ry,79,..., .

Now every escaping continuation function will
have n+1 arguments: the “return value” and the
callee-save registers. Every escaping user function
will have n+3 arguments (the closure record, the
original (source-language) argument, the continua-
tion code-pointer, and the callee-save registers). All
escaping functions use same calling conventions, so
a fixed set of n + 1 registers can thus correspond
to those n + 1 parameters for continuation code-
pointers and callee-save registers.

All of the free variables of a continuation func-
tion must be accessible from the callee-save reg-
isters; this is the only “context” available to the
function. But there will usually be more free vari-
ables than callee-save registers—especially because
the free variables usually include the n callee-save
registers of the enclosing continuation! Thus, one or
more of the callee-save parameters must be closure
records containing several free variables each.

To implement the callee-save approach, we must
have an algorithm to decide how to arrange the
free variables: some go in closure records and some
can go directly in the callee-save parameters. Our
choice will affect the number of continuations that
can share closures (i.e. the number of closures built)
and the size of closure records.

Our algorithm is not too complicated. We tra-
verse the tree of nested functions (user and con-
tinuation), considering each node (set of mutually-
recursive functions) in top-down order.

Note that the definition of a continuation func-
tion may be in the same set of mutually-recursive
functions as a user function, though this is rare
(it results from transformations done in previous
phases of the compiler). In this case we simply
make an ordinary closure containing the all free
variables of all the functions in set. This is used
as the closure-argument to user functions and as
one of the callee-save arguments to the continua-
tion function.

The more typical case is that we have an indepen-
dent function definition of a single continuation.

We look to see if this continuation can use callee-
save registers to avoid the need for a new closure.
Consider a continuation k with a set F of free vari-
ables. The definition of k is lexically nested inside
the definition of some other function p, which has
closure(s) Oy, Ca. If there is some set S of the
C; that efficiently cover F, we do not need a new

continuation. That is, if

S|+ IF—UCH < n

i€S

This says that the number of closures in S, plus the
number of variables in F not covered by S, is not
more than the number of callee-save registers. So
the callee-save registers passed to k will hold the
closures of S plus any free variables not covered by
S. '

Suppose there is no such set S; then we must
make a new closure ', and pass it to k in one of
the callee-save registers. An “aggressive” strategy
would be to put all the free variables of k into C.
This maximizes the chance, lower down in the tree,
some set .S’ (containing C') will cover the free vari-
ables of some other continuation. But it may also
make C' larger than necessary.

We know that C' can contain as few as |F|—=n+1
variables: this is because one of the callee-save reg-
isters must hold the closure C', while the others are
available to hold free variables; those free variables
that don’t fit must go into C'. But which variables
should we put into C', and which into the remaining
n — 1 callee-save registers?

For leaf continuations—those containing no other
continuations nested inside them—our answer is
motivated by the desire to minimize “shuffling:”
Those free variables that are callee-save parameters
of a parent continuation we leave in callee-save reg-
isters, and the remaining free variables go into the
closure. Then when it’s time to invoke the parent,
fewer move instructions will be needed. Of course,
one of the callee-save parameters must go into the
closure to make room in callee-save registers for the
closure-pointer itself.

For non-leaf continuations we want to maximize
the chance that some internally-nested continuation
j can make use of C'. We could do a reverse dataflow
analysis to determine which free variables of k are
free in j; these should go into C'. Or we could just
use the following lazy heuristic:

Suppose k is nested inside some (user or continua-
tion) function p; p’s continuation and callee-save ar-
guments are ag.ds,...,a,. Then the a; are among
the free variables of k. Now, since j must eventually
call k, or call some function that calls k, we know
that the a; must be free in j as well. But the other
free variables of k£ might not be free in j.

So we should prefer putting the a; in the closure,
and the other free variables in callee-save registers.

6.4 Effects on garbage collection

The closures constructed using the callee-save con-
ventions are smaller than those using “old-style”
closure-passing style. Not only are the closure
records smaller, but they keep fewer data structures
live. Therefore we might expect that a copying
garbage collector—which does work only propor-
tional to the amount of live data—will have much
less work to do on callee-save programs.

Regardless of the size of the live data, the callee-
save convention should also create less garbage.
This is because the closure records—which tend
to become garbage quickly—are both smaller and
fewer in number.

7 Register targeting

One would think that increasing the number of
callee-save registers—while holding the number of
caller-save registers fixed—can only improve the
performance of the generated code. But in our ini-
tial implementation this did not seem to be the case.
The problem turned out to lie in the algorithm for
assigning CPS variables to registers of the target
machine.

After CPS-conversion, closure-conversion, and
spill transformation [3], no subexpression of the
CPS representation of the program can have more
than m free variables, where m is the number of
registers (callee+caller save) of the target machine.
To do register assignment, we can traverse the CPS
expression top-down, choosing a register for each
variable-binding in turn. At each binding, e.g.

let val ¢ = a+b in subexzpression end

the free variables of subezpression, except for ¢, have
already been assigned to registers; since there are no
more than m — 1 of them, we can always find some
register to use for c.

No matter which register we pick, we can’t run
out of registers later on. But our choice of register
affects the number of move instructions required
later on: at a function call inside the subezpression,
if ¢ is an actual parameter of the call, we may have
to move it to the register required for the formal
parameter.

We would like to avoid such moves wherever pos-
sible. Before implementing the callee-save transfor-
mation described in this paper, we had three useful
heuristics [3]:

1. Suppose there is a known function f(Z). We
can choose registers in which the z; are to be

10

passed. On at least one of the calls to f, there-
fore, we won’t need any move instructions at
all: we'll just choose the same registers in which
the actual parameters are located. This tech-
nique was used in Kranz’s ORBIT compiler [14].
We can’t do this for escaping functions, which
must have standardized calling conventions.

2. Suppose the function call f(£) within the
subezpression is an escaping function, or a
known function for which we have already de-
termined the assignment of formal parameters.
Then we check whether c is present among the
z;. If so, we can put ¢ directly into the regis-
ter required for the formal parameter, so that
we won't need to move it later—this is called
targeting. We can’t do this if that register is
currently occupied by some other variable, of
course.

3. To avoid the problem alluded to in the previ-
ous sentence, we perform anti-targeting: if we
are choosing a register for a variable-binding d,
and d is not an actual parameter of a subse-
quent function call, we avoid putting d in any
of the parameter registers of f unless we have
no choice.

This set of heuristics had proved very effective.
But with callee-save registers we found that an im-
provement was necessary: What does the targeting
heuristic do for ¢ if it finds a call (inside subezpres-
sion) to a known function f(...,c,...) whose formal
parameter register assignment has not been chosen?
Our heuristics had previously assumed that any reg-
ister could profitably be chosen for ¢. But we now
find it necessary to look within the definition of £
to see whether there is a call g(...,c,...) to a func-
tion g whose formal parameters have already been
chosen; this will help in targeting c¢. The move in-
struction we avoid is not at the call to f, but at the
call to g! Of course, if g is a function whose formal
parameter register assignment has not vet been cho-
sen, we must recur. Usually we'll only recur certain
number of times (we call it targeting depth). As in-
dicated in the following section, depth-4 targeting
can achieve very good results.

What does this have to do with callee-save? Well,
a very common case is that f is a known function,
and g is a escaping function. Then the callee-save
arguments of f should really be targeted to the
callee-save registers required by g. Without this
more sophisticated targeting, the cost of register-
register moves is very high, as shown in figures 6

and 7.

8 Benchmarks

The callee-save register technique was imple-
mented by about 700 lines of ML code. We also
did some minor modifications on the runtime sys-
tem for the new calling conventions for continuation
functions.

We ran eighteen versions of our compiler (Stan-
dard ML of New Jersey) on six different benchmark
programs, on a MIPS 3230 workstation and on a
SparcStation 2. The compilers were:

sml0 The “old-style” closure-passing style

smlt0 The “old-style” closure-passing style but
with depth-4 register targeting

sml2-9 With 2-9 callee-save registers, but only
with basic register targeting.

smlt2-9 With 2-9 callee-save registers, but with
depth-4 register targeting.

The benchmark programs were:

Life The game of Life, written by Chris Reade and
described in his book [16], running 50 genera-
tions of a glider gun.

Yace A LALR(1) parser generator, implemented
by David R. Tarditi [18], processing the gram-
mer of Standard ML.

Lexgen A lexical-analyzer generator, implemented
by James S. Mattson and David R. Tarditi [6],
processing the lexical description of Standard
ML.

Knuth-B An implementation of the Knuth-
Bendix completion algorithm, implemented by
Gerard Huet, processing some axioms of geom-
etry.

Simple A spherical fluid-dynamics program, de-
veloped as a “realistic” FORTRAN benchmark
[9], translated into ID [10], and then translated
into Standard ML by Lal George.

VLIW A Very-Long-Instruction-Word instruction
scheduler written by John Danskin.

Measurements on the machine such as MIPS 3230
became extremely inaccurate because of the cache
effects. If we changed the location of the compiled
code and the layout of the data space, the running
time of the program could vary by 5% to 20% even

11

though the same number of instructions is executed
[3]. So we also measured instruction counts on the
MIPS.

We found that two callee-save registers worked
best on the MIPS. and three on the SPARC.
Figure 6 gives the total running time (including
garbage collection time) and instruction counts
(not including garbage collection) by the compil-
ers sml0, smlt0, sml2, smlt2 on the MIPS 3230
workstation. Figure 7 gives the total running time
of six benchmarks by the compilers sml0. smlt0.
sml3. smlt3 on a SparcStation. The instruction
counts given in Figure 6 didn’t reflect the running
time very well mainly because of the different in-
struction mixes in each situation. The callee-save
techniques eliminated a lot of store and load in-
structions but introduced more move instructions
(register shuffling) because we stored many free
variables in registers instead of on the heap. More
advanced register targeting techniques greatly de-
creased the number of move instructions in sonie
cases such as Knuth-B. In Figures 8 and 9, we plot-
ted the running time changes over the number of
callee-save registers with depth-4 register targeting
on the MIPS and the SPARC. Complete measure-
ments are given in figures 10-13.

If there are more than 5 callee-save registers,
the performance suffers: this is probably because
more and more data are spilled into closures since
we have fewer registers available for non-callee-save
purposes, it also could be because we have more
and more register shuffling as we use more callee-
save registers. Life doesn’t have significant speed-
up because it has very few nested continuations.

In figures 10-13 we list the execution time,
garbage collection time and total time of running
sml0, smlt0. sml2-9, smlt2-9 on all six bench-
marks on both MIPS 3230 and SparcStation 2.

It turns out that both the compiled code and
the garbage collection are sped up by using callee-
save registers. In some cases, the garbage collection
speeds up by a greater factor; in other cases, the
compiled code.

Measurements of garbage collection time are very
much dependent on heap size. For each benchmark.
we used a heap of approximately 5 times the amount
of live data when compiled by the sml0 compiler:
then the same heap size (regardless of the amount
of live data) for the callee-save versions. We use an
efficient two-generation collector[2].

sml0 smlt0
time | icount time | icount | speedup
life 19.64 | 147578 19.51 | 147437 0.67%
Yacc 5.87 | 78875 6.08 | 78389 | -3.58%
Lexgen 16.87 | 125186 17.25 | 123160 | -2.25%
Knuth-B || 16.27 | 223043 15.17 | 219778 | 7.25%
Simple 50.46 | 811066 50.82 | 800577 | -0.71%
| VLIW || 35.29 | 362294 35.63 | 361355 | -0.96%
sml2 smlt2
time | icount | speedup | time | icount | speedup
life 19.13 | 148673 | 2.67% | 19.12 | 148514 | 2.67%
Yacc 5.40 | 72235 | 8.70% 533 | 71588 | 10.1 %
Lexgen 15.93 | 117875 5.92% 15.41 | 114714 9.47%
Knuth-B || 15.66 | 234495 | 3.90% | 15.65 | 225204 | 3.90%
Simple 45.79 | 769750 | 10.2 % | 46.84 | 768252 | 7.72%
VLIW 32.51 | 351137 | 8.55% | 32.96 | 348986 | 7.07%

Figure 6: MIPS 3230—running time in seconds, instruction counts in 1000’s, and speedup of running time

relative to smlo.

sml0 smlt0 sml3 smlit3
time || time | speedup || time | speedup || time speedup
life 27.72 | 27.29 | 1.57% | 26.87 3.4% 26.55 4.4%
Yacc 9.22 | 8.88 | 3.82% 7.31 | 26.1% 6.88 | 34.0%
Lexgen 20.72 || 20.78 | -0.29% || 18.23 | 13.7% | 18.17 | 14.0%
Knuth-B || 23.66 || 24.30 | -2.70% || 22.10 7.1% 21.96 7.7%
Simple 70.77 || 71.93 | -1.64% || 58.54 | 20.9% | 58.35 | 21.3%
| VLIW | 5188 | 4492 | 155 % | 42.44 | 22.2% | 41.58 | 248%

Figure 7: SPARC—running time in seconds and speedup relative to sml0.

9 Conclusions

Most continuation-based compilers[17, 13, 12] per-
form escape-analysis on closures to see which ones
can be allocated on a stack. The idea is that the
explicit deallocation (popping) of these closures is
cheaper than garbage collecting them. While we
have argued that there is no inherent lower bound
on the cost of garbage collection[1], clearly in real
systems there is still some overhead (as figures 10~
13 show). On the other hand, the use of a run-
time stack has some serious disadvantages, adding
to the complexity of the runtime system—especially
when an efficient call-with-current-continuation is
needed[11].

Our new callee-save technique is a good alterna-
tive to stack allocation. The closures merged to-
gether by our method (thus saving on heap allo-
cation) are roughly the same ones that would be
stack allocated in the “traditional” method, for a
similar savings; but with our method, there is still

12

no runtime stack and call/cc is still constant-time.

Our new callee-save version of compiler generates
code that runs up to 34% faster than the old ver-
sion on the benchmark Yacc. On the “real world”
benchmarks (Yacc, Lexgen, Knuth-B, Simple,
VLIW), our new version achieves a performance
improvement over the already-efficient code gener-
ated by the old compiler—about 7 percent improve-
ment on the MIPS and 18 percent on the SPARC.

References

[1] Andrew W. Appel. Garbage collection can be
faster than stack allocation. Information Process-
ing Letters, 25(4):275-79, 1987,

[2] Andrew W. Appel. Simple generational garbage
collection and fast allocation. Software— Practice
and Ezperience, 19(2):171-83, 1989,

[3] Andrew W. Appel. Compiling with Continuations.
Cambridge University Press, 1992.

BTt e

life

o

® vacc

* lexgen

* knuth-B

¢ simple

4 viiw

OO T T T T T T T T
0 1 2 3 4 5 6 7 8 9

Number of Calleesave Registers

Figure 8: Execution time as a function of the num-

ber

[4]

(6]

(7]

(8]

[10]

of callee-save registers on MIPS 3230

Andrew W. Appel and Trevor Jim. Continuation-
passing, closure-passing style. In Sizteenth ACM
Symp. on Principles of Programming Languages,
pages 293-302, New York. 1989. ACM Press.

Andrew W. Appel and David B. MacQueen. A
Standard ML compiler. In Gilles Kahn, editor.
Functional Programming Languages and Computer
Architecture (LNCS 274), pages 301-24, New York.
1987. Springer-Verlag.

Andrew W. Appel, James S. Mattson. and
David R. Tarditi. A lexical analyzer generator for
Standard ML. Distributed with Standard ML of
New Jersey. December 1989,

Luca Cardelli. Compiling a functional language. In
1984 Symp. on LISP and Functional Programming,
pages 208-17, New York, 1984. ACM Press.

Fred C. Chow. Minimizing register usage penalty
at procedure calls. In Proc. SIGPLAN 88 Conf.
on Prog. Lang. Design and Implementation, pages
85-94, New York, June 1988. ACM Press.

W. P. Crowley, C. P. Hendrickson. and T. E. Rudy.
The SIMPLE code. Technical Report UCID 17715,
Lawrence Livermore Laboratory, Livermore, CA,
February 1978.

K. Ekanadham and Arvind. SIMPLE: An exercise
in future scientific programming. Technical Report

13

O mong

life

o
® vacc
* lexgen
* knuth-B
¢ simple
<4 vliw
0-0 T T T T L T T T
0 1 2 3 4 5 6 7 & 9

Number of Calleesave Registers

Figure 9: Execution time as a function of the num-
ber of callee-save registers on the SPARC worksta-
tion

Computation Structures Group Memo 273. MIT.
Cambridge, MA, July 1987. Simultaneously pub-
lished as IBM/T.J. Watson Research Center Re-
search Report 12686, Yorktown Heights, NY.

[11] Robert Hieb, R. Kent Dybvig. and Carl Brugge-
man. Representing control in the presence of first-
class continuations. In Proc. ACM SIGPLAN ‘90
Conf. on Prog. Lang. Design and Implementation.
Pages 66-77, New York, 1990. ACM Press.

[12] Richard Kelsey and Paul Hudak. Realistic com-
pilation by program transformation. In Sizteenth
ACM Symp. on Principles of Programming Lan-
guages, pages 281-92, New York, 1989. ACM Press.

[13] D. Kranz, R. Kelsey, J. Rees, P. Hudak. J. Philbin.
and N. Adams. ORBIT: An optimizing compiler
for Scheme. SIGPLAN Notices {Proc. Sigplan '86
Symp. on Compiler Construction), 21(7):219-33,
July 1986.

(14] David Kranz. ORBIT: An optimizing compiler for
Scheme. PhD thesis, Yale University, New Haven.
CT, 1987.

(15] P. J. Landin. The mechanical evaluation of expres-
sions. Computer J., 6(4):308-20, 1964.

[16] Chris Reade. Elements of Functional Program-
ming. Addison-Wesley, Reading, MA, 1989.

[17] Guy L. Steele. Rabbit: a compiler for Scheme.
Technical Report AI-TR-474, MIT, Cambridge,
MA, 1978.

[18] David R. Tarditi and Andrew W. Appel. ML-Yacc,
version 2.0. Distributed with Standard ML of New
Jersey, April 1990,

14

Life Yacc Lexgen

nonge-+ge=total icount || nonge+ge=total | icount nonge+ge=total | icount

sml0 19.36+0.28=19.64 | 147578 || 5.3140.56=5.87 | 78875 || 15.74+1.13=16.87 | 125186
smlt0 || 19.224+0.29=19.51 | 147437 || 5.47+0.6 =6.08 | 78389 || 15.73+1.51=17.25 123160
sml2 18.87+0.26=19.13 | 148673 || 4.86+0.54=5.4 72235 || 15.3440.59=15.93 | 117875
smlt2 || 18.8 40.32=19.12 | 148514 || 4.8 +0.52=5.33 | 71588 14.81+0.6 =15.41 | 114714
sml3 18.97+0.29=19.27 | 148673 || 4.97+0.58=5.56 | 72861 || 15.32+0.58=15.0] 117917
smlt3 || 19.3 +0.28=19.58 | 148533 || 5.05+0.56=5.62 | 72092 || 15.46+1.01=16.47 116620
sml4d 18.9 +0.33=19.23 | 148801 || 5.0840.59=5.68 | 75875 || 15.25+0.67=15.83 | 120443
smlt4 || 19.3340.25=19.59 | 148635 || 4.9 +0.55=5.46 | 74943 15.13+0.59=15.72 | 118734
smlb 25.03+0.73=25.77 | 148530 || 5.4640.54=6.0 82549 || 20.1141.73=21.84 | 132479
smlt5 || 25.33+0.75=26.08 | 148335 || 5.6 +0.58=6.18 | 81543 || 18.21+1.2 =19.41 128488
sml6 26.2 +0.7 =26.91 | 148198 || 5.75+0.56=6.31 | 86662 || 19.1340.6'=19.8 138908
smlt6 || 26.03+0.68=26.71 | 148028 || 5.59+1.19=6.78 | 84681 18.98+0.61=19.6 | 140314
sml7 27.0 +0.72=27.73 | 148478 [[6.4 +0.56=6.97 | 89887 || 25.28+1.33=206.62 | 144010
smlt7 || 27.56+0.76=28.33 | 148292 || 6.16+0.54=6.71 | 87229 || 24.93+0.73=25.67 141455
sml8 28.4 +0.43=28.83 | 147758 || 6.5540.61=7.15 | 92420 || 32.6 +0.73=33.33 | 146169
smlt8 || 28.02+0.76=28.78 | 147702 || 6.44+0.63=7.07 | 90012 || 24.93+1.39=26.32 145552
sml9 28.52+0.73=29.26 | 147799 || 7.27+0.63=7.91 | 101775 || 26.4940.78=27.9" 156092
smlt9 || 28.6140.76=29.38 | 147756 || 6.8240.62=7.44 | 99890 25.64+2.28=27.92 | 153010

Figure 10: MIPS3230—running time in seconds and instruction counts in 1000’s.
Knuth-B Simple VLIW

nongc+ge=total icount nongc+ge=total icount nonge+ge=total | icount

sml0 12.98+3.28=16.27 | 223043 || 42.57+7.88=50.46 | 81106 || 31.66+3.63=35.20 362294
smlt0 || 13.33+1.83=15.17 | 219778 || 42.09+8.72=50.82 | 80057 || 32.01+3.61=35 .63 361355
sml2 13.6442.02=15.66 | 234495 || 38.82+6.97=45.79 | 76975 || 29.27+3.24=39 51 351137
smlt2 || 13.2642.39=15.65 | 225204 || 38.92+7.92=46.84 | 76825 29.42+3.54=32.96 | 348986
sml3 13.4 +2.16=15.57 | 237422 || 39.91+8.75=48.66 | 77917 || 30.1642.75=32.91 355794
smlt3 || 12.9842.18=15.16 | 226933 || 39.14+8.97=48.11 | 76663 || 30.26+3.11=33 38 353334
sml4 13.2142.1 =15.32 | 239620 || 39.66+5.91=45.57 | 77754 || 32.2943.83=36.12 365372
smlt4 || 12.98+2.15=15.14 | 229534 || 38.99+5.1 =44.09 | 77168 || 32.62+3.35=35.08 362814
sml5 13.8842.36=16.23 | 250352 || 44.56+8.65=53.21 | 86950 || 31.4543.97=35 41 380265
smltb || 13.4742.49=15.96 | 235782 || 44.68+8.729=53.41 | 86170 31.6942.72=34.41 | 376616
smlé 16.12+1.65=17.77 | 263367 || 48.77+6.1 =54.88 | 95397 || 32.98+2.0 —=35.88 392013
smlt6 || 14.644-2.08=16.72 | 251447 || 48.96+6.36=55.32 | 94677 32.75+3.51=36.27 | 386805
sml7 16.71+2.13=18.84 | 264230 || 49.5 +5.65=55.16 | 98327 || 33.92+2.95=36.87 397194
smlt7 || 15.67+1.75=17.43 | 259299 || 49.94+6.17=56.11 | 97404 || 33.8 +3.21=37.01 391090
sml8 16.39+2.85=19.23 | 282814 || 51.21+7.33=58.54 | 100661 || 36.27+3.19=39.46 434974
smlt8 || 16.4 +2.52=18.93 | 275686 || 51.144+6.61=57.76 | 99375 35.74+3.07=38.81 | 432709
sml9 174 +1.74=19.14 | 292532 || 56.85+6.68=63.54 | 109882 || 34.34+3.98—37.60 408539
smlt9 || 16.88+2.61=19.5 | 281437 || 56.68+6.72=63.4 | 108761 || 34.58+3.36=37 94 401969

Figure 11: MIPS3230—running time in seconds and instruction counts in 1000’s.

15

Life Yacc Lexgen
nonge+gec | total | nonge+ge | total nongec+ge | total
sml0 || 27.56+0.16 | 27.72 || 7.57+1.64 | 9.22 19.59+1.12 | 20.72
smlt0 | 27.16+0.13 | 27.29 || 7.6 +1.28 | 8.88 19.72+1.06 | 20.78
sml2 || 26.43+0.14 | 26.58 || 6.66+-0.33 | 7.0 17.72+1.04 | 18.76
smit2 | 26.34+0.17 | 26.51 || 6.8440.37 | 7.21 17.47+1.06 | 18.53
sml3 | 26.71+0.16 | 26.87 || 6.56+0.74 | 7.31 17.55+-0.68 | 18.23
smit3 | 26.39+0.16 | 26.55 || 6.59-+0.28 | 6.88 17.514+-0.66 | 18.17
smld || 26.39+0.16 | 26.55 || 6.52+0.28 | 6.81 17.33+0.31 | 17.64
smlt4 | 26.39+0.2 | 26.59 || 6.45+1.48 | 7.93 17.344-0.72 | 18.06
sml5 | 42.99+0.22 [43.22 || 7.7 +0.73 | 8.43 23.99+1.19 | 25.18
smlt5 || 42.99+0.24 | 43.23 || 7.72+0.3 | 8.03 24.82+1.07 | 25.9
sml6é || 45.0 +0.49 [45.5 | 87 +1.15 | 9.86 25.87+0.78 | 26.66
smilt6 | 44.85+0.5 | 45.35 || 8.76+0.31 | 9.07 25.59+0.72 | 26.31
sml7 | 46.94+0.52 | 47.46 || 9.2 +0.31 | 9.52 41.01+1.22 | 42.23
smlt7 || 46.88+0.52 | 47.41 || 9.23+0.38 | 9.61 40.91+1.2 | 42.11
sml8 | 48.81+0.51 | 49.33 || 10.0+1.15 | 1.2 41.67+1.24 | 42.91
smit8 || 48.974+0.48 | 49.46 | 9.6 +0.8 | 104 41.82+1.64 | 43.46
sml9 | 50.9740.54 [51.52 || 11.7+0.32 | 12.0 || 43.7 +1.23 | 44.93
smlt9 || 50.75+0.51 | 51.26 || 12.0+0.87 | 12.9 43.37+1.24 | 44.61
Figure 12: SPARC—running time in seconds.
Knuth-B Simple VLIW
nonge+ge | total | nonge+ge | total nonge+ge | total
sml0 22.46+1.2 | 23.66 || 64.4416.33 | 70.77 | 49.9 ~1.97 51.88
smlt0 || 22.36+1.94 | 24.3 | 65.64+6.29 | 71.93 43.72+1.2 | 44.92
sml2 | 20.43+1.72 [22.15 || 54.76+5.19 | 59.95 41.0 +2.28 | 43.29
smlt2 || 20.16+1.63 | 21.79 | 54.21+4.79 | 59.00 40.05+2.02 | 42.07
sml3 | 20.79+1.31 | 22.1 | 54.33+4.21 | 58.54 || 40.6 +1.83 | 42.44
smlt3 | 20.374+1.59 | 21.96 || 54.11-+4.24 | 58.35 39.89+1.69 | 41.58
smld || 20.48+1.69 [22.17 | 52.91+3.75 | 56.66 41.01+1.86 | 42.87
smltd | 20.224+1.66 | 21.88 || 54.12+4.05 | 58.17 40.36+1.76 | 42.13
sml5 21.57+1.62 | 23.2 66.92+5.52 | 72.44 || 43.48+2.63 | 46.11
smlt5 || 21.174+1.51 | 22.68 | 66.72+4.19 | 70.91 43.73+1.77 | 45.51
sml6é | 24.724+2.07 | 26.8 | 79.08+3.63 | 82.71 || 46.3 +2.54 | 48.84
smlt6 || 24.44+2.02 | 26.46 || 79.76+3.55 | 83.31 46.02+1.97 | 47.99
sml7 || 25.474+2.02 | 27.49 | 82.68+4.26 | 86.94 45.79+1.79 | 47.58
smlt7 | 25.19+2.01 | 27.2 | 82.57+4.28 | 86.85 46.91+1.69 | 48.61
sml8 || 26.7 +1.71 | 28.41 || 86.56+4.25 | 90.81 || 60.1 +2.0 | 62.11
smilt8 | 26.49+1.97 | 28.46 | 86.15+4.22 | 90.3 55.844-1.68 | 57.52
sml9 || 27.37+1.88 | 29.26 | 104.4+3.79 | 108.2 51.72+2.22 | 53.94
| smlt9 || 27.1442.01 | 29.15 | 105.7+4.42 110.1 || 50.59+2.25 | 52.84

Figure 13: SPARC—running time in seconds.

16

