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Abstract

Copying garbage collectors are becoming the collectors of
choice for very high-level languages and for functional and ob ject-
oriented languages. Copying collectors are particularly efficient
for large storage regions because their execution time is propor-
tional only to the amount of accessible data, and they identify
and compact this data in one pass. In contrast, mark-and-sweep
collectors execute in time proportional to the memory size and
compacting collectors require another pass to compact accessible
data. The performance of existing systems with old compact-
ing mark-and-sweep collectors might be improved by replacing
their collectors with copying collectors. This paper explores this
possibility by describing the results of replacing the compact-
ing mark-and-sweep collector in the Icon programming language
with four alternative collectors, three of which are copying col-
lectors. Copying collectors do indeed run faster than the original
collector, but at a significant cost in space. An improved variant
of the compacting mark-and-sweep collector ran even faster and
used little additional space.
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Introduction

Automatic reclamation of inaccessible memory — garbage collection — has
long been an important aspect of very high-level languages, such as Lisp
and SNOBOL4. Garbage collection is emerging as an essential component
of a wide range of modern programming language systems. Examples in-
clude very high-level languages, such as Icon [17], object-oriented languages
with late binding times, such as SmallTalk [12] and Self [26], and new lan-
guages with traditional compile-time type systems such as ML [2], Eiffel [20],
Oberon [28], and Modula-3 [21]. Garbage collectors have also been imple-
mented for languages that were not originally designed to support garbage
collection, such as Modula-2 [23], C++ [8], and even C [4].

Recent implementations tend to use copying collection algorithms in-
stead of mark-and-sweep algorithms [3, 5]. Copying algorithms take time
that is proportional to the amount of accessible data and identify and com-
pact accessible data in one pass. Mark-and-sweep algorithms take time
that is proportional to the amount of accessible and inaccessible data and
require a second pass to compact accessible data. Copying collectors use
more memory because they require two separate spaces, but they tend to
improve locality of reference because they place objects near their referents.
Large heaps (e.g., tens of megabytes) may amplify the advantages of copying
collectors [1].

Recent advances suggest that existing systems with “old” mark-and-
sweep collectors might benefit from new collectors. Icon [17] is a prime
example. The key question is whether or not a new collector can yield sig-
nificant performance improvements for most Icon programs. The remainder
of this paper describes the results of implementing several new collectors for
version 8 of Icon [15].

Documented experiences that might help choose a collector for a specific
system are scarce. Those that are available are necessarily system specific; it
is often difficult to translate results from one system to another, especially if
the systems differ significantly. For example, collectors for statically typed
languages [9] may not be as well suited to languages with more runtime
flexibility. Significant differences can exist even for similar languages. For
instance, recent reports on Lisp systems [24, 29] are likely to be valuable
for other systems in which memory is composed of small, fixed sized, ho-
mogeneous objects, but those results may be less applicable when memory
holds a wide variety of variable sized, heterogeneous objects, as in Icon. And
most systems have complicating idiosyncracies, such as the preponderance



of variable length strings in Icon.

The complexities of specific systems make measurement results difficult
to interpret and to apply. Few real systems are documented well enough to
understand fully the ramifications of their designs and implementations and
how they might be reflected in other systems. Source code — if available
— can provide many answers, but often these answers are buried in a sea of
detail.

Icon’s implementation is well documented [16], and the source code is
available publicly. The results reported here are, of course, specific to Icon,
but Reference [16] and the source code provide a context in which to evaluate
the applicability of these results to other systems.

Icon

Icon is a very high-level imperative language with a rich repertoire of facili-
ties for string and structure processing [17]. It is available on a wide range
of computers from personal to supercomputers and it is widely used; over
10,000 copies have been distributed.

In Icon, values are typed, not variables. Built-in data types include
numerics, character sets, strings, sets, lists, associative tables, and records.
The latter four aggregate types can hold values of any type. Numerics, char-
acter sets, and strings are atomic values; operations on them produce new
values. Aggregates use pointer semantics; operations on them can change
existing values as well as produce new ones. Strings and aggregates can be
of arbitrary sizes, and these sizes can change during execution. Memory
management is automatic.

During execution, the heap is divided into the three regions depicted in
Figure 1. Values that cannot be moved, such as I/0 buffers and execution
stacks, are allocated in the static region. These values are fixed sized, system
dependent, and are never reclaimed. Thus, garbage collection alternatives
do not involve this region.

Strings are allocated from the string region. Values in Icon are repre-
sented by two-word descriptors, which contain a type code and other type-
specific data, e.g., the value of an integer. For strings, these type-specific
data are the length of the string and the location of its first character in
the string region. The string region contains only string data, so allocation
is fast: strfree is simply incremented by the requested amount. This rep-
resentation simplifies many string operations. For example, if s has been



static

strbase
string +— strfree
blkbase
block +— blkfree

Figure 1: Memory Layout.

assigned the string "hippotamus", the substring "pot" can be formed in
constant time by returning a descriptor with a location equal to the loca-
tion of s plus 3 and a length of 3. Likewise, concatenation to a newly created
string can omit copying its left operand if it ends at strfree, and some-
times the operands of concatenation are already adjacent, so concatenation
is trivial. Such considerations are particularly important to the efficient
implementation of string scanning — Icon’s “pattern matching” [14].

All other values are allocated in the block region. The type-specific data
in descriptors for character sets and aggregates point to blocks in the block
region. These blocks have type-specific sizes and layouts and most hold one
or more descriptors; Reference [16] gives details. As in the string region,
allocation is trivial: blkfree is incremented by the size of the requested
block.

Garbage collection occurs when a request for space cannot be satisfied
and is described fully in Chapter 11 of Reference [16]. Briefly, collection
begins with a marking phase that locates all blocks and strings accessible
from a root set, which includes values in the static region (including the
stack), global variables, and several internal variables. As accessible strings
are located, pointers to them are appended to the qualifier list, which is used
during compaction. Space for this list begins at blkfree. Accessible blocks
are marked by processing each block recursively. Each block has a header
word that usually contains a block code. During marking, this word heads
a list of descriptors that point to the block. This list is threaded through



the descriptors themselves and is terminated by the block code in the last
descriptor.

After marking, accessible strings in the string region are compacted.
Compaction is accomplished by sorting the qualifier list by location and
making a pass over the sorted list identifying and moving accessible charac-
ters. This scheme takes into account the possibility of “overlapping” strings
and preserves substrings. This pass also updates the locations in the de-
scriptors on the qualifier list to reflect the new locations of the strings.

Next, two passes over the block region are made. The first pass computes
the new locations for accessible blocks, which are identified by the presence of
a list of descriptors in their header words, and, for each such block, traverses
this list updating the descriptors with the block’s new location. Marked
versions of the block codes are also restored in the header words. The
second pass compacts accessible blocks, identified by marked block codes,
and clears these marks.

If necessary, the string region is expanded by relocating the entire block
region. This relocation is accomplished by collecting the block region as
usual, but including the amount of expansion when computing new block
locations. The entire — now compacted — block region is then shifted up.
The qualifier list can also overflow the block region; if it does, which is rare,
the block region is expanded by requesting more memory from the operating
system.

Observations

Garbage collection can have a measurable effect on total performance. It
accounts for 3-76% of total execution time for the programs in the test suite
described below. This suite was used to understand the behavior of the
existing collector and to guide the design of alternatives, described below.
The measurements of the existing collector corroborate earlier work [6].

The “working set” — the maximum amount of accessible memory used
during execution — ranged 100KB to 5MB for the test suite. These sizes
are much smaller than the working sets of test suites used in comparative
analyses in Lisp, for example, where sizes from 5-100MB are typical. But
working sets of a few megabytes or less are typical of Icon programs on
workstations, and even smaller sizes are typical on personal computers, such
as the MaclIntosh. Copying collectors that excel for large working sets may
not do so for small working sets.



Long-lived data is data that survives many collections; researchers have
long recognized the importance of handling such data efficiently [7, 18, 19].
For the test suite, 30-50% of the accessible data lives to the end of ex-
ecution. The existing collector does not move data unnecessarily, but a
non-generational copying collector will move long-lived data at each collec-
tion.

The existing memory management scheme caters to strings, but pro-
grams that do extensive string manipulation pay for it; for those programs
in the test suite, 67-97% of collection time is spent constructing and sorting
the qualifier list and compacting the string region. These programs would
benefit from alternatives that eliminate the qualifier list.

Dividing memory into two regions wastes memory for programs that use
mostly strings or mostly aggregates. And this division complicates region
expansion as described above. For example, executing the 63 programs in
the Icon program library [13] generates 9,816 strings with an average length
of only 7.23 characters and a median length of 2. Only two percent of these
strings were longer than 100 characters; these were counted as 100-character
strings. These data suggest that it might be equally effective to store strings
in blocks and dispense with the separate string region.

Alternatives

The observations described above motivated the design and implementation
of four alternative collectors for Icon.

An initial premise was that a copying collector might outperform the ex-
isting mark-and-sweep collector, so the first alternative, copier, is a simple
copying collector for the block region. As in all such collectors, the block
region is divided into two semi-spaces. Allocation proceeds as in the exist-
ing collector from “old” space until a request cannot be satisfied. During
collection, accessible data is copied from old space to “new” space, which
also compacts the data, the roles of the spaces are reversed, and execution
continues [3]. When a block is copied, a forwarding pointer is left in the
original so that other descriptors pointing to the block can be re-aimed at
its location in new space.

The second alternative eliminates the separate string region and allocates
strings and blocks in a single region. It allocates'a 4KB “string block”
and doles out space for strings from this block. When it becomes full,
another string block is allocated. Collection proceeds as in copier. When



an accessible string is located, it is appended to the “current” 4KB string
block in new space, creating one if necessary. While this scheme eliminates
the qualifier list and its expensive processing, its space cost can be high
because it duplicates strings that share characters before collection. For
example, suppose N accessible string descriptors point to an M-byte string
block. Collection might create N strings totaling perhaps as much as N x M
bytes. Measuring this expansion helps expose the amount of sharing, which
should be highest for programs that create many substrings.

The third alternative, string?2, is similar to string, but avoids its worst
case behavior. As blocks are copied to new space, accessible string descrip-
tors are added to a qualifier list as in copier, but the list is never sorted,
and string blocks are not copied. Instead, string block headers record “low”
and “high” water marks, which give the lowest and highest addresses, re-
spectively, of accessible string data within the block [18, 22]. After copying
all other blocks to new space, the data between the low and high water
marks in each string block in old space are copied into 4KB string blocks in
new space as in string, and the qualifier list is scanned to update the string
descriptors. The qualifier list is at the end of the region and is expanded,
if necessary. string?2 is otherwise identical to string. Note that string2
saves all characters between the low and high water marks, even if they are
inaccessible.

string?2 requires an addition to string descriptors. As above, a string
descriptor includes the length of the string and its location. It also includes
the offset in words from the head of the string block to the word containing
the first character of the string. This offset is used during collection to locate
the string block given a descriptor. String operators, e.g., concatenation,
update these offsets, but otherwise ignore them. The offset is stored in part
of the space previously used for the length, so strings are limited to 65,535
characters.

The last alternative, mark&compact3, is a single-region variant of the
original mark-and-compact algorithm that handles strings as in string?2.
The marking phase builds lists of descriptors that reference accessible blocks
as in the original algorithm, adds strings to a qualifier list as in string2,
and computes string2’s low and high water marks for string blocks. The
next phase adjusts descriptors as in the original algorithm, but the low water
mark is taken into account in adjusting string descriptors, and both the low
and high water marks are used to compute the new size and location of a
string block. The final phase compacts accessible blocks as in the original
algorithm, but copies only the data between the low and high water marks



test length  ezecution time number of mazimum heap

program in lines in seconds collections size in KB
best 21 107 191
worst 12 14 2951
string0 78 388 191
string50 41 37 3237
concord 53 60 95 1283
callgraph 54 3 3 219
pslist 426 15 9 221
mkgen 991 50 65 668
typsum 2804 117 83 2328

Table 1: Test Suite

in string blocks. As in the original algorithm, mark&compact3 does not
copy long-lived data unnecessarily and does not incur the space cost of two
semi-spaces. mark&compact3 is similar to SITBOL’s collector [18].

The original algorithm and the algorithms described above expand re-
gions after collection, if necessary, in order to avoid “thrashing.” For ex-
ample, if a collection yields only a small amount of free space, another
collection is imminent. Expanding regions by 25% avoids most thrashing.
For the copying collectors, both semi-spaces are expanded, which increases
their space cost.

Measurement Results

Test Suite

The test suite consists of the nine programs summarized in Table 1, which,
for each program, gives its length, and its execution time, number of garbage
collections, and heap usage when run with the original collector.

The first four programs listed in Table 1 are artificial programs designed
to expose the bounds of expected improvements for each alternative. best
and worst characterize, respectively, the best and worst programs for a copy-
ing collectors (and vice versa for mark-and-sweep collectors). best generates
almost all garbage:



procedure main()

Jocal €, 1

t := table();

every i := 1 to 500000 do t[i]
end

This program builds a table of 500,000 entries by referencing each entry,
but each entry is inaccessible because it is never assigned a value. worst is

similar except that it does 100,000 assignments t[i] := i instead of just
referencing t[i], which causes all entries to be accessible and hence creates
no garbage,

string0 and string50 are similar. string0 creates 500,000 strings of
random lengths between 1 and 100 characters, assigns none of them to the
entries in t, and hence creates only string garbage. string50 creates 75,000
random-length strings and assigns them to the entries in t with probability
one-half, i.e., approximately 50% of the entries.

The other five programs listed in Table 1 are real programs provided by
Icon users. They vary in size, execution time and number of collections, but
most do extensive string manipulation as do most Icon programs.

concord is a concordance program from the Icon programming library.
It produces an index of the words in its input by building a table indexed
by words and containing lists of line numbers. It prints a line-numbered
copy of its input, and, at the end of the program, the table and each list
are sorted and the line numbers are concatenated and printed. The input
to concord is the text of MacBeth.

callgraph reads compiler-generated assembly language files, computes
the call graph, and prints an indented representation of the graph and a
procedure index. The sample input for callgraph is the assembly code
generated from Icon’s runtime system, 22,743 lines of C; it references 334
procedures and has 1558 call-graph edges.

pslist reads C, Fortran, or Ratfor source files and generates PostScript
that prints formatted listings with cross-reference indices. Unlike callgraph,
which generate its output after reading all of its input, pslist generates
much of its output as it executes.

mkgen, a large program by Icon standards, reads a compact code-generator
specification and emits a code generator in C [10]. mkgen is used to generate
the code generators for lcc [11]. The input is the VAX specification.

typsum reads “ucode,” Icon’s intermediate representation [16], and per-
forms type inference. Its minimal output summarizes the results of type



inference, e.g., number of variables with no type, etc. A refined variant of
typsum is part of the new Icon compiler [27].

Results

Data was collected by running the test suite with each of the alternative col-
lectors described above. In each case, execution began with 130KB regions,
divided into two 65KB semi-spaces for the copying collectors. As mentioned
above, regions expanded as necessary during execution.

All times reported are the average elapsed times in seconds on a DECSta-
tion 5000, averaged over at least 5 runs. All reported runs achieved at least
90% utilization (i.e., the ratio of times (user + system)/elapsed > 0.90).! In
the figures below, all data is normalized so that the original collector runs
in unit time. To reduce graphical clutter, the figures display reductions in
execution times as percentages, i.e., they display 100 X (T'— X')/T where T’
is the execution time of each test program using the original collector, and
X is the execution time using alternative X. The third column in Table 1
gives the values of T'.

Space costs are reported as X/S where S is the maximum heap size of
each test program using the original collector, and X is the maximum heap
size using alternative X. The fifth column in Table 1 gives the values of S.

Figures 2 and 3 show the reductions in execution time for each alterna-
tive. Bars extend above the abscissa in proportion to the improvement in
execution time; they extend below if execution time increased. The number
of collections appears above each bar. The results for the artificial programs
follow the expected trends, e.g., the copying collectors (copier, string, and
string2) do poorly on worst because it generates no garbage, and they
do well on best and string50 because best generates only garbage and
string50 generates 50% garbage. string, string2, and mark&compact3
do not have separate string regions, so their heaps are twice as large as
copier’s. Consequently, they do fewer collections and thus do better than
copier on best. mark&compact3’s performance is lower than that of string
and string2 because, being a mark-and-sweep collector, it must scan all of
the garbage, which is most of the heap for best.

copier does poorly on string50 because copier uses the original collec-
tor for strings and repeatedly copies the long-lived data in the block region.
Using mark&compact3 on worst shows a slight improvement because almost

1The iteration counts for best, worst, string0, and string50 were chosen to yield
this high utilization.
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Figure 2: Reduction in Execution Time

all of the data is long-lived and it avoids copying this data. It does well on
string50 for the same reason.

The small difference in performance between string and string2 and
mark&compact3 on string0 is due entirely to the different string represen-
tation used in the latter two variants. The performance difference measures
the cost of maintaining the offset to the head of the string block in each
descriptor, as described above.

Three of the alternative collectors reduce execution time for the real pro-
grams and some reduce it dramatically. Figure 3 shows the importance of
collecting strings efficiently: copier, which uses the original collector for
strings, performs respectfully only for typsum, which does less string ma-
nipulation than the other test programs. For instance, most of concord’s
109 collections are because the string region is full. mark&compact3 is com-
petitive with the string and string2 copying collectors and is sometimes
superior, e.g., on callgraph, mkgen, and concord. string and string2 col-
lect strings efficiently, but their performance can suffer when most strings
are long-lived as in callgraph and pslist.

The reductions in execution time come at a significant cost in space,
however. Figures 4 and 5 display the space costs for each alternative, as
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described above. Bars extending above the abscissa indicate an increase in
memory usage; those that extend below indicate a decrease.

The copying alternatives pay for the second semi-space; at any time,
only one space contains accessible data, so these alternatives can use twice
as much memory as the maximum amount of accessible data. The space
costs for string include the effects of string duplication described above.
Space costs above 2 can be attributed to this effect, which, as Figure 5 shows,
is minimal. string2’s space cost is often higher than string’s because it
constructs a qualifier list and saves some characters that are inaccessible.
This latter effect is particularly noticeable in string50: every other string
is garbage, so almost one-half of every string block is tied up with inaccessible
data.

For most of the test programs, mark&compact3 uses little more space
than the original collector. mark&compact3 has the lowest space cost because
it does not require an unused semi-space. mark&compact3 uses slightly less
space than the original collector for worst because it uses all of memory for
blocks; the original’s string space goes unused for worst.

11
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Discussion

As the measurements detailed above demonstrate, a copying collector can
improve the execution time of Icon programs that use 1-5MB working sets,
but at a significant cost in additional space. For example, string and
string2 often yield good execution times, but they have a high space cost.
mark&compact3 yields improvements comparable to or better than its copy-
ing competitors, it uses less space, and, like all mark-and-sweep collectors,
can accommodate larger sets of accessible data. These space advantages are
particularly important for small computers.

Increased space is not free; performance of programs with large memory
requirements may suffer because of cache effects and operating system algo-
rithms. In some environments, programs that use mark-and-sweep collectors
have a better locality of reference and hence better cache performance than
programs that use copying collectors [29].

The measurements also highlight the importance of collecting strings
efficiently. Considering both time and space, mark&compact3 deals with
strings better than the copying collectors. Based on these measurements,
mark&compact3 is the best alternative to Icon’s current collector.

A generational collector [2, 25] is another alternative that might be ex-
plored. A generational collector was not implemented for three reasons.
First, generational collectors are most suitable for applicative languages in
which assignments are rare [3]. Icon is imperative and assignments abound.
Moreover, Icon’s goal-directed evaluation mechanism introduces numerous
implicit assignments within the runtime system [16].

Second, generational collectors require the cooperation of the compiler
to maintain “remembered sets” — lists of old objects that hold pointers to
newer objects. Maintaining these sets would require not only changes to
Icon’s compiler, but extensive changes to its runtime system as well. And
since assignments are ubiquitous, these lists are likely to be large.

Finally, measurements of previous collectors with mechanisms similar
those used in generational collectors suggest that the potential for improve-
ment is small, at least for languages like SNOBOL4 and Icon [22].

Garbage collector design continues to depend on many factors, and a
priori decisions to use copying collectors are ill-advised. Collector design is
intertwined intimately with the design of other language details from data
representations to code generation strategies. Inappropriate collector de-
signs can complicate other parts of a language system unnecessarily and
adversely affect performance. For some designs of some languages, copy-

13



ing collectors will indeed provide the best performance. For other designs,
however, mark-and-sweep collectors may be best.
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