AN ALGORITHMIC APPROACH TO
EXTREMAL. GRAPH PROBLEMS

Xiaofeng Han
(Thesis)

CS-TR-322-91

June 1991

AN ALGORITHMIC APPROACH TO EXTREMAL GRAPH PROBLEMS

XIAOFENG HAN

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

JUNE, 1991

© COPYRIGHT BY XIAOFENG HAN 1991
All RIGHTS RESERVED

DEDICATED TO MY GRANDFATHER DR. CHIYU WU

Abstract

The main purpose of this thesis is to study three problems concerning extremal graphs.
The first is the problem of finding a minimal 2-edge connected subgraph of a 2-edge con-
nected graph, the second is the problem of finding a minimal 2-connected subgraph of a
2-connected graph, and the third is the problem of finding a mazimal planar subgraph of a
nonplanar graph. These problems are extensions of the 2-edge connectivity problem, the
2-connectivity problem, and the planarity testing problem in graph theory. All three prob-
lems are important in the theory of extremal graphs. They also have useful applications

in computer network and electronic circuit design.
This thesis is divided into five chapters and an appendix.

In the first chapter, we discuss the theory of extremal graphs and graph algorithm
design in general. We explain why the problems solved in the thesis are important. We
also include a brief discussion of some recent algorithms for problems in the theory of

extremal graphs.

In the second chapter, we present an efficient algorithm for the problem of finding a
minimal 2-edge connected subgraph of a 2-edge connected graph. Let G = (V, E) be a 2-
edge connected gjraph. The algorithm finds a maximal subset Ey C E such that (V, E—Ey)
is still 2-edge connected. Graph (V, E — Ey) is a minimal 2-edge connected subgraph of G.
Let | V | be n and | E | be m. The algorithm runs recursively. Let us assume that at the
beginning of each recursion, we want to compute a minimal 2-edge connected subgraph of

(V',E'). (At the beginning of the first recursion, we have V' =V and E' = E.) We want

1

to find a maximal subset Ej C E' such that (V', E' — E}) is still 2-edge connected. Each
recursion is divided into two parts. The first part is divided into twenty-five phases. At
the beginning of the first phase, we let Ej = ¢. In each phase, a subset of E' is processed
and some edges in this subset are added to Ej. In the second part, a new graph (V", E")
is obtained from (V', E' — E;) such that (1) | V" |[< 3/4 | V' |, (2) (V",E") is 2-edge
connected, (3) | E" |<| E'—E; |, and (4) we can finish the computation of Ej by computing
a minimal 2-edge connected subgraph of (V" E"). We then compute a minimal 2-edge
connected subgraph of (V", E") by using the algorithm recursively. The algorithm stops
when V" contains just one vertex. Since the number of vertices in the graph is decreased
by at least one fourth in each recursion, the level of recursions is O(log(n)). The whole

algorithm takes O(m + n) time and O(m + n) space.

In the third chapter, we present an efficient algorithm for the problem of finding a
minimal 2-connected subgraph of a 2-connected graph. Let G = (V, E) be a 2-connected
graph. The algorithm finds a maximal subset Ey C E such that (V,E — Ey) is still 2-
connected. Graph (V,E — Ey) is a minimal 2-connected subgraph of G. Let | V | be n
and | E | be m. Like the algorithm in chapter two, the algorithm in chapter three runs
recursively. Let us assume that at the beginning of each recursion, we want to compute
a minimal 2-connected subgraph of (V', E'). (At the beginning of the first recursion, we
have V! = V and E' = E.) We want to find a maximal subset Ej C E' such that
(V',E' — Ej) is still 2-connected. Each recursion is again divided into two parts. The first
part is further divided into twenty-five phases. At the beginning of the first phase, we let
Ej = ¢. In each phase, a subset of E' is processed and some edges in this subset are added
to Ej. In the second part, a new graph (V", E") is obtained from (V', E' — E}) such that
(1) | V"[£5/6| V'], (2) (V",E") is 2-connected, (3) | E" |<| E' — E}, |, and (4) we can
finish the computation of Ej by computing a minimal 2-connected subgraph of (V| E").
We then compute a minimal 2-connected subgraph of (V",E") by using the algorithm

recursively. The algorithm stops when V" contains just one vertex. The structure of the

2

algorithm in chapter three is exactly the same as that of the algorithm in chapter two.
The difference between the two algorithms lies in (1) the procedures to process the edges
in E' in each phase in the first part of each recursion, and (2) the procedures to obtain
(V",E") from (V', E' — Ey) in the second part of each recursion. The algorithm in chapter
three also takes O(m + n) time and space.

In the fourth chapter, we discuss an algorithm for the problem of finding a maximal
planar subgraph of a nonplanar graph. Let G = (V, E) be a nonplanar graph with | V' |=n
and | E |= m. The algorithm finds a minimal subset Ey C E such that (V,E — Ep) is
planar. Graph (V, E — E,) is a maximal planar subgraph of G. In designing the algorithm,
we extend the classic planarity testing algorithm of Hopcroft and Tarjan. The algorithm
runs in O(m - log(n)) time and O(m + n) space. The result in chapter four is the outcome

of joint work with Jiazhen Cai and Robert Tarjan.

The fifth chapter discusses a parallel algorithm for transitively orienting comparability
graphs. The algorithm is not directly related to problems in extremal graphs. It was
discovered during the process of studying extremal graphs, however. The algorithm has
many applications in designing parallel algorithms for such special perfect graphs as chordal
graphs, permutation graphs and comparability graphs. It is well known that computing
a maximum clique or a minimum coloring for an arbitrary graph is N P-complete. The
problems are solvable in polynomial time if a graph is known to be perfect. It is an
interesting question to ask whether there exist efficient NC algorithms to solve these
problems for perfect graphs. Unfortunately, no such algorithms have been found. The
algorithm in chapter five can be used to compute a maximum clique and a minimum

coloring for a comparability graph.

The appendix contains the definitions used in this thesis and the references. The

definitions are standard and can be found in books about graph theory. (See [AHU].)

3

When a term is first used, it appears in italics.

Acknowledgement

It would be impossible to mention everybody who helped me to complete this thesis.
My thesis advisor Professor Robert Tarjan introduced me to the field of graph algorithm

design. This thesis is influenced greatly by his previous work in this area.

I would like to thank my readers: Professor Andrew Yao and Professor Ken Steiglitz.

They read my thesis very carefully and made many comments and suggestions.

I would also like to thank my fellow graduate students at Princeton. Mordecai Golin
helped me with the format of this thesis. I had very helpful discussions with Robert Abbot
and Richard Squier during the research that led to this thesis.

I also benefited from discussions with people from other universities. I discussed the
algorithm in chapter three with Vijaya Ramachandran from University of Texas, Austin.
The data structure in chapter four was first proposed by Jiazheng Cai from New York

University.

I would like to thank the staff members in the Department of Computer Science of
Princeton University for their support. Special thanks must be given to Sharon Rogers,

Rebecca Davies, and Steven Beck.

Table of Contents

A DS T aCt L., 1
Acknowledgments e e e 5
Table of Contentsiuiiiiiiiiiiiiiiii ittt ittt et i e 6
Chapter One. An Algorithmic Approach to Extremal Graph Problems 8
811 Thente CIMBEIE .5 ik 065055 il aivid S romasmin s vommmonns sssmn n scamonin wasmoms 8 Soin » & 9
B1.2 IDROOEAUBEION o i oumns 5055 5 5 himi S i s fmion st » Aifiman Swmmesss Smmms & S 5 SmEns & 13
Chapter Two. An Algorithm to Find Minimal 2-Edge Connected Subgraphs 17
D21 IOATOUMBUIONT 4 i s § 50 R i absgns dsnivg nsmomons simsmsmss & veommars wouoemssn's R KsAcers 3 18
§2.2 Outline of the Algorithmot 19
§2.3 Finding E,. in Each Phasecoooiiiiiiiiiiiiiiiiiiie e 22
§2.4 Processing the Edges in B},c.iiiuiiiiiiiiiiiii it 27
§2.5 Computing (V",E") from (V' ELUEL) ...ouiiiiiiiiiiiiieiiainnnnnnn. 35
§2.6 The Complexity of the Algorithmc.oiiiriiiini i, 41 -
§2.7 Problems for Future Researchcouiiiinieiiiii i, 44
Chapter Three. An Algorithm to Find Minimal 2-Connected Subgraphs 45
§3.1 Introductionoiuieniiiiii it i e 46
§3.2 Outline of the Algorithmcoiiriiiiiiiiii i e 48
§3.8.Banding B, 0 Eacli PERES . o vttt s deins shunns 5an 16505 § G5553 i s smmn s 50
§3.4 Processing the Edges in B,oouviuiiiii i 53
§3.5 Computing (V", E") from (V' ELUEL) «ouiiriii i, 67
§3.8 The Complexity of the AIROrRRON . viioss sesing & svms s 06555 § 65555 55555 5 mostn = avemon 74
§3.7 Problems for Future Researchooviiiiiienieneeiieeainennn, 77
Chapter Four. An Algorithm to Find Maximal Planar Subgraphs 78

6

0 R T T o ————— 79

§4.2 Preliminary Resultso e 81
84.3 An Algorithm for Finding a Maximal Planar Subgraph 89
§4.4 Data Structures and the Time Complexityccvviieiiiiieiniineenienannns 97
§4.5 Problems for Future Research, 102
Chapter Five. A Parallel Algorithm for Comparability Graphs 103
B0 Tubrodnebions ; o couws sasnss vosins § ARURAEEIR § RUSRESONES SRR § HEE BAES RAERA 1 104
§5.2 A Transitive Orientation Algorithmccooiiiiiiiiiiiiii ... 107
85.3 APDPHCAtIONS ..ottt i e e i i e, 115
£5:4 Problems for Pulnre BeRBAYCH .. covii conns i aoming wisins § somni iosms s s semns 118
Appendix. Graph Definitions and References ocume v ovwss susss 5 sanes s sows o 119
Graph Definitionsouutint ittt et e e 120
RRCIOIERIRERN, s + 2 § SRR B SAHDE S ERRES EORRD § b fovasnon s ssmmers & aimmoay siathsmn.» siaseonin s 125

Chapter One

An Algorithmic Approach
to Extremal Graph Problems

§1.1 Thesis Outline

The main purpose of this thesis is to study three problems concerning extremal graphs.
The first is the problem of finding a minimal 2-edge connected subgraph of a 2-edge con-
nected graph, the second is the problem of finding a minimal 2-connected subgraph of a
2-connected graph, and the third is the problem of finding a maximal planar subgraph of
a nonplanar graph. These problems are extensions of the 2-edge connectivity problem, the
2-connectivity problem, and the planarity testing problem in graph theory. All three prob-
lems are important in the theory of extremal graphs. They also have useful applications

in computer network and electronic circuit design.
This thesis is divided into five chapters and an appendix.

In the first chapter, we discuss the theory of extremal graphs and graph algorithm
design in general. We explain why the problems solved in the thesis are important. We
also include a brief discussion of some recent algorithms for problems in the theory of

extremal graphs.

In the second chapter, we present an efficient algorithm for the problem of finding a
minimal 2-edge connected subgraph of a 2-edge connected graph. Let G = (V, E) be a 2-
edge connected graph. The algorithm finds a maximal subset Ey C E such that (V, E—E,)
is still 2-edge connected. Graph (V, E — Ey) is a minimal 2-edge connected subgraph of G.
Let |V | ben ax}d | E | be m. The algorithm runs recursively. Let us assume that at the
beginning of each recursion, we want to compute a minimal 2-edge connected subgraph
of (V',E'). (At the beginning of the first recursion, we have V' = V and E' = E.) We
want to find a maximal subset Ej C E' such that (V/, E' — E}) is still 2-edge connected.
Each recursion is divided into two parts. The first part is divided into twenty-five phases.

At the beginning of the first phase, we let Ej = ¢. In each phase, a subset of E' is

9

processed and some edges in this subset are added to Ej. In the second part, a new graph
(V",E") is obtained from (V', E' — Ej) such that (1) | V" |<3/4 | V' |, (2) (V",E") is
2-edge connected, (3) | E" |<| E' — Ej |, and (4) we can finish the computation of Ej by
computing a minimal 2-edge connected subgraph of (V", E"). We then compute a minimal
2-edge connected subgraph of (V" E") by using the algorithm recursively. The algorithm
stops when V' has just one vertex. Since the number of vertices in the graph is decreased
by at least one fourth in each recursion, the level of recursions is O(log(n)). The whole

algorithm takes O(m + n) time and O(m + n) space.

In the third chapter, we present an efficient algorithm for the problem of finding a
minimal 2-connected subgraph of a 2-connected graph. Let G = (V, E) be a 2-connected
graph. The algorithm finds a maximal subset Ey C E such that (V,E — Ej) is still 2-
connected. Graph (V,E — Ey) is a minimal 2-connected subgraph of G. Let | V | be n
and | E | be m. Like the algorithm in chapter two, the algorithm in chapter three runs
recursively. Let us assume that at the beginning of each recursion, we want to compute a
minimal 2-connected subgraph of (V', E'). (At the beginning of the first recursion, we have
V'=V and E' = E.) We want to find a maximal subset E{ C E' such that (V', E' — E})
is still 2-connected. Each recursion is again divided into two parts. The first part is further
divided into twenty-five phases. At the beginning of the first phase, we let Ej) = ¢. In
each phase, a subset of E' is processed and some edges in this subset are added to E.
In the second part, a new graph (V",E") is obtained from (V', E' — Ej) such that (1)
| V"< 5/6 | V'], (2) (V",E") is 2-connected, (3) | E"” |<| E' — Ej |, and (4) we can
finish the computation of Ej by computing a minimal 2-connected subgraph of (V", E").
We then compu‘te a minimal 2-connected subgraph of (V", E") by using the algorithm
recursively. The algorithm stops when V" contains just one vertex. The structure of the
algorithm in chapter three is exactly the same as that of the algorithm in chapter two.
The difference between the two algorithms lies in (1) The procedures to process the edges

in E' in each phase in the first part of each recursion, and (2) The procedures to obtain

10

(V",E") from (V', E' — E;) in the second part of each recursion. The algorithm in chapter

three also takes O(m + n) time and space.

Similar problems were considered previously. In [ET2|, Eswaran and Tarjan gave
linear-time algorithms for the problems of bridge connectivity augmentation and 2-con-
nectivity augmentation. P. Kelsen and V. Ramachandran considered devising efficient
parallel algorithms for finding a minimal 2-edge connected (or 2-connected) subgraph of
a 2-edge connected (or 2-connected) graph. The:y gave parallel algorithms that run in
O(log®(n)) time using O(m + n) processors. (See [KR1].) The algoritms can also sequen-
tialized to run in O(m + n - log(n)) time. More recently they have obtained linear time
sequential algorithms independently of the work presented here. (See [KR3].) A prob-
lem known as the transitive compaction problem was considered by [GKRST] for directed
graphs. In this problem, we are given a strongly connected digraph, we wish to find a min-
imal strongly connected spanning subgraph of it. [GKRST)] proposed an NC algorithm
for it. The algorithm also has an O(m + n - log(n)) sequential implementation.

In the fourth chapter, we discuss an algorithm for the problem of finding a maximal
planar subgraph of a nonplanar graph. Let G = (V,E) be a nonplanar graph. The
algorithm finds a minimal subset E; C E such that (V,E — Ey) is planar. (V,E — Ey)
is a maximal planar subgraph of G. In designing the algorithm, we extend the classic
planarity testing algorithm of Hopcroft and Tarjan. (See [HT1].) The algorithm runs in
O(m-log(n)) time and O(m + n) space. The result in chapter four is the outcome of joint

work with Jiazhen Cai and Robert Tarjan.

The problem of finding maximal planar subgraphs was considered by many authors. In
[Wu)], Wu gave algorithms for both planarity testing and the problem of finding maximal
planar subgraphs. He used an algebraic equation system to solve both problems. His

solution runs in O(m?) time.

11

Jayakumar et al (See [JTS]) have also considered the problem. For the special case
when a 2-connected spanning planar subgraph is given, their algorithm runs in O(n?) time

and O(m + n) space. For more general situations, their algorithm runs in O(m * n) time.

In [BT], Battista and Tamassia proposed an algorithm for incremental planarity test-
ing. Using their techniques, there is also a maximal planar subgraph algorithm taking
O(m +n-log(n)) time and O(m + n) space. The approach in [BT] is based on the P — Q
tree planarity testing algorithm (see [LEC]) and the algorithm in chapter four is based on
the path addition planarity testing algorithm. (See [HT1].)

The fifth chapter discusses a parallel algorithm for transitively orienting comparability
graphs. The algorithm is not directly related to problems in extremal graphs. It was
discovered during the process of studying extremal graphs, however. The algorithm has
many applications in designing parallel algorithms for such special perfect graphs as chordal
graphs, permutation graphs and comparability graphs. It is well known that computing
a maximum clique or a minimum coloring for an arbitrary graph is N P-complete. The
problems are solvable in polynomial time if a graph is known to be perfect. It is an
interesting question to ask whether there exist efficient NC algorithms to solve these
problems for perfect graphs. Unfortunately, no such algorithms have been found. The
algorithm in chapter five can be used to compute a maximum clique and a minimum

coloring for a comparability graph.

The appendix contains the definitions used in this thesis and the references. The
definitions are standard and can be found in books about graph theory. (See [AHU].)

When a term is first used, it appears in italics.

12

§1.2 Introduction

The study of graph theory can be traced back to Euler when he solved the famous
problem of the Konigsberg bridges. Since then, graph theory has evolved into a branch
of combinatorial mathematics with wide applications in engineering, social sciences and

natural sciences. (See [CGM], [H], [Te], and [WB].)

After the invention of digital computers, people started to use computers to solve
graph problems. This led to the design of graph algorithms. In the early days of graph
algorithm design, many important problems were identified and studied. Algorithms were
proposed for such problems as finding minimal spanning trees, finding shortest paths,
finding network flows and testing planarity. (See [Kr], [Pr], [F], [Wa], [FF], [AP], and
[LEC].) In the early days, complexity theory and algorithm analysis techniques were not
widely used. Many algorithms were devised, but their efficiency was poorly understood.

Many important ideas were formed but not fully explored.

At the beginning of the 70’s, important progress was made in the area of algorithm
design. Knuth’s books had a major influence in persuading people to treat algorithms as
mathematical objects and to do rigorous analysis on them. (See [Kn].) Cook discovered the
first NP-complete problem. (See [Co].) Karp popularized the concept of NP-completeness
by showing that many important combinatorial problems, including many graph problems,
are NP-complete. (See [Ka].) Since then, the study of graph algorithms has diverged. For
those graph problems that are NP-complete, people use approximation and randomization
to study them. For polynomial graph problems, efforts were directed to finding efficient
algorithms. In the early 70’s, Hopcroft and Tarjan showed in a series of papers that very
efficient graph algorithms can be devised by designing good data structures and using
depth-first search on graphs. (See [HT1], [HT2], [HT3], [HT4], and [T1].) A notable
example of their algorithms is the linear-time planarity testing algorithm. (See [HT1].)

13

The algorithms in this thesis extend the results of earlier research on polynomial
time graph algorithms. They give efficient algorithmic solutions to some extremal graph

problems.

The theory of extremal graphs is a branch of graph theory that deals with extremal
properties of graphs. The study of the field was initiated by Turan in 1940 when he
published the first paper on extremal graph problems. People are interested in the extremal
(minimal or maximal) values of graph invariants that ensure that a graph has a certain

property.

Over a period of 40 years, many problems of extremal graphs have been considered
and many results have been obtained. Most of these results are purely graph-theoretical.
Among the problems studied, problems associated with minimal k-connected and mini-
mal k-edge connected graphs drew special attention from researchers. When k = 2, such

problems are understood well. (See [D] and [P1].)

These problems are not only interesting in theory, they also have practical applications.
An example is the use of minimal k-edge connected graphs in the design of reliable computer

networks.

Let us consider a simple model of a computer network. The network is modeled as a
graph G. A computer is represented by a vertex and a communication channel between
two computers is represented by an edge. For simplicity, we assume that computers can

never fail; only communication channels can break down.

If G is k-edge connected, then for any two computers z and y in the network, there are

at least k edge-disjoint paths connecting them. This means that if we have at most k — 1

14

breakdowns of communication links, we can still route information from any computer to
any other computer in the network. Thus, the edge connectivity of the graph reflects the
reliability of the network. If the graph is not minimal k-edge connected, we can delete some
edges in the graph without sacrificing the edge connectivity (reliability) of the network.
The property of minimal edge connectivity represents the most economical way of building

a network that satisfies certain edge connectivity (reliability) requirements.

In this situation, we not only need to know the properties of minimal k-edge connected
graphs, we also need an algorithm to decide whether a given network is minimal k-edge

connected; if it is not, we would like to know how to modify it to make it so.

Another problem of extremal graphs that has interesting applications in electronic

circuit design is the problem of finding maximal planar subgraphs of a nonplanar graph.

In designing a electronic circuit, we frequently require that the underlying graph of
the circuit be planar. If the underlying graph is nonplanar, we are not able to make a
layout of the circuit. In this case, we want to delete a minimal set of edges from the graph
to make it planar. This requires finding a maximal planar subgraph of the underlying

graph.

The main results of this thesis are expressed in the following theorems.

Main results:

Theorem 1.2.1 Let G = (V,E) be a 2-edge connected graph. Assume that | V [=n
and | E |= m. There is an algorithm that computes a maximal subset Eq C E such that

(V,E — Ey) is 2-edge connected. The algorithm runs in O(m + n) time and space. §

15

Theorem 1.2.2 Let G = (V, E) be a 2-connected graph. Assume that | V |= n and
| E |= m. There is an algorithm that computes a maximal subset Ey C E such that

(V,E — Ey) is 2-connected. The algorithm runs in O(m + n) time and space. j

Theorem 1.2.3 Let G = (V,E) be a nonplanar graph. Assume that | V |= n and
| E |= m. There is an algorithm that computes a minimal subset E; C E such that
(V, E — Eyp) is planar. The algorithm runs in O(m - log(n)) time and O(m + n) space. and

linear space.g

In what follows, we shall refer to the algorithms in Theorem 1.2.1, 1.2.2, and 1.2.3 as
algorithm 1.2.1, 1.2.2, and 1.2.3 respectively.

16

Chapter Two

An Algorithm to Find
Minimal 2-Edge Connected Subgraphs

17

§2.1 Introduction

Let G = (V, E) be a 2-edge connected graph. In this chapter, we develop an O(m +n)

time algorithm for finding a minimal 2-edge connected subgraph of G.

In finding a minimal 2-edge connected subgraph of G, we prefer a subgraph with as
few edges as possible. The problem of finding a minimal 2-edge connected subgraph of
G that has the fewest edges is N P-complete, however, since the problem is polynomially

equivalent to the following N P-complete problem.

Lemma 2.1.1 Let G = (V, E) be a 2-edge connected graph and let k be an integer. The
problem of deciding whether there exists an edge set E' C E with | E' |= k such that
H = (V,E — E') is 2-edge connected is N P-complete.

Proof: The problem is obviously in NP. To prove that it is N P-complete, we reduce the
undirected Hamilton circuit problem to it. Let G = (V, E) be a 2-edge connected graph.
Let £k = m —n. G contains a Hamilton circuit iff there exists an edge set E' C E with

| E' |= k such that (V, E — E') is 2-edge connected. g

Because of Lemma 2.1.1, we can hope to find only minimal 2-edge connected subgraphs
of G. Let m; be the number of edges in a minimal 2-edge connected subgraph of G that
has the fewest edges. It is true that m; > n. Let m, be the number of edges in a minimal
2-edge connected subgraph of G. We know that my < 2n. We have m, /my < 2. It would
be nice to have an algorithm such that for every k > 0, the algorithm finds a minimal
2-edge connected subgraph with my edges and my/m; < 1+ k. Unfortunately, no such

algorithm is known right now.

18

§2.2 Outline of the Algorithm

According to the introduction in chapter one, we wish to find a maximal subset E; C E
such that graph (V, E — Ey) is still 2-edge connected. In the presentation of the algorithm,
we talk about deleting edges from E. When an edge is deleted, it is added to Ey and

remains there until the end of the algorithm.

In order to find a minimal 2-edge connected subgraph of G, we can use a simple
iterative algorithm. For every edge (z,y) in E, we test whether graph (V, E — {(z,y)}) is
2-edge connected. We keep (z,y) in E if graph (V,E — {(z,y)}) is not 2-edge connected
and delete it from E otherwise. The edges can be processed in any order. At the end of the
algorithm, let Ey = { the deleted edges }; graph (V, E — Ey) is a minimal 2-edge connected
subgraph of G. Since we have m edges to process and processing each edge takes O(m +n)
time, this algorithm takes O(m?) time. Although this is not a very efficient algorithm, it

is the starting point for the algorithm in this chapter.

In the simple algorithm, we consider only one edge at an iteration step and we test
the 2-edge connectivity of a graph that is only slightly different from the one previously
tested. The time complexity of the algorithm can be greatly improved if we can process a

group of edges at a time.

The algorithm in this chapter runs recursively. Let us assume that at the beginning of
each recursion, v\;e want to compute a minimal 2-edge connected subgraph of (V', E'). (At
the beginning of the first recursion, we have V! =V and E’ = E.) In each recursion, we
want to find a maximal subset Ej C E' such that (V', E' — E}) is still 2-edge connected.
Each recursion is divided into two parts. The first part is divided into twenty-five phases.

At the beginning of each phase, we have E' = EL UE.UE} and E.NE. = E.NE} =

19

E!NE} = ¢. The edges in Ej are deleted from E’ and do not affect any future processing
of (V', E").

The inductive hypothesis at the beginning of each phase is that each edge in E] is
2-edge essential (see Definition 24 in the appendix.) for (V' E.L U E.).

The edges in E are unprocessed edges and are called candidate edges. In each phase,
a subset E| C E! is computed such that | E! |> 1/6 | E. |. E!._ is then split into two

sets Ey,. and E,,.. The edges in Ej,, are added to Ej and the edges in E!,_ are added to

€8C
E_. The inductive hypothesis is maintained and we go to the next phase. Let | V' |= n'
and | E' |= m'. The first phase takes O(m' + n') time. After the first phase, we have
| E; U E_ |< 2n'. Each of the remaining twenty-four phases takes O(n') time. After the

first part of each recursion, we have | E. |< (5/6)?*2n’' < n'/18.

In the second part of each recursion, we use the fact that E. < n'/18 to compute a
new graph (V", E") such that (1) | V" |[< 3/4| V' |, (2) (V",E") is 2-edge connected, (3)
| E" || E. U E{ |, and (4) if we know a minimal 2-edge connected subgraph of (V", E"),
we can easily compute a subset E, C E! such (V', ELUE.,) is a minimal 2-edge connected
subgraph of (V', E'). The algorithm then computes a minimal 2-edge connected subgraph
of (V",E") by using itself recursively.

The following pseudo-code outlines a single recursive call of algorithm 1.2.1.

Procedure 2.2.1

A single recursive call of algorithm 1.2.1

{

20

Assume we want to compute a minimal 2-edge
connected subgraph of (V', E')
Let E, = ¢,E, = E', Ej = ¢;
* first part of the recursive call *\
For (: =057 < 25;1 + +)
{
Compute E}. C E;
Split E{, into. Ey, . U B, ;
E.=E UE., Ey = EyU Eq,;
E.=E.—E,, B, = ¢
}

* second part of the recursive call *\

Compute (V", E") from (V', E. U E.);

Compute a minimal 2-edge connected subgraph of (V", E");

Use the result of previous step to compute a minimal 2-edge connected
subgraph of (V', E');

}

The following discussion of the algorithm is divided into five sections. In §2.3, we
discuss how to compute E;. in each phase. In §2.4, we discuss how to split E!_ into
Ey,. and E;,.. §2.5 is concerned with the computation of (V", E") from (V',E. U E!)
and the computation of a minimal 2-edge connected subgraph of (V', E') using the result
obtained from the recursive application of the algorithm to (V", E"). In §2.6, we analyze

the complexity of the algorithm. §2.7 discusses some future research problems.

21

§2.3 Finding E)_ in Each Phase

This section is concerned with finding E}_ at the beginning of each phase. We start
with the graph (V', E. U E!) at the beginning of each phase. A spanning tree (V', E}) of
(V',E. U E.) is computed such that E} contains as many edges from E as possible. Let
| E. |= K and | E. N E; |= k. The edges in E. N E} (E. — (E. N E})) are called tree

(nontree) candidate edges.

Let the connected components of (V', E;) be (V{, Ey),(V3, Ej), ..., (V;, E;,). We have
U;“[/?:V” UtE:=Ee,and'Vt’nT/;=¢for]_Sz;,éjSp

We contract the connected components of (V', E!) to build an auxiliary graph G|, =
(Va, E;). We have V; = {V] | 1 < i < p}. For every edge (z,y) in E. with z € V/,
y € Vj, we have an edge (V/,V})(;,y) € E;. We shall use E,(z,y) to denote this edge, i.e.,
Ey(z,y) = (V!,V{)(z,y) and E;‘I(Vi’,%’)(m,y) = (z,y). G} may contain multiple edges and

loops.

In Figure 2.3.1, the edges in E, are solid and the edges in E| are dashed. A spanning

22

tree (V', E;) and the auxiliary graph are drawn in Figure 2.3.2 and 2.3.3.

a" D
~
- x g
- \ -~
. \ ~e
A Y \\
A Y \\ \‘
LY
. A \\
“ \ ~
A Y
“
A Y
“
Figure 2.3.2

--*“'-

- s o
-’ 4 e -
P 7’ (Y ~
rd ’ [N ~
’ ’ 1 ~
4 ’ \ ~
. * 1 ~
’ @ 1 \ ~
,l - - \ .

’ - \ ~
e 1 \ Y
- - -\
€z ' < T
T~ " * = e i
N - ~a ’ -
T - 1 R o

-~ - ~ 1] -
-~ -~ ~ ! -
Soo Nl S 1! -
-
~ ~ ! -
-~ ~ - () =
~ ~ ’ -
-~ ~_ N ! -
e o T g
- - sy Ve
-
Figure 2.3.3

It is not hard to see that (V,,{E;(z,y) | (z,y) € E.N E}}) is a spanning tree for G,

The number of vertices in G, is k + 1.

G, also satisfies following properties:

Lemma 2.3.1 G, is 2-edge connected.

23

Proof: This is obvious since (V', E] U E}) is 2-edge connected.

Lemma 2.3.2 Let edge (z,y) € E.. If E (z,y) is 2-edge essential in G, edge (z,y) is
2-edge essential in (V', El U E)).

Proof: Let (z',y') be a bridge in (V},E., — E.(z,y)). Then E;(z',y') is a bridge in
(V',(E{UE) — (z,y)). Thus edge (z,y) is 2-edge essential for (V',E. U E.). 3

E., is determined according to the following two cases:

Case 2.3.1 k < 5K/6.

In this case, we let E, = E,— E,. Obviously, | E., |=| E.—(E.NE}) |= K—k > K/6.

A procedure to process the edges in E! is given in §2.4.

Case 2.3.2. k > 5K/6

In this case, most of the candidate edges are tree candidate edges and we shall prove

that there are at least K/6 edges in G, that are 2-edge essential for G',.

Lemma 2.3.3 If case 2.3.2 applies, then there are at least K/6 vertices in G! with degree

equal to 2.

Proof: Since G, is 2-edge connected, every vertex in G! has degree at least 2. Let the
number of degree 2 vertices in G, be ¢. Assume that ¢ < K/6. We have >vicve deg(vi) >
3(k+1-¢q)+2¢=3k+1)—¢>3(k+1)— K/6 > 2K. But the sum of degrees equals

2K since the number of edges in G, is K. This is a contradiction. g

24

Let (z',y') be an edge in G',. If the degree of z' or y' equals 2, edge (z',y') is obviously
a 2-edge essential edge in G),. We call (z',y') a critical edge of G.

Lemma 2.3.4 If case 2.3.2 applies, then there are at least K/6 critical edges in G/,.

Proof: If case 2.3.2 applies, we know from Lemma 2.3.3 that there are at least K /6 vertices
in G, with degree equal to 2. Each such vertex provides two critical edges and each critical

edge is counted at most twice, so the lemma is true. g

Let E;, = {(z,y) | E.(z,y) is a critical edge in G.,}. From Lemma 2.3.2 and 2.3.4,
we know that every edge in E;, is 2-essential for (V',E, U E!) and | E., |> K/6.

The following pseudo code outlines the procedure to compute E!_ at the beginning of

each phase.

Procedure 2.3.1

Input: (V', E. U E))
Output: E;,
{
Compute a spanning tree (V', E;) for (V',E. U E!)
such that E; contains as many edges of E! as possible;
Let | E! |= K and | E' N E! |= k;
Construct G}, = (V,, E.);
If (k <5K/6);
Let B, = B\ - (BLUE});
Else E, = {(z,y) | E\(z,y) is a critical edge of G };

25

©o
(]

§2.4 Processing the Edges in E!,

From the discussion of §2.3, we know that when k > 5K/6, every edge in E!_ is 2-edge
essential for (V', E, U E;). In this case, no further processing is needed for the edges in

E;.. All the edges in E|_ are added to E.. We go to the next phase in the recursive call.

If £k < 5K/6, then we have E;,, = E. — E}. Using the procedure discussed in this
section, some edges in E;, are added to E, and others are added to E]. We shall prove

that the inductive hypothesis is maintained at the end of the phase.

We again consider graph (V', E,UE.). Let (V', E}) be the spanning tree described in
§2.3. For the sake of simplicity, the procedure actually processes the edges in (E.UE!)— E!
(the nontree edges in (V', E, U E.)). If we pick a vertex in V, we can convert (V', E})
into a rooted spanning tree. The procedure works bottom up on the tree. It splits the set
(E,UE])— E; into two sets E!,_and E}

< 0sc such that the edges in E!,, are 2-edge essential

for (V',(E.UE,.)U(E; — E;.)). The edges in E, — E} will be added to E!,, automatically

esc

in the process.

After (V', E;) is turned into a rooted spanning tree, we number the vertices in V' by
a postorder numbering of (V', E}). In the following discussion, the vertices will be referred
to by their numbering. We also mark the leaves of (V', E}). For each nontree edge (z,y),
let nca(z,y) be the nearest common ancestor of z and y in (V', E}). That is, nca =min

{v | v is an ancestor of z and y}. For each vertex v € V, we define:

Definition 2.4.1 be(v) = {(z,y) | (z,y) is a nontree edge, z or y is a descendant of v}

Definition 2.4.2 high(v) = max {z | z = nca(z,y),(z,y) € be(v)}

27

Definition 2.4.3 led(v) = {(v,z) | (v,z) € bc(v) and nca(v,z) = high(v)}

In Figure 2.4.1, we have high(7) = 11, high(3) = 7, high(2) = 3. We also have be(7) =
{(1,6),(1,2),(4,9),(5,8)}, and be(2) = {(1,2)}. led(1) = {(1,6)}, led(4) = {(4,9)}.

At the beginning of the procedure, we compute high for every vertex in V' and nca for
every nontree edge in E, U E!. For each vertex v, we also compute led(v). All these can be
computed in linear time. (See [HT5] for the computation of nearest common ancestors of

the nontree edges.) The high and led values remain the same through out the procedure.

For each edge (z,y) in (E, U E,) — E{, if nca(z,y) <min(high(z), high(y)), we re-
move it from E, U E and put it in Ej. After this operation, we have nca(z,y) = min

(high(z), high(y)) for every (z,y) € (E. U E.) — E;.

11

After computing the high values, we partition V' into Vj,,...,Vj, such that (1)
high(v) = high(w) for v € Vj, and w € Vi, with 1 < i <[, and (2) high(v) < high(w)
forv € V, and w € Vp; with 1 < ¢ < j < 1. We call Vy,, ..., Vp, the partition classes of
V'. Let high(Vh,;) = high(v) where v € V},. This partition can be computed by doing a

28

bucket sort on V' using the high values as the sort key. At the beginning of the proce-
dure, we mark every partition class of V' as unprocessed. In the procedure, the partition
classes are processed according to the order of ascending high values. After a partition

class is processed, it is marked so and the vertices in the partition class are removed from

(V',E, U E).

We also partition (E, U E.) — Ej into E4,, ..., Ex, such that (1) nca(v,w) = nca(z,y)
for (v,w) € Ep; and (z,y) € Ej, with 1 < ¢ < [, and (2) nca(v,w) < nca(z,y) for
(v,w) € Ep, and (z,y) € Ep; with 1 < i < j < I. We call Ey,...,Ey, the partition
classes of the nontree edges. Let nca(Ey,;) = nca(z,y) where (z,y) € E},. This partition
can be computed by doing a bucket sort on (E, U E.) — E} using the nca values as the
sort key. It is important to notice that there is a 1 — 1 correspondence (P : V, — Ej,

where high(V};) = nca(E},;)) between the partition classes of V' and the partition classes
of (E,UE})— E;.

For each vertex v € V', we associate a field isleaf with v. We have v.isleaf = 1 if
v is a leaf in (V', E}) and v.isleaf = 0 otherwise. In the procedure, a nonleaf vertex can

turn into a leaf vertex, but not vice versa.

The procedure is divided into steps and works bottom up on (V', E}). At the beginning
of the procedure, we let Ej,. = ¢ and E,,, = ¢. In order to make the procedure efficient,
we wish to design it in such a way that we can consider a group of nontree edges at a time,
and decide which edges can be added to Ej,. while others have to be added to E!,,, by

studying the local structure of these edges.

At the beginning of each step, let slea = {v | v is a leaf, v € Vj,, and Vj, is the
unprocessed partition class of V' with the smallest high value }. We call V}, the base

partition class of slea. We have | slea |<| V4, |.

29

Let vo = high(V4;). We assume that vy,...,v, are the children of vy with high(v;) =
vo and uj,...,u, are the children of vy with high(u;) > vo. Let Ty, = (V,,,E,,) and
Tu; = (Vu;, Eu;) be the subtrees of (V', E}) that are rooted at v; and u; respectively. Let
S = {(z,y) | nca(z,y) = vo and (z,y) € (E. U E.) — E;}. Notice that S is actually a
partition class of (E, U E.) — E; with nca(S) = vy. (See Figure 2.4.2.)

Figure 2.4.2

In each step, a subset C'S of S is chosen. If we add the edges in S — CS to E},,,
(V',(E.UE;)— (S —CS)) is 2-edge connected and every edge in C'S is 2-edge essential for
the graph. Vertex vg is chosen in such a way that C'S can be computed locally by using
the subgraphs of (V', E; U E;) spanned by T,, and T,;. The processing of nontree edges
in (V', E, U E;) with nearest common ancestor greater than vy will not affect the choice

of the edges in C'S. (See Lemma 2.4.1 for details.)

After CS is chosen, the vertices in V},; are removed from (V',E. U E.). We also
remove any tree edge or nontree edge that is incident on a removed vertex. Let the set of
removed nontree edges be S'. We prove that S’ = §. We use induction on the steps of the
procedure. Assume that every vertex v with high(v) < vy and every nontree edge (z,y)

with nca(z,y) < vo have been removed from (V', E, UE!) at the beginning of the step. Let

30

(z,y) € S' and z € V3,. We have high(z) = vo and nca(z,y) = min(high(z), high(y)) = vo
since we know that high(y) > vo. This means (z,y) € S. Let (z,y) € S. If both
high(z) > vo and high(y) > vo then we have nca(z,y) > vo. This is a contradiction.
Assume that high(z) = vo. We have v € V},; and (z,y) € S'. (See also the discussion
after substep 2.) After the removal of vertices and edges, we go to the next step of the
procedure. When (V', El U E) is empty, the procedure terminates. Since the reﬁoval of
vertices and edges only affect the procedure in this section, the procedure actually works on

a copy of (V', ELUE! U E}) and saves the original (V', E. U E] U E;) for future processing.

_ vo V0
i
’f
4
/’
¢ Vi Vi
' 7 7
! 'I ’I
I 7 /
] ’I ’I
)
\/Vl V]/
L N Sy
v y M
Figure 2.4.3

The process of computing C'S involves two substeps. The goal of the substeps is
to choose a minimal subset C'S of S such that (V',(E. U E.) — (S — CS)) is 2-edge
connected. Let us consider a vertex v in slea; there is a unique path in (V', E}) from v,
to v : vg,v1,...,v1,v. It is obviously true that we must pick at least one edge from bc(v)
and put it in CS, since (v;,v) would be a bridge in (V',(E.L U E!) — (5 — CS)) otherwise.
Since we have high(v) = vy, if we put an edge from led(v) in CS, we are sure that none of
(vo,v1), ...y (v1,v) Wwill be a bridge in (V',(EL U E.) — (S — CS)), see Figure 2.4.3.

31

Substep 1 For each vertex v in slea, we choose an edge from led(v) and put it in CS.

Although every vertex v in slea is now covered by at least one edge in C'S, C'S may

not be a minimal subset of S that covers every vertex of slea.

Substep 2 We build an auxiliary graph (V,,CS). V, = {v | v € V',3w,(v,w) € CS}.
The vertices of V, that are in slea are marked red. By using a minimal edge covering
algorithm, (see below) we find a minimal subset of C'S that covers all the red vertices of
Yis

We process the edges in C'S one by one. When we are processing an edge (z,y) € CS,
we delete (z,y) from C'S unless z is red and (z,y) is the only edge in C'S incident on or y
is red and (z,y) is the only edge in C'S incident on y. After the processing, the remaining

edges in C'S is the required minimal set.

Both substep 1 and 2 can be performed in O(| slea |) time.

After the computation of substep 2, the edges in C'S form a minimal subset of S that
covers every vertex in slea. We then remove the vertices of Vj,; from (V',E! U E!). We
also remove every tree edge and nontree edge incident on a removed vertex. If a nonleaf
vertex v becomes a leaf after the removal of the vertices in Vj,;, we let v.isleaf = 1. We
already know that the set of removed nontree edges is S. Let the number of removed tree
edges be R,. The removal of vertices and edges can be finished in O(| Vo, | + 1| S | +Ry)
time. After the removal of vertices and edges, we go to the next step. The time complexity
of each step is O(| Vi, | + | S | +R;). After each step, the size of V' decreases by | V. |
and the size of E, U E decreases by | S | +R;. The total complexity of the procedure is
O(VI+|E|+|E.|).

32

Let E!

esc

= FE!

€sc

UCS and Ej,. = Ey,.U(S - CS).
We have the following lemma about C'S.

Lemma 2.4.1 Graph (V',(ELUE!)— (S —CS)) is 2-edge connected and the edges in C'S
are all 2-edge essential for the graph.

Proof: Graph (V',(ELUE.)—(S—CS))is 2-edge connected because of the way C'S is chosen.
If we delete one edge from CS, one of the vertices in slea becomes uncovered by the edges
in CS. The unique tree edge that enters the vertex is a bridge in (V', (ELUE.)—(S-CS)).
The edges processed at later steps of the procedure all have high values greater than vy.
After the procedure, (V', E] U E.) is not 2-edge connected. g

Lemma 2.4.1 shows that after the procedure, the inductive hypothesis is maintained.

The following pseudo code outlines the procedure in this section.

Procedure 2.4.1

{

Let (V', E}) be the spanning tree in §2.3;

For each vertex v € V', compute high(v);

For each no‘n tree edge (v, w), compute nca(v,w);

For each vertex v € V', compute led(v);

For each (z,y) € (E, U E) — E; with nca(z,y) <min(high(z), high(y))
Remove (z,y) from E, U E. and put it in E;

Partition V' into partition classes: V},,, ..., Vi,;
p 1 i

33

Partition (E. U E.) — Ej into partition classes: Ep,,..., Ep,;

Mark each Vj,(1 <4 < 1) as unprocessed,;

While (V', El U E}) is not empty

{

Let slea = {v | v is a leaf, v € V},;, and V},, is
the unprocessed partition class of V' with the smallest high value };
Let vo = high(Vh,);
Let vy, ..., v, be the children of vy with high(v;) = vo;
Let uy,...,uq be the children of vy with high(u;) < vo;
Let T,; and Ty, be the subtree of (V', E;)
rooted at v; and uj;
Compute C'S using the two substeps described above;
Remove the vertices of V},; and the edges incident
on a vertex in Vj, from (V', E! U E);

Mark V4, as processed;

34

§2.5 Computing (V",E") from (V',E. U E!)

After the first part of the algorithm, we obtain a graph (V', E. U E!) such that (1)
(V',E, U E.) is 2-edge connected, (2) Every edge in E. is 2-edge essential for the graph,
and (3) | E |< n'/18.

In this section, we discuss a procedure to compute a new graph (V", E") such that
(1) (V",E") is 2-edge connected, (2) | V" |< 3n'/4, (3) | E" |<| EL U E! |, and (4) if we
know a minimal 2-edge connected subgraph of (V", E"), we can process the edge in E' in

O(n') time and compute a minimal 2-edge connected subgraph of (V', E').

Graph (V", E") is built in such a way that it preserves the 2-edge connectivity struc-
ture of (V', E! U E!).

In the following discussion, we assume that if (z,y) € E. then deg(z) > 2 and deg(y) >
2. If deg(z) = 2 or deg(y) = 2, (z,y) is always 2-edge essential for (V', EL U E').

There are two cases to consider:

Case 2.5.1 | E_U E. |< 4n'/3.

Lemma 2.5.1 If case 2.5.1 applies, there are at least n'/4 vertices in (V', E! U E!) with

degree equal to 2.

Proof: Since (V', E; U E;) is 2-edge connected, every vertex in the graph has degree at

least 2. Let ¢ be the number of degree 2 vertices in the graph. Assume that ¢ < n'/4. We

35

have) oy deg(v) 2 3(n' —¢) +2¢=3n"—¢>11n'/4 > 8n'/3=2| E.UE! |. Thisis a

contradiction. g

A path vy,...,vp in (V', E{ U EY) is called a chain if we have deg(vy) > 2, deg(vp) > 2
and deg(v;) = 2 for 1 < i < p. Every degree two vertex in (V',E, U E!) is on a unique
chain in the graph. v; and v, are called the end vertices of the chain. Notice that a chain

may be a cycle with v; = v,,.

If case 2.5.1 applies, we know from Lemma 2.5.1 that there are at least n'/4 vertices
in (V', E{U E[) with degree 2. We contract these vertices to build (V", E"). We construct
(V",E") in the following way:

(1) Let V" =V' — {v | deg(v) =2 }.

(2) For each edge (z,y) € E,UE] with deg(z) > 2 and deg(y) > 2, add an edge (z,y)

to E". (z,y) is called a regular edge in E".

(3) For each chain vy, ...,v,, we added a new edge (v1,v,) to E". (vy,v,) is called a

special edge in E".

(V",E") may contain multiple edges. Notice that for each regular edge (z',y') in
E", there is a corresponding edge in E, U E|. We refer to this corresponding edge as
E" Yz y"). For each special edge (z',y') in E", there is a corresponding chain vy, ...,v

P
in (V',E_ U E!) . We also refer to this chain as E"~(z’,y').

It 1s not hard to see that (V",E") is 2-edge connected and preserves the 2-edge
connectivity structure of (V', E] U E[). (See also Lemma 2.5.2 and 2.5.3.)

36

If (V', E_UEY) is the graph in Figure 2.3.1, (V", E") is shown in Figure 2.5.1. Notice
that the graph in Figure 2.3.1 does not satisfy case 2.5.1, Figure 2.5.1 is included to

illustrate how to obtain (V", E").

The construction of (V", E") can be done in O(n') time.

Since there are at least n'/4 degree 2 vertices in (V', E. U E!), we know that | V" |<
3n'/4. It is also true that | E"” |<| EL U E! |.

Lemma 2.5.2 Assume case 2.5.1 applies. Let (V", E!) be a subgraph of (V", E") that is
2-edge connected. Then (V',E, U (E, N {E""Y(z,y) | (z,y) € E! and (z,y) is a regular
edge })) is also 2-edge connected.

Proof: Let E!! = E.N{E"~!(z,y) | (z,y) € E. and (z,y) is a regular edge }. Assume that
(V',E, U E/) is not 2-edge connected. Let (v,w) be a bridge in (V',E! U E"). If (v,w)
is in a chain vy, ..., vp, then either (v;,v,) is in E;' and (v;,v,) is a bridge in (V", E!) or
(V",E{) is not connected. In either case, (V", E!') is not 2-edge connected. If deg(v) > 2

and deg(w) > 2, (v,w) is a regular edge in E". If (v,w) € E! then (v,w) is a bridge

37

in (V",E); otherwise (V",E) is not connected. In either case, (V", E) is not 2-edge

connected. This means that (V', El U E) is 2-edge connected. g

Lemma 2.5.3 Assume case 2.5.1 applies. Let (V",E!) be a minimal 2-edge connected
subgraph of (V", E"). Then (V',ELU(E.N{E""(z,y) | (z,y) € E¥ and (z,y) is a regular
edge in E" })) is a minimal 2-edge connected subgraph of (V', E! U E!).

Proof: Let E! = E.N{E""(z,y) | (z,y) € EY and (z,y) is a regular edge in E” }. From
Lemma 2.5.2 we know that (V', EL UE) is 2-edge connected. All we have to prove is that
every edge in E is 2-edge essential for (V',E, U E). Let (v,w) be an edge in E!. Edge
(v,w) is also a regular edge in E” and (v,w) € E.. If (V',(E. U E") — {(v,w)}) is still
2-edge connected, then (V", E/ — {(v,w)}) is also 2-edge connected. Graph (V",E") is

not a minimal 2-edge connected subgraph of (V", E"). This is a contradiction. g

After we construct (V",E"), we do not wish to keep (V',E'). We do not wish to
compute E; after we compute (V", E!'). As a matter of fact, E can be decided while we
are computing (V", E!). For each edge (z,y) in E’, we associate a field source with it.
Before the first recursive call of the algorithm, we let (z,y).source = (z,y) for every edge in
E. When we construct (V", E") from (V', E'), we let (z,y).source = E"~!(z,y).source for
every edge regular edge (z,y) in E" such that E"!(z,y) is in E! and (z,y).source = null
for all other edges in E". Before the first recursive call, we let Ef. = ¢. When we compute
a minimal 2-edge connected subgraph of (V', E'), if we add an edge (z,y) € E' to E!, we
add (z,y).source to Efe if (z,y).source # null. After the algorithm terminates, (V, Ey.)

is a minimal 2-edge connected subgraph of (V, E).

Case 2.5.2 | EL U E! |> 4n'/3.

38

If case 2.5.2 applies, we know that | E; |> 23n'/18. Let (V4, E1),...,(Vp, Ep) be the
2-edge connected components of (V',E;). We have U'_,V; = V' and V; NV, = ¢ for

1<i#j<p

Lemma 2.5.4 The number of 2-edge connected components in (V’, E!) is no more than

13n'/18.

Proof: Let (V',E7) be a spanning forest of (V',E.). We have | Ef. |< n’ — 1 and |
E, — Ep |> 5n'/18. Every vertex in V' is in a 2-edge connected component by itself
in (V', E}). Now we add the edges in E., — El. to E/ one by one. When we add edge
(z,y) € E, — E7 to E7, (z,y) will cause two 2-edge connected components in (V', EZ) to
merge and decrease the number of 2-edge connected components in (V', E%.) by at least

one. This is true because every edge in E is 2-edge essential for (V', E!UE!). The lemma

is true since we have | E} — EZ. |> 5n'/18. 3

If case 2.5.2 applies, we construct (V", E") from (V', E') in the following way:

(1) We contract V; (1 < ¢ < ¢) into a vertex v}. Let V" = {1},...,V})}.

(2) For every edge (z,y) in E' with € V; and y € Vj, we put an edge (V;, V)5

in E". We let E"(z,y) = (Vi,Vj)z,y) and E""}(V;,Vj)(z,yy) = (2,y). For each edge
(z',y') in E", we let (z',y').source equal to E"~!(a',y').source if E"~1(z',y') is in E!

and (z',y').source = null otherwise.
y

Lemma 2.5.5 | V" |<13n'/18 < 3n'/4 and | E" |[<| ELUE! |.

Proof: This is obvious from Lemma 2.5.4 and the way (V", E") is built. g

39

It is not hard to see that (V" ,E") is 2-edge connected and preserves the 2-edge
connectivity structure of (V', E, U E}). (See also Lemma 2.5.6 and 2.5.7.)

Lemma 2.5.6 Assume case 2.5.2 applies. Let (V", E!) be a subgraph of (V", E") that
is 2-edge connected. Then (V',E. U (E. N {E""(z,y) | (z,y) € E!})) is also 2-edge

connected.

Proof: Let E = E.N{E""(z,y) | (z,y) € E!}. Assume that (V', E! UE") is not 2-edge
connected. Let (v,w) be a bridgein (V', E_UE(). If E"(v,w) € E!, then (v.w) is a bridge
in (V",E/). If E"(v,w) ¢ E/, then (V",E) is not connected. In either case, (V",E!) is

not 2-edge connected. This is a contradiction. g

Lemma 2.5.7 Assume case 2.5.2 applies. Let (V" , E!') be a minimal 2-edge connected
subgraph of (V",E"). Then (V',E, U (E.N{E"(z,y) | (z,y) € E! })) is a minimal
2-edge connected subgraph of (V', E. U EY).

Proof: Let E! = E.N {E""!(z,y) | (z,y) € E! }. From Lemma 2.5.6 we know that
(V',E, U E() is 2-edge connected. All we have to prove is that every edge in E” is 2-edge
essential for (V', E{UE). Let (v,w) be an edge in E. If (V',(ELUE")— {(v,w)}) is still
2-edge connected, then (V", E{' — {E"(v,w)}) is also 2-edge connected. Graph (V",E")

1s not a minimal 2-edge connected subgraph of (V" E"”). This is a contradiction. g

In this section, we discuss the second part of each recursive call of algorithm 1.2.1. Af-
ter we construct (V", E") from (V', E'), we compute a minimal 2-edge connected subgraph
of (V",E") by using the algorithm recursively. A minimal 2-edge connected subgraph of

(V',E') can be decided while we are computing a minimal 2-edge connected subgraph of

(VH, EH)'

40

§2.6 The Complexity of the Algorithm

The algorithm discussed in this chapter can be implemented to run in O(m + n) time

and space.

There are O(log(n)) recursive calls to the algorithm. In each recursive call, we want to

compute a minimal 2-edge connected subgraph of (V', E') with | V' |=n’ and | E' |= m'.
Each recursive call is divided into two parts.

There are twenty-five phases in the first part. In each phase, two procedures are
involved. Edge set E;, is first computed and then processed. (See §2.3 and 2.4.) In
computing E ., (See also procedure 2.3.1.) spanning tree E; can be obtained by computing
a minimum spanning tree on a 0 — 1 weighted graph. In graph (V', E. U E!), we assign
a weight to each edge. If (z,y) € E|, we let (z,y).weight = 0. If (z,y) € E., we
let (z,y).weight = 1. A minimum spanning tree of (V',E. U E!) can be computed in
O(V' | + | E. | + | E; |) time. This spanning tree contains as many edges of E!
as possible. After Ej is computed, G| can be obtained in O(| V' | + | E. | + | E. |)
time. The critical edges in G| are easily identified. Edge set E'_ can be computed in

O(IV' |+ E¢ |+ | E; |) time.

In §2.4, we discuss a procedure to process E, . Before the procedure, we compute high
and led for each ;rertex v € V'. This computation can be donein O(| V' | + | E. | + | E |)
time by a preorder traversal of the rooted spanning tree F;. (See also [T1].) We also
compute the nearest common ancestor of each nontree edge (z,y) € E! U E!. This can be
donein O(| V' | + | E¢ | + | E |) time. (See [HT5).) The partition of V' and (E!UE")—E!
into partition classes can be implemented in O(| V' | + | E. | + | E. |) time by doing

41

bucket sort on V' and (E. U E.) — Ej respectively.

The procedure in §2.4 is divided into steps. At the beginning of each step, slea can
be computed in O(| Vi, |) time where V}, is the base partition class of slea. Each step is
further divided into two substeps. Both substeps can be implemented in O(| slea |) time.

We also have | slea |<| V3, |

After the two substeps, we remove the vertices from Vj, and the edges incident on
a removed vertex from (V', E! U E]). Let the number of removed tree edges be R;. The
removal of vertices and edges can be finished in O(| Vi, | + | S | +R¢) time. The time
complexity of each step is O(| Vi; | + | S | +R:). After each step, the size of V' decreases
by | Vi, | and the size of E. U E! decreases by | S | +R;. The total complexity of the
procedureis O(| V' |+ | E | + | E. |).

In the first part of the algorithm, assume that we have m' > 2n' at the beginning of
the first phase. We have k = n' —1 < 5K/6 = 5m'/6 when we compute E!, for this phase.
The procedure in §2.4 is used to process the edges in E!_.. After this procedure, we have
| E{ U E, |< 2n'. Thus the first phase takes O(m' + n') time and each of the remaining

twenty-four phases takes O(n') time.

In the second part of each recursive call, (V", E") can be computed from (V', ELUE!)
inO(| V' |+ | E, |+ | E|) time. A minimal 2-edge connected subgraph of (V', EL U E!)
can be obtained while we are computing a minimal 2-edge connected subgraph of (V" E™).

(See Lemma 2.5.3, 2.5.7 and the discussion after Lemma 2.5.3.)

The number of vertices is decreased by at least one fourth in each recursive call, thus

the total time complexity of the algorithm is O(m + n) + O((3/4)n) + O((3/4)*n) + ... +

42

O(1) = O(m +n).

In each recursive call, after we construct (V",E"), we can release the space used by

(V',E'). The space used by the algorithm never exceeds O(m + n).

43

§2.7 Problems for Future Research

The algorithm in this chapter is optimal to within a constant factor for solving the
minimal 2-edge connected subgraph problem. As we mentioned in §1.2 this problem is
actually a special case of the minimal k-edge connected subgraph problem. There is a
polynomial algorithm to test k-edge connected graphs. (See [ET3].) Combining this al-
gorithm with the simple iterative algorithm presented at the beginning of §2.2, we have a
polynomial algorithm solving the minimal k-edge connected subgraph problem. It would
be interesting to know if there is a more efficient (near linear time) algorithm to solve the
minimal k-edge connected subgraph problem. Another interesting problem is to improve
the parallel algorithm in [KV] for finding a minimal 2-edge connected subgraph of a 2-edge

connected graph.

4

Chapter Three

An Algorithm to Find
Minimal 2-Connected Subgraphs

45

£3.1 Introduction

Let G = (V, E) be a 2-connected graph. In this chapter, we develop an O(m + n) time
algorithm (algorithm 1.2.2) for finding a minimal 2-connected subgraph of G. Algorithm
1.2.2 is in many ways similar to algorithm 1.2.1. The presentation in this chapter is
parallel to that of the last chapter. A reader will find that some discussions in this chapter
have already appeared in chapter two. They are included in chapter three to make the
presentation of algorithm 1.2.2 self-contained. Certain proofs and procedures are omitted

in chapter three. A reader is referred to the appropriate sections in chapter two.

In finding a minimal 2-connected subgraph of G, we prefer a subgraph with as few
edges as possible. The problem of finding a minimal 2-connected subgraph of G that has
the fewest edges is N P-complete, however, since the problem is polynomially equivalent

to the following N P-complete problem.

Lemma 3.1.1 Let G = (V, E) be a 2-connected graph and k be an integer. The problem of
deciding whether there exists an edge set E' C E with | E' |= k such that H = (V,E—E')

is 2-connected is N P-complete.

Proof : The problem is obviously in NP. To prove that it is N P-complete, we can reduce
the undirected Hamilton circuit problem to it. Let G = (V, E) be a 2-connected graph.

Let k = m — n. G contains a Hamilton circuit iff there exists an edge set E' C E with

| E' |= k such that (V, E — E') is 2-connected. g

Because of Lemma 3.1.1, we can hope to find only minimal 2-connected subgraphs
for G. Let m; be the number of edges in the minimal 2-connected subgraph found by the

algorithm. Let m; be the number of edges in the minimal 2-connected subgraph that has

46

the fewest edges. As in chapter two, we know that my/m; < 2. It would be nice to have an
algorithm such that for every k > 0, the algorithm finds a minimal 2-connected subgraph

with my edges and my/m; < 1+ k. Unfortunately, no such algorithm is known right now.

47

§3.2 Outline of the Algorithm

We wish to find a maximal subset Ey, C E such that graph (V,E — Ey) is still 2-
connected. In the presentation of the algorithm, we talk about deleting edges from E.

When an edge is deleted, it is added to Ey and remains there until the end of the algorithm.

In order to find a minimal 2-connected subgraph of G, we can use a simple iterative al-
gorithm. For every edge (z,y) in E, we test whether graph (V, E—{(z,y)}) is 2-connected.
We keep (z,y) in E if graph (V, E — {(z,y)}) is not 2-connected and delete it from E oth-
erwise. The edges can be processed in any order. At the end of the algorithm, let E; = {
the deleted edges }; graph (V, E — Ey) is a minimal 2-connected subgraph of G. Since we
have m edges to process, and processing each edge takes O(m + n) time, this algorithm
takes O(m?) time. Although this is not a very efficient algorithm, it is the starting point
for the algorithm in this chapter.

In the simple algorithm, we consider only one edge at an iteration step and we test the
2-connectivity of a graph that is only slightly different from the previously tested graph.
The time complexity of the algorithm can be greatly improved if we can process a group

of edges at a time.

As does algorithm 1.2.1, algorithm 1.2.2 runs recursively. Let us assume that at
the beginning of each recursion, we want to compute a minimal 2-connected subgraph of
(V',E"). (At the beginning of the first recursion, we have V! = V and E' = E.) In
each recursion, we want to find a maximal subset Ey C E' such that (V',E' — E}) is
still 2-connected. Each recursion is divided into two parts. The first part is divided into
twenty-five phases. At the beginning of each phase, we have E' = E. U E. U Ej and
E.NE,=E,NEj=E,NE| = ¢. The edges in E| are deleted from E’ and do not affect
any future processing of (V', E").

48

The inductive hypothesis at the beginning of each phase is that each edge in E} is
2-essential (see Definition 24 in the appendix.) for (V', EL U E!).

The edges in E] are unprocessed edges and are called candidate edges. In each phase,
a subset E, C E_ is computed such that | E!_ |> 1/6 | E. |. E., is then split into two
sets Eg,. and E,,.. The edges in Ej,, are added to Ej and the edges in E.,, are added to
E;. The inductive hypothesis is maintained and we go to the next phase. Let | V' |= n'
and | E' |= m'. The first phase takes O(m' + n') time. After the first phase, we have
| E; U E_ |< 2n'. Each of the remaining twenty-four phases takes O(n') time. After the

first part of each recursion, we have | E. |< (5/6)%42n' < n'/18.

In the second part of each recursion, we use the fact that E. < n'/18 to compute
a new graph (V", E") such that (1) | V" |[< 5/6 | V' |, (2) (V",E") is 2-connected, (3)
| E" |<| E¢ U E |, and (4) if we know a minimal 2-connected subgraph of (V", E"), we
can easily compute a subset E,, C E| such that (V',E. U E!) is a minimal 2-connected
subgraph of (V', E'). The algorithm then computes a minimal 2-connected subgraph of

V", E") by using itself recursively.
g Y

Procedure 2.2.1 is also an outline of algorithm 1.2.2. The difference between the
algorithms lies in (1) the procedures to split E!, in each phase in the first part of each
recursion, and (2) the procedures to compute (V",E") from (V',E. U E!) in the second

part of each recursion.

49

§3.3 Finding E!_ in Each Phase

This section is concerned with finding E!_ at the beginning of each phase. We start
with graph (V’, E, U E]). A spanning tree (V', E}) of (V',E! U E!) is computed such that
E; contains as many edges from E; as possible. Let | E. |= K,| E. N E} |= k. The edges
in ELNE; (E. - (E.NEy}))) are called tree (nontree) candidate edges. The procedure for
finding E}_ is exactly the same as the procedure for finding E', in §2.3. The procedure
is included here to make the presentation of algor-ithm 1.2.2 self contained. A reader can

skip this section if he (or she) has read §2.3.

Let the connected components of (V', E.) be (V{, Ey), (V}, E}), ...,(V;,E}’,)_ We have
UV =V, UE|=E,,and V[NV =¢for 1<i+#j <p.

We contract the vertices in each V] into a single vertex to build an auxiliary graph

Go = (V4, E;). We have V] = {V/ | 1 <4 < p}. For every edge (z,y) in E! with z € V/,
y € Vj, we have an edge (V/,V])(zy) € E,. We shall use E}(z,y) to denote this edge,
ie. Eq(z,y) = (V,V{)(z,y) and E; 7Y (V/,V])(z,y) = (2,y). G} may contain multiple edges
and loops. See Figures 2.3.1, 2.3.2, and 2.3.3.

It is not hard to see that (V,,{E;(z,y) | (z,y) € E.N E}}) is a spanning tree for G/,

The number of vertices in G}, is k + 1.
G, also satisfies following properties:
Lemma 3.3.1 G, is 2-edge connected.

Proof: This is obvious since (V', E! U E!) is 2-connected. g

50

Lemma 3.3.2 Let edge (z,y) € E.. If E;(z,y) is 2-edge essential in G, edge (z,y) is
2-essential in (V',E. U E)).

Proof: Let (z',y') be a bridge in (V],E, — E.(z,y)). Then E!~!(z',y') is a bridge in
(V',(E,UE{) — (z,y)). Thus edge (z,y) is a 2-essential edge of (V',E. U E.). 3

E!. is determined according to the following two cases:

Case 3.3.1 k < 5K/6.

In this case, we let E!, = E!—E]. Obviously,

E!, |=| E'—(E'NE!) |= K-k > K/6.

A procedure to process the edges in E!_ is given in §3.4.
Case 3.3.2 k > 5K/6.

In this case, most of the candidate edges are tree candidate edges and we shall prove

that there are at least K/6 edges in G/, that are 2-edge essential for G',.

Lemma 3.3.3 If case 3.3.2 applies, there are at least K /6 vertices in G', with degree equal
to 2.

Proof: Since G| is 2-edge connected, every vertex in G} has degree at least 2. Let g
be the number of degree 2 vertices. Assume that ¢ < K/6. We have 2vievr deg(vi) >
3(k+1-¢)+2¢=3(k+1)—¢g>3(k+1)— K/6 > 2K. But the sum of degrees equals

2K since the number of edges in G, is K. This is a contradiction. g

Let (z',y') be an edge in G,. If the degree of 2’ or y' equals 2, edge (2, y') is obviously

51

a 2-edge essential edge in G,,. We call (z',y') a critical edge of G,.
Lemma 3.3.4 If case 3.3.2 applies, there are at least K/6 critical edges in G',.

Proof: We know from Lemma 3.3.3 that there are at least K /6 vertices in G!, with degree
equal to 2. Each such vertex provides two critical edges and each critical edge is counted

at most twice, so the lemma is true. g

Let E;, = {(z,y) | E;(z,y) is a critical edge in G, }. From Lemma 3.3.2 and 3.3.4,
we know that every edge in E;, is 2-essential for (V', E. U E.) and | E!, |> K/6.

The following pseudo code outlines the procedure to compute E,. at the beginning of

each phase.

Procedure 3.3.1

Input: (V',E_ U E!)
Output: E!,
{
Compute a spanning tree (V', E}) for (V',E! U E!);
such that E; contains as many edges of E! as possible;
Let | E{ |= K and | EL.N E| |= k;
Construct, G, = (V,,E.);
If (k <5K/6);
Let E}, = E. - E. UE!;
Else E;. = {(z,y) | E4(z,y) is a critical edge of G };

52

§3.4 Processing the Edges in E|,

From the discussion of §3.3, we know that when k > 5K/6, every edge in E|_ is 2-
essential for (V', E, U E.). In this case, no further processing is needed for the edges in

E!.. All the edges in E|_ are added to E.. We go to the next phase of the algorithm.

If ¥ < 5K/6, then we have E,, = E! — E;. Using the procedure discussed in this
section, some edges in E}_ are added to E. and others are added to Ej. We shall prove

that the inductive hypothesis is maintained at the end of the procedure.

We again consider graph (V', E{ U E(). Let (V', E;) be the spanning tree described in
§3.3. For the sake of simplicity, the procedure actually processes the edges in (ELUE.)— E;
(the nontree edges in (V',E] U E)). If we pick a vertex in V', we can convert (V', E!)
into a rooted spanning tree. The procedure works bottom-up on the tree. E!_ is split into
Ey,. and E;,, such that every edge in E,, is 2-essential for(V',(E, U E.,.)U (E. — E.,).

The edges in E, — E; will be added to E.,, automatically in the process.

After (V', E}) is turned into a rooted spanning tree, we number the vertices in V' by
a postorder numbering of (V', E}). In the following discussion, the vertices will be referred
to by their number. We also mark the leaves of (V', E}). For each nontree edge (z,y), let
nca(z,y) be the nearest common ancestor of z and y in (V', E}). That is , nca(z,y) =

min {v | v is an ancestor of 2 and y}. For each vertex v in V, let be(v), high(v), led(v) be

as defined in §2.3.

At the beginning of the procedure, we compute high for every vertex in V' and nca
for every nontree edge in E, U E_. For each vertex v, we also compute led(v). All these can

be computed in linear time (See [HT5) for the computation of nearest common ancestors

53

of nontree edges).

For each edge (z,y) in (E, U E]) — E;, if nca(z,y) <min(high(z), high(y)), we re-
move it from E, U E and put it in Ej. After this operation , we have nca(z,y) = min

(high(z), high(y)) for every (z,y) € (E. U E.) — E,.

After computing the high values, we partition V' into Vi,,..., Vs, such that (1)
high(v) = high(w) for v € V4, and w € V},; with 1 <7 < [, and (2) high(v) < high(w)
for v € Vp, and w € Vp; with 1 <4 < j < 1. We call V},,..., V4, the partition classes of
V'. Let high(Vy,) = high(v) where v € V3,. This partition can be computed by doing a
bucket sort on V' using the high values as the sort key. At the beginning of the proce-
dure, we mark every partition class of V' as unprocessed. In the procedure, the partition
classes are processed according to the order of ascending high values. After a partition

class is processed, it is marked so and the vertices in the partition class are removed from

(V',E! U E.).

We also partition (E, U E}) — Ej into Ey, ..., E4, such that (1) nca(v,w) = nca(z,y)
for (v,w) € Ep; and (z,y) € Ep, with 1 < i < [, and (2) nca(v,w) < nca(z,y) for
(vyw) € Ep; and (z,y) € Ep; with 1 < i < j < 1. We call Ey,,..., Ep, the partition
classes of the nontree edges. Let nca(Ey;) = nca(z,y) where (z,y) € Ej,. This partition
can be computed by doing a bucket sort on (E; U E!) — E; using the nca values as the
sort key. It is important to notice that there is a 1 — 1 correspondence (P : V;, — Ej,

where high(Vy,) = nca(Ep;)) between the partition classes of V' and the partition classes

of (E' U E!) — E.

For each vertex v € V', we associate a field isleaf with v. We have v.isleaf = 1 if
v is a leaf in (V', E}) and v.isleaf = 0 otherwise. In the procedure, a nonleaf vertex can

turn into a leaf vertex, but not vice versa.

54

The procedure is divided into steps and works bottom-up on (V’, E}). At the beginning
of the procedure, we let E{,. = ¢ and E.,, = ¢. In order to make the procedure efficient,
we wish to design it in such a way that we can consider a group of nontree edges at a time,

and decide which edges should be added to Ej,. and which should be added to E!,_, by

esc?

studying the local structure of these edges.

At the beginning of each step, let slea = {v | v is a leaf, v € V},, and V}, is the
unprocessed partition class of V' with the smallest high value }. We call V}, the base

partition class of slea. We have | slea |<| Vj, |.

Let vo = high(Vh;). We assume that vy, ...,v, are the children of vy with high(v;) =
vo and uy,...,uq are the children of vy with high(uj) > vo. Let T,, = (Vy,;, Ey;) and
Tu; = (Vu;, Eu;) be the subtrees of (V', E{) that are rooted at v; and u; respectively. Let
S = {(z,y) | nca(z,y) = vo and (z,y) € (ELUE.)— E}}. Notice that S is a partition class
of (E, U E) — E, where nca(S) = vy. (See Figure 3.4.1).

In each step, a subset CS of S is chosen. If we add the edges in S — CS to Ej,,,
(V', (B¢ UE;)— (5 —CS)) is 2-connected and every edge in CS is 2-essential for the graph.
Vertex vy is chosen in such a way that C'S can be computed locally by using the subgraphs
of (V', E, U E;) spanned by T,, and T,;. The processing of nontree edges in (V', E! U E})
with nearest common ancestor greater than v, will not affect the choice of the edges in

CS. (See Lemma 3.4.7 for details.)

After C'S is chosen, the vertices in V}, are removed from (V',E. U E.). We also
remove any tree edge or nontree edge that is incident on a removed vertex. Let the set of
removed nontree edges be S'. We prove that S’ = S. We use induction on the steps of the
procedure. Assume that every vertex v with high(v) < vy and every nontree edge (z,y)

with nca(z,y) < vo have been removed from (V', E. UE}) at the beginning of the step. Let

59

(z,y) € S' and z € Vj;. We have high(z) = v and nca(z,y) = min(high(z), high(y)) = vo
since we know that high(y) > vo. This means (z,y) € S. Let (z,y) € S. If both
high(z) > v and high(y) > v then we have nca(z,y) > vo. This is a contradiction.
Assume that high(z) = vg. We have v € V}, and (z,y) € S'. (See also the discussion
after substep 4.) After the removal of vertices and edges, we go to the next step of the
procedure. When (V', E. U E!) is empty, the procedure terminates. Since the removal of
vertices and edges only affect the procedure in this section, the procedure actually works on

a copy of (V', E{UE_U E}) and saves the original (V', E. U E.U E})) for future processing.

Figure 34.1

The process of computing C'S involves four substeps (remember that computing C'S
involves only two substeps in algorithm 1.2.1). The goal of the substeps is to choose a
minimal subset C'S of S such that (V', (ELUE.)—(S—C\S)) is 2-connected. Let us consider
a vertex v in slea. There is a unique path in (V', E}) from vy to v, say vg,v1,...,v;,v. We
must pick at least one edge from be(v) and put it in C'S, since v; would be an articulation
point in (V',(E, U E}) — (§ — CS)) otherwise. Since we have high(v) = vy, if we put an
edge from led(v) in C'S, we are sure that (vg,v;), ..., (v;,v) will be in the same 2-connected

component in (V',(E, U E{) — (S — CS)). See Figure 3.4.2.

56

Substep 1 For each vertex v in slea, we choose an edge from led(v) and put it in C'S.

Although every vertex v in slea is now covered by at least one edge in C'S, C'S may

not be a minimal subset of S that covers every vertex of slea.

Substep 2 We build an auxiliary graph (V,,CS). V, = {v | 3w,(v,w) € CS}. The
vertices of V, that are in slea are marked red. By using a minimal edge covering algorithm,

we find a minimal subset of C'S that covers all the red vertices of V.

. vo vo
"'
’l
’
’
’ Vi \'S
! 7 ’
] ’ 7
[4 ’
’ ’
[K4 £
\
\ /VI V]_/
s S mem=-
v v¥-=°
Figure 3.4.2

Both substep 1 and substep 2 can be performed in O(| slea |) time.

Let C'S be the minimal subset found in substep 2. Now the edges in C'S satisfy the

following lemma:

Lemma 3.4.1 (1) For any set of four vertices u,v,z,y in slea, if both (u,v) and (z,y) are
in €S, then (v,z) cannot be in CS. (2) If (z,y) is in C'S and y is not in slea, then (z,y)

must be the unique edge in C'S that is incident on z.

o7

Proof: The properties are direct results from substep 2. g

From Lemma 3.4.1, we know that (V,,CS) has no path with length longer than 2
after substep 2. Let (z,y) be in CS and z € slea. (z,y) can be in one of the following
cases (1) y ¢ slea and (z,y) is the only edge in C'S that is incident on z. (2) y € slea
and (z,y) is the only edge in CS that is incident on both z and y. (3) y € slea, (z,y)
is the only edge in C'S incident on y and (z,y) is not the only edge in C'S incident on z.
The cases are shown in Figure 3.4.3. We call the third case the star case. The partition

of edges in C'S into three cases will be useful in substep 4.

After we pick edges to cover the vertices in slea, some subtrees T, are connected by
edges in C'S to form biconnected components in (V',(E. U E.) — (S — CS)). In order to
make (V',(E, U E[) — (S — CS)) 2-connected, more edges may need to be added to C'S to
connect these components. These edges are chosen by studying the connectivity structure
of (V',(EUE;)— (S —CS)) at vg. The structure is represented in the following auxiliary

graph.

"ny
;' x----il ----lw:----ty
; y X \Nl

case 1 case 2 case 3

Figure 3.4.3

We build an auxiliary graph (Vag, Eqg) where Vg = {Ty,, |1 < i < p}U{y | 3(z,y) €
S, high(y) > vo} and Eoy = {(TvnTv,-) |3t y) €S,z eV,,y€ V,,,.}U{(T,,,.,y) I A(z,y) €

58

S,z € Vy,;, high(y > vo}. When we construct (Vag, Eag), we first propagate a symbol "T!
throughout V,,; so that every vertex in V,, knows that it is in T,,. This can be done in
O(3_F., |V, |) time. Graph (Vgy, Eqy) can then be constructed in O(37_, | Vi, |+ S |)
time. Since we have Y ¢, | Vo, |<| Vi, |. Graph (V,y,E,;) can be constructed in
O(| Va; | +1 §|) time. We also have | Vo, |<| Vi, |+ | S| and | B,y [<| S |.

For each edge (z,y) in S, there is a corresponding edge in E,;,. We call this edge
E.4(z,y). Each vertex y is marked red in (V,4, E,4). (See Figure 3.4.4.)

In Figure 3.4.4, {Ty,,T,,} forms a connected component of (Va4, Esy) that contains
no red vertex. It is obviously true that more edges need to be added to C'S. Otherwise,
vo will be an articulation point in (V',(E{U E,) — (S — CS)) with T}, and T,, forming a
2-connected component. In algorithm 1.2.1, it is enough to have (V',(ELUE.)—(S—CS))

2-edge connected. Substeps 3 and 4 are not needed there.

Let us consider graph (V,,, {Eay(2,y) | (z,y) € CS}). Let CTy,...,CT; be the con-
nected components of this graph. If there exists a CT; that contains no red vertex, then

(V',(E; UE,)— (S — CS)) is not 2-connected. More edges need to be put in C'S.

Substep 3 We find a minimal subset C'S; of S — CS such that every connected component
in (Vag, {Eag(z,y) | (z,y) € CSUCS1}) contains at least one red vertex. C'S; exists since
(V',E, U E;) is 2-connected. CS; can be found in O(| Vay | + | Eay |) time because of
Lemma 3.4.2.

Lemma 3.4.2 Let G; = (V}, E;) be a connected graph. At least one of the vertices in V;
is marked red. In O(| Vi | + | E; |) time, we can find a minimal subset E] C E; such that

every connected component in O(V}, E|) contains at least one red vertex.

59

Proof: We choose a red vertex v in V; and construct a rooted spanning tree (V, Ey)
for Gi. For each red vertex v in Vj, let f(v) be the parent of v in (Vi, Ey). Let E] =

Ei — {(v, f(v)) | vis red }. Ej is the required set. g

TV2 T“l

Figure 3.4.4

The reader has probably noticed that we are not adding the edges of C'S; to CS
immediately. This caution has a good reason. The problem is that the edges in C'S; may
also cover vertices in slea, thus making some edges in C'S unnecessary. Substep 4 removes

these edges.

Substep 4 In this substep, we will manipulate the subsets of C'S. A subset CS’ of CS is

called a valid set, if

Condition 3.4.1 C'S' U CS] covers every vertex in slea.

60

Condition 3.4.2 If a connected component CT; in (Vag, {Eag(z,y) | (z,y) € CS}) does
not contain a red vertex, it is still a connected component in (V,q, {Esy(z,v) | (z,y) €

cs).

Condition 3.4.3 If a connected component CT; in (V,q,{Eay(z,y) | (z,y) € CS}) con-
tains a red vertex, it can split into several components in (V,q, {Eaq(z,y) | (z,y) € CS'}),

each containing a red vertex.

\
.\ '.'J y S /. ‘\‘\\
- ———— - -
X y X y
case 1 case 2 case 3
Figure 34.5

The purpose of substep 4 is to find a minimal subset of C'S that is valid. Since C'$ is
chosen in substep 3 to connect the components of (V,4, {Eqq(2z,v) | (z,y) € CS}), a valid
set is required to satisfy condition 3.4.2 and 3.4.3 to maintain (V',(E, U E.) — (S - CS))

2-connected after the substep.

For every edge (z,y) € CS, let z € slea. Because of Lemma 3.4.1, (z,y) can be taken

out of C'S iff one of the following cases happens.

Case 3.4.1 Only one edge in C'S is incident on z; y ¢ slea and z is incident on an edge
n CS;[

61

Case 3.4.2 y € slea, z,y are both incident on edges in CS;.

Case 3.4.3 More than one edge in CS is incident on z, = is not on an edge in CS1,

y € slea and y is incident on an edge in CS;.

Notice that these three cases correspond to the three cases in Figure 3.4.3.

In Figure 3.4.5, the edges in CS; are long dashed and the edges in C'S are short
dashed.

If we delete (z,y) from C'S in case 3.4.1 and case 3.4.2, the vertices in slea are still
covered by edges in CS;. Case 3.4.3 corresponds to the star case in Figure 3.4.3. In this
case, if all the edges in C'S that are incident on z are deleted from C'S, z is left uncovered

by CSUCS,.

Let CD; = {(z,y) € CS | (z,y) satisfies one of the cases 3.4.1, 3.4.2 , and 3.4.3 }.
(CS — CD;)UCS, may leave some vertices z in case 3.4.3 uncovered. If this happens, we

pick an arbitrary edge (z,y) in CD, that covers z. Let C D, be the set of all such edges.
We have CD, C CD;.

Consider graph (Vag, {Eag(z,y) | (z,y) € (CS—CD;)UCD;,}. We choose a minimal
subset CS; of CDy; — CD; such that (CS — CD;) U CS; U CD, is a valid set. Such a
set CS, exists since CS itself is valid. C'S; can be computed in O(| Vag | + | Eag |) time
because of Lemma 3.4.3 and 3.4.4.

Lemma 3.4.3 Let G; = (W, E}) be a connected graph. Let E; C E;. In O(| V; | + | E; |)
time, we can find a minimal subset E}' C Ej such that O(V},(E; — E;) U E}') is connected.

62

Proof: Let the connected components of (Vi, E; — E;) be Cy,...,Cp. We contract C; into a
vertex v; to obtain a new graph (Vi1, Ei). Every edge in E; — Ej is a self loop in (Vi1, Ep).
Let (Vi1,E;) be a spanning tree of (Vj;,E;). E; is a minimal subset of E] such that
(Vi,(E; — E{) U E,) is connected. g

Lemma 3.4.4 Let G; = (V}, E) be a connected graph. At least one of the vertices in V;
is red. Let E; C E;. In O(| Vi | + | E; |) time, we can find a minimal subset E}' C E] such

that every connected component in (V;,(E; — Ej) U E}') contains at least one red vertex.

Proof: Let the connected components of (V;, E; — E}) be Cy,...,C,. We contract C; into a
vertex v; to obtain a new graph (Vi1, Ei). Every edge in E; — E] is a self loop in (Vj1, E)).
Lemma 3.4.2 can be used to find a minimal set E;' C E| such that every connected

component in (Vi1, E}') contains a red vertex. Ej is the required set. g

Remember that the edges in C D, are chosen to cover the vertices in case 3.4.3 of
Figure 3.4.5. Let (z,y) € CS2. The nice thing about the computation of C'S; is that no
matter how we process the edges in CD; later, (CS — CD;)UCD; U (CS; — {(z,y)}) is

not a valid set.

Lemma 3.4.5 Let (z,y) € (CS — CD;)UCS,. For every CD), C CD,, (CS —-CD;)U
CS; UCD), — {(z,y)} is not a valid set.

Proof: If (z,y) € CS — CD,, then (CS—CD;)UCS,UCD) — {(z,y)} UCS; will leave at
least one vertex in slea uncovered. If (z,y) € C'S,, at least one connected component in
(Vags {Eag(z,9) | (z,4) € (CS — CD,)UCS; UCD, — {(z,y)}) UCS;} does not contain

a red vertex. g

63

The edges in CD; were chosen to cover the vertices in slea. Since some edges in CS,

also cover vertices in slea, some edges in C' D, may not be necessary.

Let CD; = {(z,y) | (z,y) € CD;} and z is covered by an edge in C'S,. Using Lemma
3.4.3 and 3.4.4, we can compute a minimal subset C'S3 C CDj such that (CS — CD;) U
CS2U(CD; — CD;)UCS;3) is a valid set. This time the complicated star case (case 3.4.3
in Figure 3.4.3) goes away and we are sure that every vertex in slea is covered by an edge

in (CS = CD]) U CSZ U (CD2 o CDg)

Let CS = (CS — CD;)UCS,U(CDy — CD3) UCSs.

Lemma 3.4.6 CS is a valid set. For any edge (z,y) € CS, CS — {(z,y)} is not a valid

set.

Proof: The proof is similar to that of Lemma 3.4.5 and is omitted here. g

Let CS=CSUCS;.

Substep 4 can be implemented in O(| Vo4 | 4 | Eqy |) time.

After the computation of substep 4, we remove the vertices of Vj, from (V', E! UE!).
We also remove every tree edge and nontree edge incident on a removed vertex. If a nonleaf
vertex v becomes a leaf after the removal of the vertices in Vj,, we let v.isleaf = 1. We
already know that the set of removed nontree edges is S. Let the number of removed tree
edges be R;. The removal of vertices and edges can be finished in O(| Vi, | + | S | +Ry)
time. After the removal of vertices and edges, we go to the next step. The time complexity

of each step is O(| Vi, | + | § | +R;). After each step, the size of V' decreases by | V4, |

64

and the size of E, U E| decreases by | S | +R;. The total complexity of the procedure is
O(VI+I|E|+]E .

Let E!

€sc

=E'

rsc UCS and Ej, = Ey, U (S —CS).
Lemma 3.4.7 Graph (V',(E. U E.) — (S — CS)) is 2-connected and the edges in C'S are
all 2-essential.

Proof: (V',(E,UE.)— (S — CS)) is 2-connected because of the way CS is chosen. If we
delete one edge (z,y) from C'S, either one of the vertices in slea becomes uncovered or v,
becomes an articulation point. The edges processed at later steps of the procedure will all
have high values greater than vy. After the procedure, (V',(E. U E') — (§ — CS)) is not

2-connected. g

The following pseudo code outlines the procedure in this section.

Procedure 3.4.1

{

Let (V', E}) be the spanning tree in §3.3;

For each vertex v € V', compute high(v);

For each nontree edge (v, w), compute nca(v, w);

For each vertex v € V', compute led(v);

For each (z,y) € (E, U E;) — E; with nca(z,y) <min(high(z), high(y))
Remove (z,y) from E, U E! and put it in E};

Partition V' into partition classes: V..., Va,;

Partition (E; U E) — E; into partition classes: Ej,,..., Ep,;

65

Mark each V;,(1 <1 <) as unprocessed;
While (V', E, U E!) is not empty
{

Let slea = {v | v is a leaf, v € V},;, and V},, is
the unprocessed partition class of V' with the smallest high value };
Let vg = high(Vy,);
Let vy, ...,vp be the children of vy with high(v;) = vo;
Let uy,...,uy be the children of vy with high(u;) < vo;
Let T,, and T,; be the subtree of (V', E})
rooted at v; and uj;
Compute C'S using the four substeps described above;
Remove the vertices of V},; and the edges incident
on a vertex in V3, from (V', E. U E.);

Mark Vj, as processed;

66

§3.5 Computing (V",E") from (V',E. U E.)

After the first part of the algorithm, we obtain a graph (V', E. U E!) such that (1)
(V',E, U E{) is 2-connected, (2) every edge in E is 2-essential for the graph, and (3)
| E. |<n'/18.

In this section, we discuss a procedure to compute a new graph (V", E") such that
(1) (V",E") is 2-connected, (2) | V" |< 5n'/6, (3) | E" |<| ELUE. |, and (4) if we know a

minimal 2-connected subgraph of (V", E"), we can process the edges in E. in O(n') time

and compute a minimal 2-edge connected subgraph of (V', E').

Graph (V",E") is constructed in such a way that it preserves the 2-connectivity

structure of (V', E, U E!).

In the following discussion, we assume that if (z,y) € E_ then deg(z) > 2 and deg(y) >
2. If deg(z) = 2 or deg(y) = 2, (z,y) is always 2-essential for (V', E, U E').

There are two cases to consider:

Case 3.5.1 | ELU E, |< 4n'/3.

Lemma 3.5.1 If case 3.5.1 applies, there are at least n'/4 vertices in (V', E U E!) with

degree equal to 2.

Proof: See proof of Lemma 2.5.1.

A path v1,...,vp in (V', E; U E{) is a chain if we have deg(vy) > 2, deg(v,) > 2 and

67

deg(v;) = 2 for 1 < ¢ < p. Every degree two vertex in (V', E, U E!) is on a unique chain
in the graph. v; and v, are called the end vertices of the chain. Notice that a chain may

be a cycle with v; = v,.

If case 3.5.1 applies, we know from Lemma 3.5.1 that there are at least n'/4 vertices
in (V', E_UE) with degree 2. We contract these vertices to build (V", E"). We construct
(V",E") in the following way:

(1) Let V" =V’ — {v | deg(v) =2 }.

(2) For each edge (z,y) € E_ U E. with deg(z) > 2 and deg(y) > 2, add an edge
(z,y) to E". (z,y) is called a regular edge in E". For each regular edge (z,y) € E", let
E"~1(z,y) be the corresponding edge in (V', E! U E').

(3) For each chain vy, ...,v,, we add a new edge (v1,v,) to E". (v1,v,) is called a
special edge in E". For each special edge (z,y) € E", let E"~(z,y) be the corresponding
chain in (V', E, U E)).

It is not hard to see that (V", E") is 2-connected and preserves the 2 con- nectivity
structure of (V', E, U Ey) (See also Lemma 3.5.2 and 3.5.3). It is also true that | E" |<|

Lemma 3.5.2 Assume case 3.5.1 applies. Let (V", E!') be a subgraph of (V", E") that is
2-connected. Then (V',E, U (E, N {E""(z,y) | (z,y) € E. and (z,y) is a regular edge

})) is also 2-connected.

Proof: Let E!! = E.N{E""(z,y) | (z,y) € E! and (z,y) is a regular edge }. Assume that

68

(V',E_UE() is not 2-connected. Let v be an articulation point in (V', ELUEY). fvisina
chain vy, ..., vp, then both v; and v, are in V" and they are articulation points in (V", EY)
. (V",E) is not 2-connected. If deg(v) > 2, then v € V" and v is an articulation point in
(V'",E{). (V",E) is not 2-connected. This means that (V', E! U E”) is 2-connected. g

Lemma 3.5.3 Assume case 3.5.1 applies. Let (V", E!') be a minimal 2-connected subgraph
of (V",E"). Then (V',E,U(E.N{E""(z,y) | (z,y) € E! and (z,y) is a regular edge in
E" })) is a minimal 2-connected subgraph of (V', E. U E!).

Proof: Let E = E.N{E""'(z,y) | (z,y) € EY and (z,y) is a regular edge in E" }. From
Lemma 3.5.2 we know that (V', E{UE]') is 2-connected. All we have to prove is that every
edge in E{ is 2-essential for (V', E, U E!!). Let (v,w) be an edge in E". (v,w) is also a
regular edge in E" and (v,w) € E!'. If (V',(E.U EY)— {(v,w)}) is still 2-connected, then
(V",E{ — {(v,w)}) is also 2-connected. (V", E!) is not a minimal 2-connected subgraph
of (V",E"). This is a contradiction. g

After we construct (V”, E"), we do not wish to keep (V', E’). We do not wish to
compute E; after we compute (V", E!). As a matter of fact, E" can be decided while we
are computing (V", E). For each edge (z,y) in E’', we associate a field source with it.
Before the first recursive call of the algorithm, we let (z,y).source = (z,y) for every edge
in E. When we construct (V", E") from (V', E'), we let (z,y).source = E"~!(z,y).source
for every regular edge (z,y) € E" such that E"~(z,y) € E. and (z,y).source = null for
all other edges in E". Before the first recursive call, we let Ef. = ¢. When we compute
a minimal 2-connected subgraph of (V', E'), if we add an edge (z,y) € E’ to E!, we add
(z,y).source to Eye if (z,y).source is not null. After the algorithm terminates, (V, Ey¢.)

is a minimal 2-connected subgraph of (V, E).

Case 3.5.2 | E. U E! |> 4n'/3.

69

If case 3.5.2 applies, we know that | E, |> 23n'/18. Let (W1, E1),...,(V}, Ep) be the 2-

connected components of (V', E.). We have U}_,V; = V' and V,NV; = ¢ for 1 <i #j <p.

Lemma 3.5.4 If condition 3.5.2 applies, there are at least 5n'/18 vertices in (V’, E!) that

are not articulation points.

Proof: If case 3.5.2 applies, we have | E, |> 4n'/3 — n'/18 = 23n'/18. Let (V', EL) be a
spanning forest of (V', E}). We have | E, — Ef |> 5n'/18. Every edge in El is in a 2-
connected component by itself in (V', E7.). We add the edges in E! — Ef, to E/. one by one.
When we add (z,y) to Ep, two 2-connected components in (V', Ef.) merge. The number
of 2-connected components in (V', E}.) is decreased by at least one. This is true since
every edge in E, is 2-essential for (V', E; U E}). After we add all the edges in E. — E}. to
E7r, (V', Er) has less than 13n'/18 2-connected components. This proves that (V', E!) has
less than 13n’/18 2-connected components. The number of articulation points in (V', E!)
cannot exceed the number of its 2-connected components.(See Lemma 3.5.4’.) This proves

the lemma.

Lemma 3.5.4° Let G = (Vi, E;) be a graph. The number of articulation points in G,

cannot exceed the number of its 2-connected components.

Proof: Let the 2-connected components of G; be C; = VM, E1),...,Cp = (Vp, Ep). Let
the articulation i)oints of G; be vy,...,v. We build an auxiliary graph (V,,, E,,) such
that (1) Vau = {C1,...,Cp} U {v1,...,0,}, and (2) Equ = {(Ci,v;) | v; € V;)}. It is not
hard to see that (1) (Viu, E,u) is a forest, and (2) vertex vj(1 < j < ¢) € V,, cannot
be a leaf or an isolation point in (Vgy, Eay). From these two facts we can conclude that

| {C1,...,Cp} |2] {v1,...,vq} |. This proves the lemma. g

70

Lemma 3.5.5 If case 3.5.2 applies, there are at least n'/6 vertices in (V', E! U E!) that

are not articulation points in (V', E!) and are not incident on an edge in E..

Proof: If case 3.5.2 applies, we know that | E. |< n'/18. From Lemma 3.5.3, we have at
least 5n'/18 vertices that are not articulation points in (V', E.). Since we have | E! |<
n'/18, there are at least 5n'/18 — 2n' /18 = n'/6 such vertices that are not incident on an

edge in E.. g

Figure 3.5.1

If case 3.5.2 applies, we construct (V", E") in the following way:
(1) Let V" = ¢ and E" = ¢.

(2) For 1 <i < p, Let V; = {vi1,..-,via} U {u1, ..., uip} (V; is a 2-connected component
of (V',E,)) where v;; (1 < j < a) is a vertex in V; that is not an articulation point
in (V',E{) and is not incident on an edge in E!. Let V" = V" U {uiryee tiip}. Let
E" = E" U {(ui1,uiz), (%iz, i3)y o, (ip, uir)}. Edges (uir,uiz), ..., (uip, ui1)} are called

special edges in E". We let the source field of the special edges be null.

71

3) For each edge (z,y) in E}, both z and y are in V". Let E" = E" U {(z,y)}. Edge
g c
(z,y) is called a regular edge in E". Let (z',y') be a regular edge in E". We shall denote

the corresponding edge in E. by E"~1(2',y') and let (z',y").source = E"~1(z'.y").source.

Lemma 3.5.6 | V" |< 5n'/6 and | E" |<| ELUE. |.

Proof: This is obvious from the way (V", E") is built. g

It is not hard to see that (V",E") is 2-connected and preserves the 2 connectivity

structure of (V', E. U E.). (See also Lemma 3.5.7 and 3.5.8.)

In Figure 3.5.1, the edges in E| are solid and the edges in E. are dashed.

Lemma 3.5.7 Assume case 3.5.2 applies. Let (V", E') be a subgraph of (V", E") that is
2-connected. Then (V',E.U(E.N{E""Y(z,y) | (z,y) € E" and (z,v) is a regular edge in
E'"})) is also 2-connected.

Proof: Let E; = E,N{E""(z,y) | (z,y) € E/ and (z,y) is a regular edge in E"}. Assume
that (V', E, UE) is not 2-connected. Let v be an articulation point in (V', ELUE"), then
v is an articulation point in (V', E]) and we have v € V". v is an articulation point in

(V" El). (V",E) is not 2-connected. This is a contradiction. g

Lemma 3.5.8 Assume case 3.5.2 applies. Let (V", E”) be a minimal 2-connected subgraph
of (V",E"). Then (V',E_U(E.N{E""(z,y) | (z,y) € EY and (z,y) is a regular edge in
E! })) is a minimal 2-connected subgraph of (V', E! U E!).

Proof: Let E! = E. N {E""!(z,y) | (z,y) € E! }. From Lemma 3.5.7 we know that

72

(V',E_ U E() is 2-connected. All we have to prove is that every edge in E! is 2-essential
for (V!,E, U E[). Let (v,w) be an edge in E!. If (V',(E.U EY) — (v,w)) is still 2-
connected, then (V",E! — {(v,w)}) is also 2-connected. (V",E!) is not a minimal 2-

connected subgraph of (V", E"). This is a contradiction. g

We conclude this section with a discussion of the second part of each recursive call
of algorithm 1.2.2. After we construct (V", E") from (V', E'), we compute a minimal 2-
connected subgraph of (V", E") by using the algorithm recursively. A minimal 2-connected

subgraph of (V', E') can be decided while we are computing a minimal 2-connected sub-

graph of (V", E").

73

§3.6 The Complexity of the Algorithm

The algorithm discussed in §3.3 and 3.4 can be implemented to run in O(m + n) time

and space.

There are O(log(n)) recursive calls to the algorithm. In each recursive call, we want

to compute a minimal 2-connected subgraph of (V', E') with | V' |= n' and | E' |= m/.
Each recursive call is divided into two parts.

There are twenty-five phases in the first part. In each phase, two procedures are
involved. Edge set E; is first computed and then processed. (See §2.3 and 2.4.) In
computing E, (see also procedure 2.3.1) spanning tree E; can be obtained by computing
a minimum spanning tree on a 0 — 1 weighted graph. In graph (V', E, U E'), we assign
a weight to each edge. If (z,y) € E, we let (z,y).weight = 0. If (z,y) € E!, we
let (z,y).weight = 1. A minimum spanning tree of (V', E! U E!) can be computed in
O(V' | + | E{ | + | E; |) time. This spanning tree contains as many edges of E!
as possible. After E} is computed, G} can be obtained in O(| V' | + | E. | + | E. |)
time. The critical edges in G| are easily identified. Edge set E’_ can be computed in

O(|V'|+ | E,|+|E.|) time.

In §2.4, we discuss a procedure to process E' . Before the procedure, we compute high
and led for each vertex v € V. This computation can be donein O(| V' | + | E. | + | E. |)
time by a preorder traversal of the rooted spanning tree Ej. (See also [T1].) We also
compute the nearest common ancestor of each nontree edge (z,y) € E! UE!). This can be
done in O(| V' | + | E¢ | + | B¢ |). (See [HT5].) The partition of V' and (E. U E.) — E!

into partition classes can be implemented in O(| V' |+ | E. | 4+ | E! |) time using bucket

74

sort on V' and (E. U E.) — Ej respectively.

The procedure in §3.4 is divided into steps. At the beginning of each step, slea can
be computed in O(| Vj,; |) time where Vj, is the base partition class of slea. Each step is
further divided into four substeps. The first two substeps can be implemented in O(| slea |)

time. We also have | slea |<| V4, |.

Both substep 3 and 4 can be implemented in O(| Vo, | + | Eqg |) time. We also have
| Vag |<[Vi | +15 | and | Eqy [<| S |.

After the substeps, we remove the vertices from Vj, and the edges incident on a
removed vertex from (V',E, U E;). Let the number of removed tree edges be R;. The
removal of vertices and edges can be finished in O(| Vi, | + | S | +R;) time. The time
complexity of each step is O(| Vi, | + | S | +R:). After each step, the size of V' decreases
by | Vi, | and the size of E, U E. decreases by | S | +R;. The total complexity of the
procedureis O(| V' |+ | El | + | E. |).

In the first part of the algorithm, assume that we have m' > 2n' at the beginning of
the first phase. We have k = n’' —1 < 5K/6 = 5m'/6 when we compute E’_ for this phase.
The procedure in §3.4 is used to process the edges in E!,. After this procedure, we have
| Ee U E; |[< 2n'. Thus the first phase takes O(m’ + n') time and each of the remaining

twenty-four phases takes O(n') time.

In the second part of each recursive call, (V", E") can be computed from (V', E! UE})
in O(| V' |+ | E; | + | E{ |) time. A minimal 2-edge connected subgraph of (V', E. U E!)
can be obtained while we are computing a minimal 2-edge connected subgraph of (V",E™).

(See Lemma 2.5.3, 2.5.7 and the discussion after Lemma 2.5.3.)

75

The number of vertices decreases by at least one sixth in each recursive call. Thus the
total time complexity of the algorithm is O(m + n)+ O((5/6)n) + ((5/6)*n) + ... + O(1) =
O(m + n).

In each recursive call, after we construct (V", E"), we can release the space used by

(V',E'). The space complexity of the algorithm is also O(m + n).

76

§3.7 Problems for Future Research

The algorithm is optimal to within a constant factor for solving the minimal 2-
connected subgraph problem. As we discussed in §1.2, this problem is actually a special
case of finding a minimal k-connected subgraph for a k-connected graph. There is a poly-
nomial algorithm to test k-connected graphs (See [ET3]). Combining this algorithm with
the simple iterative algorithm presented at the beginning of §3.2, we have a polynomial
algorithm solving the minimal k-connected subgraph problem. It would be interesting to
know if there exits an more efficient (near linear time) algorithm to solve the minimal
k-connected subgraph problem. Another interesting problem is to improve the parallel

algorithm in [KV] for finding a minimal 2-connected subgraph of a 2-connected graph.

7

Chapter Four

An Algorithm to Find
Maximal Planar Subgraphs

78

§4.1 Introduction

Problems of planar graphs are always important in the study of graph theory. A
fundamental problem in dealing with planar graphs is the planarity testing problem. The
problem was solved satisfactorily by Hopcroft and Tarjan in 1972. They gave the first

linear time algorithm for testing the planarity of a graph. (See [HT1].)

Their algorithm starts by finding a simple cycle in a graph. Deleting this cycle breaks
the graph into one or more disconnected pieces. The planarity of each piece is tested by
using the algorithm recursively. If the pieces are planar, they are put together to see if the

whole graph is still planar.

Another solution for planarity testing is due to Lempel, Even and Cederbaum. (See
[LEC].) Their algorithm proceeds by adding one vertex to a planar embedding at a time.
The vertices of the graph are ordered according to si-numbering. Gecause of the properties
of this ordering, only local tests need to be done when a vertex is added to the embedding,.
This algorithm was proven by Even, Tarjan (See [ET1]) and Booth, Leuker (See [BL]) to

run in linear-time if implemented appropriately.

In this chapter, we consider a problem that is one step beyond planarity testing. Let
G = (V, E) be a nonplanar graph with | V |=n and | E |= m. We wish to find a minimal
subset Ey C E such that (V,E — Ey) is planar. Graph (V,E — E;) is called a maximal
planar subgraph of G.

In finding a maximal planar subgraph of G, we prefer a subgraph with as many edges
as possible. The problem of finding a maximal planar subgraph of G that has the most

edges is N P-complete, however. An interested reader can read [GJ] for details.

79

The problem of finding a maximal planar subgraphs of a nonplanar graph has been
considered by many authors; see §1.2 for a brief discussion of previous results on the

problem. In this chapter, we develop an O(m +n-log(n)) algorithm to solve this problem.

80

§4.2 Preliminary Results

The algorithm described in this chapter is based on the linear-time planarity testing
algorithm of Hopcroft and Tarjan. (See [HT1].) This section presents some preliminary
results for the planarity testing algorithm and the problem of finding a maximal planar

subgraph.

Let G = (V, E) be an undirected graph with | V |=n and | E |= m. We can draw a
picture of G in the plane as follows: for each vertex v € V', we draw a distinct point v'; for
each edge (u,v) € E, we draw an arc connecting u’' and v'. We call this arc an embedding
of edge (u,v). If the points and the arcs can be drawn in such a way that no arcs cross

each other, we say G is a planar graph, and the drawing is a planar embedding of G.

A depth-first search will convert G into a directed graph G = (V,T U B), where T
is the set of tree edges, and B is the set of back edges. After the depth-first search, the
vertices of G are numbered by a preorder traversal of T. We will refer the vertices by their

preorder numbers. Graph G is assumed to be a digraph in the following discussions.

We assume that G is 2-connected. If G is not 2-connected, we can find a maximal
planar subgraph for each 2-connected component of G and put these subgraphs together
to obtain a maximal planar subgraph of G. Since G is 2-connected, there is a unique tree

edge ep in T that exits the root of T'.

For any edge e =< a,b >€ E, we associate a segment S(e) with e as follows: if e € B,
then S(e) is e itself; if e € T, then S(e) is the subgraph of G that consists of e, the subtree

T, of T rooted at b, and all the back edges that emanate from vertices of T..

81

For each vertex v € V, let S, = {y € V | 3z,z is a descendent of v,(z,y) € B and y

is an ancestor of v}.

Definition 4.2.1 low,(e) =bife € B
min{SpU{n+1}}ifeeT

Definition 4.2.2 lowy(e) =n+1ife € B
min{Sy — {low1(e)}}U{n+1}}ifeeT

Figure 4.2.1

These two functions low; and low; can be computed in O(m) time during the depth-

first search. (See [HT1].)

We define function ¢ on every edge e =< a,b > of E as follows:

Definition 4.2.3 ¢(e) =2bife € B
2low;(e) if e € T and lowy(e) > a

2low;(e) + 1if e € T and lowy(e) < a

82

We use A(e) to denote the set of back edges in S(e) that go into proper ancestors of
a. Each back edge in A(e) is called an attachment of e.

Let ¢’ =< u,v > be an attachment of e. Then low;(e) < v < a. If low;(e) < v, then

we say that e’ is normal. Otherwise we say that e’ is special.
The following lemma follows directly from the definition of ¢:
Lemma 4.2.1 Let ¢; and e; be any two edges leaving b. We have
1. If low;(e;) < low;(e;), then ¢(e;) < é(e;) ;
2. lowy(e;) 2 biff | {y |< z,y >€ A(ei)} <€ 1;
3. If lows(ei) = lowi(e;), then ¢(e;) < d(e;) iff lows(e;) > b and lows(e;) < b.
Proof: See [HT1].

Let L(e) = [e1, ..., k] be a list of edges leaving & in an order such that for all 4,5 €
{1..k},i < j implies @(e;) < ¢(e;j). We call ey, ..., ex the successors of e. We can compute
L(e) for all e € T in O(m) time using a bucket sort. (See [HT1].) We define cycle(e)
as follows: if e is a back edge, cycle(e) = e + the tree path from b to a, otherwise
cycle(e) = cycle('el). It is not difficult to see that node low;(e) is always on cycle(e). We
use sub(e) to denote subgraph S(e) + cycle(e). Edge e is said to be planar if sub(e) is

planar.

In Figure 4.2.1, the tree edges are solid while the back edges are dashed. Let ¢ =<

83

5,6 >. We have L(e) = {< 6,8 >,< 6,9 >,< 6,10 >}; sub(e) is the whole graph; S(e)

contains all edges in sub(e) except < 1,2 >, < 2,3 >, < 3,4 >, <4,5 >.
The following facts are important to our discussion:

Fact 4.2.1 Let C be a simple cycle in the plane; let a be a point inside C and b a point
outside C. Then any curve that joins a and b will cross C. See Figure 4.2.2.

Fact 4.2.2 Let G; be the undirected graph on the right side of Figure 4.2.2. In any
embedding of G, all the edges of path P, must be on the same side of cycle C.

Figure 4.2.2

Fact 4.2.3 Let G be the undirected graph on the left side of Figure 4.2.3. In any
embedding of G2, the two paths P; and P, must be on different sides of cycle C. See
Figure 4.2.3. ‘

Fact 4.2.4 Let G3 be the undirected graph on the right side of Figure 4.2.3. In any
embedding of G3, the two subgraphs P, and P, must be on different sides of cycle C. See
Figure 4.2.3.

84

All the facts are intuitively obvious but can be proved from the Jordan curve theorem.

Figure 4.2.3

Let e =< a,b > be a tree edge. The following problem is basic in planarity testing:

given that all the edges leaving b are planar, how can we determine the planarity of e?

Suppose e is planar. We divide A(e) into blocks. Two attachments of e are in the
same block if and only if they are embedded on the same side of cycle(e) in all embeddings

of sub(e).

Let By and B; be two blocks of A(e). Let S; C B; and S; C B;. Sy and S, are said

to interlace if they cannot be on the same side of cycle(e) in any embedding of sub(e).

If A(e) # ¢, then the only attachment of e that is on cycle(e) forms a block by itself,

and this block does not interlace with any other block of e.

Lemma 4.2.2 If e is planar, each block of A(e) can interlace with at most one block in
A(e). (See [HT1].) g

85

We will represent a block of attachments H = {< b;,a1 >,...,< bj,a; >} by a list
K = [a;,a3,...,a;], where we assume that a¢; < aj,...,< a;. Repeated elements in K
can be omitted. Frequently, we will identify blocks with their list representations. Define
first(H) = first(K) = a; and last(H) = last(K) = ;. If K is empty, we define
first(H) = first(K) = n+ 1, and last(H) = last(K) = 0. If H contains any normal
attachment of e, then we say that H and K are normal. Otherwise, we say that they are
special. We say that e is strongly planar if e is planar and all the normal blocks of A(e) do

not interlace with each other.

We organize the blocks of A(e) as follows: if two blocks K; and K, interlace, we put
them into a pair [K;, K;]. We assume that last(K;) < last(K;). If a block K does not
interlace with any other block, we form a pair [[], K]. Let [A;, A;] and [B;, By] be two
such pairs. We say [A;, Az] < [By, B2) if last(A;) < min (first(B1), first(By)).

Assume that e is planar. Let [A;, A;],[B;, Bz] be two pairs of blocks of A(e). Then

either [A4;, As] < [Bj, B2] or vice versa.

Let S = [p1,...,pm] be the set of pairs of blocks of A(e). There is a linear ordering on
S, say, p1 < p2... < pm. We represent A(e) by att(e) = [p1,...,pm]. We call att(e) the list

representation of A(e).

List att(e) can be computed inductively as follows:

If e =< a,b > is a back edge, its only attachment is e itself. Therefore att(e) = [[], [8]]

Now assume that e =< a,b >€ T, and att(e;) has been computed for each e; emanat-

ing from b. We compute att(e) in four steps.

86

Step 4.2.1 For each i = 2,..., k merge all the blocks of att(e;) into one intermediate block
B,

According to fact 4.2.2, every edge in sub(e;) must be embedded on the same side
of cycle(e). Therefore this step can be done only if the normal blocks of att(e;) do not
interlace with each other (i.e. e; is strongly planar). Note that there is no restriction on
the interlacing of special blocks. To merge a series of blocks, simply concatenate their

ordered list representations. The ordering of the blocks is maintained. See Figure 4.2.4.

] \

Figure 4.2.4

Step 4.2.2 All blocks D in att(e;) that have last(D) > low,(ez) must be merged into one
block B;. See Figure 4.2.5.

The merge can be done from the high end of the list of pairs in att(e;). Now att(e;)

is changed to a list of pairs p; < ... < ps with only pj possibly interlacing B,. Take this
list to be the initial value of att(e).

Step 4.2.3 Merge blocks Ba, ..., By into att(e). This is done as follows:

87

Let [X,Y] be the last pair in att(e), i.e., [X,Y] > [X',Y’] for any [X',Y’] € att(e).

We process Bj, ..., B; one by one. To process B;, we have three subcases:
(1) If B; interlaces with both X and Y, e is not planar.
(2) If B; interlaces with only Y, then merge X and B,;.

(3) If B; interlaces with neither X nor Y, then P = [[], B;] and add P to att(e).

e

lowi(er) | ;

4

Figure 4.2.5

Step 4.2.4 Delete all instances of a from att(e).

Since G is 2-connected, there is only one edge in T that leaves the root of 7. Let this

edge be eg. The planarity of G can be decided by computing the planarity of e.

38

§4.3 An Algorithm for Finding a Maximal Planar Subgraph

This section gives an algorithm that computes a maximal planar subgraph of G when
G is not planar. The algorithm proceeds by finding a minimal subset E, C B such that
graph (V,(T U B) — Ey) is planar. In the algorithm, when we talk about deleting an edge,

we mean to put the edge in Ej.

We will assume that G is 2-connected. When G is not 2-connected, we can find a
maximal planar subgraph for each 2-connected component of G and put these subgraphs
together to form a maximal planar subgraph of G. Since G is 2-connected, there is only

one tree edge leaving the root of T'. Let this edge be ;.

Let e =< a,b > be a tree edge in G. Let ey, ...,ex be the successors of e. In the
maximal planar subgraph algorithm, certain back edges are deleted. This means that the
low; values of ey,..., ex are subject to change. In the planarity testing algorithm, ey, ..., ex
are ordered on their ¢ values. It is not convenient to maintain this ordering dynamically.
For the purpose of finding a maximal planar subgraph, we modify the algorithm so that
€1, ..., €k are ordered on their low; values. A ¢ ordering implies a low, ordering, but not
vice versa. We redefine L(e) = [e1, ..., ex] to be the successors of e in increasing order of

their low; values.

Just as the concept of a strongly planar graph is important to the planarity testing
algorithm, the concept of a I-planar graph is important to the problem of finding maximal

planar subgraphs.

An attachment (u,v) of ¢ is l-normal if v € {low;(e) + 1, ... ,i —1}. A subset D of

A(e) is I-normal if D contains a l-normal attachment. A block of att(e) is l-normal if it

89

contains an element v € {low;(e) + 1, ..., I —1}.

An edge e =< a,b > is called Il-planar if e is planar and all the l-normal blocks of
att(e) do not interlace with each other. Thus, e is planar iff e is low;(e) — planar, and e is
strongly planar iff e is a — planar. If we have an algorithm that can compute a maximal
l-planar subgraph of sub(e) for any low;(e) < I < a, then we can compute a maximal

planar subgraph of sub(e).

In Figure 4.3.1, the graph on the left is l-planar and the graph on the right is not.

In the following discussion, we present an procedure to compute a maximal l-planar
subgraph subj(e) of sub(e). To compute subi(e), we try to compute a planar embedding
of sub(e). We delete back edges from sub(e) if we cannot proceed with the embedding.
The procedure is based on the planarity testing algorithm in §4.2. Again, we describe it

inductively.

Assume e =< a,b >.

90

Case 4.3.1 e is a back edge. Assign [[], [8]] to att(e), then return.

Case 4.3.2 e is a tree edge, and e has no successor. Assign [] to att(e), then return.

Case 4.3.3 e is a tree edge and there are k successors ey, ...,ex from b. We construct
a sequence G, ..., G of l-planar subgraphs of sub(e) such that G; is a maximal l-planar
subgraph of sub(e;) and Gy is a maximal l-planar subgraph of sub(e). Each Gi(2 < i < k),
is obtained from G;_; by adding to it a subgraph of sub(e;), where ¢; is a successor of e

that has the smallest low; value and is not contained in G;_;.

In case 4.3.3, the following two steps are involved:

Step 4.3.1 We first mark ey, ..., ex unprocessed. Let e; be one of the successors of e with
the smallest low; value. Recursively compute a maximal I-planar subgraph of sub(e;) and
att(e;). Mark e; as processed. Make the resulting planar subgraph of sub(e;) the initial

value of sub(e), and make att(e;) the initial value of att(e).

Step 4.3.2 While there is a successor of e that is unprocessed and with low, value less than
or equal to a, (see also Fact 4.3.1.) do the following: Let e; be an unprocessed successor
having the smallest low; value. If merging sub(e;) into sub(e) results in a l-planar subgraph
of sub(e), then recursively compute a maximal b — planar (i.e. strongly planar) subgraph
of sub(e;), merge this subgraph into sub(e) as described in the planarity testing algorithm,
and mark e; as processed. If merging sub(e;) into sub(e) results a non-l-planar subgraph,
delete some back edges from sub(e;) that cause the failure in the merge of sub(e;) and

sub(e) and repeat step 4.3.2.

The following pseudo code outlines the two steps in case 4.3.3.

91

Procedure 4.3.1

Input: e and ey, ..., e
Output: a maximal l-planar subgraph of sub(e)
{
Mark ey, ..., ex as unprocessed;
Recursively compute a maximal l-planar subgraph of sub(e;);
Make sub(e;) the initial value of sub(e);
Make att(e;) the initial value of att(e);
While there are unprocessed edges
{
li: Let e; be the unprocessed edge with the smallest low; value;
If (low;(e;) > 1) break; * see also Fact 4.3.1 *\

If merging sub(e;) to sub(e) results in a non-l-planar subgraph of sub(e)

then
{
Delete some back edges from sub(e;);
Update the low; value of e;;
Goto [y;
}
Merge sub(e;) to sub(e);

Mark e; as processed; }

Let g =< ap,bp > be the unique tree edge leaving the root of T. Let ey, ..., exo be
the successors of eg. In order to compute a maximal planar subgraph of G, all we have

to do is to call the procedure above to compute a maximal low(ey) — planar subgraph of

sub(eg).

92

The correctness of this algorithm depends on (1) how to test whether the merge of
sub(e;) and sub(e) results in a l-planar subgraph of sub(e), and (2) how to select back
edges in sub(e;) to delete if (1) fails. Before we solve these two problems, we point out the

following two facts about the maximal l-planar subgraph algorithm.

Fact 4.3.1 By induction, it is easily seen that when we are at e =< a,b > and processing
€1, ..., ex leaving b; we always test whether the merge of sub(e;) and sub(e) results a a —

planar subgraph of sub(e). To put it in another way, we always have | = a.

Fact 4.3.2 We also notice that when we compute a maximal b — planar subgraph of
sub(e;) recursively, the low; value of ¢; is going to remain a constant through the rest of
the algorithm and at least one back edge in sub(e;) with low; value equal to low(e;) is
going to be in the final maximal planar subgraph of G. This point is crucial in proving

the correctness of the algorithm.

Let e; be the last processed edge, I; = max {last(X) : [X,Y] € att(e)} after ¢; is
processed, I} = max {last(X) : [X,Y] € att(e;)}. Let e; be an unprocessed successor with
the smallest low; value and low;(e;) < I. According to what we know about planarity
testing, the merge of sub(e;) and sub(e) results in a non l-planar subgraph when one of

the following five conditions happens:

Condition 4.3.1 low(e;) = low(e1), lowy(e1) < Iy < 1, and low(e;) < lows(e;) < 1.

See Figure 4.3.1.

Condition 4.3.2 low;(e;) = low;(e;) = lowy(ey), lowy(er) < I; < 1, and lowy(e;) <

low,(e;) < I. See Figure 4.3.1.

93

Condition 4.3.3 low;(e;) = low;(e;1), low;(e;) < lowz(e;) < I, and there exist previously
processed edges e;,,e;, such that low(e;,) = low;(ej,) = lowi(e1), lowa(ej,) < I after

sub(ej,) is added to att(e) and low,(ej,) = I after sub(ej,) is added to att(e). See Figure
4.3.2.

-

T o -

Figure 4.3.3

Condition 4.3.4 low;(e;) > low;(e;) > low;(e;), and low; (e;) < I;. See Figure 4.3.2.

Condition 4.3.5 low;(e;) = low(e;) > lowy(e1), I; <1, and low;(e;) < lowsy(e;) < I. See

94

Figure 4.3.3.

Conditions 4.3.1, 4.3.2, 4.3.4, and 4.3.5 are very easy to test. To test condition 4.3.3,
we keep two flags e.flag; and e.flag, with e in the algorithm. We have e.flag; = 0
and e.flag; = 0 initially. Whenever sub(e;) is added to att(e) after we process e;, if
low;(e;) = low;(e1) and lowsy(e;) < I we set e.flag; = 1. After e.flag, is set, if there is
another sub(e;) that satisfing the same condition, we set e.flag, =. We can test condition

4.3.3 in O(1) time by using e.flag, and e.flag,.

Figure 4.3.4

If condition 4.3.4 is true, we can make it false only by changing the low; value of
ei. In this case, the back edge selected for deletion is a back edge (u,v) of sub(e;) with
v = low;(e;). If any of the conditions 4.3.1, 4.3.2, 4.3.3, 4.3.5 is true, we can make it false
by changing the value of either low,(e;) or lowy(e;). If we choose to change lowy(e;), it
may happen that all the attachments in A(e;) are deleted when we compute a maximal
b — planar subgraph of sub(e;). This may result a subgraph that is not maximal l-planar
since we can add back a back edge that was deleted before the recursive computation for
sub(e;). We select one of the back edges (u,v) of sub(e;) with v = low,(e;) for deletion in

this case. As we noted in fact 4.3.2, at least one back edge in sub(e;) with low; value equal

95

to low;(e;) is going to be in sub(e;) after we compute a maximal b — planar subgraph of

sub(e;). This will ensure that none of the deleted back edges can be added back.

It should be clear that algorithm described above computes an l-planar subgraph of

sub(e;). To see that the resulting subgraph is maximal, we have the following lemma:
Lemma 4.3.1 Procedure 4.3.1 computes a maximal l-planar subgraph of sub(e).

Proof: Lemma 4.3.1 is true because of the following two facts: (1) our algorithm never
deletes any edge in sub(e;) once e; is processed. (2) when the algorithm is recursively
applied to e;, low;(e;) will not change. If any of the edges deleted by the above strategy
is added back to sub(e;), one of the five conditions will be true again, and sub(e) would

not be l-planar.

96

§4.4 Data Structures and the Time Complexity

In the algorithm described in §4.3, we need to repeatedly select an unprocessed suc-
cessor of e with the smallest low; value, and the low; values of tree edges are constantly
changing. Therefore, we maintain a heap (see [T2]) on low; values of the unprocessed
successors of the tree edge e currently being processed. Since the algorithm is recursive,
we actually maintain simultaneously a heap of unprocessed successors for each tree edge
along the path of the currently active tree edge. The total size of these heaps is O(m). The
initialization of all the heaps takes a total of O(m) time. When the low; value of some
element in a heap increases, we modify the heap accordingly. It is important to notice
that any two edges in active heaps are unrelated; thus the deletion of a single attachment
can modify the low; value of only a single such edge. It follows that the total number of
modifications and deletions is O(m). The time for the heap operations is O(log(n)) time

per operation, for a total of O(m - log(n)) time.

We also need a data structure for the back edges of sub(e) so that the following

operations can be performed efficiently:

(1) Delete one of the attachments < u,v > of ¢ with v € {low; (&), iowz(e)}.
(2) Modify the low, and low; values of e.

(3) Split the data structure into several pieces, one for each successor of e.

One solution that meets these requirements is the selection tree data structure. (See
[HS].) A selection tree is a binary tree. We store values in the leaves of the selection tree.

In each internal node v, we store the smaller of the values stored in the children of v. We

o7

will modify the selection tree to fit our needs.

To store a set of back edges By in a selection tree Tp, we store the back edges in the
leaves of Ty from left to right in increasing order (by preorder numbering) of their tails.
The back edges with the same tail are ordered arbitrarily. For each internal node v in Tp,
let T, be the subtree of Tj rooted at v. Let S be the set of back edges stored in the leaves
of T,. Let | = min {z |< z,y >€ S} and r = max{z |< z,y >€ S}. Let low; = min
{y [< z,y >€ S}, and low; = min{y |< z,y >€ S,y # low,}. Four values I, r, low;, lows,
are stored in v in fields v.l,v.r,v.low;,v.low;. These values can be computed inductively
by doing a postorder traversal on Tj. There are also two fields v.lchild and v.rchild in v

pointing to the children of v.

In the following discussion, we will refer to a tree by its root. Let r; and ro be two
selection trees representing two disjoint sets of back edges F; and E,. If u; < u, for all

< uy,v; >€ Ey and < ug,v; >€ E,, we can merge r; and r, to get a selection tree for

E] U E2 in O(l) time.

Procedure 4.4.1 merge(ry,r2)

{

If r; = null then
Return ry;
Ifry= null}then
Return ry;

r = newnode();

r.lehild =ry:

r.rchild = ro;

il =l

98

P e
r.low; = min(ry.lowy,re.low;)

r.lowy = min({ry.lowy, ry.lows,ry.lowy, re.lowy} — {r.low, })

Return r;

}

Let r be a selection tree representing a set Eq of back edges. To split Ey into two sets

B, ={<u,v>€ Ey |u<u;}and E; = {< u,v >€ Ey | u > u,} with respect to u,, we

have the following procedure.

Procedure 4.4.2 split(r,u;)

{

If up < r.l return (null,r);

Else If uz > r.r return (r, null);

Else
{ .
Let (ry,r,) = (r.lchild, r.rchild);
Ifu, <r.r
{
(rin,miz) = split(ri, uz);

Return (ryy, merge(riz,r,));

}
Else

{
(rrl) Trz) = split(rr, u.r);

Return (merge(r;,ry)sTr2);

}

99

Let the height of » be R. The height of the trees returned by split(r,u,) cannot be
greater than R. The complexity of the procedure is O(R).

To select and delete an edge < z,v > from a tree r, where v € {r.low;,r.low,}, we

have the following procedure.

Procedure 4.4.3 delete(r,v)

{

If r is a leaf and the edge stored in r is < z,v >

{

Mark < z,v > as deleted;

Return ¢;

}
Else

{
(r1,rr) = (r.lchild, r.rchild);
If v = rj.low; or v = r.low; Return merge(delete(r,v),r,);

Else Return merge(delete(r;,v),r,);

}

At the beginning of the algorithm, we construct a balanced selection tree tree(eg) to

store all the back edges in B where eg is the only tree edge leaving the root of 7. The

100

height of tree(eo) is O(log(n)). The time and space needed to construct tree(eq) are both
O(m).

Each time we begin to process an edge e, we use Procedure 4.4.2 to split tree(e) into
several pieces tree(e;),...,tree(ex), where ey,...,e; are the successors of e. For each e;,
tree(e;) is a selection tree representing the set of back edges in sub(e;). Tree tree(e;) is
obtained as follows. If e; is a back edge, tree(e;) can be constructed from the definition.
If e; is a tree edge, let e; =< b,b; >. Let n; be the number of descendants of b;. It is well
known that a back edge < u,v > is in sub(e;) iff b; < u < b; + n;. tree(er),...,tree(er)
can be obtained by using the split procedure successively. Each call of the split procedure
takes O(log(n)) time. There are O(m) splits for the whole algorithm. After each split, the
total size of the trees is still O(m).

We use a procedure delete(r,v') to delete one of the back edges < u,v > stored in the
leaves of selection tree r with v = v, where v' € {r.low, r.lows}. Every selection tree has
height O(log(n)). This operation can be done in O(log(n)) time. There are O(m) delete
operations for the whole algorithm. The total cost for delete is thus O(m - log(n)).

The other costs of the algorithm are the same as in the planarity testing algorithm.
The total time complexity of the algorithm is O(m - log(n)).

101

§4.5 Problems for Future Research

Unlike the algorithm for finding minimal 2-connected subgraphs, there is a gap be-
tween the upper bound of the algorithm in this chapter and the trivial linear lower bound
for the maximal planar subgraph problem. It is possible that the O(m - log(n)) upper

bound can be improved.

Another interesting problem is to design an efficient NC algorithm for the maximal
planar subgraph problem. There is an NC' algorithm that solves the planarity testing
problem. (See [KR2].) This algorithm is based on the [LEC] planarity testing algorithm
and the P — @ tree data structure. It is not known how to parallelize the [HT] algorithm
since the parallel computation of a depth first search tree is not known. In [BT], the
dynamic planarity testing algorithm is also based on the [LEC] algorithm. It is conceivable
that there is an NC algorithm for the maximal planar subgraph problem by combining
the results in [BT] and [KR2].

102

Chapter Five

A Parallel Algorithm for Comparability Graphs

103

§5.1 Introduction

In this chapter, we present a fast parallel algorithm for transitively orienting the
edges of a comparability graph. Using this algorithm, we give efficient algorithms for

many problems on special perfect graphs.

An undirected graph G = (V, E) is a comparability graph if the edges of G can be
directed in such a way that the resulting digraph G’ is transitive; i.e., if both @ — b and

b— carein G', thena — cisin G'.

The main result of this chapter is to give efficient parallel algorithms for:

(1) Testing the comparability of an undirected graph.

(2) If a graph is a comparability graph, find a transitive orientation for the edges.

Comparability graphs are important in the theory of perfect graphs. Many special
perfect graphs, such as interval graphs, permutation graphs, and threshold graphs can be

totally or partially characterized by comparability graphs. (See also [G].)

Let us recall the definition of a perfect graph.

(1) Let K(G) be the size of a mazimum cligue of G.

(2) Let C(G) be the fewest number of colors needed to properly color the vertices of G.

(3) Let I(G) be the size of a mazimum independent set of G. (See Definition 30 in the

104

appendix.)

(4) Let W(G) be the fewest number of cliques needed to cover the vertices of G.

G is called a perfect graph if (1)K (G4) = C(G4) for all A, A a subset of V, and (2)
I(Ga) = W(G,) for all A, A a subset of V, where G 4 is the subgraph of G induced (see

Definition 5 in the appendix) by A.

As a matter of fact, (1) implies (2) and (2) implies (1) as the "perfect graph” theorem
states. (See [L].) Thus G is perfect iff (1) or (2) holds.

It is well known that finding K(G),C(G),I(G), and W(G) for an arbitrary graph G
is N P-complete. However, there are polynomial algorithms for computing these numbers
if G is known to be perfect. It would be interesting to ask whether there exist fast parallel
algorithms to find these numbers for perfect graphs. This question is unanswered for
general perfect graphs. There are efficient parallel algorithms for special cases such as the
fast parallel algorithms for computing K(G),C(G), I(G), and W(G) for chordal graphs
. (See [NNS].) For comparability graphs, due to their special structure, K (G) and C(G)
can be computed easily once we know a transitive orientation of G. I(G) and W(G) seem
harder to compute. They are related to some flow problems for which no efficient parallel
algorithm is known. Since interval graphs and permutation graphs can be characterized
by comparability graphs, the parallel transitive orientation algorithm can be applied to
these graphs to give parallel algorithms to compute all or some of the K (@), C(G), I(G),
and W(G) values.

The parallel machine model we use in this paper is the PRAM. We use a variation

known as the CRCW PRAM, in which concurrent reads and writes to the same memory

105

location are allowed. Under this machine model, the algorithm that transitively orients
the edges of a comparability graph takes O(log*(n)) time using O(n®) processors. That is,
the algorithm is in NC4.

There are two previous parallel algorithms to transitively orient the edges of a com-
parability graph. (See [KVV] and [HM].) The two algorithms use basically the same
approach: they both directly parallelize a known sequential algorithm for doing the transi-
tive orientation. The first paper just put the problem in NC but did not give any explicit
complexity analysis. The second algorithm is claimed to run in O(log®(n)) time using
O(n*) processors on a CRCWPRAM. This seems to be incorrect, however. Using two
different parallel maximal independent set algorithms, the algorithm can either run in

O(log®(n)) time using O(n®) processors or in O(log®(n)) time using O(n?) processors.

The algorithm in this chapter uses results developed for counting the number of tran-
sitive orientations of a comparability graph. Proofs of the results are usually omitted. A

reader interested in the details can read [G] for reference.

The following discussion is divided into three sections, §5.2 contains the transitive
orientation algorithm. §5.3 discusses some applications of the algorithm to interval graphs

and permutation graphs. §5.4 describes some future research problems.

106

§5.2 A Transitive Orientation Algorithm

Let G = (V, E) be an undirected graph. Define Eq = {< a,b >,< b,a >| (a,b) € E}

where < a,b > and (a,b) are ordered and unordered pairs of a, b respectively.

Define a binary symmetrical relation on E; as follows:

<a,b>T < d,b > iff either a = a' and (b,d') is not in E or b = b’ and (a,a’) is not
in E.

We say that (a,b) forces (a',b') whenever < a,b > T < a', b >. The intuition behind
this definition is that if < a,b > T < a',b' > and a = a'then (a,b),(a',d') can only be

directed as < a,b >< a',b' > or < b,a >< ¥',a' >.

Taking the reflexive and transitive closure T* of T, we obtain an equivalence relation
on Ey. This equivalence relation partitions E; into equivalence classes. Let us call the

collection of the classes b(G) and call the classes the color classes.

For every subset A of E;, we define

(1) A7 ={<a,b>|< ba >€ A}

(2) A* = AU AT

We have the following theorems about the color classes:

Theorem 5.2.1 Let A be a color class of G. Then one of the following is true:

107

(NA=4*"=A" or

(2) ANA™! = ¢, and both A and A~! are transitive. g

Theorem 5.2.2 G is transitively orientable iff for every color class A € b(G), ANA™! = ¢.

1
The proofs of theorem 5.2.2 and 5.2.3 can be found in [G].
Theorem 5.2.2 provides a simple way of testing the comparability of a graph.
We build an auxiliary undirected graph G' = (V', E') as follows:

(1) V! = Ey.

(2) Foreach < a,b>and < ¢, d >in V', (< a,b>,< ¢,d>)isin E'iff < a,b > T < ¢,d >.

The connected components of G’ form the color classes of G. A check is then done on
whether there is a component that contains both < a,b > and < b,a > for some (a,b) in

E. The algorithm can be implemented in O(log(n)) time using O(n?) processors.

When G is a comparability graph, we need to construct a transitive orientation for G.
One may Wonder‘if we can arbitrarily pick A or A~ for each color class, directing the edges
accordingly to obtain a transitive orientation. Unfortunately, there is interaction between
the color classes; thus the orientation of the color classes cannot be decided independently.
Understanding this interaction and making use of it to transitively orient G is the focus

of the following discussion.

108

G is now assumed to be a comparability graph. Let the color classes of G be A, ..., Ay.
Since G is a comparability graph, the color classes of G can be paired up. Without loss of
generality, we assume that Ay /4, = Al"l, sacg il 5= A;/]‘z. We create a partition By, ..., B/,
of E. For each edge (a.b) € E. we put (a,b) in B;(1 <i < k/2) if we have < a,b >€ A; or
< b,a >€ A;. Every edge in E is in one and only one B;. We say that By, ..., By are the
color classes of graph G and (a,b) is colored by B;. In the following discussion, the term

color and color class will be used in this new sense on the undirected graph G.

A tricolored triangle in G is a triangle whose edges are colored by three different
colors. The tricolored triangles play a central role in describing the interactions of the

color classes.

Lemma 5.2.1 If there is a tricolored triangle (a, b, c) in G such that (a,b), (b,c) (c,a) are
colored C, 4, B respectively, then (1) for every edge (z,y) colored C, (c,z,y) is a tricolor
triangle with edges colored by C, A, B, and (2) no edge colored C touches c. g

Lemma 5.2.2 If there is a tricolored triangle (a, b, ¢) in G such that (a,d), (b,c), (c,a) are
colored C, A, B respectively. Let v be another vertex such that (v,b) is colored B. Then
(v,¢) € E and is colored C. g

Lemma 5.2.3 Let (a,b,c) be a tricolored triangle in G such that (a,b), (b,¢), (c,a) are
colored C, A, B respectively. If (z,y) is colored C and (z, z) is colored B, then (y,2) € E

and is colored A.

A complete subgraph (V,,S) on r + 1 vertices of G is called a simplex of rank r if
every edge of S is colored by a different color. A simplex is maximal if it is not properly

contained in any larger simplex.

109

The multiplex generated by a simplex S of rank r is defined to be the undirected
subgraph of G that is spanned by the edges in the color classes of S. A multiplex is

maximal if it is not properly contained in a larger multiplex.
The importance of the notions of simplex and multiplex lies in following lemmas.

Lemma 5.2.4 Let M be the multiplex generated by a simplex S. M is maximal iff S is

maximal. g

Lemma 5.2.5 Let M; and M; be two maximal multiplexes of G. Then either M; = M,

or M; and M3 do not share an edge. g

Lemma 5.2.6 Let S be a simplex contained in a multiplex M. There exists a maximal

simplex Sp; generating M that contains S.

Lemma 5.2.7 Each maximal multiplex can be transitively oriented independently to give

a transive orientation of G. g

Lemma 5.2.8 Let S be a maximal simplex that generates a maximal multiplex M. Every

transitive orientation of S uniquely determines a transitive orientation of M. g
The proofs of Lemmas 5.2.1-5.2.8 can be found in [G].

According to the above lemmas, an algorithm to find a transitive orientation of G can

be divided into four steps:

(1) Find the maximal multiplexes of G.

110

(2) For each maximal multiplex M, find a maximal simplex S that generates M.

(3) Transitively orient S.

(4) Extend the orientation of S to M.

The steps are discussed more carefully in the following:

Step 5.2.1 Remember that the maximal multiplexes partition the edges of G and they

are the union of the color classes. So they also partition the color classes.

Lemma 5.2.9 Color classes A and B are in the same maximal multiplex iff there is a
sequence of color classes A = Ag, Ay, ..., Ax = B such that A; and A;;; color two edges of

a tricolored triangle for 0 < i < k.

Proof: (if) Since maximal multiplexes partition the color classes, the relation that two
color classes are in the same maximal multiplex is transitive. A tricolored triangle is a
simplex of rank 2. Since every simplex is contained in a maximal simplex, the three color

classes of a triangle are in the same maximal multiplex.

(only if) There is a2 maximal simplex in G with two edges (a,b) and (c,d) colored A
and B. Either (a,b),(c,d) are two edges of a tricolored triangle or (a,b,d) and (c, b, d) are

two tricolored triangles that share an edge and contain (a,b) and (c,d). g

In order to find the color classes that are in the same maximal multiplex, we build an

auxiliary bipartite graph G, = (V,, E,)

111

(1) Va = V1 UV, where V; = {v | v is a color class of G} and V2 = {w | w is a tricolored

triangle of G}.

(2) Ea = {(v,w) | some edge of w is colored by v}.

The color classes of each connected component of G, are the color classes of a maximal

multiplex.

Step 5.2.2 For each maximal multiplex M, let Ejr be the set of edges in M, and let
VM = {v |v € V and 3w, (v,w) € Ep}. We arbitrarily pick an edge (a,b) in M. Since
(a,d) itself is a simplex of rank 1, it is contained in a maximal simplex S that generates

M. (See Lemma 5.2.6.)

Let M = (Vip, Enm).

Define an auxiliary graph associated with (a,b), G(a5) = (Via5), E(a,1)), as follows:

(1) Viap) ={v | visin Vi, v # a,v # b, (v, a,d) is tricolored triangle}.

(2) (v,w) is not in E,) iff (v,a),(v,b),(w,a),(w,b),(v,w), and (a,b) are all colored

differently and (v.w) is in E(, ;) otherwise.

Let I be an arbitrary maximal independent set of G (a,5)- We have the following lemma.

Lemma 5.2.10 I U {a, b} forms the vertex set of a maximal simplex that generates M.

Proof: For every v,w in I and v # w, we have (v,w) in E since (v,a) and (w,a) are

112

in different color classes. Thus the vertices in I U {a, b} form a complete subgraph of G.
Assume that two edges (v, w) and (z,y) in this subgraph are colored the same color. Then

following cases can occur:

(1) v,w,z,y are in I, (v,w),(z,y) have the same color A.

Subcase 1 The two edges share a vertex, let the vertex be v = 2. Applying Lemma
5.2.2 to triangles (b,z,y) and (b, v,w)we know that (b,w) and (b,y) have the same color,

a contradiction. (See Figure 5.2.1.)

Subcase 2 The two edges do not share a vertex. From Lemma 5.2.1 we know that

either (b,) or (b,y) must have the same color as (b,v), again a contradiction. (See Figure

5.2.1.)

v=X v X
w ¥y w Y
a b a b
Figure 5.2.1

(2) Vertices v, w,z are in I, and(v,w) (z,a) have the same color A. In this case, (z,b) has

the same color as (v,b) or (w,) and this is impossible. (See Figure 5.2.2.)

If U {a, b} is not a maximal simplex, then by Lemma 5.2.6 it is contained in a larger

113

simplex, which means that there is a larger independent set I' that contains I in Gab)- 1

Step 5.2.3 and 5.2.4 After finding a maximal simplex for M, the vertices of the simplex
can be numbered so that if we direct each edge in the simplex from the higher numbered
vertex to the lower numbered vertex, then we have a transitive orientation for the simplex.
This orientation gives direction to the edges in each color class and can be easily extended

to the whole multiplex.

w
X
/
a b!
Figure 5.2.2

The complexity of the algorithm is dominated by the maximal independent set com-
putation in step 2. We need to find maximal independent sets on O(n) graphs, each may
contain O(n) vertices and O(n?) edges. The best known parallel maximal independent set
algorithm runs in O(log*(n)) time using O(n + m) processors on a graph with n vertices
and m edges. (See [GS].) Thus the transitive orientation algorithm runs in O(log*(n))

time with O(n?) processors.

114

§5.3 Applications

The parallel algorithm that transitively orients the edges of a comparability graph can

be used to give efficient parallel algorithms for following problems:
Algorithm 5.3.1 Find a maximum clique for a comparability graph.
Algorithm 5.3.2 Find a minimum coloring for a comparability graph.

Algorithm 5.3.3 Find a maximum clique, a minimum coloring, a maximum independent

set, and a minimum clique covering for a permutation graph.
Algorithm 5.3.4 Find a permutation representation for a permutation graph.
All these algorithms have the same complexity as the transitive orientation algorithm.

Let the transitive orientation of G be G'. G' is a digraph. It is easily seen that G'
is acyclic and there is a one-one correspondence between the cliques in G and the paths
in G'. The longest path in G’ can be computed by a list ranking algorithm. (See [CV].)
As the matter of fact, a maximal weighted clique can be computed for G by computing a
weighted longest path in G'. The computation of list ranking is much more efficient than
the maximal independent set computation in §5.2. The complexity of algorithm 5.3.1 is
dominated by the maximal independent set computation. For each vertex v € V, we let
I(v) be the length of the longest path in G' starting from v. Let ¢(v) = l(v) 4+ 1. It is not
hard to see that C': v — ¢(v) is a proper coloring of G. The number of colors used in
C equals the length of the longest path in G’ plus one, which is equal to the size of the

maximum clique in G. C is a minimum coloring of G. I(v) can also be computed by the

115

list ranking algorithm. We can find a minimum coloring for comparability graph with the

same complexity as the transitive orientation algorithm.

A graph G is a permutation graph if there exists a 1-1 and onto mapping p: V —
{1,2,...,n} and a permutation P of {1,2,...,,n} such that (v,w) is in E iff p(v) and p(w)

form an inversion pair in P. P is called a permutation representation of G.

Permutation graphs can be characterized completely by comparability graphs. Lemma

5.3.1 is from [EPL].

Lemma 5.3.1 A graph G is a permutation graph iff both G and the complement of G are

comparability graphs.

A maximum clique of the complement of G is a maximum independent set of G. Let
Ci, ..., Cp be a minimum coloring of the complement of G. Then {{v | v is colored by
Ci} |1 <4 < p} is a minimum clique cover of G. When both G and the complement of
G are comparability graphs, we can compute a maximum clique, a maximum independent

set, a minimum coloring , and a minimum clique cover for both G and the complement of

G.

If G is a permutation graph, let G; = (V,Fy) and G, = (V, F}) be transitive orien-
tations for G and the complement of G. It can be shown that the following two graphs
are both acyclic and transitive: (V, Fy UF3), (V,Fi UF; '), The undirected graphs under-
lying them are both complete. Both graphs represent a total linear ordering on V. Let a
topological ordering in the two graphs be I(v), I'(v). P :I(v) — I'(v) is a permutation that

represents G.

116

In this section, we discuss some applications of the algorithm presented in §5.2. One
interesting problem that cannot be solved by the algorithm in §5.2 is to find a maximum
independent set for a comparability graph. Let G’ be the digraph obtained from transitively
orienting the edges of G. The problem of finding a maximum independent set of G is related
to network flow problems on G'. Unfortunately, no efficient NC algorithms are known for

general network flow problems.

117

§5.4 Problems for Future Research

The transitive orientation algorithm in this chapter improves the previous algorithms.
It is still not very efficient. The number of processors in the algorithm is O(n?), which is
not realistic for real computation. It is conceivable that both the processor bound and the

time bound can be improved in the future.

It would be interesting to know if there exists a parallel algorithm to test whether a
graph is perfect. For perfect graphs, it is interesting to design efficient parallel algorithms
to compute their maximum cliques, minimum colorings, maximum independent sets, and

minimum clique covers.

118

Appendix

Graph Definitions and References

119

Graph Definitions

This appendix contains a collection of definitions used in this thesis. They are standard

and can be found in many textbooks. (See [AHU].)

Definition 1 A graph G is an ordered pair of disjoint sets (V, E) such that V # ¢,
E C {(v,w) | v,w € V}U{< v,w >| v,w € V,}. V is the vertex set, E is the edge set.

(v,w) and < v, w > are the ordered and the unordered noire of 5 2nd 2 respectively.

We always use G to represent a graph. We assume V, E are finite and denote | V |
by n, | E | by m.

Definition 2 If an edge of G is an ordered pair, it is a directed edge, otherwise it is
undirected. If all the edges in G are directed (or undirected), G is a digraph (or undirected
graph), otherwise G is a mixed graph. When G is a digraph, we also use v — w to represent

an edge < v,w > of G.

All graphs are undirected unless otherwise stated.

Definition 3 Let (v,w) be an edge of G. Edge (v,w) is incident on v and w. Vertices v
and w are the end vertices of (v, w). The degree of v (denoted by deg(v)) is the number of

edges that are incident on v.

Definition 4 Let G be a digraph and let < v,w > be an edge of G. Vertex v is the tail of
(v,w) and w is the head of (v,w). The indegree (or outdegree) of v is the number of times

v occurs as head (or tail) of an edge.

120

Definition 5 A subgraph G' = (V',E') of G is a graph such that V' CV and E' C E. If
V! =V,G' is a spanning subgraph of G. Let V' C V, graph (V',{(z,y) | (z,y) € E,z € V',
and y € V'} is the subgraph of G induced by V.

Definition 6 Let G be an undirected graph or a digraph. A path in G is a set of vertices
Zo,Z1,..., T such that (z;,zi41) (or < zj,z41 > if G is a digraph) is an edge of G for
every 7, 0 <1 < k — 1. The path connects z¢ and z;. If zg = 74, the path is a cycle. A

path is simple if no vertex is repeated, except for the possibility of 2o = z.

Definition 7 A graph is connected if for every two vertices r and y in G, there is a path

connecting them.
Definition 8 A tree is a graph that is connected and contains no cycle.
Definition 9 A spanning tree of G is a spanning subgraph of @ that is a tree.

Definition 10 A rooted spanning tree of G is obtained from a spanning tree T of G by
giving each edge in T a direction such that only one vertex in T has indegree 0 (this is
called the root of T') and the rest of the vertices have indegree 1. The vertices that have

outdegree 0 are called the leaves.

Definition 11 Let T be a rooted spanning tree of G. If < v,w > is in T, then v is the
parent of w and w is a child of v. If there exist vy, vy, ...,v; such that < Vi, Vi41 > isin T
for every i,1 < i < k, vy is an ancestor of vy and vi is a descendant of v1. A vertex is an

ancestor and descendant of itself unless otherwise stated.

Definition 12 Let T' be a rooted spanning tree of G. For any vertex v in G , the depth

121

of v in T is the number of edges on the unique path from the root to v. For any two
vertices v and w in G, the nearest common ancestor of v and w (denoted as nca(v,w)) is

the ancestor of both v and w that has the largest depth.

Definition 13 A pre order numbering of a rooted spanning tree T of G is generated by
a depth-first search on T. Each vertex is numbered when we first encounter it during the
search. A post order numbering of T is 2lso generated bar o Jdo=** . "-24 ~corch on T. Each

J = e

vertex is numbered after all its descendants are searched and numbered.

Definition 14 A rooted spanning T of G is a depth-first tree, if for every edge < z,y > in

G, z is an ancestor of y or vice-versa.

Definition 15 Let G = (V, E) be a graph, we say graph (V,{(v,w) | v,w € V} — E) is

the complement of G.

Definition 16 A digraph G is acyclic if there is no cycle in G.

Definition 17 Let G = (V, E) be an acyclic digraph. Let | V |= n. We can assign a
distinct integer n(v) between 1 and n to each vertex v in V such that < v,w >€ E iff

n(v) > n(w). We call such an assignment a topological ordering of G.

Definition 18 Let G = (V,E) be a graph. G is 2-connected if for every vertex v €
V, (V= {v},E — {(v,w) | 3w € V,(v,w) € E}) is connected. When a graph G is
not 2-connected, it can be decomposed into maximal edge-disjoint subgraphs that are 2-
connected. (See [AHU].) These subgraphs are called the 2-connected Eomponents of G. A

bridge is a 2-connected component that has just one edge.

122

Definition 19 Let G = (V,E) be a graph. G is 2-edge connected if for every edge
(v,w) € E, (V,E — {(v,w)}) is connected. When a graph G is not 2-edge connected,
it can be decomposed into maximal vertex-disjoint subgraphs that are 2-edge connected.

(See [AHU].) These subgraphs are called the 2-edge connected components of G.

Definition 20 Let G = (V, E) be a graph. G is k-connected if for every subset V' C V
with | V' [<k=1,(V -V, E - {(v,w) |veE V',w € V,(v,w) € E}) is connected.

Definition 21 Let G = (V, E) be a graph. G is k-edge connected if for every subset E' C E
with | E' |[< k — 1, graph (V, E — E') is connected.

Definition 22 Let G = (V, E) be a k-connected graph. G is minimal k-connected if for

every edge (v,w) in E, (V, E — {(v,w)}) is not k-connected.

Definition 23 Let G = (V, E) be a k-edge connected graph. G is minimal k-edge connected
if for every edge (v,w) in E, graph (V, E — {(v,w)}) is not k-edge connected.

Definition 24 Let G = (V, E) be a k-connected (or k-edge connected) graph and (z,y) €
E. Edge (z,y) is a k-essential (or k-edge essential) edge for G iff G = (V, E — {(z,y)}) is
not k-connected (or k-edge connected). When k = 2, edge (z,y) is a 2-essential (or 2-edge

essential) edge of G.

Definition 25 Let G = (V,E) be a graph. For each vertex v of G, we draw a distinct
point on the plane. For each edge (v,w) in E, we draw an arc on the plane. If we can
arrange the arcs in such a way that no two arcs intersect except at their end points, G
is called a planar graph and the drawing is called a planar embedding of G. If G is not

planar, it is a nonplanar graph.

123

Definition 26 Let G = (V, E) be a graph with | V' |= n. An st-numbering is an assignment
st(v) of distinct integers between 1 to n to the vertices in V. The assignment satisfies
following condition: for each vertex v such that st(v) ¢ {1,n}, there exist (v,u) and (v, w)

in E such that st(v) < st(u) and st(v) > st(w).

Definition 27 Let G = (V, E) be a graph. V' is a clique of G if (v,w) € E for every two

vertices v and w in V'. A mazimum cligue of G is a clique with the maximum cardinality.

Definition 28 Let G = (V, E) be a graph with | V |= n. A proper coloring of G is a
mapping C : V — {1,...,n} such that for v and w in V, C(v) # C(w) if (v,w) € E. The
set of colors being used is {i | 1 <i < n and Jv € V,C(v) = i}. The minimum coloring of

G is a coloring that uses the fewest colors.

Definition 29 Let G = (V, E) be a graph. V' is an independent set of G if (v,w) ¢ E for
every two vertices v and w in V'. A mazimum independent set of G is an independent set

with the maximum cardinality.

Definition 30 Let G = (V,E) be a graph. {Vi,...,Vi} is a cligue covering of G if (1)
Vi(l<:<k)isaclique, (2) V;NV; =¢ for 1 <i#j <k, and (3) US5V; = V. The size
of a clique covering is | {V1,...,Vi} |. A minimum clique covering of G is a clique covering

with the smallest size.

124

References

[AHU] A. Aho, J. Hopcroft, and J. Ullman, Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass. (1974).

[AP] L. Auslander and S.V. Parter, “On imbedding graphs in the plane”, J. Math. and
Mech, 10(3) (1961) 517-523.

[B] B. Bollobas, Ezxtremal Graph Theory, Academic Press (1978)

[BL] K.S. Booth and G.S. Leuker, ”Testing For the Consecutive Ones Property, Interval
Graphs, and Graph Planarity Using PQ-tree Algorithms”, J. of Comp. and Sys. Sci, 13
(1979) 335-379.

[BT] G.D. Battista and R. Tamassia, “Incremental Planarity Testing”, Proceedings of the
§0th Annual Symposium on Foundations of Computer Science, (1989) 436-441.

[CGM] V. Chachra, P.M. Ghare, and J.M. Moore, Applications of Graph Theory and
Algorithm, North Holland Inc. (1979).

[Co] S.A. Cook, “The Complexity of Theorem Proving Procedures”, $rd. Annual ACM
Symposium on Theory of Computing, (1971) 151-158.

[CV] R. Cole and U. Vishkin, “Approximate Parallel Scheduling. Part 1: The Basic
Technique with Applications to Optimal Parallel List Ranking in Logarithmic Time”,
SIAM J. on Comp, 17(1) (1988) 128-142.

125

[D] G.A. Dirac, "Minimally 2-Connected Graphs”, J. Reine Angew Math, (1967) 204-216.

[ET1] S. Even and R.E. Tarjan, ”Computing an st-numbering”, Th. Comp. Sci, 2 (1975)
330-334.

[ET2] K.P. Eswaran and R.E. Tarjan, ” Augmentation Problems”, SIAM J. on Comp, 5(4)
(1976) 653-665.

[ET3] S. Even and R.E. Tarjan, “Network Flow and Testing Graph Connectivity”, STAM
J. on Comp, 4(4) (1975) 507-518.

[F] R.W. Floyd, “Algorithm 97: Shortest Path”, Comm. ACM, 5(6) (1962) 345.

[FF] L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton University Press (1962).

[G] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press
(1980).

[GJ] M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the Theory
of NP-Completeness, W.H. Freeman & Co., New York (1979).

[GKRST] P. Gibbons, R. Karp, V. Ramachandran, D. Soroker, and R. Tarjan, “Transitive
Compaction in Parallel via Branchings”, Journal of Algorithms, 12 (1991) 110-125.

[GS] M. Goldberg and T. Spencer, “A New Parallel Algorithm for the Maximal Indepen-
dent Set Problem”, SIAM J. on Comp, 18(2) (1989) 419-427.

126

[H] B. Harris. Graph Theory and Its Applications, Academic Press (1970).

[HT1] J. Hopcroft and R.E. Tarjan, "Efficient Planarity Testing”, J. ACM, 21(4), (1974)
549-568.

[HT2] J. Hopcroft and R.E. Tarjan, “Efficient Algorithms for Graph Manipulation”,
Comm. ACM, 16(6), (1973) 372-378.

[HT3] J. Hopcroft and R.E. Tarjan, “Isomorphism of Planar Graphs”, Complezity of
Computer Computations, R.E. Miller and J.W. Thatcher eds. 1973 Plenum Press, New
York, 131-152.

[HT4] J. Hopcroft and R.E. Tarjan, “Dividing a graph into triconnected components”,
SIAM J. on Comp, 2(3) (1973) 135-158.

[HTS5] D. Harel and R.E. Tarjan, “Fast Algorithms for Finding Nearest Common Ances-
tors”, SIAM J. on Comp, 13(2) (1984) 338-355.

[HM] D. Helmbold and E. Mayr, “Perfect Graphs and Parallel Algorithms”, Proceedings
of the 1986 International Conference on Parallel Processing, (1986) 853-860.

[HS] E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press
(1983).

[JTS] R. Jayakumar, K. Thulasiraman, and M. Swamy, ” O(n?) Algorithms for Graph
Planarization”, IEEE Trans. on CAD (1989) 257-267.

127

[Ka] R. Karp, “Reducibility among Combinatorial Problems”, Complezity of Computer
Computations, , R.E. Miller and J.W. Thatcher eds. 1973 Plenum Press, New York, 131-
152.

[Kn] D. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, Mass.,
Vol.1, (1968).

[Kr] J.B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem”, Proc. Amer. Math. Soc, 7(1) (1956) 48-50.

[KR1] P. Kelsen and V. Ramachandran, “On Finding Minimal 2-connected Subgraphs”,
Department of Computer Science, University of Tezas at Austin, TR-90-16, (1990).

[KR2] P.N. Klein and J.H. Reif, “An Efficient Parallel Algorithm for Planarity”, Pro-
ceedings of the 27th Annual IEEE Symposium on Foundation of Computer Science, (1986)
465-477.

[KR3] P. Kelsen and V. Ramachandran, “The Complexity of Finding Minimal Spanning
Subgrahs”, (Preliminary Version), manuscript, Department of Computer Science, Univer-

sity of Tezas at Austin, (1991).

[KVV] D. Kozen, U.V. Vazirani, and V.V. Vazirani, “NC Algorithms for Comparability
Graphs, Interval Graphs, and Testing for Unique Perfect Matching”, Fifth Conference on
Foundations of Software Technology and Theoretical Computer Science, New Dehli, (1985)

[L] L. Lovasz, ”A Characterization of Perfect Graphs”, J. Combin. Theory, B(13) 95-98.

128

[LEC] A. Lempel, S. Even, and I. Cederbaum, I., ”An Algorithm for Planarity Testing of
Graphs”, Theory of Graphs, International Symposium, Rome, (1966) 215-232.

[M] K. Mehlhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-complete-

ness, Spring-Verlag (1984).

[NNS] J. Naor, M. Naor, and A.A. Schaffer, “Fast Parallel Algorithms for Chordal
Graphs”, Proceedings of the 9th Annual ACM Symposium Theory of Computing, (1987)
355-364.

[P1] M.D. Plummer, "On Minimal Blocks”, Trans. Amer. Math. Soc, (1968) 134,

[Pr] R.C. Prim, “Shortest Connection Networks and Some Generalizations”, Bell System

Technical J, (1957) 1389-1401.

[PLE] E. Pnueli, A. Lempel, and S. Even, ”Transitive Orientation of Graphs and Identi-
fication of Permutation Graphs”, Canada. J. Math, 23 160-175.

[T1] R.E. Tarjan, “Depth-first Search and Linear Graph Algorithms”, STAM J. on Comp,
1(2) (1972) 146-159.

[T2] R.E. Tarjan, "Data Structures and Network Algorithms”, STAM (1983).

[Te] H.N.V. Temperley, Graph Theory and Applications, Ellis Horwood Ltd (1981).

[Wa] S. Warshall, “A Theorem on Boolean Matrices”, J. ACM, 9(1) (1962) 11-12.

129

[WB] R.J. Wilson and L.W. Deineke, Applications of Grapn 1heory, Academic Press,

Reading, Mass. (1979).

[Wu] W. Wu, ”On the Planar Imbedding of Linear Graphs”, J. Sys. Sci. & Math. Sci,
5(4) (1985) 290-302.

130

