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ABSTRACT

This paper examines the feasibility of using long term (disk based) caches in very
large distributed file systems (DFSs). We begin with an analysis of file access patterns in
a distributed Unix workstation environment, and identify properties of use to the DFS
designer. We then introduce long-term caching strategies that maintain consistency
while dramatically reducing the load on file servers. We describe a number of algorithms
for maintaining client caches, and present the results of a trace-driven simulation that
shows how relatively small disk-based caches can be used to reduce server traffic by 60%
to 90%. Finally, we outline possible mechanisms for dynamically organizing these
caches into adaptive hierarchies to allow arbitrary scaling of the number of clients and
the use of low-bandwidth communication networks. A small (2 or 3 level) hierarchy,
coupled with smart caching techniques, has the potential to reduce traffic by an order of
magnitude or more over a flat scheme.

1. Introduction and Motivation

Distributed File Systems (DFSs), such as Sun NFS [3], have gained wide acceptance as a mechanism
for sharing files among small groups of computers. Although the advantages of a shared file system struc-
ture are well established, DFSs are seldom used with very large numbers of machines or over low-
bandwidth, heterogeneous, unreliable, or geographically distant networks. While the advantages of a DFS
could apply equally well to such large scale systems, the assumptions made by current DFS software do not
“scale up”. In particular, current systems require file server help for most client reads, so both the server
and the network must be able to handle a load proportional to the amount of client activity. In order for a
DFS to scale, most client activity must be hidden from the server. We seek a system in which, for exam-
ple, all users (in the world) of a particular version of Unix could mount a single centrally maintained /bin
directory, or in which the remote mount replaces mail and ftp as the method of choice for sharing files
among machines spread across great distances.

In first-generation DFSs (such as NFS), the only time the file server does not have to intervene for a
client request is when the data being read is already in the client cache. Because the caches are small (and
fit in memory), only very recently accessed files and directory information are usually cached. Further-
more, cached data is flushed after a very short time (typically about 30 seconds) to minimize consistency
problems. Although these caches do have an impact on client performance, they are not sufficiently large
or persistent to enable servers to handle arbitrarily large numbers of clients.

A number of experimental file systems [2][8][9] aim at scalability, but no one system attempts o
scale to arbitrarily large numbers of autonomous, heterogeneous clients on arbitrary networks.



1.1. Caching vs. Replication

Two methods of distributing data to client machines without requiring the server to serve every
request are replication and caching. In the traditional sense, replication involves propagation of files to the
remote sites as they change. When a file changes, the new data (or at least a message invalidating the old
data) must be propagated to each replica. A replication strategy may be static, where the files (or file sys-
tems) to be replicated and the machines on which the copies are to be stored are determined in advance.
This results in potentially large amounts of redundant traffic when frequently written-to files are propagated
to clients who may never read them. Static replication strategies require careful planning and monitoring if
they are to be used to maximum advantage. The administrative overhead of determining what files to repli-
cate, plus the cost of replicating inappropriate files, makes it suitable mainly for widely used files known
not to change very often (such as /vmunix). Several experimental systems make use of static replication.

Caching, on the other hand, can be viewed as a dynamic replication scheme ordinarily done to
improve client performance by keeping copies of the most recently used data in memory. This helps only
with files opened in the very recent past. Because of the short-term nature of most file system caches, con-
sistency and update propagation are typically managed by simply limiting the maximum age of a file in the
cache to a very short time.

Both static replication and caching can improve client performance, but for the purposes of designing
a highly scalable system, this is not the right metric at which to look. A better measure is to look at how
much load each client puts on its file server. A system can be said to be scalable only if the server can han-
dle a very large number of clients without itself becoming a bottleneck. In a small DFS, it is reasonable
(both in terms of performance and economy of hardware) for most requests to be served remotely; the suc-
cess of NFS proves this. However, as systems grow beyond a few dozen machines on a local network, it
becomes attractive to have local disk copies of the remote data. We seek a middle ground between static
replication of entire file systems and short term memory-based caches.

2. Distributed File Access Patterns

Virtually all efforts to build scalable DFSs include some kind of replication or caching scheme.
Caching helps to reduce traffic (or server load) only if files are accessed in a fairly consistent manner. This
section attempts to identify the kinds of access patterns present in current distributed systems. Knowledge
of such patterns is essential for designing and evaluating a potential cache algorithm.

The success of a caching strategy depends upon two factors: the ability to predict when a file will be
next used, and the ability to predict when the data will become invalid by being overwritten or deleted.
Fortunately, Unix files accesses tend to be surprisingly predictable in practice, and this regularity can be
exploited in designing a DFS, Past studies [4][5][7] have found that Unix files are normally quite small
(1k-10k) and that most accesses are of the entire file. This suggests that caching entire files is reasonable.
It is also known that many files are changed or deleted within a few minutes of creation, which suggests
that a replication scheme that blindly copies new files to all potential clients is not the best strategy.

Although the results of past analysis of Unix file access patterns has been fairly consistent, less is
known about the behavior of distributed file systems where the same files are available for use by many
processors. We analyzed a week-long trace of file accesses conducted at DEC/SRC and kindly made avail-
able to us. This was augmented by a small trace conducted locally. The data consisted of a log of all sys-
tem calls issued by about 120 Unix workstations in a computing research environment. We did not look at
individual read and write calls; instead, to simplify our analysis, we looked only at open and unlink system
calls. We consider an open for read system call to be a non-destructive "read” operation and an open for
write or open for read/write or unlink system call to be a destructive "write" operation.

We identify three properties of file access from this trace data that, if generalized, make very
efficient caching strategies feasible. The first property, locality, is analogous to the well-known property of
memory-reference patterns, and says simply that files tend to be accessed from the same places from which
that have been recently opened. The second, which we call "inertia", says that files tend to be accessed in
the same manner as previous accesses. The third, "entropy”, says that files become less "volatile" over
time and tend to become read-only as they are read more often. We discuss these properties in detail



below.

2.1. "Locality"

Intuition suggests that the most likely machine to open a file is one that has accessed it recently. We
find this property to be very strong in the DEC trace data; about 90 percent of reads are on workstations
that have read the file in the past.

Most reads and writes are of files that are used at only a few workstations, even including "system"
files like /bin/sh and /vmunix. This is particularly true of writes.

Figure 1 plots opens for writing (and unlink) against the number of machines that have read the file
since it was last written (or unlinked). Note the sharp decline in writes after just 2 machines have read the
file.
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Figure 1 - Writes vs. Number of Machines

Figure 2 plots opens for read only against the number of machines that have previously opened the
file since it was last written.

300000 *®
200000 —
Opens
(read only)
100000 —
%o e
NI S VT SN W———_

I I I
0 50 100

Number of Machines
Previously Reading File

Figure 2 - Reads vs. Number of Machines



Locality is also quite strong in the sense that the previous machine to access a file is also very likely
to be the next machine to do so. Almost 70% (429758 out of 623383) of file accesses are by the same
machine that last opened the file.

2.2. "File Inertia"

Files in the trace had a strong tendency to be opened in the same mode as they were opened last, par-
ticularly for reading. Of 582302 read operations, 519204, or 89%, followed a read operation on that file.
For writing, of the 104629 writes logged, 77267, or 73%, overwrote files that had never been read since
they were last written. That is, 73% of write operations wrote data that were never read during the trace
period. (Part of this is accounted for by writes to append-only log files and opens of write only devices
such as /dev/tty).

2.3. "File Entropy"

As files are read more (and to a lesser extent, as they age) they become less likely to be written or
deleted before they are read again. Put another way, as a file is read more, it becomes increasingly likely
that the next operation on that file will be read rather than write or unlink. We call this property "entropy"
and find it to be very strong in our trace data. Entropy takes effect very quickly; in the DEC trace data for
any arbitrary file there is about a 10% chance that the next operation on that file will overwrite it, but once
the file has been opened for reading at least once, this drops to less than 4%. After three reads, this
becomes just 0.5%, and after 10 reads, less than .001%. In other words, files tend to become read-only
once they have survived the first few reads. Surprisingly, this remains true (with slightly shified curves)
even when we restrict ourself to looking at system files (/usr, for example) or user’s home directories. File
entropy is a very useful property to exploit in a caching strategy, since files that are unlikely to change are
the best candidates for replication. This property allows us to identify these files using a small history and
without requiring the use or type of a file to be known in advance. It also suggests that the very files that
change only infrequently also account for a large proportion of reads; in the trace data, over 66% of reads
were of files that had been read at least 6 times in the past.

Figure 3 plots the number of previous opens for reading on a file for each open for reading and each
open for writing. Figure 4 is the same plot but restricted to operations on files in users’ home directories,
which are more volatile. Note that these plots are cumulative; the number on the horizontal axis indicates
that there have been that many or more reads of the file in the past.

It is worth noting that (over all files) reads outnumber writes by about 5 to 1, and that most reads are
of files that have already been read several times before. Most writes, on the other hand, are of files that
have been read zero or one times before.

Clearly, locality, entropy, and inertia plus the previously known properties of Unix files suggest that
there is much to be gained by caching in distributed file systems. The next section of this paper develops
and compares several simple strategies for maintaining client caches.

3. Trace-Driven Simulation of Caching Strategies

The properties described in the previous section suggest that most server traffic for reads can be
avoided with a relatively simple client caching algorithm. This section describes a trace driven simulation
of several caching schemes to determine whether, indeed, this is true, and to shed some light on the ques-
tion of a reasonable cache size. We examined and evaluated fairly simple algorithms in order to avoid bas-
ing our conclusions on very specific "offline” properties of the trace data. In evaluating the various algo-
rithms, we considered only the number of messages sent between client and server. We did not consider
any (possibly non-trivial) local processing required at any CPU.

3.1. Simulation Caching Model

We used the DEC trace data to conduct our simulation. Again, we looked at only opens and unlinks
and assumed that any write or unlink renders all cached copies of the file invalid. Each client can keep a
cached copy of any file it reads but the file server can assign a (possibly infinite) expiration time to the
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Figure 3 - Reads & Writes vs. Previous Reads (on same file) - All files

client copy at the time it is created. The "owner" of the file (the file server) maintains a list of clients with
unexpired copies of each file. If the file is unlinked or written to, each client with an unexpired copy of the
file must be notified (it need not be sent the new data, however). If a client reads a file that is in the local
cache it need not communicate with the server. Clients may also delete files from their caches at any time
without notifying the server. This is an extension of the "stashing" model [10]. Since we are looking only
at open operations, we assume that each read is of the entire file; this is probably a reasonable assumption,
based on what is known about most Unix file accesses.

3.2. Infinite-Size Caches

This is the simplest case to analyze, and it provides a useful upper bound on the impact of a cache on
network traffic. In the infinite cache model, each client keeps a copy of every file it reads until it is told to
delete it by the server when the file is written to or unlinked. The results of this trace were very encourag-
ing and suggest that, in fact, caches can have a dramatic impact on network traffic. Of the 686991 opera-
tions traced over a five day period, 582302 were read operations, of which 523121 were of valid files in the
clients’ caches and hence would not require server intervention. So server reads are reduced by 89%.
However, 55546 "cancel” messages had to be sent to notify clients of invalid data. If we assume (very
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conservatively) that sending a "cancel" message costs the same as sending the file, we avoid 80% of the
server traffic in a scheme where the file server handles every read. This includes overhead caused by the
simulation starting with each client with an empty cache. If the simulation is run for one day before col-
lecting statistics, to allow the clients caches to approach a more "steady" state, the savings is even more
dramatic: 93% of reads are served by the client cache.

Note that if clients are able to predict with 100% certainty when a file will be overwritten, the "can-
cel” messages can be avoided; clients can approximate this if they choose an accurate expire time for the
file. This gives us an encouraging upper bound on the savings to be gained by caching in a DFS. With
infinite caches and perfect ability to predict when files will change, our simulation yields a 93% client
cache hit rate, after some startup overhead as empty caches are filled.

3.3. Finite Caches

Although infinite caches are useful for theoretical evaluation of the impact of caching on network
traffic, real caches are, of course, finite. Several issues confront the designer of a practical DFS cache
scheme, including what files to cache, how long to keep them in the cache, how to decide what files to dis-
card when the cache is full, and, of course, how big to make the caches.

We assume that each client cache can hold a fixed number of files of arbitrary size each. Although
this is not as useful as a simulation of caches of fixed block size, our trace data did not lend itself to this
sort of analysis. The average file size of files in the trace was about 11k, so one could approximate the real
cache size accordingly.

We considered three finite cache algorithms, and we simulated each using the DEC data. We ran
each simulation twice: once gathering statistics for the entire period of the trace, and again where statistics
were gathered after it was run for the first simulation day (the "steady state"). For each algorithm, we give
the cache sizes simulated, the absolute number of reads not served by client caches and the percentage of
total reads this represents, the number of "overhead" messages entailed by the algorithm, the sum of the file
traffic and other traffic, and the percentage of total traffic this represents compared with an uncached
scheme, assuming that the cost of an "overhead" message and sending a file are equal.

The first algorithm we examined is simple LRU, where, just as in the infinite cache case, the server
maintains (along with the usual inode data) a list of all clients that have read the file since it was last writ-
ten. Clients maintain a simple queue of files, putting the most recently read file at the head and deleting the
least recently used files as the cache fills (without notifying the server). When a file is written or unlinked,
each client which has made a copy is notified (whether or not the file is still in the client cache). This sim-
ple algorithm does fairly well, certainly compared with no caching at all, but still entails the overhead of



sending "cancel" messages to clients who have long flushed the file from their caches. Table 1 is a sum-
mary of the LRU algorithm with various cache sizes; 1a is over the whole simulation, and 1b is the "steady
state" after one day.

Cache Cache Miss Cancel Total Percent
Size Misses | Rate | Messages || Traffic | of Traffic

0 582302 | 100.0 55546 637848 109.5
32 208084 357 55546 263630 453
64 160492 27.6 55546 216038 37.1

128 124841 214 55546 180387 31.0
192 109646 18.8 55546 165192 28.4
256 100493 17.3 55546 156039 26.8
320 93006 16.0 55546 148552 255

384 87415 15.0 55546 142961 24.6
448 82378 14.1 55546 137924 23.7
512 78605 13.5 55546 134151 23.0
infinite 59181 10.2 55546 114727 19.7

la - LRU (full trace)

Cache Cache Miss Cancel Total Percent
Size Misses | Rate | Messages || Traffic | of Traffic

0 451029 | 100.0 40951 491980 109.1
32 155109 344 40951 196060 43.5
64 117350 26.0 40951 158301 35.1

128 88349 19.6 40951 129300 28.7
192 74935 16.6 40951 115886 25.7
256 66948 14.8 40951 107899 239
320 60064 13.3 40951 101015 224
384 54951 12.2 40951 95902 21.3
448 50218 11.1 40951 91169 20.2
512 46757 10.4 40951 87708 19.4
infinite 28227 6.3 40951 69178 153

Ib - LRU (steady state)

Table 1 - LRU Simulation

The second algorithm we examined attempts to remedy the problems of sending expire messages to
clients for files in which they are no longer interested and maintaining the server records for these "dor-
mant” clients. We expire files just before we expect them to be overwritten, freeing the server from the
obligation to notify the client of changes once the expire time has occurred. This is somewhat like a gen-
eralization of the "Lease" concept [6]. Clients first flush expired files from their caches when selecting a
cached file for replacement; if no unexpired files exist, LRU is used.

This, of course, raises the question of how to calculate the expire time. We want to assign long
expire times to files that are likely to be used again at the client, and short ones to files that are not likely to
be read at the client before being overwritten. Recall that the likelihood of a file being overwritten
decreases as the file is read more and more. Afier considerable experimentation, we found a reasonable
expire time to be

d »

t+§r

where ¢ is is the current time, d is the length of time since the file was last written, and 7 is the number of



times the file was read at the server since last written. This reduced the number of cancel messages
dramatically (by a factor of almost 40), but also caused a modest decrease in the client cache hit rate (some
files expired while still in the client cache and were later read by the client). Table 2 gives the simulation
results for EXPIRE.

Cache Cache Miss Cancel Total Percent
Size Misses Rate || Messages || Traffic | of Traffic

0 582302 | 100.0 1546 583848 100.3

32 219357 37.7 1546 220903 37.9
64 174292 29.9 1546 175838 30.2
128 140968 24.2 1546 142514 24.5
192 127072 21.8 1546 128618 22.1
256 119098 20.5 1546 120644 20.7
320 112884 194 1546 114430 19.7
384 106994 18.4 1546 108540 18.6
448 102360 17.6 1546 103906 17.8
512 99698 17.1 1546 101244 17.4
infinite 88779 15.2 1546 90325 15.5

2a - EXPIRE (full trace)

Cache Cache Miss Cancel Total Percent
Size Misses Rate | Messages || Traffic | of Traffic

0 451029 | 100.0 1071 452100 100.2
32 163835 36.3 1071 164906 36.6
64 128119 284 1071 129190 28.6

128 100374 223 1071 101445 225

192 88136 19.5 1071 89207 19.8
256 80943 17.9 1071 82014 18.2
320 75207 16.7 1071 76278 16.9
384 69568 154 1071 70639 15.7
448 65328 14.5 1071 66399 14.7
512 62809 13.9 1071 63880 14.2
infinite 52353 11.6 1071 53424 11.8

2b - EXPIRE (steady state)

Table 2 - EXPIRE Simulation

Our final algorithm is a simple adjustment to the EXPIRE algorithm. Clients do not flush expired
files from their caches first; all replacement is done by strict LRU. When a cached but expired file is read,
the client verifies with the server that the file is unchanged; if so, the rest of the read is processed locally
and a new expire time is assigned to the file. This increases the number of locally processed reads to the
level of LRU at the expense of these additional messages, while still maintaining the reduced cancel mes-
sage overhead of EXPIRE. Table 3 gives the simulation results for EXP-LRU.

It is worth noting that whether EXPIRE or EXP-LRU is preferable depends upon the relative cost of
sending entire files against the cost of expire and verify messages. If all messages cost about the same (as
they would be where files are small and network packets are large), EXPIRE is the clear winner. Figure 5
compares (in the steady state) the total number of messages used by LRU, EXPIRE and EXP-LRU assum-
ing that all messages are of equal cost. If, on the other hand, sending whole files costs considerably more
than sending small, constant size, expire and verify messages, EXP-LRU becomes more attractive. Figure
6 compares the three algorithms where sending files is 10 times the cost of other kinds of messages. Of
course, a better expire time calculation formula could make EXPIRE the better choice regardless of the



Cache | Cache Miss Cancel Verify Total Total Percent
Size Misses | Rate | Messages | Messages | Messages || Traffic | of Traffic

0 582302 | 100.0 1546 0 1546 583848 100.3

32 208084 35.7 1546 21770 23316 231400 39.7
64 160492 27.6 1546 23779 25325 185817 31.9
128 124841 214 1546 25434 26980 151821 26.1
192 109646 18.8 1546 26267 27813 137459 23.6
256 100493 17.3 1546 26774 28320 128813 22.1
320 93006 16.0 1546 27255 28801 121807 20.9
384 87415 15.0 1546 27579 29125 116540 20.0
448 82378 14.1 1546 27907 29453 111831 19.2
512 78605 13.5 1546 28147 29693 108298 18.6
infinite 59181 10.2 1546 29598 31144 90325 15.5

3a - EXP-LRU (full trace)
Cache Cache Miss Cancel Verify Total Total Percent
Size Misses Rate || Messages | Messages | Messages || Traffic | of Traffic

0 451029 | 100.0 1071 0 1071 452100 100.2

32 155109 344 1071 17313 18384 173493 38.5
64 117350 26.0 1071 18865 19936 137286 30.4
128 88349 19.6 1071 20208 21279 109628 24.3
192 74935 16.6 1071 20956 22027 96962 21.5
256 66948 14.8 1071 21416 22487 89435 19.8
320 60064 13.3 1071 21866 22937 83001 18.4
384 54951 12.2 1071 22177 23248 78199 17.3
448 50218 11.1 1071 22485 23556 73774 16.4
512 46757 104 1071 22723 23794 70551 15.6
infinite 28227 6.3 1071 24126 25197 53424 11.8

relative cost of messages.

3b - EXP-LRU (steady state)

Table 3 - EXP-LRU Simulation

4. Consistency in Unreliable Networks

The above algorithms work well in a perfect network that remains fully connected and in which no
hosts ever fail. Of course, this is even less true of the large networks for which such strategies are designed
than it is of small, local networks. Clearly, consistency is an issue in such systems. Although it is well
beyond the scope of this paper to conduct an in-depth analysis of consistency in distributed systems, it is
worth discussing a few issues that naturally arise out of file replication schemes such as those we have
described.

First, we must define what we mean by consistency. At one end of the spectrum, we have what is
often called "Unix semantics™: each update is guaranteed to be reflected by all other processes as soon as it
completes. Clearly, strict Unix semantics are expensive to maintain in a DFS, since it requires clients to
verify that their caches are up to date with the server for every read. This would all but eliminate the
benefits of caching. Furthermore, if the connection to the server is down, the client read always fails, even
when file is in the local cache. Few DFSs attempt to guarantee complete Unix semantics, however, and
even some uniprocessor systems do not provide this degree of consistency. At the other end of the spec-
trum, we could guarantee nothing, and if a client looses its connection to the server, allow it to process
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requests with its cache for any files it chooses.

Again, we seek a middle ground between these two extremes in which clients can have some guaran-
tees that the files they read are up to date, but do not have to verify each read with the server. The problem
is for clients to determine that they have not lost contact with the file server (and missed invalidation mes-
sages) without having to contact the server for each read. We identify two consistency constraints that can
be maintained without excessive server interaction. The first, which we call "bounded currency"”, guaran-
tees that all reads from the cache reflect data out of date by no more than some real time bound. This is
simple to implement with "keepalive” messages. Nothing is guaranteed about the self-consistency of the
reads and writes, however. The second, "one-copy serializability", states that the global sequence of reads
and writes must correspond to some ordering of events if all machines were connected to a single file sys-
tem. Note that this says nothing about whether a read reflects a recent copy, but just that the set of reads

and writes must be self-consistent.



4.1. Bounded Currency

Bounded currency guarantees that cached copies were up to date as of some known time in the past.
This can be implemented by flushing the cache after some period of time (and in fact, this is how NFS pro-
vides the degree of consistency that it does). Less drastically, each client can keep track of the last time it
communicated with each server from which it caches files. When a file in the local cache is read, the client
first verifies that it has communicated with the server within the specified time bound. If it has not, it ini-
tiates a "keepalive” exchange with that server before completing the read. If the exchange fails, the read
cannot be completed.

Clearly, this entails overhead of at most one exchange per client/server pair every time period,
regardless of the the number of files each client has from each server. If the clients communicate with the
server for other reasons, the number of overhead messages is lowered, of course.

4.2. One-Copy Serializability

This is a generalization of the well-known consistency metric from the field of distributed databases.
Simply put, it requires that the global sequence of reads and writes must be self-consistent, in that they
must correspond to some sequence of reads and writes on a single file system. This, by itself, does not
require that a read actually return data that is in any sense recent. For example, if a client reads a file from
a server, makes a cached copy, and becomes partitioned from the server, it might continue to use the old
cached copy long afier the file has been overwritten. However, we are guaranteed that any other files we
read were not created based on data that is unavailable to us.

It is actually fairly easy to maintain one-copy serializability without excessive network traffic. It is
sufficient to guarantee that each read from a client’s cache reflects data that is current as of the last time
that client wrote data read by remote machines. A simple (and fairly inexpensive) way to maintain this
constraint is for a clients to verify that it can communicate with the file server any time it reads a file that
was cached prior to the last time it wrote to a remotely readable file. If the client has already communi-
cated with the server since it last wrote to a remote file, it need not initiate the keepalive exchange; it need
only do so when it has not heard from the server since the last such write.

Observe that the two constraints are complementary; one provides temporal guarantees while the
other provides logical guarantees. In practice, it is probably reasonable to provide a combination of
bounded currency and one-copy serializability; note that the overhead keepalive messages required to
maintain one constraint can reduce the number required by the other. It is also worth noting that not all
clients actually require a high degree of consistency, and such parameters as the frequency of required
keepalive messages could be a tunable option specified at either open or mount time.

5. Future Work - Cache Hierarchies

While the simulations described above suggest that small client caches can reduce server traffic by a
factor of about five, this is still not enough to allow file systems on the massive scale we seek. As a distri-
buted file system grows beyond a small set of machines on a single network, it is advantageous to organize
clients into hierarchies so that they do not all contact the file server directly. In such a structure cached (or
replicated) copies are used not only by the machine with the cache, but by "child" machines as well. A
hierarchical structure offers potential performance benefits to both client and server. From the server’s per-
spective, it can serve orders of magnitude more clients while communicating with only a few top-level
nodes. At the same time, clients have access to potentially large caches that may be fewer network hops
away.

Some experimental systems [2] permit such a organization to be specified statically as the system is
set up. While such schemes are potentially very useful for large homogeneous systems belonging to a sin-
gle organizational entity, we believe that a more dynamic scheme is required for very large scale file sys-
tems. In particular, static hierarchies are inefficient for files that are read infrequently (since they introduce
extra layers between client and server) and may cause bottlenecks when the exact hierarchy in place does
not reflect the actual traffic load (as when clients in different "leaves” share files). It is difficult to predict
the access patterns of a network in advance, and it only becomes more difficult as the network grows and



includes machines about which less is known. Our current work focuses on designing a file system that
constructs an adaptive hierarchy for each file, so that heavily used files have several layers of caches
between clients and servers, while all clients can go to the server for lightly used files. Clients should be
able "share" caches on neighboring machines (especially when the server is very distant) and servers
should be able off-load frequent file accesses to machines with surplus cache space. Such a scheme could,
for example, be appropriate for very large networks such as the Internet, where no central administrative
control exists and machines come and go at fairly random intervals.

We are presently addressing the question of how to best construct such a dynamic hierarchy. For
example, each server could put a bound on the number of clients to which it is willing to provide cached
copies. When the maximum number of clients is reached for a particular file, it could send the list of
machines with copies to new clients requesting the file. The new client could select the "best” machine on
the list (according to proximity or some other criteria) and route all future requests through that machine.
This could be repeated recursively when the client machines themselves become overloaded, and there
could be mechanisms for allowing machines to shift the caching load to one another.

6. Summary and Conclusions

A key requirement for successful large scale DFSs is the ability of clients to hide their file system
activity from their servers. Caches, in the form of a modest amount of local persistent storage, provide a
convenient and well-understood mechanism to do this. We have identified several properties (inertia,
entropy and locality) present in a trace of workstation file accesses that suggest that caching can be used to
considerable advantage in a DFS.

A trace driven simulation of simple caching schemes further supports the notion that server traffic
can be reduced dramatically with fairly small caches. A trace of one such scheme showed that if clients
can cache 200 files, 80% of network traffic is eliminated. As memory becomes less expensive, it will
become practical to provide very fast file system caches of this size in memory.

Although the problem of consistency in replicated distributed systems is a complex one, two simple
constraints (bounded currency and one-copy serializability) provide a fairly high degree of consistency at a
reasonable cost in overhead. These can be combined and tuned to provide the degree of consistency
required at any particular client.

In summary, we believe that, given small client caches and fairly simple caching algorithms such as
those we have described, file servers (and the networks to which they are attached) can serve many more
clients than possible with conventional methods.
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