EMPIRICAL STUDIES OF COMPETITIVE SPINNING FOR
SHARED-MEMORY MULTIPROCESSORS

Anna R. Karlin
Kai Li
Mark S. Manasse
Susan Owicki

CS-TR-319-91

March 1991

Empirical Studies of Competitive Spinning for
Shared-Memory Multiprocessors

Anna R. Karlin} Kai Lif Mark S. Manasse* Susan Owicki*

March 9, 1991

Abstract

A common operation in multiprocessor programs is acquiring a lock to protect
access to shared data. Typically, the requesting thread is blocked if the lock it needs
is held by another thread. The cost of blocking one thread and activating another can
be a substantial part of program execution time. Alternatively, the thread could spin
until the lock is free, or spin for a while and then block. This may avoid context-
switch overhead, but processor cycles may be wasted in unproductive spinning. This
paper studies seven strategies for determining whether and how long to spin before
blocking. Of particular interest are competitive strategies, for which the performance
can be shown to be no worse than some constant factor times an optimal off-line
strategy. The performance of five competitive strategies is compared with that of always
blocking, always spinning, or using the optimal off-line algorithm. Measurements of
lock-waiting time distributions for five parallel programs were used to compare the cost
of synchronization under all the strategies. Additional measurements of elapsed time for
some of the programs and strategies allowed assessment of the impact of synchronization
strategy on overall program performance. Both types of measurements indicate that
the standard blocking strategy performs poorly compared to mixed strategies. Among
the mixed strategies studied, adaptive algorithms perform better than non-adaptive
ones.

1 Introduction

Lock acquisition on a shared-memory multiprocessor is commonly implemented using an
interlocked instruction such as test-and-set or compare-and-swap. With such implemen-
tations, an available lock can be acquired with only one instruction. However, when a
thread attempts to acquire a lock that is held by another thread, the operation is more
costly. There are two common ways of handling this case. The first is blocking: the thread
relinquishes the processor, after enqueuing itself to be awakened when the lock becomes
free. The second is spinning: the thread continues to execute on its processor, repeatedly
testing to see if the lock is available. Spinning may continue until the lock is free, or the
thread may be blocked after some number of trials.

In the first case, processor time is consumed by software overhead, which usually includes
saving the thread’s state, enqueuing the blocked thread, and scheduling a ready thread on

*DEC Systems Research Center, 130 Lytton Ave., Palo Alto, CA 94301.
"Dept of Computer Science, Princeton University, Princeton, NJ 08544.

the current processor. In addition, the thread’s state must be restored when it is awakened.
This time is the cost of a contezt-switch. In the second case, processor time is consumed
probing the lock. If the lock is released quickly, this cost may be small.

If there are no other threads waiting for a processor, it makes no sense to block: blocking
would only leave an idle processor. On the other hand, if the lock is held by a thread which is
waiting for a processor, it makes little sense to spin. No progress is possible until the thread
that holds the lock is scheduled. We are primarily interested in situations where neither of
these conditions holds. That is, (a) there are other threads waiting for a processor, and (b)
the lock is held by a concurrently-running thread.

Condition (a) tells us that spinning would use valuable processor resources, while condi-
tion (b) suggests that spinning may be the most efficient thing to do, since the lock may be
released soon. Thus an efficient locking algorithm may sometimes choose to spin and some-
times block. Unfortunately, identifying the minimum-cost action requires knowledge of how
much longer the lock will be held. This information is usually not available at run time,
although we can imagine that sophisticated compiler technology might be able to provide
approximations to it. For now, we must settle for approaches that are less ambitious.

The traditional method of dealing with this situation is simple, but inefficient: the
thread attempting to acquire the lock is blocked immediately and will only be awakened
when the lock is released. We call this method always-block. In most implementations, each
context-switch takes several hundred instructions. When parallel programs synchronize
frequently, the overhead of synchronizations can be very significant. We have observed
that, with immediate blocking, some application programs spend over a third of their
elapsed time on context-switches.

The simplest alternative to blocking a thread is to spin or busywait until the lock is
released. We call this method always-spin. If no other threads are ready to run, spinning is
certainly the most efficient thing to do, since it reduces the overhead from that of a context-
switch to that of the instructions (usually two or three) in the spinning loop. When there
are other threads waiting for a processor, it is still advantageous to spin if the lock is held
for a time shorter than the time to perform a context-switch. Nonetheless, the worst-case
performance of an always-spin strategy is arbitrarily bad: if locks are always held for a
length of time significantly longer than the context-switch time, it would be far better to
block immediately. If we enter into unbounded spinning when the thread holding a lock
is not scheduled, we may even introduce a deadlock! Other than deadlock, there is no
reason to believe that this worst-case analysis is worrisome; most concurrent programming
techniques suggest that critical sections be kept short.

A compromise between these two methods is to combine spinning and blocking: when
a thread fails to acquire a lock, it spins for some time and then blocks. It has been shown
[KMMO89] that a variant of this method, where the time spent spinning is equal to a
context-switch, is competitive. This means that the cost of this strategy, amortized over all
attempts to acquire locks, is at most twice that of the optimal off-line algorithm. (An off-
line algorithm has complete knowledge about how long locks will be held.) However, it has
not been clear whether such a strategy would be practical in real system and application
programs. In particular, we did not know how much observed performance would differ from
that of the optimal off-line algorithm, and how it would compare to the simpler strategies

of always blocking or spinning.

Measurements of programs running on shared-memory multiprocessors suggest that dif-
ferent locks have vastly different waiting-time distributions. Consequently, it is attractive
to consider strategies that behave differently with different locks. These strategies are based
on the assumption that lock-waiting times obey some unknown but time-invariant proba-
bility distribution. This assumption seems reasonable in situations where the same sets of
instructions are usually executed inside the critical sections, and where lock contention is
typically limited to two threads. Such strategies may be adaptive, in the sense that they
use previously observed lock-waiting times in determining how long to spin in the future.

How do we empirically evaluate spinning strategies? We can implement different strate-
gies and measure a suite of real systems and application programs to see whether the per-
formance is better than the traditional always-block approach. This is a good method; it
provides real, convincing data. However, it has two serious drawbacks. The first has to do
with the nature of elapsed-time measurements. Many programs, such as operating system
components and window systems, cannot be measured by elapsed time because machine
clocks are too coarse and because the behaviors of the programs depend on many unpre-
dictable, non-repeatable factors. The second drawback is that such measurements cannot
tell us about the cost of the optimal off-line algorithm; implementing that algorithm would
require information that is not normally available during program execution, namely, the
time until a lock is released.

Another approach to evaluating spinning strategies is to collect information about the
distribution of lock-waiting times during program execution and determine the costs of the
various strategies by subsequent analysis. This approach is described in more detail in
Section 3. Using this method, we can evaluate the cost of synchronization for programs
where elapsed-time measurements are difficult. In addition, it provides enough information
to compute the cost of the optimal off-line algorithm.

In this paper, we have used both elapsed-time and lock-waiting time measurements to
evaluate spinning strategies. We collected lock-waiting time data for five real system and
application programs on a 7-processor Firefly. We used the data to evaluate analytically
four of the spinning strategies defined in the next section: fixed-spin, optimal-on-line, last-
three-samples, and random-walk. We compared them with the optimal off-line, always-
spin and always-block algorithms. For elapsed-time measurements, we have implemented
most of the spinning strategies and measured those programs in the benchmark suite for
which elapsed-time measurements are meaningful. Both evaluation methods show that
competitive strategies are practical, that their costs relative to that of the optimal off-line
algorithm are gratifyingly small and that they are significantly better than always blocking.

2 The Spinning Strategies
2.1 Background

We say that an on-line algorithm A is ¢-competitive if for every input sequence o,

CA(U) <@ Copt(a) + ka

where C4(0) is the cost incurred by the algorithm A in processing the sequence o, Copi(0)
is the cost incurred by the optimal off-line algorithm in processing o, and k is some fixed
constant. The input sequence o for the spin-block problem is the sequence of lock-waiting
times for each occurrence of a lock which is requested by one process and held by another.
If this inequality holds, we say that c is the competitive ratio of the algorithm.

We are interested in two kinds of competitive algorithms: deterministic and randomized.
Earlier work [KMMO89] has shown that there is a simple deterministic algorithm with a
competitive ratio of 2, and that there is no deterministic algorithm that has a competitive
ratio smaller than 2. On the other hand, randomized algorithms can achieve strongly
competitive ratios approaching e/(e — 1) ~ 1.58. Similarly, there is an adaptive algorithm
that can achieve a competitive ratio also approaching e/(e—1) on input sequences generated
according to any time-invariant probability distribution. As mentioned previously, such an
assumption about the input sequence is reasonable in situations where the same set of
instructions are usually executed inside the critical sections, and where contention for locks
is reasonably small.

In the rest of Section 2, we will describe the seven algorithms evaluated in this paper:
optimal off-line, always-block, always-spin, optimal on-line, fixed-spin, last-three-samples,
and random-walk. We will use the optimal off-line algorithm as the baseline against which
to compare the others.

The algorithms are presented using pseudo-code. In fact, they can be implemented very
efficiently in assembly language. TestAndSet and Clear are usually available as interlocked
instructions. The spin loop can usually be implemented with three or four instructions.

2.2 Noncompetitive Algorithms
Always block

As mentioned in the introduction, always-block is the traditional approach to lock acquisi-
tion. To acquire a lock, a thread first uses an interlocked instruction such as test-and-set.
If the lock is already held by another thread, the acquiring thread is blocked until the lock
is released.
P_Always_Block(lock):
WHILE NOT TestAndSet(lock) DO
Block(lock);
END;

V_Always_Block(lock):
Clear(lock);
IF Blocked(lock) THEN
Wakeup(lock);

END;
The overhead of this approach includes blocking, scheduling, and waking up a thread. It is
the only reasonable approach for uniprocessors, where the thread holding the lock cannot
make progress until it is scheduled to run.

Always spin

Always-spin is also called busywait. Here the thread that failed to acquire a lock spins until
the lock is released.
P_Always_Spin(lock):
WHILE NOT TestAndSet(lock) DO
WHILE lock # O DO END;
END;

V_Always_Spin(lock):
Clear(lock);
On shared-memory multiprocessors, it is important to spin on a cached copy of the lock
variable, using the normal test instructions rather than the interlocked test-and-set. This
minimizes the traffic on the memory bus and avoids the high overhead of executing an
interlocked instruction [And89].

2.3 The Optimal Off-line Algorithm

This algorithm has the best performance that any algorithm can hope to achieve, and
therefore we compare all other algorithms to it. Since it runs off-line, it knows how long it
will be before the lock is released, and thus it knows whether spinning or blocking is the
best choice in each instance. If the lock will be released in less than the context-switch
time, the optimal action is to spin and pay the cost of the lock-waiting time. Otherwise,
the optimal action is to block immediately and pay the cost of the context-switch time.
P_Optimal_0ff-line(lock):
IF Time(P_Always_Spin, lock) < ContextSwitch THEN
P_Always_Spin(lock)
ELSE P_Always_Block(lock);
END;

V_Optimal_Off-line(lock) = V_Always_Block(lock);

2.4 Constant Spin Competitive Algorithms

The following five on-line algorithms implement lock acquisition with a combination of
spinning and blocking. All have the same general structure: on each attempt to acquire
a lock, the parameter SpinThreshold specifies how many times the process should spin
before blocking. The first two algorithms, fixed-spin and optimal on-line, always use the
same value for SpinThreshold. They are described in this section. In Section 2.5 we
describe three algorithms that adjust SpinThreshold based on observed waiting times.

P_Constant_Spin(lock, SpinThreshold):
IF NOT TestAndSet(lock) THEN
count := SpinThreshold;
REPEAT
WHILE (lock # O) AND (count # 0) DO

DEC(count)
END;
IF count = 0 THEN
Block(lock);
END
UNTIL TestAndSet(lock);
END;

V_Constant_Spin(lock) = V_Always_Block;

The parameter SpinThreshold may be identical for all locks or may vary for different
locks.

Fixed spin

Fixed-spin [KMMOB89] is the simplest competitive algorithm for spinning. The number of
spins before blocking is taken as a fixed fraction of the spins required for a context switch.
In our analysis, we considered two values for SpinThreshold: C and C/2, where C is the
context switch time measured in spins.

It is easy to see that fixed-spin with SpinThreshold equal to C has a competitive ratio
of 2. Suppose the lock is held for ¢ time units. If t < C, the optimal off-line algorithm just
spins, paying a cost of ¢, while fixed-spin spins until the lock is free, for a cost of ¢, the
same as the optimal algorithm. If ¢ > C, the optimal off-line algorithm blocks immediately,
paying a cost of C', while fixed-spin spins for time C' and then blocks, for a total cost of 2C.
Therefore, fixed-spin’s cost is always at most twice that of the optimal off-line algorithm.

A similar analysis shows that fixed-spin with SpinThreshold equal to C/2 has a compet-
itive ratio of 3. For many of the distributions we collected, spinning for half a context-switch
time gives a lower synchronization cost than spinning for an entire context-switch time, even
though the competitive ratio is not as good. This is not at all surprising: competitive ratios
say nothing about average performance.

Optimal on-line for a known distribution

The optimal on-line algorithm uses a lock-waiting distribution Py, for each lock L to cal-
culate a spin threshold. If we consider the family of algorithms that spin for a time
before blocking, then the best deterministic on-line algorithm is the one which minimizes
the expected cost under the distribution Py, [KMMOS89]. Specifically, it spins for a time
that minimizes

[tar) + (4 0) [~ amu)
0 T

where C is the cost of a context-switch.
In practice, distributions are discrete data points rather than continuous functions.
Thus, the optimal on-line method computes £ to minimize:

. iDglil+(k+C) Y. Dyl

1<i<k k+1<i<maxzx

where Dy, contains the discrete distribution in terms of spins, i.e. Dy[i] is the probability
that lock L is held for more than ¢ — 1 and at most ¢ spins. The value of k is used as the
SpinThreshold.

Since the distribution Dy, is not known before the program is executed, this method is
not practical for programs that only execute once.

2.5 Variable Spin Competitive Algorithms

The following three on-line algorithms are similar to those in the previous section. Here,
however, the value of SpinThreshold varies during execution, based on the observed waiting
times for lock acquisition. The waiting time for lock acquisition that we would like to
measure is the number of spins that this process would have executed before successfully
acquiring the lock had it spun. Unfortunately, if the process blocks, the history of events
may change and it becomes impossible to determine this value exactly. Therefore, we
approximate the lock waiting times, as specified in the following procedures. The three
adaptive algorithms are described by the following code; they differ in the way procedure
Adjust updates SpinThreshold. Note that we have modified Block to return the time at
which the lock was most recently released.

P_Variable_Spin(lock, SpinThreshold):
IF NOT TestAndSet(lock) THEN
spinsWaited := 0;
count := SpinThreshold;

REPEAT
WHILE (lock # O) AND (count # 0) DO
DEC(count)
END;
IF count = 0 THEN
now := GetCurrentTime();
Block(lock , releaseTime);
timeBlocked := MAX (0, releaseTime - now);
INC(spinsWaited, timeBlocked * SpinsPerSecond)
END

UNTIL TestAndSet(lock);

INC(spinsWaited, SpinThreshold - count);

SpinThreshold := Adjust(SpinThreshold, spinsWaited)
END;

V_Variable_Spin(lock)
Clear(lock);
IF Blocked(lock) THEN
releaseTime[thread to be awakened, lock] := GetCurrentTime();
Wakeup(lock);
END;

Optimal on-line approximation

In order to apply the optimal on-line method to the first execution of a program, one has
to use an approximation to the distribution Dy. One way to approximate Dy, is to collect
lock-waiting distributions, in terms of spins, as the execution proceeds. The P operation
can collect such a distribution and then use it to recompute the optimal SpinThreshold in
the Adjust procedure.

Unfortunately, the computation takes time linearly proportional to the number of data
points in the distribution Dy,. In order to make this method practical, the number of data
points in Dy, has to be small. This means that either maz has to be rather small or each
data point in the distribution has to be coarse.

The theory behind such a method is that if the distribution of lock-waiting times does
not vary with time, the sample statistics will converge to the true values, and the cost will
approach that of the optimal on-line algorithm. Let A* be the deterministic algorithm that
minimizes the expected cost on lock-waiting time sequences o(P), where o(P) is generated
according to a time-independent distribution P. It has been shown [KMMO89] that

ECy+(0(P)) < ——=ECon(a(P)).

So, an algorithm that uses sample statistics of lock-waiting times in order to estimate the
distribution P converges to e/(e — 1) competitive behavior or better.

Last three samples

This algorithm is a simple but somewhat crude approximation to the optimal online algo-
rithm. As the name suggests, the algorithm uses the last three waiting times to estimate
the distribution of waiting times.)

Procedure Adjust determines the value of SpinThreshold that minimizes expected cost
exactly as the optimal on-line algorithm does. The only difference is in the distribution
assumed for lock-waiting times. Suppose the last three waiting times for lock L were 7y,
72 and 73. The optimal value for SpinThreshold is computed under the assumption that
these three points represent the entire probability distribution. This means that k, the
value of SpinThreshold is chosen to minimize

Y. iDr[il+(k+C) Y. Dilil,

1<i<k k+1<i<maz

where D7 is the distribution with a point mass at 7 and Dy, is the average of D7, DP and
DP.

Random walk

The random-walk algorithm is based on the assumption that the probability of waiting
more than a context-switch time for a lock to be released is high if a thread previously has
waited for more than a context-switch time.

The Adjust procedure for this algorithm works as follows. If spinsWaited is more than
a context-switch time, SpinThreshold is decremented by 1 unit so long as it is positive.

Otherwise, SpinThreshold is incremented by 1 unit to a maximum of a context-switch
time.

3 Lock-waiting distributions

As mentioned in Section 1, we compared the efficiency of lock-acquisition algorithms using
two kinds of measurements. The first is direct measurement of elapsed time for program
execution. The second involves recording the distribution of lock-waiting times during
one execution of the program and deriving the performance of each algorithm based on
that data. In this section we describe the Firefly computer used for our experiments and
give some details on how the waiting-time distribution is obtained. We then describe the
characteristics of the distributions observed for five system and application programs.

The Firefly [TSS88] is a shared-memory multiprocessor workstation developed at the
Digital Equipment Corporation’s Systems Research Center (SRC). The Firefly used for
our experiments has seven processors: one MicroVAX 78032 (used exclusively for I/0)
and 6 CVAX 78034 processors. FEach processor has a floating point accelerator and a
cache. The MicroVAX processor has a cache of 16 Kbytes and each CVAX processor has
a cache of 64 Kbytes. Our configuration included 32 Mbytes of main memory. The caches
are coherent, so that all processors see a consistent view of main memory. The Firefly
operating system is called Taos. It emulates the Ultrix system call interface and provides
support for multiprocessing through multiple threads of control in a single address space.

There are a number of difficulties in collecting lock-waiting time distributions. The
main problem is coarse clock granularity. Most machine clocks have a granularity of mil-
liseconds, but many critical sections may execute in microseconds. Another problem is
that measurement consumes time, and this may change the pattern of interaction among
threads in a way that affects lock-waiting times.

To deal with the first problem, we measured lock-waiting times by counting the number
of times a spin loop was executed. We chose to use 16 spins as the unit for waiting-time
distributions. This unit is small enough to allow comparison of different methods, yet
coarse enough to require only a small amount of memory to store the distributions. We
let each thread spin up to 1008 times (63 units of lock-waiting time) before blocking and
then recorded the distributions using two-level hash tables. The last unit includes all cases
where the lock-waiting time was greater than 992 spins, including cases where the thread
eventually blocked. Each blocking time of a thread is measured using the system clock and
then accumulated in spin-equivalents.

To deal with the second problem, our data collection is designed to have a minimal
effect on program execution. We do not record information when a thread finds the lock
available, since we are only interested in lock-waiting times. Thus, data collection does not
introduce any overhead for the common, fast path of acquiring a lock. To further reduce
overhead, we carefully hand-coded the implementation in assembly language and used data
structure sizes that expedited hashing. The fast path for hashing takes only five VAX
instructions. Since Fireflies maintain strong memory coherence at the level of a long word
(4 bytes), we do not need critical sections to protect the shared hash tables, although some
updates might be lost.

We selected the operating system and 4 programs to measure for lock-waiting time
distributions: Taos, Ivy, Galaxy, Hanoi, and Regsim. They represent a spectrum of system
and application programs that have a high degree of data sharing and parallelism. In the
rest of this section, we present the total lock-waiting distributions for each program. In
the next section, we use the distributions for individual locks to compare different spinning
strategies.

Taos

Taos is the operating system for the Firefly [MS87]. It has two component address spaces
(and their associated threads of control): a “kernel” address space called the Nub and the
Taos address space.

The Nub resides in the system region of the VAX virtual memory, and is effectively
part of every address space. It implements virtual address spaces, threads, and basic
device drivers. The Nub’s implementation of threads schedules the highest-priority ready
threads to available processors without regard to address space. Thus it is possible for one
program /process to use all the processors at once.

The Taos address space contains the rest of the operating system. It implements pro-
cesses, files, windows, and the like. Firefly applications communicate with the Taos address
space by remote procedure call. In addition, Taos supports standard Ultrix applications
(including csh, cc, emacs, and make) by emulating the Ultrix system-call interface.

Since different parts of Taos are exercised by different tasks, we collected lock-waiting
times for four instances. Figure 1 (a) shows the combined lock-waiting time distributions of
283 locks in the Nub address space over two hours, running a mixture of jobs. Figure 1 (b)
shows the combined lock-waiting time distributions of 343 locks in the Taos address space
over 24 hours. The distributions are similar, although the Nub has more cases where the
waiting time is small but exceeds our minimum sample.

Figure 1 (c) shows the combined waiting-time distributions of 232 locks while building
the Modula-2+4 compiler using a parallel version of make. This task took 2 hours. Fig-
ure 1 (d) shows the distributions for 150 locks during a 2.5 hour execution of Regsim, a
register-level simulator. Although the running times are similar, there is substantially more
contention while building the compiler, as can be observed by looking at the scale of the
graphs. This is because the parallel make runs compilers and linkers concurrently, and the
file system has a large degree of concurrency.

All three lock-waiting time distributions for the Taos address space are similar. A large
percentage of the waits require only a few spins. Another large percentage require blocking.
Such distributions imply that the amortized cost of competitive spinning strategies will be
better than the always-block approach, but always-block can give acceptable efficiency.

Ivy

Ivy is a programmable text editor that runs in a single address space. It makes heavy use
of the Trestle window system developed at SRC.

Ivy was implemented in Modula-2+ [Rov86] and Tinylisp, a lisp dialect that interfaces
with Modula-24+ and its run-time library. Ivy was designed for the Firefly, and it makes

10

@ 300000 2 200000
2 e
g E 50000
= 200000 i
2 o
= = 100000
© [0
% 100000 ?
-§ ¥ 50000
3 k|
0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of spins Number of spins
(a) Nub with mixed jobs (2 hours, 283 locks) (b) Taos with mixed jobs (24 hours, 343 locks)
3000
2 60000 2
S £
2 3 2000
@ 40000 @
(=) o
% %
2 20000 $ 1000
% E:
- =
0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of spins Number of spins
(c) Taos with parmake m2+ system (2 hours, 232 locks) (d) Taos with Regsim (2.5 hours, 150 locks)

Figure 1: Distribution of lock-waiting times for Taos.

heavy use of concurrency. A large number of locks are used for mutual exclusion.

Figure 2 shows the lock-waiting time distributions for two editing sessions, the first
lasting 100 minutes and the second 18 hours. The first session was continuous and intense,
while the second includes some idle time. In both cases, over 30 local and remote files
were edited. The window system was exercised heavily to display a variety of windows on
the files. The number of locks in the distributions is quite large; both Ivy itself and the
underlying window system use concurrency and locks heavily.

In these cases, unlike the Taos address space, only a small percentage of waits led to
blocking. A very large percentages of waits are shorter than 32 spins. Such distributions
indicate that competitive spinning strategies such as fixed-spin should significantly reduce
synchronization overhead and outperform the always-block approach.

Galaxy and Hanoi

Galaxy is a parallel program that simulates near-collisions of two galaxies on the Firefly
display. Physically, the mass of each galaxy is considered to be located at a point at
its center, and the “stars” that surround the galaxy are taken to be of zero mass. Thus
acceleration depends only on the relative position of the two centers.

Hanoi is a parallel program that solves the well-known problem of the Buddhist monks

11

50000

40000

30000

20000

10000

Lock-wait Distributions

0 | T
o e
0 200 400 600
Number of spins

=1
800 1000

(a) 100 minutes of intensive editing (166 locks)

Lock-wait distributions
—_— — (3] (o]
Lh L § n

»
N I

— T T T T
400 600 800 1000

Number of spins

(b) 18 hours of editing (187 locks)

Figure 2: Distribution of lock-waiting times for Ivy.

of Hanoi. The program uses five pegs and 64 disks of different sizes. At the start, all 64
disks are on the first peg, with larger disks lying below smaller ones. At the end, all 64

disks are on the last peg, in the same arrangement. Disks are moved from peg to peg, but

a larger disk is never placed atop a smaller one. A large number of threads are used in the

program, and there is frequent synchronization.

§

:

-wait Distributions

Ls

0 200 400 600

Number of spins

800 1000

(a) Galaxy running for 5 minutes (13 locks)

N

Lock-wait distributions
(¥,]

[|
1
1000

T T T

0 epmnpany

-1 1 T
0 200 400 600 800

Number of spins

(b) Hanoi running for 5 minutes(207 locks)

Figure 3: Distribution of lock-waiting times for Galaxy and Hanoi.

Both programs are written in Modula-24 and use all 6 processors well.

Figure 3 shows the lock-waiting time distributions for both programs. The number of
locks involved are quite different: 13 locks in Galaxy and 207 in Hanoi. The main reason

for the large number of locks in Hanoi is heavy use of mutual exclusion in managing the

display. The two distributions are similar to each other and to the Ivy distributions: most

lock-waiting times are short.

12

Regsim

Regsim is a register-transfer-level simulator for synchronous digital logic. It has been used
extensively for hardware design at SRC.

Regsim is a parallel program implemented in Modula-2+. It models collections of
connected objects. Each object has a single output, which may connect to inputs of other
objects, and an evaluation procedure. The procedures are evaluated in parallel until the
output values stabilize. The objects are initially divided evenly among the available threads.
During each phase, the thread that finishes last gives one of its objects to another thread.

15000000

10000000

5000000

Lock-wait Distributions

0 200 400 600 800 1000
Number of spins

Figure 4: Distribution of lock-waiting times for Regsim.

Figure 4 shows the total lock-waiting time distribution for simulating a portion of a pro-
cessor design, a task that took about 2.5 hours. This program has a large synchronization
overhead, and very few waits require blocking. The distributions imply that competitive
spinning strategies and always-spin should perform well.

4 Analytic Results

Our first approach to comparing spinning strategies is to estimate synchronization costs
based on the observed distributions of waiting times described in the previous section. In
this analysis, the probability that a lock-wait takes k time units is taken to be equal to
the fraction of observed waits that took k time units. Given these probabilities, it is easy
to compute the expected cost of each strategy, that is, the average time spent spinning or
blocking for lock acquisitions that involve contention. We computed the cost of each of
the strategies described in Section 2 for each of the programs described in Section 3. Note
that the waiting-time distributions used in this analysis were accumulated separately for
each lock. Thus they contained more detailed information than the combined distributions
reported in Section 3.

Table 1 gives the cost of each spinning strategy, relative to the cost of the optimal off-
line algorithm. For example, Galaxy spends 23.7% more time spinning and blocking with
the optimal on-line strategy than it does with the optimal off-line strategy. These numbers

13

allow us to compare the effectiveness of the strategies. However, the impact of strategy
on overall program performance depends on the frequency of lock-contention, among other
factors. This is discussed further in Section 5.

Block Spin Fixed C/2 Fixed C Opt Online 3-samples R-walk

Nub (2h) 1.943 2.962 1.503 1.559 1.078 1.225 1.093
Taos (24h) 1.715 3.366 1.492 1.757 1.141 1212 1.213
Taos (M2+) 1.776 3.535 1.483 1.750 1.106 1.177 1.160
Taos (Regsim) 1.578 3.293 1.499 1.748 1.161 1.260 1.268
Ivy (100m) 5.171 2.208 1.341 1.438 1.133 1.212 1.167
Ivy (18h) 7.243 1.562 1.274 1.233 1.109 1.233 1.141
Galaxy 2.897 2.667 1.419 1.740 1.237 1.390 1.693
Hanoi 2.997 2.976 1.418 1.726 1.200 1.366 1.642
Regsim 4.675 1.302 1.423 1.374 1.183 1.393 1.366

Table 1: Synchronization costs for each program relative to the optimal off-line algorithm

It is obvious that always-block and always-spin perform poorly in almost all cases. The
fixed-spin approach is significantly better than always-block or always-spin, but generally
not as good as the adaptive strategies. Among the three adaptive approaches, optimal on-
line has the lowest cost, as we would expect. Last-three-samples might be slightly better
than random-walk: it is never as badly fooled by the observations. Note that all the
competitive methods have competitive ratios less than 1.8 for all programs.

Table 2 gives further information about the behavior of the optimal off-line algorithm.
The first column gives the percentage of cases in which the optimal off-line algorithm blocks.
The second gives the average time spent spinning in those cases where spinning is optimal.
These two numbers completely determine the average cost, since the time for a context
switch is assumed to be a constant 200 usec. The final column gives the fraction of the
elapsed time spent on synchronization by the optimal off-line algorithm, for those programs
where elapsed-time numbers are meaningful. This can be taken as a very rough estimate
of synchronization overhead.

We can make two interesting observations about this data. First, the fraction of cases
where blocking is optimal varies dramatically from program to program. This suggests that
an adaptive algorithm has considerable potential for improving performance. Second, when
spinning is the optimal choice, the average time spent spinning (22-67 usec) is considerably
less the time for a context switch (200 usec). This suggests that a fixed-spin algorithm will
do well to have a relatively short spin-time; this is confirmed by the relative performance
of the two fixed-spin algorithms.

The analytic model gives precisely the same cost as a trace-driven simulation would give
for those algorithms that are not sensitive to the order in which the waits occur (optimal
off-line, block, spin, fixed-spin, and optimal on-line). The three adaptive algorithms (ap-
proximate optimal on-line, last-3-samples, and random walk) are influenced by the order
in which waits occur, so the results of our analysis may differ from the true costs. If, for
example, there was high locality in the sequence of waiting times, our results would actually

14

Optimal Offline Optimal Offline Opt %
% Block Cases Average Spin Cost (usec) FElapsed Time

Nub (2h) 28.7 63.77
Taos (24h) 44.1 50.66
Taos (M2+) 42.2 48.75
Taos (Regsim) 47 60.66
Ivy (100m) 8.4 23.7
Ivy (18h) 3.2 21.87
Galaxy 25.5 24.06 4.1
Hanoi 16.5 24.02 8.5
Regsim 8.3 27.88 9.9

Table 2: Behavior of the optimal off-line strategy.

be pessimistic. On the other hand, it is possible to construct perverse orders for which our
predictions are overly optimistic.

Of course, actual measurements of synchronization costs could give different results
from those predicted here, for a variety of reasons. The most striking is that lock-waiting
times can be affected by the spinning strategy used.

5 Elapsed-time Measurements

In the previous section, we compared the synchronization costs of various spinning strate-
gies. In this section, we will examine the effect of spinning strategy on overall program
performance. Note that large differences in synchronization cost will not necessarily lead
to correspondingly large differences in overall performance. There are several reasons for
this:

e A program that does not spend much time in contention does not gain much by
improved spinning strategies.
e The analytic results do not include the implementation overhead of the algorithms.

e Saving CPU time by blocking does not lead to an elapsed time gain unless there are
unscheduled threads that can use the free processor.

e Saving CPU time on a noncritical path will not reduce elapsed time.

On the other hand, there are also reasons why elapsed-time measurements might show
bigger improvements than the raw synchronization costs would lead us to expect:

e The actual context switch time may be significantly larger than the value used for
the analytic results. That value was obtained by measuring a simple program that
executed context switches as rapidly as it could. The work of Mogul and Borg [MB90]
suggests that the a context switch should also take into account the increase in cache
misses and bus utilization.

e When there are fewer schedulable threads than processors, our analytic results still
assume that spinning is costly, whereas in reality it never slows the program down.

15

Thus elapsed-time measurements give information that is complementary to the analytic
results on synchronization costs.

For the elapsed-time measurements, we implemented always-spin and the competi-
tive strategies fixed-spin, optimal on-line (exact and approximate), last-three-samples, and
random-walk. For always-block, we used the existing implementation in the run-time li-
brary. Here we sketch a few details of the implementations.

The fixed-spin method is straightforward. Since the time for a context-switch (C) is
equivalent to about 200 spins, we measured our programs with both 100 (C/2) and 200
(C) spins.

The exact and approximate optimal on-line algorithms are implemented in different
ways. The exact optimal on-line method uses the lock-waiting distributions collected for
the analytic computation. For each lock, we pre-computed the optimum threshold to be
used during program execution.

In the implementation of approximate optimal on-line and last-three-samples, a bound
on the maximum observed waiting time is needed to limit the size of tables. We used 1008
spins in both cases, in order to compare the measurements with the analytic results. For
the optimal on-line approximation, we also limited table size and running time by rounding
spinning observations up to multiples of 64. For last-three-spins we rounded to multiples
of 16 to save table space.

For the random-walk algorithm, the threshold is adjusted in increments or decrements
of 16 spins.

For all the adaptive methods, a two-level hash table is used to maintain reduced observa-
tion data and the spinning threshold for individual locks. Due to the absence of fine-grained
timing mechanisms on our processors, we use our coarse-grained clock to approximate the
waiting time when a thread blocks.

Ideally, lock-waiting times would be measured from the time when acquisition was
attempted until the lock was acquired. However, we had to settle for measuring the time
until the lock was next released. Getting the ideal measurement would have required
changing the implementation of the fast path code for lock acquisition, which is built into
the compiler. Obtaining our measurements only required changes to the slow path code,
which is part of the run-time library and thus much easier to modify. The two measurements
will differ only when there are more than two contenders for a lock. The effect of using our
measurements in the implementation affects only the adaptive algorithms. There its effect,
if any, is to make spinning seem more attractive than it really is.

We measured elapsed time for two programs, Regsim and Hanoi, using all strategies.
The measurements were averaged over three runs. Other programs were not included,
because most of our traces are for interactive use of the system, and we do not have a
good way to measure interactive response time. However, the analytic results suggest that
competitive strategies would improve response time for the interactive programs during
periods of heavy contention.

Table 3 shows elapsed times for Regsim under different competitive spinning strate-
gies. The performance of always-block, the currently-implemented strategy, is used as the
baseline for comparisons.

16

Max Elapsed time Improvement
spins (seconds)

Always-block N/A 10529.5 0.0%
Always-spin N/A 8256.3 21.5%
Fixed-spin 100 9108.0 13.5%
200 8000.0 24.0%
Opt-known 1008 7881.4 25.1%
Opt-approx 1008 8171.2 22.3%
3-samples 1008 8011.6 23.9%
Random-walk 1008 7929.7 24.7%

Table 3: Elapsed times of Regsim using different spinning strategies.

For Regsim, always-spin performs quite well, as predicted by the analytic results. This
is because the number of computational threads in the program is the same as the number
of processors. Although there are a few other threads, such as one for garbage-collection,
they consume a small fraction of the available processing power. Thus spinning is usually
the best strategy, because there is likely to be no other thread to use a freed processor.

The measurements show that the cost of synchronization in such a parallel program
can be substantial. In Regsim, most of the competitive spinning methods save a quarter
of the elapsed time over the traditional always-block approach. Thus speeding up the
synchronization primitives yields a significant improvement in program performance. The
exception is fixed-spin with a threshold of C'/2, which only saves about half as much. We
conjecture that there is rarely an advantage to blocking, because there is seldom a waiting
thread to use a free processor. Fixed-spin with a small threshold forces more blocking than
the other competitive strategies, so its performance is worse.

Table 4 shows the elapsed times for Hanoi under different spinning strategies. Once
again, always-block is used as the baseline for comparisons.

Max Elapsed time Improvement
spins (seconds)

Always-block N/A 193.9 0%
Always-spin N/A 241.2 -24.4%
Fixed-spin 100 170.8 11.9%
200 164.8 15.0%
Opt-known 1008 122.1 37.0%
Opt-approx 1008 135.6 30.1%
3-samples 1008 134.6 30.5%
Random-walk 1008 131.6 32.1%

Table 4: Elapsed times for Hanoi using different spinning strategies.

As predicted in the analytic results, always-spin performs badly. In fact, it is worse
than always-block, which would not be expected from the analytic results. This may be

17

explained by noting that in the distribution data, long waiting times were cut off at 1000
spins. If the actual waiting times were significantly larger, the only analytic results that
would change would be those for always-spin, which would become proportionally worse.

Fixed-spin did worse with a threshold of C'/2 than with a threshold of C', which disagrees
with the analytic results. Also, the adaptive algorithms do better than would be expected
from the analytic results. A likely explanation for all of these anomalies is that the number
of active threads in Hanoi is quite bursty. We have observed that there are intervals during
execution when all processors are busy, and others where only half are busy. This is not
accounted for in the analytic numbers.

All of the adaptive algorithms perform very well. The optimal on-line strategy for a
known distribution performs the best. However, this method is not practical; it requires
a known distribution and a hash table for each lock to store the precomputed values of
SpinThreshold.

It is surprising that the improvements due to spinning strategies are much larger than
can reasonably be explained by the distribution information collected for the analytic re-
sults. From that data, it would appear that the total time spent by always-block in context
switches is approximately 38 seconds out of 194. Even the optimal algorithm would appear
to require at least 10 seconds for synchronization, although this could be an overestimate
due to the coarse bucket size used in accumulating the distribution.

It seemed odd to us that shaving 38 seconds off a program could save over 70, which
is what was observed in the elapsed time measurements. So we spoke to the author of the
program, who believes that competitive strategies actually reduced the amount of synchro-
nization performed during program execution. Here is an explanation of how the program’s
structure makes that possible. There are many threads in the program. Each thread has a
fixed task; to accomplish this task it needs to do an amount of synchronization that depends
on the relative timing of events in other threads. A strategy that introduces spinning is
likely to shift those relative timings in a way that reduces both lock contention and the total
amount of synchronization that each thread must do. This could account for the improve-
ment noted with all the competitive strategies. Always-spinning, however, is a mistake,
because there are some locks that are held for a very long time. The adaptive strategies do
best because they adjust to the waiting-times of the various locks in the program.

It is also possible that the analytic results systematically underestimate the cost of
blocking in a heavily loaded system. This would be the case if context switches actually
become more time-consuming under heavy loads. To determine how larger context-switch
times would affect the analysis, we re-evaluated synchronization costs assuming that a
context switch costs 500 microseconds. In that case, always-block would spend 116 seconds
in synchronization, versus 38 seconds for exact optimal on-line.

We plan further experiments to gain a better understanding of this program’s behavior.

6 Related work

There is a large body of literature related to implementing synchronization primitives on
shared-memory multiprocessors.
Early work was concerned with implementing critical sections when the only atomic

18

operations provided by hardware are memory read and write [Dij65,Knu66]. A number
of software protocols have been developed, based on these operations and coherent shared
memory. The main disadvantage of these approaches is their inefficiency. The most efficient
approach [Lam87] still requires five writes and two reads in the absence of contention.

Greater efficiency is possible when the hardware provides more powerful atomic opera-
tions. Simple atomic operations such as test-and-set and compare-and-swap simplify syn-
chronization implementations and can even allow certain certain concurrent data structures
to be implemented without blocking [Her87,Her90]. More powerful atomic operations, such
as fetch-and-add [GGK*83] allow certain common operations to be performed in parallel
without critical sections.

Other work has evaluated the cost of synchronization, considering such complexities as
the hardware cache-coherence algorithm, operating system implementation of threads, and
the non-deterministic nature of the workload. Ousterhout [Oust82] noted that blocking
should be avoided when a lock would be available in time less than a context switch. His
Medusa system delayed blocking a thread for a fixed time determined by the user. Zahorjan,
Lazowska, and Eager [ZLE88] assume that the decision to spin or block will be made by
the user; they examine the extent to which multiprogramming and data-dependencies in an
application complicate this decision. In later work [ZLE89] the same authors evaluate how
the overhead of spinning is affected by various scheduling policies. Other studies [And89,
ALL89,GT90] have compared alternatives for implementing synchronization and thread
scheduling, using both modeling and empirical data. Among other things, they consider
the cost of contention for a lock variable in shared memory, and describe a number of
schemes aimed at minimizing the cost of that contention. Related work [ABLL90] proposes
operating system support for moving many thread scheduling decisions into the application
program.

Competitive algorithms were first used for paging and snoopy caches [ST85,KMRSSS].
Recent work on competitive spinning strategies [KMMOS89] found that the fixed spin com-
petitive strategy costs at most twice as much as the optimal off-line algorithm and that a
randomized algorithm can achieve strongly competitive ratios approaching e/(e—1) ~ 1.58.

7 Conclusions

This paper evaluates several competitive spinning strategies for synchronization on shared-
memory multiprocessors. Where possible, we measured improvements to elapsed time.
Where that was not possible, we used an analytic approximation based on the observed
distribution of lock-waiting times.

The lock-waiting distributions that we have collected indicate that there is large vari-
ability between lock-waiting times for different locks and between different programs. This
suggests that no fixed non-adaptive algorithm can perform uniformly well, even on the
small sample of programs we studied. Our results also suggest that easily-implementable
spinning strategies can attain nearly optimal performance. At present, programmers often
go to great lengths to avoid even momentary contention for a lock. Such care may not be
necessary if competitive algorithms are used to implement lock acquisition.

Always-block performed poorly in both the analysis and elapsed-time measurements.

19

Our figures indicate that choosing another strategy may lead to a significant performance

improvement.

The elapsed-time measurements indicate that:

e The simple fixed spin algorithm produces somewhat better performance than block-

ing.

¢ Optimal on-line approximation, last 3 samples, and random walk all perform very

well.

o The optimal on-line algorithm for a known distribution performs the best. However,
the added benefit in elapsed times would not seem to justify requiring the programmer
to declare the optimal spinning time for each lock or go to the effort of collecting the
required data during a previous run.

It seems likely that on newer, faster machines, the advantages of competitive strategies
may be even greater than those we observed. Faster machines rely on effective caching.
Since context switches reduce the hit ratio of a cache, we expect that the performance
impact of these algorithms will become even more pronounced.

Acknowledgements

We would like to thank Marc H. Brown for his help with our measurements. We would also
like to thank Mike Burrows, Hendrik Goosen, Jim Horning and Tim Mann for their very
helpful comments on previous drafts of this paper. Kai Li was supported in part by NSF
grant CCR-8814265 and Digital Systems Research Center and External Research program.

References

[ABLL90]

[ALLS9]

[And89]

[Dij65]

[GGK*83]

[GT90]

T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy. Scheduler
Activations: Effective Kernel Support for the User-Level Management of Par-
allelism. University of Washington Technical Report 90-04-02, October 1990.

T.E. Anderson, E.D. Lazowska, and H.M. Levy. The Performance Implica-
tion of Thread Management Alternatives for Shared-Memory Multiprocessors.
In ACM SIGMETRICS Conference on Measurement and Modeling Computer
Systems, 1989.

Thomas E. Anderson. The Performance Implication of Spin-Waiting Alterna-
tives for Shared-Memory Multiprocessors. In Proceedings of the 1989 Interna-
tional Conference on Parallel Processing, pages I1:170-174, 1989.

E.W. Dijkstra. Solution of a Problem in Concurrent Programming Control.
Communications of the ACM, 8(9):569, September 1965.

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, and
M. Snir. The NYU Ultracomputer — Designing an MIMD Shared Memory Par-
allel Computer. IEEE Transactions on Computers, C-32(2):175-189, February
1983.

Gary Graunke and Shreekant Thakkar. Synchronization Algorithms for
Shared-Memory Multiprocessors. Computer, 23(6), pp 60-69, June 1990.

20

[Her87]

[Her90]

[KMMOS9]

[KMRS8S]
[Knu66]
[Lam87]
[MB90]

[MS87]

[Oust82]

[Rov86]
[ST85]

[TSS88]

[ZLESS)

[ZLES9]

Maurice Herlihy. Impossibility and Universality Results for Wait-Free Syn-
chronization. In Seventh ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, August 1987.

Maurice Herlihy. A Methodology for Implementing Highly Concurrent Data
Structures. In Second ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 197-206, March 1990.

A R. Karlin, M.S. Manasse, L. McGeoch, and S. Owicki. Competitive Random-
ized Algorithms for Non-Uniform Problems. In st Annual ACM Symposium
on Discrete Algorithms, pages 301-309, 1989.

A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive
Snoopy Caching. Algorithmica, 3(1):79-119, 1988.

Donald E. Knuth. Additional Comments on A Problem in Concurrent Program
Control. Communications of the ACM, 9(5):321, May 1966.

Leslie Lamport. An Efficient Mutual Exclusion Algorithm. ACM Transactions
on Programming Languages and Systems, 5(1), 1987.

Jeffrey C. Mogul and Anita Borg, The Effect of Context Switches on Cache
Performance. WRL Technical Note, TN-16, December 1990.

P.R. McJones and G.F. Swart. Evolving the UNIX System Interface to Support
Multithreaded Programs. Research Report 21, DEC Systems Research Center,
September 1987.

John K. Ousterhout. Scheduling Techniques for Concurrent Systems. Proc.
3rd International Conference on Distributed Computing Systems, pp. 22-30,
October 1982.

Paul Rovner. Extending Modula-2 to Build Large, Integrated Systems. IEEE
Software, 3(6), November 1986.

D.D. Sleator and R.E. Tarjan. Amortized Efficiency of List Update and Paging
Rules. Communications of the ACM, 28(2):202-208, February 1985.

Charles Thacker, Lawrence Stewart, and Edwin Satterthwaite. Firefly: A
Multiprocessor Workstation. IEEE Transactions on Computers, 37(8):909-
920, August 1988.

John Zahorjan, Edward D. Lazowska, and Derek L. Eager. Spinning Versus
Blocking in Parallel Systems with Uncertainty. Proc. Intern. Seminar Perfor-
mance of Distributed and Parallel Systems, North Holland, December 1988.

John Zahorjan, Edward D. Lazowska, and Derek L. Eager. The Effect of
Scheduling Discipline on Spin Overhead in Shared Memory Parallel Processors.
Technical Report 89-07-03, University of Washington, July 1989. Also IEEFE
Transactions on Parallel and Distributed Systems, to appear.

21

